CA1107582A - Composite implant materials and process for preparing same - Google Patents

Composite implant materials and process for preparing same

Info

Publication number
CA1107582A
CA1107582A CA302,862A CA302862A CA1107582A CA 1107582 A CA1107582 A CA 1107582A CA 302862 A CA302862 A CA 302862A CA 1107582 A CA1107582 A CA 1107582A
Authority
CA
Canada
Prior art keywords
resins
sintered
sintered apatite
composite implant
apatite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA302,862A
Other languages
French (fr)
Inventor
Atsushi Tomonaga
Hideki Aoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Application granted granted Critical
Publication of CA1107582A publication Critical patent/CA1107582A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • A61C8/0016Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy polymeric material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30065Properties of materials and coating materials thermoplastic, i.e. softening or fusing when heated, and hardening and becoming rigid again when cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30968Sintering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0071Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof thermoplastic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite

Abstract

ABSTRACT OF THE DISCLOSURE
Disclosed is a composite implant material comprising a sintered d apatite material and a thermoplastic or thermo-setting resin. Said composite material is prepared by forming a sintered apatite material and filling or impregnat-ing a thermoplastic or thermosetting resin into the pores or holes of the sintered apatite material, which have been formed during the formation of said sintered material or perforated after the formation thereof. Said composite implant material has controlled compatibility to bone as well as excellent physical strength.

Description

5~2 FIELD OF THE INVENTION
The invention relates to composite implant materials, particularly composite materials of apatite useful for artificial prostheses in orthopedic and dental fields, and to a process for the preparation thereof.

BACKGROUND OF THE INVENTION
Various metallic, plastics and ceramic materials have hitherto been used as an implant material for a bone or tooth in the orthopedic and dental fields. However, these conventional materials are not satisfactory since they are poor in compatibility to bone in a human or animal body.
Apatite is represented by the formula Ca1O(PO4)6~OH,F,Cl)2 which may further contain 1 to 10~ of carbonate ion (CO3 ).
Such an apatite substance constitutes a main component of the minerals of bones and teeth in vertebrate and has chemical properties such as being soluble in an acid, -~ little or slightly soluble in water and highly stable in an alkali. It is known, on the other hand, that sintered apatite materials obtainable by sintering apatite at a high temperature have no toxicity and are excellent in compati-bility to bone in a human or animal body. Therefore, the sintered apatite materials have increasingly become of great interest in the orthopedic and dental fields. However, the sintered apatite materials have insufficient mechanical strength, paricularly low impact strength, and therefore, must be improved in strength in order to make it possible to employ them as an implant material for a part to which body weight is to be loaded, for example (see, H. Aoki et al, Ceramics, "Apatite as a Biomaterial", 10 [7] 1975, PP. 57-66).

~¢3 75~2 SUMMARY OF THE INVENTION
It has now been found that the use of a plastics material in combination with a sintered apatite material makes it possible not only to improve the strength inherent to the sintered apatite material but, also, to moderately control the compatibility of the sintered apatite material to bone, and; hence, composite materials of a sintered apatite material with a plastics material can provide very useful implant materials.
Thus, the principal object of the present invention is to provide composite implant materials which can avoid the above-mentioned drawbacks encountered with the conven-tional implant materials and are excellent in both physical and chemical properties.
According to the present invention, a composite implant material comprises a sintered apatite material and a thermoplastic or thermosetting resin, at least said sintered apatite material existing in a continuous phase and the respective phases of said sintered apatite material and said thermoplastic or thermosetting resin being exposed, in part, to the surface of said implant material.
- The present invention also provides a process for , preparing the composite implant material according to the invention, which process comprises forming a sintered apatite material and filling or impregnating a thermo-; plastic or thermosetting resin into the pores or holes of the sintered apatite material, which have been formed during the formation of said sintered apatite material or perforated into a desired configuration after the formation of said sintered apatite material.
. . .

, . . .

S~Z

BRIEF DESCRIPTION OF THE DRAWINGS
Figs. 1 through 3 schematically illustrat the embodiments of the arrangement of the sintered apatite material phase and the thermoplastic or thermosetting resin phase in the composite implant material formed into a columnar shape.
DESCRIPTION OF PREEERRED EMBODIMENTS
Apatite to be employed in the present invention may preferably be hydroxyapatite (Cal0(PO4)6(OH)2). Hydroxyapatite may contain a certain amount of whitlockite (Ca3(PO4)2), if desirable from the view point of the affinity to bone or the strength. The preparation and the sintering of apatite may be carried out, for example, by a method as described in the Japanese publication hereinbefore mentioned. The sintered apatite material may, thus, be obtained in a porous or dense state. The composition of the resulting sintered apatite material can be desirably controlled by appropriately selecting the composition of the starting material or the condition for the preparation or sintering of apatite. Likewise, the porosity of the resulting sintered apatite material can also be desirably controlled.
The thermoplastic or thermosetting resins usable for the present invention may be selected from those which are well known in the art. Examples of such resins include polyethylene, polypropylene, polymethyl methacrylate, polyurethane, polyester, acrylonitrile-butadiene-styrene resins, fluorocarbons, polyamides, polyacetals, polycarbonate, polysulfone, epoxy resins, silicone resins, diallyl phthalate resins and furan resins. These resins may contain reinforcing materials such as carbon, silicon carbide, glass, alumina, . . - , ' ~ ' - : ' :~lQ75~2 magnesia, zirconia, tungsten, molybdenum, stainless steel and the like, and other fillers. It is desirable that ; these resins and reinforcing materials be selected so as to provide desired properties, such as mechanical strength and stability, to the resulting composite material, according to the intended use thereof. However, it is important that they be selected in careful consideration of innocuity against a living body and of good processability.
Where the sintered apatite material is as dense as to have a porosity of not more than 20~, the resin may not be or very scarcely be impregnated into the sintered apatite material. However, where the sintered apatite material has a porosity above 20~, the resin may be directly impregnated into the pores of the sintered apatite material. That is - 15 to say, in the process of the present invention, the sintered apatite material may be formed into a porous state so that the resin may be impregnated into the pores to obtain a composite material. Alternatively, if the sintered apatite s material is so dense that the resin may not be impregnated, or if an additional amount of the resin is to be impregnated, or the resin is to be filled into the sintéred apatite material in a desired configuration, the sintered apatite material may be formed with a desired porosity, perforated into a desired configuration by mechanical perforation, or chemical treatment, or by perforation by means of an ultra-sonic wave vibration, laser, water jet or the like, and then, filled or impregnated with the resin into the pores or holes. Then, the resin may be hardened or cured by a conventional method.
In the resultant composite implant material according 5~?2 to the present invention, the sintered apatite material, thus, exist in a continuous phase, which is desirable since the sintered apatite material phase is exposed onto the major part of the surface of the composite implant material.
The embodiments of the arrangement of the sintered apatite material phase and the thermoplastic or thermosetting resin phase in a columnar shaped composite implant material according to the invention are schematically illustrated in the accompanying drawings. In the figures, 1 denotes the sintered apatite material phase and 2 denotes the resin phase. Naturally, the configuration of the composite implant material of the present invention is not limited to those as shown in these figures. For example, the resin may be filled or impregnated in various configurations according to the configurations of the pores or holes formed during the preparation of the sintered apatite material or perforated after the formation of the sintered apatite material.
The composite apatite materials according to the present invention are excellent in both physical and chemical properties. They can be obtained as a molded article in a prescribed shape and, hence, are very suitable as an implant material for orthopedic and dental uses. They can be safely buried in a human or animal body as a prosthesis for a bone or tooth damaged by an accident or by a disease such as bone tumor, dental carries or serious periodontic disease, and intimately bound to a vital tissue without any rejection phenomena while maintaining the high strength thereof.
Further, the composite implant materials according to the invention have a surprising advantage in that their , 51~2 compatibility to bone can be controlled as desired. Upon the use of an implant material for the replacement of a bone or tooth, particularly of a tooth root, it may be necessary to take out the buried implant material from the living body immediately when any troubles are found after --the implantation of the material. In such a case, it is very important that the implant material has a moderate affinity for bone, in order to make it possible to take out the implanted material as required.
The following example will further illustrate the present invention.
Example A. 74 g of purified Ca(OH)2 was stirred into 2 ~
of distilled water. To the obtained suspension, 2 ~ of a solution of about 70 g of 80% phosphoric acid in distilled water was slowly added, to adjust the pH value to approxi-mately 7.0, and they were reacted at 25C, for 1 hour with stirring. Then, the reaction mixture was allowed to stand at room temperature for 24 hours. The reaction product was then collected through centrifuging and dried. The obtained dry powder was microcrystalline calcium phosphate having a Ca/P ratio of about 1.6, which had a composition and construc-tion analogous to those of stoichiometrical hydroxyapatite having a Ca/P ratio of 1.67.
Then, the calcium phosphate powder was blended with an amount of Ca(OH)2 sufficient to supplement the deficiency of calcium as compared with stoichiometrical hydroxyapatite and they were reacted at 800C in the air.
The X-ray diffraction and the thermal analysis of the resultant powder proved that it was pure crystalline hydroxyapatite, ~1~75~:

stable even at a high temperature of up to 1400C.
B. The hydroxyapatite powder obtained as mentioned above was dressed into a grain size of 250 mesh and, then, press molded, under 1,000 kg/cm2, for 5 minutes, into a column of a diameter of 10 mm. The column was then sintered in the air, at 1300C, for 3 hours.
The sintered product thus obtained had a density corresponding to about 95~ of the theoretical density (which corresponds to a porosity of about 5%), a compressive strength of about 1,500 kg/cm2 and a flexural strength of 700 kg/cm2.
C. The sintered apatite column was perforated by means of ultrasonic wave vibration so as to obtain the holes of the shape and arrangement as seen in Fig. 1 with an ; opening percentage (a percentage of the volume of the holesto the whole volume) of about 30%. The perforated column was impregnated under vacuum, at 80C, for 30 minutes, with an epoxy resin havin~ a composition of, 100 parts by weight of an epoxy resin (Epon 828 available from Shell Chemical Co.), 90 parts by weight of a curing agent (methyl nadic anhydride~,
2 parts by weight of a curing accelerator (tri-(di-methylamino)-methylphenol), and the resin was cured at 160C, for 3 hours.
The columnar composite material thus obtained had a compressive strength and flexural strength approximately equivalent to those as mentioned in B, above. A block sample of a composite material of a size of lOxlOx5 mm, ; produced by the procedure as mentioned above, was dropped from a height of 10 m onto a concrete surface to prove the 5~2 excellent impact strength of the composite material of the invention. The sample was not broken at all. A sample of an article of the same size consisting of only the sintered apatite material produced as mentioned above was broken into three pieces in the above-mentioned test.
D. The composite column thus obtained was buried in a tooth extraction fovea of an adult dog as an artificial tooth root. Observation for a period of one month proved that the column was non-toxic and moderately bound to the mandibula of the dog.

Claims (8)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A composite implant material usable as a prosthesis for a bone or tooth, comprising a perforated sintered apatite material having perforation holes formed therein in a desired configuration and a thermoplastic or thermosetting resin, at least said perforated sintered apatite material existing in a continuous phase, said resin being filled or impregnated into said holes, and the respective phases of said sintered apatite material and said resin being exposed, in part, to the surface of said implant material.
2. A composite implant material according to claim 1, wherein said sintered apatite material comprises hydroxy-apatite.
3. A composite implant material according to claim 1, wherein said thermoplastic or thermosetting resin is selected from the group consisting of polyethylene, poly-propylene, polymethyl methacrylate, polyurethane, polyester, acrylonitrile-butadiene-styrene resins, fluorocarbons, poly-amides, polyacetals, polycarbonate, polysulfone, epoxy resins, silicone resins, diallyl phthalate resins and furan resins.
4. A composite implant material according to claim 3, wherein said resin contains a reinforcing material selected from carbon, silicon carbide, glass, alumina, magnesia, zirconia, tungsten, molybdenum and stainless steel.
5. A process for preparing a composite implant material according to claim 1, comprising forming a sintered apatite material, perforating the sintered apatite material to form holes in a desired configuration therein, and filling or impregnating a thermoplastic or thermosetting resin into said holes.
6. A process according to claim 5, wherein said sintered apatite material is formed using hydroxyapatite.
7. A process according to claim 5, wherein said thermo-plastic or thermosetting resin is selected from the group consisting of polyethylene, polypropylene, polymethyl methacrylate, polyurethane, polyester, acrylonitrile-butadiene-styrene resins, fluorocarbons, polyamides, polyacetals, polycarbonate, polysulfone, epoxy resins, silicone resins, diallyl phthalate resins and furan resins.
8. A process according to claim 5, wherein said sintered apatite material is perforated by mechanical perforation or chemical treatment, or by perforation by means of ultrasonic wave, laser or water jet.
CA302,862A 1977-05-20 1978-05-08 Composite implant materials and process for preparing same Expired CA1107582A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5755377A JPS53144194A (en) 1977-05-20 1977-05-20 Compound implanted material and making method thereof
JP57553/77 1977-05-20

Publications (1)

Publication Number Publication Date
CA1107582A true CA1107582A (en) 1981-08-25

Family

ID=13058989

Family Applications (1)

Application Number Title Priority Date Filing Date
CA302,862A Expired CA1107582A (en) 1977-05-20 1978-05-08 Composite implant materials and process for preparing same

Country Status (5)

Country Link
US (1) US4222128A (en)
JP (1) JPS53144194A (en)
CA (1) CA1107582A (en)
DE (1) DE2821354C2 (en)
GB (1) GB1594428A (en)

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141581A (en) * 1972-10-08 1992-08-25 Markham Harold A Implants with a cover which resists formation of firm spherical encapsulation
SE411613B (en) * 1976-03-16 1980-01-21 Ehrnford Lars Edgar Martin STRENGTH AND REINFORCEMENT ELEMENTS AND / OR Retention elements
DE2902434C2 (en) * 1978-01-26 1986-10-16 Arthur August Roseville Minn. Beisang Method of manufacturing a blood vessel implant
DE2905878A1 (en) * 1979-02-16 1980-08-28 Merck Patent Gmbh IMPLANTATION MATERIALS AND METHOD FOR THEIR PRODUCTION
JPS5645814A (en) * 1979-09-25 1981-04-25 Kureha Chem Ind Co Ltd Hydroxyapatite, its ceramic material and its manufacture
US4314380A (en) * 1980-09-26 1982-02-09 Koken Co., Ltd. Artificial bone
JPS57128149A (en) * 1981-02-03 1982-08-09 Mitsubishi Rayon Co Implantable artificial organ
US4535486A (en) * 1981-05-18 1985-08-20 Rensselaer Polytechnic Institute Low friction bearing surfaces and structures particularly for artificial prosthetic joints
JPH03149059A (en) * 1982-09-10 1991-06-25 Yamahito Kogure Composite high polymeric material for substitution for hard tissue which possesses stress relaxation function in motion of living body
US4503157A (en) * 1982-09-25 1985-03-05 Ina Seito Co., Ltd. Sintered apatite bodies and composites thereof
US4673355A (en) * 1982-10-25 1987-06-16 Farris Edward T Solid calcium phosphate materials
JPS59133235A (en) * 1983-01-21 1984-07-31 Kanebo Ltd Zeolite particle-containing polymer and its production
CA1247960A (en) 1983-03-24 1989-01-03 Hideki Aoki Transcutaneously implantable element
CH658180A5 (en) * 1983-04-12 1986-10-31 Mathys Robert Co DEVICE TO ENABLE THE GUMS TO CONNECT TIGHTLY TO A METAL PILLAR LEADING OUTSIDE FROM A JAW BONE.
US4525495A (en) * 1983-07-22 1985-06-25 The Dow Chemical Company Mineral filled composites
US4932973A (en) * 1983-09-30 1990-06-12 El Gendler Cartilage and bone induction by artificially perforated organic bone matrix
JPS60135042A (en) * 1983-12-24 1985-07-18 小木曽 誠 Perfect embedding type artificial tooth gum
CH665551A5 (en) * 1984-03-06 1988-05-31 Werner Hans Dr Med De Moermann BLANK FOR THE MANUFACTURE OF DENTAL TECHNOLOGY MOLDED PARTS.
DE3433210C1 (en) * 1984-09-10 1986-06-05 Hans Dr.med. Dr.med.dent. 8000 München Scheicher Means for filling bone and tooth defects, for bone building, for bone contact layers and for bone and tooth root replacement and use of carbonate apatite for this purpose
US4629464A (en) * 1984-09-25 1986-12-16 Tdk Corporation Porous hydroxyapatite material for artificial bone substitute
JPS61135670A (en) * 1984-12-03 1986-06-23 三菱マテリアル株式会社 Implant material having anti-thrombotic property
JPS61135671A (en) * 1984-12-04 1986-06-23 三菱鉱業セメント株式会社 Implant material
US4722870A (en) * 1985-01-22 1988-02-02 Interpore International Metal-ceramic composite material useful for implant devices
JPS61170471A (en) * 1985-01-25 1986-08-01 住友大阪セメント株式会社 Bone prosthetic molded body
US4698375A (en) * 1985-02-19 1987-10-06 The Dow Chemical Company Composites of unsintered calcium phosphates and synthetic biodegradable polymers useful as hard tissue prosthetics
US4634720A (en) * 1985-02-19 1987-01-06 The Dow Chemical Company Process for the preparation of hard tissue prosthetics
US4842604A (en) * 1985-02-19 1989-06-27 The Dow Chemical Company Composites of unsintered calcium phosphates and synthetic biodegradable polymers useful as hard tissue prosthetics
US4661536A (en) * 1985-02-19 1987-04-28 The Dow Chemical Company Process for the preparation of hard tissue prosthetics
US4992226A (en) * 1985-03-28 1991-02-12 Collagen Corporation Method of making molds with xenogeneic collagen/mineral preparations for bone repair
JPS61235752A (en) * 1985-04-11 1986-10-21 Asahi Optical Co Ltd Material, device and method for separating cell
KR890003069B1 (en) * 1985-06-10 1989-08-21 구레하 가가꾸 고오교오 가부시끼가이샤 Implant material
JPS61284253A (en) * 1985-06-10 1986-12-15 呉羽化学工業株式会社 Implant material
DD238619A1 (en) * 1985-06-24 1986-08-27 Univ Schiller Jena INORGANIC - ORGANIC COMPOSITE MATERIALS FOR BIOMEDICAL PURPOSES
JPS6211459A (en) * 1985-07-09 1987-01-20 株式会社アドバンス Composite implant material
US4645503A (en) * 1985-08-27 1987-02-24 Orthomatrix Inc. Moldable bone-implant material
US4735625A (en) * 1985-09-11 1988-04-05 Richards Medical Company Bone cement reinforcement and method
US4889833A (en) * 1986-10-06 1989-12-26 Kuraray Co., Ltd. Granular inorganic moldings and a process for production thereof
US4737411A (en) * 1986-11-25 1988-04-12 University Of Dayton Controlled pore size ceramics particularly for orthopaedic and dental applications
JPS63183069A (en) * 1987-01-27 1988-07-28 旭光学工業株式会社 Implant material and its production
US4874315A (en) * 1987-02-19 1989-10-17 Eastman Dental Center Method for bonding of restorative materials to a tooth
JPS6456056A (en) * 1987-08-26 1989-03-02 Dental Chem Co Ltd Hydroxyapatite bone filling material
US7534254B1 (en) 1988-06-13 2009-05-19 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US6120502A (en) 1988-06-13 2000-09-19 Michelson; Gary Karlin Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US7452359B1 (en) 1988-06-13 2008-11-18 Warsaw Orthopedic, Inc. Apparatus for inserting spinal implants
US6210412B1 (en) 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US6923810B1 (en) 1988-06-13 2005-08-02 Gary Karlin Michelson Frusto-conical interbody spinal fusion implants
US7491205B1 (en) 1988-06-13 2009-02-17 Warsaw Orthopedic, Inc. Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US5015247A (en) * 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
EP0703757B1 (en) 1988-06-13 2003-08-27 Karlin Technology, Inc. Apparatus for inserting spinal implants
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US7431722B1 (en) 1995-02-27 2008-10-07 Warsaw Orthopedic, Inc. Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine
US6123705A (en) * 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
JPH0231749A (en) * 1988-07-20 1990-02-01 Mitsubishi Mining & Cement Co Ltd Filler for bone depleted part and osteoporosis part
US4863974A (en) * 1988-08-03 1989-09-05 W. L. Gore & Associates, Inc. Bone growth matrix and process for making it
AU624627B2 (en) * 1988-08-18 1992-06-18 Johnson & Johnson Orthopaedics, Inc. Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
US5545229A (en) * 1988-08-18 1996-08-13 University Of Medicine And Dentistry Of Nj Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
DE3900708A1 (en) * 1989-01-12 1990-07-19 Basf Ag IMPLANT MATERIALS
ES2054317T3 (en) * 1989-09-06 1994-08-01 Sulzer Medizinaltechnik Ag IMPLANT WITH ANCHORAGE SURFACES FOR OSEO FABRIC.
US5258044A (en) * 1992-01-30 1993-11-02 Etex Corporation Electrophoretic deposition of calcium phosphate material on implants
EP1508307A1 (en) 1993-06-10 2005-02-23 Karlin Technology, Inc. Bone cutting device
CA2143733A1 (en) * 1994-03-02 1995-09-03 Yoshikazu Umezu Alpha-tricalcium phosphate ceramic and production method thereof
FR2722694B1 (en) * 1994-07-22 1996-10-11 Cougoulic Jean Pierre NOVEL MATERIAL FOR MEDICAL OR VETERINARY USE, PROCESS FOR OBTAINING SAME AND ITS APPLICATIONS
US5639402A (en) 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
CN1134810A (en) 1995-02-17 1996-11-06 索发默达纳集团股份有限公司 Improved interbody spinal fusion implants
US6758849B1 (en) 1995-02-17 2004-07-06 Sdgi Holdings, Inc. Interbody spinal fusion implants
US5676745A (en) * 1995-06-07 1997-10-14 The United States Of America, As Represented By The Secretary Of Commerce Pre-ceramic polymers in fabrication of ceramic composites
US7291149B1 (en) 1995-06-07 2007-11-06 Warsaw Orthopedic, Inc. Method for inserting interbody spinal fusion implants
DE19610715C1 (en) * 1996-03-19 1997-06-26 Axel Kirsch Manufacture of bone replacement material
US6013591A (en) 1997-01-16 2000-01-11 Massachusetts Institute Of Technology Nanocrystalline apatites and composites, prostheses incorporating them, and method for their production
US6977095B1 (en) * 1997-10-01 2005-12-20 Wright Medical Technology Inc. Process for producing rigid reticulated articles
US6296667B1 (en) 1997-10-01 2001-10-02 Phillips-Origen Ceramic Technology, Llc Bone substitutes
US6986788B2 (en) 1998-01-30 2006-01-17 Synthes (U.S.A.) Intervertebral allograft spacer
US6258125B1 (en) 1998-08-03 2001-07-10 Synthes (U.S.A.) Intervertebral allograft spacer
US6083264A (en) * 1998-06-30 2000-07-04 Mcdonnell Douglas Corporation Implant material for replacing or augmenting living bone tissue involving thermoplastic syntactic foam
WO2000011088A1 (en) * 1998-08-24 2000-03-02 Asahi Kasei Kogyo Kabushiki Kaisha Polyamide resin composition and process for producing the same
US6799966B1 (en) 1999-03-04 2004-10-05 3M Innovative Properties Company Fluoropolymeric orthodontic article
CA2371914A1 (en) * 1999-05-20 2000-11-30 Russell A. Giordano Polymer re-inforced anatomically accurate bioactive prostheses
US8215314B2 (en) * 2000-02-11 2012-07-10 The General Hospital Corporation Photochemical tissue bonding
AU4554101A (en) * 2000-03-10 2001-09-24 Sdgi Holdings Inc Synthetic reinforced interbody fusion implants
US6632246B1 (en) * 2000-03-14 2003-10-14 Chondrosite, Llc Cartilage repair plug
US7005135B2 (en) * 2001-01-30 2006-02-28 Ethicon Inc. Glass scaffolds with controlled resorption rates and methods for making same
CA2442855A1 (en) * 2001-04-12 2002-10-24 Therics, Inc. Method and apparatus for engineered regenerative biostructures
EP1492475B1 (en) * 2001-04-16 2011-12-21 Wright Medical Technology, Inc. Dense/porous structures for use as bone substitutes
TW200400062A (en) 2002-04-03 2004-01-01 Mathys Medizinaltechnik Ag Kneadable, pliable bone replacement material
JP2004041313A (en) * 2002-07-09 2004-02-12 Pentax Corp Calcium phosphate - synthetic resin complex containing calcium phosphate block and manufacturing method therefor
JP2004097794A (en) * 2002-07-19 2004-04-02 Pentax Corp Calcium phosphate-synthetic resin-metal composite and production method therefor
US7008226B2 (en) * 2002-08-23 2006-03-07 Woodwelding Ag Implant, in particular a dental implant
WO2004078069A2 (en) * 2003-03-05 2004-09-16 Therics, Inc. Process for manufacturing biomedical articles by infiltrating biocompatible metal alloys in porous matrices
US7250550B2 (en) * 2004-10-22 2007-07-31 Wright Medical Technology, Inc. Synthetic bone substitute material
US8025903B2 (en) 2005-09-09 2011-09-27 Wright Medical Technology, Inc. Composite bone graft substitute cement and articles produced therefrom
CA2619469C (en) 2005-09-09 2015-03-03 Wright Medical Technology, Inc. Composite bone graft cement comprising calcium sulfate dihydrate and brushite
US8043377B2 (en) 2006-09-02 2011-10-25 Osprey Biomedical, Inc. Implantable intervertebral fusion device
US8128626B2 (en) * 2007-04-24 2012-03-06 Flexfix, Llc System and method for delivery conformation and removal of intramedullary bone fixation devices
JP5248848B2 (en) * 2007-12-11 2013-07-31 山八歯材工業株式会社 Implant manufacturing method and artificial tooth root manufacturing method
US20090248162A1 (en) * 2008-03-25 2009-10-01 Warsaw Orthopedic, Inc. Microparticle delivery syringe and needle for placing suspensions and removing vehicle fluid
US10842645B2 (en) 2008-08-13 2020-11-24 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
CA2734183C (en) * 2008-08-13 2016-11-01 Smed-Ta/Td, Llc Orthopaedic implant with spatially varying porosity
US9616205B2 (en) 2008-08-13 2017-04-11 Smed-Ta/Td, Llc Drug delivery implants
US20100042213A1 (en) * 2008-08-13 2010-02-18 Nebosky Paul S Drug delivery implants
EP2326281A4 (en) * 2008-08-13 2013-05-29 Smed Ta Td Llc Orthopaedic implant with porous structural member
JP5774989B2 (en) 2008-08-13 2015-09-09 スメド−ティーエイ/ティーディー・エルエルシー Orthopedic screw
US9700431B2 (en) 2008-08-13 2017-07-11 Smed-Ta/Td, Llc Orthopaedic implant with porous structural member
WO2010025386A1 (en) * 2008-08-29 2010-03-04 Smed-Ta/Td, Llc Orthopaedic implant
US20100262244A1 (en) * 2009-04-14 2010-10-14 Warsaw Orthopedic, Inc. Metal Coated Implant
US9399086B2 (en) * 2009-07-24 2016-07-26 Warsaw Orthopedic, Inc Implantable medical devices
WO2012118843A1 (en) * 2011-02-28 2012-09-07 Tissue Regeneration Systems, Inc. Modular tissue scaffolds
US9724203B2 (en) 2013-03-15 2017-08-08 Smed-Ta/Td, Llc Porous tissue ingrowth structure
US9408699B2 (en) 2013-03-15 2016-08-09 Smed-Ta/Td, Llc Removable augment for medical implant
US9681966B2 (en) 2013-03-15 2017-06-20 Smed-Ta/Td, Llc Method of manufacturing a tubular medical implant
US20160128834A1 (en) * 2013-06-19 2016-05-12 Meir Yakir Scaffold implant system
BR112017012730A2 (en) * 2014-12-16 2018-01-02 Ceram Gmbh spinal cages and their insertion instruments
CN114496584B (en) * 2022-02-24 2022-11-18 武汉大学 Conductive material based on teeth and preparation method and application thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3314420A (en) * 1961-10-23 1967-04-18 Haeger Potteries Inc Prosthetic parts and methods of making the same
US3628248A (en) * 1969-07-22 1971-12-21 Dentsply Int Inc Process for forming artificial implants
DE2008010C3 (en) * 1970-02-20 1980-07-10 Schneider Gmbh & Co, 5020 Frechen Process for the manufacture of dental implants
US3713860A (en) * 1970-08-31 1973-01-30 Atomic Energy Commission Bone substitute
DE2242867C3 (en) * 1972-08-31 1975-09-25 Battelle-Institut E.V., 6000 Frankfurt Process for the production of implantable, ceramic bone replacement, bone composite or prosthesis anchoring materials
US3929971A (en) * 1973-03-30 1975-12-30 Research Corp Porous biomaterials and method of making same
DE2501683C3 (en) * 1975-01-17 1979-11-29 Ernst Leitz Wetzlar Gmbh, 6300 Wetzlar Polymer composite material for prosthetic use and process for its manufacture
CH595293A5 (en) * 1975-02-20 1978-02-15 Battelle Memorial Institute
US4073999A (en) * 1975-05-09 1978-02-14 Minnesota Mining And Manufacturing Company Porous ceramic or metallic coatings and articles
JPS5238934A (en) * 1975-09-23 1977-03-25 Canon Inc Cine camera able to record simultaneously
DE2620907C3 (en) * 1976-05-12 1984-09-20 Battelle-Institut E.V., 6000 Frankfurt Anchoring for highly stressed endoprostheses
US4097935A (en) * 1976-07-21 1978-07-04 Sterling Drug Inc. Hydroxylapatite ceramic
US4171544A (en) * 1978-04-05 1979-10-23 Board Of Regents, For And On Behalf Of The University Of Florida Bonding of bone to materials presenting a high specific area, porous, silica-rich surface

Also Published As

Publication number Publication date
US4222128A (en) 1980-09-16
JPS53144194A (en) 1978-12-15
JPS616660B2 (en) 1986-02-28
GB1594428A (en) 1981-07-30
DE2821354C2 (en) 1982-10-28
DE2821354A1 (en) 1978-11-23

Similar Documents

Publication Publication Date Title
CA1107582A (en) Composite implant materials and process for preparing same
CA1120961A (en) Whitlockite ceramic
CA1332495C (en) In situ calcium phosphate minerals -- method and composition
US5152791A (en) Prosthetic artificial bone having ceramic layers of different porosity
KR900005904B1 (en) Implant material with continuos and two-dimensional pores and process producing the same
US4451235A (en) Process for preparing an artificial dental root
US4846838A (en) Prosthetic body for bone substitute and a method for the preparation thereof
KR910001352B1 (en) Porous ceramic material and method for producing thereof
US4634720A (en) Process for the preparation of hard tissue prosthetics
US4859383A (en) Process of producing a composite macrostructure of organic and inorganic materials
US4661536A (en) Process for the preparation of hard tissue prosthetics
CA1158017A (en) Hydroxyapatite, ceramic material and process for preparing thereof
US5047031A (en) In situ calcium phosphate minerals method
US4849285A (en) Composite macrostructure of ceramic and organic biomaterials
US4629464A (en) Porous hydroxyapatite material for artificial bone substitute
US5679294A (en) α-tricalcium phosphate ceramic and production method thereof
JPH10245212A (en) Storage-stable composition for on-site prepared calcium phosphate mineral
JPS62202884A (en) Live body substitute ceramic material
Ebaretonbofa et al. High porosity hydroxyapatite foam scaffolds for bone substitute
R Naqshbandi et al. Development of porous calcium phosphate bioceramics for bone implant applications: A review
JPH0359703B2 (en)
ITOH et al. A new porous hydroxyapatite ceramic prepared by cold isostatic pressing and sintering synthesized flaky powder
CA2088169C (en) Intimate mixture of calcium and phosphate sources as precursor to hydroxyapatite
JP2002501785A5 (en)
EP0335359A2 (en) Porous ceramic material and production process thereof

Legal Events

Date Code Title Description
MKEX Expiry