CA1094167A - Self-suturing cardiac pacer lead - Google Patents

Self-suturing cardiac pacer lead

Info

Publication number
CA1094167A
CA1094167A CA300,128A CA300128A CA1094167A CA 1094167 A CA1094167 A CA 1094167A CA 300128 A CA300128 A CA 300128A CA 1094167 A CA1094167 A CA 1094167A
Authority
CA
Canada
Prior art keywords
die
tip
wire
lead
suture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA300,128A
Other languages
French (fr)
Inventor
Donald L. Harris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cordis Corp
Original Assignee
Cordis Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cordis Corp filed Critical Cordis Corp
Application granted granted Critical
Publication of CA1094167A publication Critical patent/CA1094167A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • A61N1/057Anchoring means; Means for fixing the head inside the heart
    • A61N1/0573Anchoring means; Means for fixing the head inside the heart chacterised by means penetrating the heart tissue, e.g. helix needle or hook

Abstract

ABSTRACT OF THE DISCLOSURE
The cardiac pacer lead disclosed herein may be secured or effectively sutured to cardiac tissue by ejecting a length of malleable wire through a tubular die having, at its distal end, a curved central bore which imparts a curvature of essentially predetermined radius to the wire. Passing through the tissue, the wire forms a circular loop or suture which can retain the lead in the desired position for stimulation.

Description

BACKGROUND OF THE INVENTION
The present invention relates to a self-attaching cardiac pacer lead and more particularly to such a lead which incorporates means for forming a wire suture which can secure the lead in position.
Various schemes have been proposed for retaining or securing, to heart tissue, the distal end of a flexible cardiac pacer lead. Such a flexible lead is typically employed because it is desirable to locate the pacer circuitry and batteries at a point remote from the heart in order to have more room and so as to facilitate replacement of the pacer upon depletion oE its batteries. Some means, e.g. a flexible lead, is thus needed for providing conduction between the pacer's circuitry and the desired stimulation site. Further, some means is needed for securing the distal end of the lead to the desired location, e.~.
atrium or ventricle. Among the schemes proposed pre~iously may be noted the use of hooks or barbs; the use of a helical screw-in electrode; and the use of various clamping elements. Such constructions are shown, for example, in U.S.Patent Nos.3,416,533;
3,416,534; 3,472,234; 3,754,555; 3,814,10~; 3,902,501; and 4,000,745.
While certain of these prior art constructions have met with limited success, there have likewise been certain problems and difficulties associated with different ones of these con-structions. In some, the attachment device renders the tip of the lead bulky and increases the difficulty of initially positioning or inserting the lead, particularly where a pervenous approach is used. Particularly with regard to the hooked and barbed type of constructions, the attachment means may c~use undue trauma to the heart, resulting in the formation of fibrosis .

1 which interfers with the electrical characteristics necessary for satis~actory stimulation. Thus, over time, an increased stimulation threshold is observed.
Among the several objects of the present invention may be noted the provision of a cardiac pacer lead which can be secured to cardiac tissue at the desired point of stimulation; the provision of such a lead which is relatively easil~ introduced by means of a pervenous appxoach; the provision of such a lead which, once attached, is relatively secure and yet which does not produce undue trauma to the cardiac tissue due to the means o~ attachment; the provision of such a pacer lead construction which is reliable and which is of relatively simple and inexpensive construction. Other objects and features will be in part apparent and in paxt pointed out hereinafter.

SUMMARY OF THE INVENT ON

A cardiac lead in accordance with the present invention employs an electrical terminal for attachment to pacer circuitry and a tip for contacting cardiac tissue, there being a flexible conductor extending between the terminal and the tip. A fine, :20 tubular die is mounted at the tip end of the lead, the die having a central bore which curves at its distal end thereby to impart a curvature of predetermined radius to a malleable wire driven through the die. The terminal, the tip, and the flexible conductor means are hollow to permit the passage there-through of an elongate stylet for driving a length of wire through the die. Preferably, the length of w:ire is provided with means for limiting the extent of its passage through the die.
Accordingly, the pacer lead tip may be secured to cardiac tissue by ejecting the wire through the die while the tip is in contact with the cardiac tissue. The wire thus passes through the tissue 1 in a curved path which arches back ~owards the tip, effectively forming a suture for holding the tip in placeO

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a side view, with parts broken away, of a self-suturing cardiac pacer lead in accordance with the present invention, together with a handle/stylet assembly which is assembled with the pacer lead at manufacture;
Fig. 2 is a sectional view to enlarged scale showing a portion of the coaxial stylet assembly which is used in actuating the suture-forming portion of the lead of Fig. l;
Fig. 3 is a sectional view of the distal tip of the pacer lead of Fig. 1 showing, in a withdrawn position, a suture-forming die which is incorporated in the tip;
Fig. 4 is a view similar to Fig~ 3 showing the die projecting from the tip and a suture formed;
Fig 5 is a side view, to a still furthex enlarged scale, showing the suture-orming element or wire; and Figs.6 and 7 are side and top views, respectively, of the suture-forming die.

Corresponding xeference characters indicate corresponding parts throughout the several views of the drawings.
DESCRIPTION OF THE PREFERRED EMBODIMENT

.. _ . . . . .
~eferring now to Fig. 1, there is indicated at 11 a cardiac pacer lead in accordance with the present invention together with a handle/stylet assembly 13 which is preferably assembled with the lead at the time of original manufacture and stays with the lead until application of the lead to a patient's heart is essentially complete.
Except for the attaching means, the general construction of the lead 11 is essentially conventional and the lead comprises - 1 a terminal portion 15 connected to a distal tip portion 17 by a flexible conductor 19. In the preferred construction, the flexible conductor 19 comprises a loosely wound helical coil of Elgiloy wire 21, fitting loosely within a tube 23 of silicone rubber (.Silastic).. The terminal port;on 15 of the lead comprises a tubular contact 24 to which the Elgiloy coil 21 is electrically connected,.and a silicone rubber jacket 25. The particular form of terminal shown is adapted for use with cardiac pacers manufactured by the Cordis Corporation of Miami, Florida.
At its distal end, the helically coiled Elgiloy con-ductor 21 is connected to a metal tip or contact electrode 27.
Electrode 27 is a conventionally shaped cylindrical electrode with its distal end rounded. It may also be terminated in a ~lat disk or in a concave contour. Contact tip 27 is molded to the silicone rubber tubing with.silicone rubber as indicated at 29.
Except for the attaching means described hereinafter, ...
the lead at Fig. 1 is of essentially conventional design for use with a pervenous approach to the heart. While the tip 27 would be solid in such prior constructions, the terminal 15 and the flexible conductor would be hollow to permit the insertion of a wire stylet. A stylet is used to stiffen the lead to facilitate its insertion through a suitable ~ein into the interior cavities of the patient's heart, the stylet being then removed after the lead was suitably positioned. In prior practice~
the tip 27 was typically positioned at the apex of the patient's ventricle where it would rest under slight axial pressure from the lead itself until tissue would tend to grow in around the tip, giving it some security.
In accordance with the present invention, the electrode 27 is more positively secured to the cardiac tissue by means of a ~' f ~rc~cQe, 1, a Y ~

6~

1 suture-like element which can be ejected from the electrode and simultaneously formed. For this purpose, the electrode ~7 carxies a needle-like die 31 which can project out in front of the electrode, through a central bore 32. During initial introduction of the lead, however, the die 31 is withdrawn into the electrode as shown in Fig. 3 so that the electrode presents a rounded leading edge facilitating its introduction along a vessel such as the patient's vein.
Rather than a solid stylet which is threaded -through the lead only during the installation process, the operating apparatus o the present invention employs a coaxial construction com-prising an outer, tubular stylet 40 and an inner stylet or central core 43. This coaxial construction is preferably assembled with the lead during original manufacture and is removed only after the lead has been secured to the patient's heart.
As may be saen in Fig. 1, the control device 13 comprises a handle portion 35 and an operating knob 37 which is axially slidable within the handle 35. Both of these pieces ~ may be constructed of a suitably rigid plastis such as poly-carbonate. The handle 35 also is formed with a recess 39 for loosely retaining the terminal portion 15 of the lead. In one construction of the embodiment illustrated, the outer portion 40 o the coaxial element comprised stainless steel hypodermic tubing of .016 inch outer diameter and .008 inch inner diameter. At its proximal end, this tube is rigidly attached to the handle 35.
This attachment is facilitated by welding a small tab to the tubing 40 as indicated at 41. The distal end of the tubing 40 is tapered and is wedged or forced fit into a central bore 44 extending axially through the electrode 27. This may be seen in ;7 1 Flgs. 3 and 4. For reasons which will be apparent hereina~ter, this is intended as a releaseable wedge fit.
Passing through the tubing 40 is the core wire 43. The proximal end of this wire extends through an axial bore in the knob 37 and is secured to the knob by means of a pin 45 driven radially into a transverse bore through th~ knob so as to clamp the wire. The tubing 40 also extends to the right of its point of attachment to the handle 35, so as to pass slidingly into the central axial bore in the knob element 37. Preferably, this bore is lined with a sleeve 46 which provides support for the tubing 40. Sleeve 46 may, for example, comprise a sliyhtly larger size of hypodermic tubing, e.g. tubing having a .028 outer diameter and a .016 inch inner diameter. As will be understood, the knob member 37 is axially slidable with respect to the tubing 40 and is not secured thereto. The knob 37 thus provides a means for driving the central core 43 axially with respect to the tubing 40.
The distal end of the core 43 is shaped, as illustrated to enlarged scale in Fig. 5, so as to be formable into a suture.
In keeping with the other dimensions given previously, the diameter of the core wire 43 over most of i-ts length is about .007 inches diameter but the suture-forming tip portion 51 is ground down to a diameter of approximately .005 inch and given a sharp point, as illustrated. As will be understood, this ground down portion 51 itself constitutes a length of formable wire. A short section of the full diameter ~.007~ of the core wire is left to form a collar 53 next to the suture forming portion 51 and this in turn is followed by a necked-down section 55 of even smaller diameter, e.g. .004 inches. This necked-down section 55 provides a predetermined point of fracture t useful as described hereinafter.

:, , , ,~ ,, 1 AS noted previously, the electrode tip 27 carr~es a needle~like -tubular die 31. Prior to use and with the knob 37 in the right hand position as illustrated in Fig. 1, the die 31 is withdrawn wholly within the electrode tip 27 as illustrated in Fig. 3 so that the tip provides a rounded nose for the lead as it is being introduced through the patient's vascular system into his heart. The die is illustrated in greater detail and to enlarged scale in Figs. 6 and 7. As may be seen in these figures, the central bore of the die curves upwardly at the distal (left hand) tip of the die whereas the proximal ~right hand) end of the die comprises a collar 62 which limits the extent to which the die can be projected out through the front of the electrode 27, the central bore 32 within the electrode 27 being stepped as illustrated so as to engage this collar. The collar 62 is preferably formed by flaring the tubing and then grinding to achieve a diameter consistent with the diameter of the corresponding portion of the internal bore 32 within electrode 27.
The curved, forming portion 64 of the die 31 is con-veniently formed by bending suitably-sized hypodermic tubing to the desired radius and then grinding off the curved portion in conformity with the original cylindrical surface. Consistent with the other dimensions given previously, a suitable si~e ox the original hypodermic tubing forming the die is .012 inches outer diameter by .006 inches inner diameter. The radius of the curved tip of the die 31 is selected to produce the desired set to the suture wire, allowing for some slight spring back depending on the character of the suture wire. In the embodiment illustrated, a die formed with 0.050 inch radius curvature produces a circular suture of about 0.125 inch diameter, the suture material heing half-hard Elgiloy.

. :.

L6'7 1 During installation of the lead, the sequence of operations is essentially as ollows. The lead and actuator assembly is delivered essent;ally in the posture illustrated in Fig. 1, i.e.
the knob 37 is to the right so that the central core wire 43 is witl~drawn and the needle-like die 31 is retracted within the electrode 27. The lead is introduced into the patient's vascular system in accordance ~ith prior medical procedures and the electrode tip 27 at the distal end of ~he lead is worked into contact with a selected location on the patient's heart. During this operation, t~e coaxial assembly comprising the tube 40 and the core 43 act in the same manner as the solid stylet con-ventionally used in such procedures. ~ curve or set may be imparted to these elements just as with a conventional stylet for facilitat;ng the guiding of the electrode during its passage through the patlent's vascular system.
Once the electrode 27 at the distal end of the lead has been led to the selected stimulation site, the knob 37 can be driven to the left with respect to the handle portion 35 so as to drive the inner core 43 toward the tip. It should be under-stood tha~ this force and movement of the core is withr~spect to the tubing 40 which guides and supports the core during this operation. As the suture-forming tip 51 of the core 43 moves to the left, as viewed in the drawings, it encounters and drives ahead of it the tuhular die 31. Since the distal end of the die is sharp, it will pierce cardiac tissue before the force is great enough to cause the core wire to bend and form itself through -the dîe.
The projection of the die 31 from the electrode 27 is limited by the engagement of the collar 62 with the corxesponding shoulder on the interior ~ore in the electrode. Thus, when the I die stops its motion to the left, further movement of the core will cause the tip portion 51 to pass through the die and the die will impart a predetermined curvature to this portion as it is ejected into the caxdiac tissue. The length of the tip portion 51 is such that essentially a complete circle will be formed before the collar 53 comes to rest against the base of the die. At this point, the electrode tip 27 will be relatively securely attached to the cardiac tissue, the formed portion of the wire, in effect, constituting a suture holding the electrode in place. At this point, electrical testing can be conducted to determine if the stimulation site exhibits an app~opriate threshold level of stimulation.
While the securing of the electrode tip 27 is essentially complete at this point, the process as thus far described is essentially reversible. That is, if it is desired to move the stimulation electrode, the knob 37 can be moved to the right, the suture tip 51 will be drawn back through the die, and the needle~like die will be pulled back into the electrode tip 27.
Thus, the attachment can ~e released and, after re-~positioning the electrode t;p 27, the suture tip can be again ejected through the die so as to form a circular suture securing the electrode.
In that the material of the suture tip 51 is to some extent malleable, i.e. capa~le of being formed by bending beyond its elastic limit, the number of times which the tip can be formed and unformed is, of course, finitely limited. Howevex, at present, it is ~elieved that even a substantial number of tries, e.g. ten, will not sîgnificantly weaken the suture material.
Even the ability to make only a second tr~ is believed to be highly advantageous, particularly when considering the security with which the attachment is made.

1 Once a satisfactory location and attachment is achieved, the knob 37 may be rotated se~eral turns, ~he pin 71 being provided clearance in an annular groove 73. The formed suture tip 51 will not rotate since it is embedded in the cardiac tissue and the resultant concentration of stress at the necked-down portion 55 will eventually cause it to racture, thereby releasing the main portion of the core 43 from the completed suture tip. When the longitudinal groove 75 is brought up into alignment with pin 71, the knob 37 is moved slightly more forward. The resultant movement of the inner core 43, driving shoulder 53 against the flared portion of the die 31, will push the electrode tip 27 off the tubular stylet 40, separating the tapered wedge fito With these separations made, both the tubing 40 and the core 43 may be withdrawn from the lead so that the lead will then be in the highly desirable limp condition provided by the helically coiled wire 21. With the coaxial stylet withdrawn, the terminal 15 may be connected to a suitable pacer which is then implanted in conventional manner.
While the embodiment illustrated employs a suture-forming material of circular cross-section passing through a die with a circular bore and a curved tip, it should be understood that suture-forming elements of other cross-sections appropriate for accepting a predetermined curvature might also be used. For example, the suture-forming material might be relatively flat with its longer transverse axis perpendicular to the plane of the final suture. Such a material could be initially constralned in a conduit of conforming shape and a set could be imparted at the tip of the conduit by a wedge or pin which deflected the material beyond its elastic limit from its straight ahead course.
Such an arrangement may be particularly useful where it is desired 1 to form two circular sutures extending in opposite direc-tions from the pacer lead tip.
In the embodiment illustrated, electrical contact is permitted between the electrode tip 27 and the die and suture material. Thus, the combined surface will operate to provide stimulation. As is known, however, an important parameter in determining the stimulation threshold is the current density, which is in turn a function o~ the effective electrode area.
Thus, it may be advantageous in certain instances to electrically insulate the sutures ~rom the electrode, e.g. by placing an insulating sleeve around the die An alternative arrangement which also would provide a reduced contact area would be to eliminate the tip as an electrically active element and to apply the stimulating current through the suture alone.
As may be understood from the foregoing description, the present invention comprises as an important aspect the formation in situ of a suture which is created by a~ially ejecting an elongate suture~forming element through a die which deforms the material beyond its elastic limit so as to impart a predetermined curvature. The suture element will typically be initially straight though this is not absolutely required. For example as the suture is withdrawn, e.g. incident to making a second tr~ at electrode placement, the suture element will retain some residual set and not be returned to its initial straigh-t state.
It should be understood, however, that the presence or absence of some initial curvature is not significant in the practice of the present invention. Rather, it is the formation in situ of a suture by endwise movement of the material so that, as it is formed, it follows a predetermined path through the tissue. This may be contrasted with various devices in which elements spring out and take a preset shape of their own volition.

, - , 1 While the suture-forming ~echnique employed in securing the pacer lead of the present invention has particular utility in that field, it should also be understood that this technique is also applicable to other medical environments since it offers the possibility of forming a closed loop suture at the point where it is needed. The suture so formed may, for example, be employed to join two tissue edges. The advantage, however, is that the sutures can be introduced by means of a tubular structure which is essentially of no larger diameter than a large hypodermic needle, e.g. one having the diameter of the die 31 or the tubing 40 employed in the construction illustrated.
In view of the foregoing, it may be seen that several ob~ects of the present invention are achieved and other advantageous results have been attained.
As various changes could be made in the above con-structions without departing from the scope of the invention, it should be understood that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims (6)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A cardiac pacer lead comprising:
an electrical terminal;
a tip for contacting cardiac tissue;
flexible conductor means extending between said terminal and said tip;
a length of formable wire;
a tubular die mounted at the tip end of said lead, said die having a central bore which receives said formable wire, said die having, at the distal end thereof, means for deflecting said wire out of alignment with said bore to impart a curvature of predetermined radius to said wire as it is driven through the die, said length of wire being provided with means for limiting the passage of said wire through the die, said terminal, said tip and said flexible conductor means being hollow to permit the passage therethrough of elongate means for driving said wire through the die, said elongate means being operable from the terminal end of said lead r whereby said tip may be secured to cardiac tissue ejecting said length of wire through said die while said tip contacts cardiac tissue, the wire passing through the tissue in a curved path which arches back toward the tip effectively forming a suture holding the tip in place.

2. A cardiac pacer lead comprising:
an electrical terminal;
a tip for contacting cardiac tissue;
flexible conductor means extending between said terminal and said tip;

a tubular die mounted at the tip end of said lead, said die having a central bore which curves at the distal end of the die
Claim 2 continued.....

thereby to impart a curvature of predetermined radius to a wire driven through the die;and a length of wire in said bore, said length of wire being provided with means for limiting the passage of said wire through the die, said terminal, said tip and said flexible conductor means being hollow to permit the passage therethrough of elongate means for driving said wire through the die, said elongate means being operable from the terminal end of said lead, whereby said tip may be secured to cardiac tissue ejecting said length of malleable wire through said die while said tip contacts said cardiac tissue, the wire passing through the tissue in a curved path which arches back toward the tip effectively forming a suture holding the tip in place.
3. A cardiac pacer lead as set forth in claim 2 wherein said tubular die is axially slidable in said tip to a limited extent between a retracted position and an extended position in which the die extends beyond the tip, said die being pointed to pierce tissue as it is driven to said extended position by a wire being advanced so as to be ejected through said die after said die reaches said extended position.

4. Surgical apparatus for forming a circular wire suture within normally inaccessible tissue, said apparatus comprising:
a formable wire element;
a needle-like tubular die member adapted for penetrating tissue, said die member having an inner bore shaped for closely guiding a wire element and having, at its distal end, means for deflecting a wire element out of alignment with said inner bore, the deflection taking the wire element beyond its elastic limit
Claim 4 continued....

thereby to impart a curvature of essentially predetermined radius to the wire element; and a plunger sliding in said bore for driving said wire element through said bore and past said deflecting means thereby to eject said wire element along a path curving at essentially said predetermined radius, the length of said wire element being sufficient to form an essentially closed loop suture.

5. Cardiac pacer lead apparatus comprising:
an electrical terminal at the proximal end of the lead;
a tip at the distal end of the lead for contacting cardiac tissue;
a hollow, flexible conductor extending between said terminal and said tip;
a tubular die mounted within said tip of said lead, said die having a central bore which curves at the distal end of the die thereby to impart a curvature of predetermined radius to a wire driven through the die, said tubular die being axially slidable in said tip to a limited extent between a retracted position and an extended position in which the die extends beyond the tip, said die being pointed to pierce tissue as it is driven to said extended position;
a hollow stylet member extending through said hollow flexible conductor to said tip to which the stylet member is releasably attached;
extending through said stylet, a length of wire including a suture-forming portion which extends into said die, said suture-forming portion being provided with means for limiting the passage of said wire through the die; and
Claim 5 continued....

means operable from the terminal end of said lead, for driving said wire with respect to said hollow stylet member whereby said tip may be secured to cardiac tissue ejecting said suture-forming portion through said die while said tip contacts said cardiac tissue, the wire passing through the tissue in a curved path which arches back toward the tip effectively forming a suture holding the tip in place.
6. Apparatus as set forth in claim 5 wherein said suture-forming portion is selectively severable from the remainder of said wire.
CA300,128A 1977-03-21 1978-03-21 Self-suturing cardiac pacer lead Expired CA1094167A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US779,686 1977-03-21
US05/779,686 US4103690A (en) 1977-03-21 1977-03-21 Self-suturing cardiac pacer lead

Publications (1)

Publication Number Publication Date
CA1094167A true CA1094167A (en) 1981-01-20

Family

ID=25117201

Family Applications (1)

Application Number Title Priority Date Filing Date
CA300,128A Expired CA1094167A (en) 1977-03-21 1978-03-21 Self-suturing cardiac pacer lead

Country Status (8)

Country Link
US (1) US4103690A (en)
JP (1) JPS53133994A (en)
CA (1) CA1094167A (en)
DE (1) DE2811994A1 (en)
FR (1) FR2384505A1 (en)
GB (1) GB1576587A (en)
NL (1) NL7802940A (en)
SE (1) SE7803196L (en)

Families Citing this family (262)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4257428A (en) * 1977-12-09 1981-03-24 Barton Steven A Retractable stimulation electrode apparatus and method
US4136703A (en) * 1978-03-09 1979-01-30 Vitatron Medical B.V. Atrial lead and method of inserting same
US4321931A (en) * 1978-04-10 1982-03-30 Hon Edward D Electrode structure and applicator therefor
US4235238A (en) * 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
JPS5554963A (en) * 1978-10-18 1980-04-22 Fujiwara Akimasa Catheter that fix pacemaker electrode into atrium
US4257429A (en) * 1979-02-07 1981-03-24 Medtronic, Inc. Stylet retainer and extension
WO1980002231A1 (en) * 1979-04-24 1980-10-30 J Donachy Long-life flexible electrode lead
US4253462A (en) * 1979-08-09 1981-03-03 Medtronic, Inc. Stylet
US4301815A (en) * 1980-01-23 1981-11-24 Telectronics Pty. Limited Trailing tine electrode lead
SE422885B (en) * 1980-04-11 1982-04-05 Ursus Konsult Ab The electrode device
US4475560A (en) * 1982-04-29 1984-10-09 Cordis Corporation Temporary pacing lead assembly
US6656182B1 (en) 1982-05-20 2003-12-02 John O. Hayhurst Tissue manipulation
US4501276A (en) * 1982-07-16 1985-02-26 Illinois Tool Works Inc. Fetal electrode apparatus
US4624266A (en) * 1983-12-19 1986-11-25 Daig Corporation Introducer tool for screw-in lead
US4553543A (en) * 1984-03-05 1985-11-19 Amarasinghe Disamodha C Suturing assembly and method
DE3412950A1 (en) * 1984-04-06 1985-10-17 Peter Dr.-Ing. 7889 Grenzach-Wyhlen Osypka SURGICAL ELECTRODE
US4795433A (en) * 1985-05-20 1989-01-03 Survival Technology, Inc. Automatic injector for emergency treatment
US4832682A (en) * 1984-08-08 1989-05-23 Survival Technology, Inc. Injection method and apparatus with electrical blood absorbing stimulation
US4616656A (en) * 1985-03-19 1986-10-14 Nicholson James E Self-actuating breast lesion probe and method of using
USRE34021E (en) * 1985-11-18 1992-08-04 Abbott Laboratories Percutaneous fixation of hollow organs
US4858623A (en) * 1987-07-13 1989-08-22 Intermedics, Inc. Active fixation mechanism for lead assembly of an implantable cardiac stimulator
US5632746A (en) * 1989-08-16 1997-05-27 Medtronic, Inc. Device or apparatus for manipulating matter
EP0416793A1 (en) * 1989-08-30 1991-03-13 Angeion Corporation Catheter
US5221269A (en) * 1990-10-15 1993-06-22 Cook Incorporated Guide for localizing a nonpalpable breast lesion
DE9015857U1 (en) * 1990-11-21 1991-02-07 B. Braun Melsungen Ag, 3508 Melsungen, De
US5403328A (en) * 1992-04-22 1995-04-04 United States Surgical Corporation Surgical apparatus and method for suturing body tissue
US5368601A (en) * 1992-04-30 1994-11-29 Lasersurge, Inc. Trocar wound closure device
CA2106127A1 (en) * 1992-09-23 1994-03-24 Peter W.J. Hinchliffe Instrument for closing trocar puncture wounds
US5527321A (en) * 1993-07-14 1996-06-18 United States Surgical Corporation Instrument for closing trocar puncture wounds
US5492119A (en) * 1993-12-22 1996-02-20 Heart Rhythm Technologies, Inc. Catheter tip stabilizing apparatus
US5573542A (en) * 1994-08-17 1996-11-12 Tahoe Surgical Instruments-Puerto Rico Endoscopic suture placement tool
EP1304085A3 (en) 1994-09-16 2004-01-21 Ethicon Endo-Surgery, Inc. Biodegradable tissue marking device
US5665096A (en) * 1995-03-07 1997-09-09 Yoon; Inbae Needle driving apparatus and methods of suturing tissue
DE19621099C2 (en) * 1996-05-24 1999-05-20 Sulzer Osypka Gmbh Device with a catheter and a needle that can be inserted into the heart wall from the inside as a high-frequency electrode
US5902310A (en) * 1996-08-12 1999-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for marking tissue
US5851226A (en) * 1996-10-22 1998-12-22 Medtronic, Inc. Temporary transvenous endocardial lead
US7637948B2 (en) * 1997-10-10 2009-12-29 Senorx, Inc. Tissue marking implant
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US6053925A (en) * 1998-02-27 2000-04-25 Barnhart; William H. Lesion localization device and method
US6161034A (en) * 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
US6306105B1 (en) * 1998-05-14 2001-10-23 Scimed Life Systems, Inc. High performance coil wire
US6613059B2 (en) 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6945980B2 (en) 1998-06-03 2005-09-20 Medtronic, Inc. Multiple loop tissue connector apparatus and methods
US6607541B1 (en) * 1998-06-03 2003-08-19 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6641593B1 (en) 1998-06-03 2003-11-04 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6332889B1 (en) 1998-08-27 2001-12-25 Onux Medical, Inc. Surgical suturing instrument and method of use
US6786913B1 (en) 1999-02-01 2004-09-07 Onux Medical, Inc. Surgical suturing instrument and method of use
US6951564B2 (en) * 1998-10-23 2005-10-04 United States Surgical Corporation Site marker device
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US8498693B2 (en) * 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US20090030309A1 (en) 2007-07-26 2009-01-29 Senorx, Inc. Deployment of polysaccharide markers
US8118822B2 (en) 1999-03-01 2012-02-21 Medtronic, Inc. Bridge clip tissue connector apparatus and methods
US6695859B1 (en) 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6575991B1 (en) 1999-06-17 2003-06-10 Inrad, Inc. Apparatus for the percutaneous marking of a lesion
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
DE19930266A1 (en) 1999-06-25 2000-12-28 Biotronik Mess & Therapieg catheter
US6527785B2 (en) 1999-08-03 2003-03-04 Onux Medical, Inc. Surgical suturing instrument and method of use
US6511489B2 (en) * 1999-08-03 2003-01-28 Frederic P. Field Surgical suturing instrument and method of use
US8529583B1 (en) 1999-09-03 2013-09-10 Medtronic, Inc. Surgical clip removal apparatus
US6926730B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Minimally invasive valve repair procedure and apparatus
US6679895B1 (en) 1999-11-05 2004-01-20 Onux Medical, Inc. Apparatus and method for placing suture wires into tissue for the approximation and tensioning of tissue
US6722371B1 (en) 2000-02-18 2004-04-20 Thomas J. Fogarty Device for accurately marking tissue
US6564806B1 (en) 2000-02-18 2003-05-20 Thomas J. Fogarty Device for accurately marking tissue
WO2001060235A2 (en) * 2000-02-18 2001-08-23 Fogarty Thomas J M D Improved device for accurately marking tissue
US6582441B1 (en) * 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
US7131979B2 (en) 2002-05-17 2006-11-07 Dvl Acquisition Sub, Inc. Surgical suturing instrument and method of use
JP2003531652A (en) * 2000-03-27 2003-10-28 オーナックス・メディカル・インコーポレーテッド Surgical suturing instrument and method of use
US6663643B2 (en) * 2000-03-27 2003-12-16 Onux Medical, Inc. Surgical suturing instrument and method of use
US6551332B1 (en) 2000-03-31 2003-04-22 Coalescent Surgical, Inc. Multiple bias surgical fastener
AU2002234140A1 (en) 2000-10-20 2002-05-06 Onux Medical, Inc. Surgical suturing instrument and method of use
WO2002056748A2 (en) * 2000-10-20 2002-07-25 Onux Medical, Inc. Surgical suturing instrument and method of use
DE10054251B4 (en) * 2000-11-02 2006-06-01 Lucas Varity Gmbh Control valve housing for a vacuum brake booster
CA2659518A1 (en) * 2000-11-20 2002-05-30 Senorx, Inc. Tissue site markers for in vivo imaging
US7131980B1 (en) 2001-01-18 2006-11-07 Dvl Acquisitions Sub, Inc. Surgical suturing instrument and method of use
US7011668B2 (en) 2001-07-23 2006-03-14 Dvl Acquistion Sub, Inc. Surgical suturing instrument and method of use
US7112208B2 (en) * 2001-08-06 2006-09-26 Morris John K Compact suture punch with malleable needle
WO2003024300A2 (en) 2001-09-14 2003-03-27 Onux Medical, Inc. Surgical suturing instrument and method of use
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US7147651B2 (en) * 2002-02-08 2006-12-12 Arthrex, Inc. Stiff tipped suture
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US6752767B2 (en) 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip
JP2005525862A (en) 2002-05-17 2005-09-02 オーナックス・メディカル・インコーポレーテッド Surgical suture instrument and method of use thereof
US8066724B2 (en) 2002-09-12 2011-11-29 Medtronic, Inc. Anastomosis apparatus and methods
US8409090B2 (en) * 2002-09-20 2013-04-02 Id, Llc Tissue retractor and method for using the retractor
US8105345B2 (en) 2002-10-04 2012-01-31 Medtronic, Inc. Anastomosis apparatus and methods
CA2505961C (en) * 2002-11-18 2011-10-11 Inrad, Inc. Apparatus for implanting a preloaded localization wire
US20060036158A1 (en) 2003-11-17 2006-02-16 Inrad, Inc. Self-contained, self-piercing, side-expelling marking apparatus
JP4015582B2 (en) * 2003-05-09 2007-11-28 ニスカ株式会社 Image forming apparatus
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
US7182769B2 (en) 2003-07-25 2007-02-27 Medtronic, Inc. Sealing clip, delivery systems, and methods
US20050043749A1 (en) 2003-08-22 2005-02-24 Coalescent Surgical, Inc. Eversion apparatus and methods
US8394114B2 (en) 2003-09-26 2013-03-12 Medtronic, Inc. Surgical connection apparatus and methods
US7251532B2 (en) * 2003-10-17 2007-07-31 Medtronic, Inc. Medical lead fixation
US20050273002A1 (en) * 2004-06-04 2005-12-08 Goosen Ryan L Multi-mode imaging marker
US7879047B2 (en) 2003-12-10 2011-02-01 Medtronic, Inc. Surgical connection apparatus and methods
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
ATE385827T1 (en) * 2004-05-14 2008-03-15 Biotronik Crm Patent Ag ELECTRODE LEAD
US20050267555A1 (en) * 2004-05-28 2005-12-01 Marnfeldt Goran N Engagement tool for implantable medical devices
JP2008508058A (en) * 2004-07-29 2008-03-21 ヴァートス メディカル インコーポレーテッド Spinal ligament correction device
US7650186B2 (en) 2004-10-20 2010-01-19 Boston Scientific Scimed, Inc. Leadless cardiac stimulation systems
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US20060189993A1 (en) 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7914539B2 (en) 2004-11-09 2011-03-29 Biomet Sports Medicine, Llc Tissue fixation device
US7608098B1 (en) 2004-11-09 2009-10-27 Biomet Sports Medicine, Llc Bone fixation device
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US8034090B2 (en) 2004-11-09 2011-10-11 Biomet Sports Medicine, Llc Tissue fixation device
US8409111B2 (en) 2004-11-22 2013-04-02 Bard Peripheral Vascular, Inc. Removable localizing wire
US8419656B2 (en) * 2004-11-22 2013-04-16 Bard Peripheral Vascular, Inc. Post decompression marker introducer system
US20060229675A1 (en) * 2005-04-07 2006-10-12 Roberto Novoa Anchoring System for Valve Replacement
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
ES2637638T3 (en) 2005-07-29 2017-10-16 Vertos Medical, Inc. Percutaneous tissue removal devices
US8052658B2 (en) 2005-10-07 2011-11-08 Bard Peripheral Vascular, Inc. Drug-eluting tissue marker
US20070123890A1 (en) * 2005-11-04 2007-05-31 X-Sten, Corp. Tissue retrieval devices and methods
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8936621B2 (en) 2006-02-03 2015-01-20 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US8406901B2 (en) * 2006-04-27 2013-03-26 Medtronic, Inc. Sutureless implantable medical device fixation
US7942830B2 (en) 2006-05-09 2011-05-17 Vertos Medical, Inc. Ipsilateral approach to minimally invasive ligament decompression procedure
US20070299459A1 (en) * 2006-06-26 2007-12-27 X-Sten Corp. Percutaneous Tissue Access Device
US7848821B1 (en) * 2006-07-11 2010-12-07 Pacesetter, Inc. Apparatus and method for electrode insertion in heart tissue
USD620593S1 (en) 2006-07-31 2010-07-27 Vertos Medical, Inc. Tissue excision device
US20080294039A1 (en) * 2006-08-04 2008-11-27 Senorx, Inc. Assembly with hemostatic and radiographically detectable pellets
US7945307B2 (en) * 2006-08-04 2011-05-17 Senorx, Inc. Marker delivery system with obturator
US20090171198A1 (en) * 2006-08-04 2009-07-02 Jones Michael L Powdered marker
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8064987B2 (en) * 2006-10-23 2011-11-22 C. R. Bard, Inc. Breast marker
US9492657B2 (en) * 2006-11-30 2016-11-15 Medtronic, Inc. Method of implanting a medical device including a fixation element
US7765012B2 (en) * 2006-11-30 2010-07-27 Medtronic, Inc. Implantable medical device including a conductive fixation element
EP3542748B1 (en) * 2006-12-12 2023-08-16 C. R. Bard, Inc. Multiple imaging mode tissue marker
ES2432572T3 (en) * 2006-12-18 2013-12-04 C.R. Bard, Inc. Biopsy marker with imaging properties generated in situ
DE102007052185A1 (en) * 2007-10-25 2009-04-30 Karl Storz Gmbh & Co. Kg Suture attachment for a surgical suture instrument
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US8311610B2 (en) * 2008-01-31 2012-11-13 C. R. Bard, Inc. Biopsy tissue marker
US8177836B2 (en) 2008-03-10 2012-05-15 Medtronic, Inc. Apparatus and methods for minimally invasive valve repair
US8795308B2 (en) * 2008-05-09 2014-08-05 Elmer Valin Laparoscopic gastric and intestinal trocar
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
USD635671S1 (en) 2008-10-23 2011-04-05 Vertos Medical, Inc. Tissue modification device
USD619253S1 (en) 2008-10-23 2010-07-06 Vertos Medical, Inc. Tissue modification device
USD619252S1 (en) 2008-10-23 2010-07-06 Vertos Medical, Inc. Tissue modification device
USD610259S1 (en) 2008-10-23 2010-02-16 Vertos Medical, Inc. Tissue modification device
USD611146S1 (en) 2008-10-23 2010-03-02 Vertos Medical, Inc. Tissue modification device
USD621939S1 (en) 2008-10-23 2010-08-17 Vertos Medical, Inc. Tissue modification device
US8670818B2 (en) 2008-12-30 2014-03-11 C. R. Bard, Inc. Marker delivery device for tissue marker placement
US20100204570A1 (en) * 2009-02-06 2010-08-12 Paul Lubock Anchor markers
US8518060B2 (en) * 2009-04-09 2013-08-27 Medtronic, Inc. Medical clip with radial tines, system and method of using same
US8668704B2 (en) * 2009-04-24 2014-03-11 Medtronic, Inc. Medical clip with tines, system and method of using same
US8343227B2 (en) 2009-05-28 2013-01-01 Biomet Manufacturing Corp. Knee prosthesis assembly with ligament link
US9775982B2 (en) 2010-12-29 2017-10-03 Medtronic, Inc. Implantable medical device fixation
US10112045B2 (en) 2010-12-29 2018-10-30 Medtronic, Inc. Implantable medical device fixation
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9357992B2 (en) 2011-11-10 2016-06-07 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US8968336B2 (en) 2011-12-07 2015-03-03 Edwards Lifesciences Corporation Self-cinching surgical clips and delivery system
US9017347B2 (en) 2011-12-22 2015-04-28 Edwards Lifesciences Corporation Suture clip deployment devices
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
US9717421B2 (en) 2012-03-26 2017-08-01 Medtronic, Inc. Implantable medical device delivery catheter with tether
US9854982B2 (en) 2012-03-26 2018-01-02 Medtronic, Inc. Implantable medical device deployment within a vessel
US9833625B2 (en) 2012-03-26 2017-12-05 Medtronic, Inc. Implantable medical device delivery with inner and outer sheaths
US10485435B2 (en) 2012-03-26 2019-11-26 Medtronic, Inc. Pass-through implantable medical device delivery catheter with removeable distal tip
US9220906B2 (en) 2012-03-26 2015-12-29 Medtronic, Inc. Tethered implantable medical device deployment
US9339197B2 (en) 2012-03-26 2016-05-17 Medtronic, Inc. Intravascular implantable medical device introduction
US9498202B2 (en) 2012-07-10 2016-11-22 Edwards Lifesciences Corporation Suture securement devices
US10016193B2 (en) 2013-11-18 2018-07-10 Edwards Lifesciences Ag Multiple-firing crimp device and methods for using and manufacturing same
AU2013294692B2 (en) 2012-07-26 2017-09-14 Nyxoah SA Insert tool for selectively powering an implant unit
US10052097B2 (en) 2012-07-26 2018-08-21 Nyxoah SA Implant unit delivery tool
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
US9592047B2 (en) 2012-12-21 2017-03-14 Edwards Lifesciences Corporation System for securing sutures
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
CA2902233C (en) 2013-07-11 2021-01-12 Edwards Lifesciences Corporation Knotless suture fastener installation system
US9119959B2 (en) 2013-07-31 2015-09-01 Medtronic, Inc. Tine fixation components for implantable medical devices
US9155882B2 (en) 2013-07-31 2015-10-13 Medtronic, Inc. Implantable medical devices including tine fixation component having hook segment
US10071243B2 (en) 2013-07-31 2018-09-11 Medtronic, Inc. Fixation for implantable medical devices
US9480850B2 (en) 2013-08-16 2016-11-01 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US10179236B2 (en) 2013-08-16 2019-01-15 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US10842993B2 (en) 2013-08-16 2020-11-24 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices
US9492674B2 (en) 2013-08-16 2016-11-15 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
US9700732B2 (en) 2013-08-16 2017-07-11 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker and retrieval device
US10722723B2 (en) 2013-08-16 2020-07-28 Cardiac Pacemakers, Inc. Delivery devices and methods for leadless cardiac devices
US9393427B2 (en) 2013-08-16 2016-07-19 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with delivery and/or retrieval features
JP6151452B2 (en) 2013-08-16 2017-06-21 カーディアック ペースメイカーズ, インコーポレイテッド Delivery device and method for a leadless heart device
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
US9526522B2 (en) 2013-09-27 2016-12-27 Medtronic, Inc. Interventional medical systems, tools, and assemblies
US10300286B2 (en) 2013-09-27 2019-05-28 Medtronic, Inc. Tools and assemblies thereof for implantable medical devices
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
WO2015168153A1 (en) 2014-04-29 2015-11-05 Cardiac Pacemakers, Inc. Leadless cardiac pacing devices including tissue engagement verification
US9795781B2 (en) 2014-04-29 2017-10-24 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with retrieval features
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
EP3151756B1 (en) 2014-05-30 2019-08-28 Edwards Lifesciences Corporation Systems for securing sutures
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US10478620B2 (en) 2014-08-26 2019-11-19 Medtronic, Inc. Interventional medical systems, devices, and methods of use
US9675798B2 (en) 2014-08-26 2017-06-13 Medtronic, Inc. Interventional medical systems, devices, and components thereof
EP3229703A4 (en) 2014-12-10 2018-09-05 Edwards Lifesciences AG Multiple-firing securing device and methods for using and manufacturing same
CN107106162B (en) 2014-12-24 2020-10-27 爱德华兹生命科学公司 Suture clip deployment device
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US10470759B2 (en) 2015-03-16 2019-11-12 Edwards Lifesciences Corporation Suture securement devices
US9974534B2 (en) 2015-03-31 2018-05-22 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US10143838B2 (en) 2015-05-13 2018-12-04 Medtronic, Inc. Securing an implantable medical device in position while reducing perforations
US10099050B2 (en) 2016-01-21 2018-10-16 Medtronic, Inc. Interventional medical devices, device systems, and fixation components thereof
US10463853B2 (en) 2016-01-21 2019-11-05 Medtronic, Inc. Interventional medical systems
US10159834B2 (en) 2016-01-26 2018-12-25 Medtronic, Inc. Compact implantable medical device and delivery device
US10143823B2 (en) 2016-04-29 2018-12-04 Medtronic, Inc. Interventional medical systems and improved assemblies thereof and associated methods of use
US10939905B2 (en) 2016-08-26 2021-03-09 Edwards Lifesciences Corporation Suture clips, deployment devices therefor, and methods of use
US10238865B2 (en) 2016-10-06 2019-03-26 Medtronic, Inc. Electrode fixation in interventional medical systems
US10328257B2 (en) 2016-10-27 2019-06-25 Medtronic, Inc. Electrode fixation in interventional medical systems
US10863980B2 (en) 2016-12-28 2020-12-15 Edwards Lifesciences Corporation Suture fastener having spaced-apart layers
US11478653B2 (en) 2017-09-15 2022-10-25 Medtronic, Inc. Electrodes for intra-cardiac pacemaker
US11911623B2 (en) 2018-03-02 2024-02-27 Medtronic, Inc. Implantable medical electrode assemblies, devices, systems, kits, and methods
US10874850B2 (en) 2018-09-28 2020-12-29 Medtronic, Inc. Impedance-based verification for delivery of implantable medical devices
US11759632B2 (en) 2019-03-28 2023-09-19 Medtronic, Inc. Fixation components for implantable medical devices
US11331475B2 (en) 2019-05-07 2022-05-17 Medtronic, Inc. Tether assemblies for medical device delivery systems
US11541232B2 (en) 2019-06-18 2023-01-03 Medtronic, Inc. Electrode configuration for a medical device
US11524143B2 (en) 2019-07-15 2022-12-13 Medtronic, Inc. Catheter with distal and proximal fixation members
US11524139B2 (en) 2019-07-15 2022-12-13 Medtronic, Inc. Catheter with active return curve
US11684776B2 (en) 2019-08-13 2023-06-27 Medtronic, Inc. Fixation component for multi-electrode implantable medical device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB401677A (en) * 1932-05-11 1933-11-13 Hans Albert Roeder Improvements in and relating to surgical filaments
US2008340A (en) * 1934-05-15 1935-07-16 Salvati Alberto Tomas Surgical injection needle and the like
US3087486A (en) * 1959-03-05 1963-04-30 Cenco Instr Corp Cardiac electrode means
US3348548A (en) * 1965-04-26 1967-10-24 William M Chardack Implantable electrode with stiffening stylet
US3516412A (en) * 1965-08-16 1970-06-23 Electro Catheter Corp Bipolar electrode having irregularity at inserting end thereof and method of insertion
US3533403A (en) * 1967-05-10 1970-10-13 Riley D Woodson Combination heart catheter and electrode
US3754555A (en) * 1971-10-05 1973-08-28 G Schmitt Controllable barbed intracardial electrode
US3844274A (en) * 1972-11-10 1974-10-29 J Nordstrom Instrument for inserting bead chain into urethea and bladder
US3945414A (en) * 1975-03-27 1976-03-23 Gordon Dean R Apparatus for deflecting a nail into an arcuate path
US4057067A (en) * 1976-04-06 1977-11-08 Lajos Thomas Z Atrioventricular electrode

Also Published As

Publication number Publication date
SE7803196L (en) 1978-11-10
NL7802940A (en) 1978-09-25
JPS53133994A (en) 1978-11-22
US4103690A (en) 1978-08-01
GB1576587A (en) 1980-10-08
FR2384505A1 (en) 1978-10-20
DE2811994A1 (en) 1978-10-05

Similar Documents

Publication Publication Date Title
CA1094167A (en) Self-suturing cardiac pacer lead
US11123546B2 (en) Methods, tools, and assemblies for implantation of medical leads having distal tip anchors
US4791939A (en) Stylet for use with an implantable pacing lead
US5217027A (en) Temporary cardiac lead
US5769858A (en) Locking stylet for extracting implantable lead or catheter
AU660481B2 (en) Implantable lead system
US4011875A (en) Medical electrodes
US4512351A (en) Percutaneous lead introducing system and method
US4452254A (en) Cardiac electrode and method for installing same
DE60311487T2 (en) FEEDING SYSTEM FOR MEDICAL DEVICES
US4488561A (en) Pacing lead with insertable memory coil
US5746722A (en) Suture sleeve with circumferential lead locking device
US5396902A (en) Steerable stylet and manipulative handle assembly
US4341226A (en) Temporary lead with insertion tool
US5931818A (en) Method of and apparatus for intraparenchymal positioning of medical devices
US5259394A (en) Endocardiac lead having an active fastening means
US4796642A (en) Pacing lead stylet
JPH06509963A (en) Operable stylet and operation handle assembly
CA1135142A (en) Suture forming tool
JP2007505699A (en) Fixing medical electrical leads
US20050143650A1 (en) Tissue marker and method and apparatus for deploying the marker
JP2000185107A (en) Stylet transplantable in coronary vein vessel system for stimulating left ventricle of heart
CA2588024A1 (en) Apparatus and method for subcutaneous electrode insertion
US4299239A (en) Epicardial heart lead assembly
US7833174B2 (en) Method and apparatus for subcutaneously advancing a device between locations

Legal Events

Date Code Title Description
MKEX Expiry