CA1123166A - Moldable polyurethane foam-backed fabrics - Google Patents

Moldable polyurethane foam-backed fabrics

Info

Publication number
CA1123166A
CA1123166A CA326,314A CA326314A CA1123166A CA 1123166 A CA1123166 A CA 1123166A CA 326314 A CA326314 A CA 326314A CA 1123166 A CA1123166 A CA 1123166A
Authority
CA
Canada
Prior art keywords
component
parts
fabric
weight
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA326,314A
Other languages
French (fr)
Inventor
Robert J. Bailey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Corp
Original Assignee
Mobay Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobay Corp filed Critical Mobay Corp
Application granted granted Critical
Publication of CA1123166A publication Critical patent/CA1123166A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • D06N3/142Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes mixture of polyurethanes with other resins in the same layer
    • D06N3/144Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes mixture of polyurethanes with other resins in the same layer with polyurethane and polymerisation products, e.g. acrylics, PVC
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • D06N7/0063Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf
    • D06N7/0071Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf characterised by their backing, e.g. pre-coat, back coating, secondary backing, cushion backing
    • D06N7/0086Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf characterised by their backing, e.g. pre-coat, back coating, secondary backing, cushion backing characterised by the cushion backing, e.g. foamed polyurethane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2203/00Macromolecular materials of the coating layers
    • D06N2203/06Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N2203/068Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/04Foam
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2207/00Treatments by energy or chemical effects
    • D06N2207/08Treatments by energy or chemical effects using gas
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2207/00Treatments by energy or chemical effects
    • D06N2207/12Treatments by energy or chemical effects by wave energy or particle radiation
    • D06N2207/123Treatments by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation, e.g. IR, UV, actinic light, laser, X-ray, gamma-ray, microwave, radio frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/647Including a foamed layer or component
    • Y10T442/652Nonwoven fabric is coated, impregnated, or autogenously bonded

Abstract

Mo-1870 MOLDABLE POLYURETHANE FOAM-BACKED FABRICS
ABSTRACT OF THE DISCLOSURE

The invention relates to a process wherein ? a heat curable froth or foamable mixture of polyurethane reaction components is applied to the back of a fabric, ? the coated fabric is heated to form a gelled, tack-free and storable foam-backed fabric and ? the fabric is shaped and cured using a hot molding process. The polyurethane formulation contains a hydroxy functional ester of an acrylic or alkyl acrylic acid and a free radical initiator.

Mo-1870

Description

~2;~

Mo-1870 MOLDABLE POLYURETHANE FOAM-BACKED FABRICS

BACKGROUND OF THE INVENTION

This invention is an outgrowth of the development o~
molded polyurethane foam-backed fabrics (and, particularly carpets) which are sufficiently stiff upon demolding to retain their shape and yet are not so stiff that they crack when bent. The process for making such foamed-backed fabrics involves the application of a heat curable froth or foamable mixture of polyurethane reaction components to the back of a fabric. The polyurethane is then cured, normally under heat, to a tack-free, gelled state. The fabric is then cut into sized pieces and molded to the desired shape.

The general drawback to this process is the diffi-culty in formulating a system which can undergo the above mentioned steps in an industrial setting. Until now, it has not been possible to produce a tack-free, gelled foam backing which could be stored for long periods of time, be cut into a desired sized piece when needed, and molded in a reasonably short period of time into a molded part which will retain its shape while at the same time not being so stiff that it will crack if bent.

The general method of applying foam to a fabric substrate and subsequently molding the laminate into a desired shape is known e.g. U. S. Patents 3,175,936; 3,046,177;
3,440,307; 3,77X,224; 3,849,156 and 3,175,936. None of these methods, however, permits the foam-backed fabric to be stored for prolonged periods and then be hot molded at a much later time into excellent contoured laminates.

Mo-1870 -1~23~L66 In U. S. Patent 3,860,537, a foam which is storable in a roll is produced and is capabLe of being molded at a later time. The method requires the use of a significant quantity of an ethylenically unsaturated polyester together with an ethylenically unsaturated monomer copolymerizable with the polyester. The shortcoming of the process is that the curing/molding step requires molding times of 30-35 minutes (note Examples 1 and 10) which is an economically unaccept-ably long time. The patent also fails to suggest applying the foamable reaction mixture to the back of a fabric, or in fact to any substrate.

- The present invention utilizes a hydroxy functional acrylate and a free radical initiator as a means of over-coming the lengthy mold time. The use of hydroxy functional acrylates is not new to the polyurethane art. For example, there are the polymer polyols e.g. U. S. patents 3,383,351;
3,652,639; 3,523,093 and 3,576,706. There are a number of coating applications described in U. S. patents 3,975,457;
3,919,351; 3,989,609. There are also patents such as U. ~. patent 3,954,584 directed to a photo polymerizable vinyl urethane composition and U. S. patent 4,052,282 directed to a photocurable bandage. However, as far as Applicant is aware, there is no prior art directed to the specific application of producing a curable and moldable polyurethane foam which has been applied to a fabric substrate.

DESCRIPTION OF THE INVENTION

The present invention provides a process for pre-paring molded polyurethane foam-backed fabric where the polyurethane reaction mixture can be applied to the fabric '~ without significant reaction so that it can be easily han-Mo-1870 - 2 -~LZ31~i~

dled. The fabric is then heated to form a gelled and tack-free foam laminate which can be st:ored for long periods of time prior to shaping and molding. In addition, the foam-backed fabric can be molded i.n very short cycle times of as little as 30 seconds to 1 minut:e and form a fabric with good shape retention.

The invention relates to a process for preparing a molded, -~lyurethane foam-backed fabric comprising the steps of:

(A) applying a foamable mixture or froth of poly-urethane reaction components to the back of a fabric, said reaction components comprising (1) a polyisocyanate;
(2) an organic compound containing at least two hydrogen atoms capable of reacting with isocyanate groups, having a molecular weight of between 400 and 16,000 and con-taininy essentially no ethylenically un-saturated groups;
(3) hydroxy containing esters of acrylic or alkyl acrylic acids and preferably hydroxy acrylates of the formula:

HO¦- Rl - O-C-C--CH~

wherein Rl is an x + y valen~ optionally branched,Cl-C18 alkylene, arylene or aralkylene group;

Mo-1870 - 3 -~L~Z~L6~i R2 is H or a Cl-C18 alkyl group x and y are integers which may be the same or different and represent 1-8, with the proviso that x + y does not exceed 8;
(4) a free radical initiator;
(5) a heat activated catalyst for the reaction between components (1) and (2);
(6) a blowing agent, or inert gas for frothing;
(7) a surface active agent for foam stability;

(B) heating the coated fabric for from 15 seconds to 10 minutes at about 80-250F to allow the polyurethane reaction to proceed to produce a gelled, tack free poly-urethane foam, and (C) shaping and curing the resultant foam-backed fabric by a hot molding process.

The preferred hydroxy acrylates are those of the above mentioned formula in which Rl is C1-C4 alkylene and R2 is H or -CH3, and x and y each equal 1. The most preferred materials are 2-hydroxy ethyl acrylate and 2-hydroxy propyl acrylate.

The hot molding process of step (C) can include placing the foam-backed fabric in a heated mold where at least the polyurethane side is subjected to temperatures of from 200 to 350F and a pressure of from 0.1 to 20 psi for anywhere from 15 seconds to 5 minutes. Alternatively, the foam-backed fabric can itself be heated to a temperature of from 200 to 350F and then shaped in an unheated mold under the same pressure and time conditions. The heating of the :0 foam-backed fabric is pre~erably done while the fabric is Mo-1870 - 4 -~LZ3i~i6 laid out flat and can be accomplished by any of the methods commonly used in the art, such as forced hot air, infrared radiation, microwave radiation and the like~

The ability to store the fabric prior to shaping and molding and yet form a molded fabric with excellent properties is thought to be particularly due to the use of the hydroxy functional acrylate and fIee radical initiator which is primarily activated only at the molding temperature.

Suitable hydroxyl group containing esters include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxy-ethyl methacrylate, 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, hydroxyoctyl methacrylate and the like and mixtures thereof.

Also suitable are partially acrylated polyols such as pentaerythritol mono, di- and tri-acrylate, trimethylol propane diacrylate, mannitol acrylates, sucrose acrylates and the like. It would, of course, also be possible to alkoxylate a polyol to produce a polyether polyol and then to partially acrylate the polyether polyol with acrylic acid or an alkylacrylic acid. Various other hydroxy functional acrylates used in the present process and their methods of preparation are known. In general a diol or polyol is reacted with acrylic, methacrylic or other alkyl acrylic acids in amounts sufficient to form a compound containing at least one hydroxyl group, and at least one acrylate, meth-acrylate or alkyl acrylate group. Thus, any compound containing at least one hydroxyl group and at least one acrylate or alkyl substituted acrylate group would be effective. The acrylate can be used in amounts ranging from 0.5 to 50, preferably from 5 to 20 and most preferably from 8 to 15 Mo-1870 - 5 -- .

~3~

parts by weight per 100 parts by weight of component (2).

Suitable free radical initiators include those well known to initiate the polymerization of carbon~carbon double bonds and preferably which have a half-life of less than 1 minute at the molding temperatures. Suchinitiators include, for example, the peroxides, persulfates, perborates, percar-bonates, azo compounds, etc., including hydrogen peroxide, dibenzoyl peroxide, acetyl peroxide, benzoyl hydroperoxide, t-butyl hydroperoxide, di-t-butyl peroxide, lauroyl peroxide, butyryl peroxide, diisopropylbenzenehydroperoxide, cumene, hydroperoxide, paramenthane hydroperoxide, diacetyl peroxide, - di-a-cumyl peroxide, dipropyl peroxide, diisopropyl peroxide, isopropyl-t-butyl peroxide, butyl-t-butyl peroxide, dilauroyl peroxide, difuroyl peroxide, ditriphenylmethyl peroxide, bis(p-methoxybenzoyl)peroxide, p-monomethoxybenzoyl peroxide, rubrene peroxide, ascaridol, t-butyl peroxybenzoate, diethyl peroxyterephthalate, propyl hydroperoxide, isopropyl hydroperoxide, n-butyl hydroperoxide, t-butyl hydroperoxide, cyclohexyl hydroperoxide, trans-Decalin hydroperoxide, : :
a-methylbenzyl hydroperoxide, a-methyl-~thyl benzyl hydro-peroxide. Tetralin hydroperoxide, triphenylmethyl hydroper-oxide,diphenylmethyl hydroperoxide, a,a-azo-2-methyl butyroni-trile, a,a-2-methyl heptonitrile, l,l'-azo-l-cyclohexane carbonitrile, dimethyl a,a'-azoisobutyrate, 4,4'--azo-4-cyanopentanoic acid, azobis-(isobutyronitrile), persuccinic acid, diisopropyl peroxy dicarbonate, and the like; a mixture initiators may also be used. Azobis(isobutyronitrile) dissolved in a m~Ln~m amount of a suitable solvent is the preferred initiator.
It is preferred to use from .01 to 1 part of initiator per 100 parts by weight of component (2), most preferably from .05 to .5 part.
Mo-1870 - 6 -~L~;23~

In addition to the hydroxy functional acrylate used in the present process, it is possible to use in addition thereto other hydroxy functional compounds containing ethylenically unsaturated groups. From 0 to 50 parts by weight per 100 parts of component 2 and, preferably from 8 to 15 parts can be used. Examples of such compounds include hydroxy terminated butadiene homopolymers, hydroxy-terminated butadiene-styrene copolymers and hydroxy terminated butadiene-acrylonitrile copolymers available from ARCO, trimethylol propane di-2-propenyl ether, and the like~ These compounds are not in themselves sufficiently active to provide molded fabrics which are sufficiently stiff to retain their shapes.
They also tend to be too insoluble in the polyol blend to be storage stable for any prolonged period of time.

While the process for making the polyurethane backed fabrics can generally utilize any known formulation for making polyurèthane foams, certain preferred general formulations have been found to be most advantageous in optimizing the backed fabric properties. In general, in addition to the polyisocyanate, co~pounds containing active hydrogen atoms, silicone surfactant, heat activated catalyst and blowing agent or inert gas for frothing, it is useful to include a chain extender and substantial amounts o~ an inorganic filler.

As is known in the art, compounds useful in pre-paring polyurethane foams include organic compounds with at least two hydrogen atoms capable of reacting with isocyanates and having molecular weights of from about 400 to 16,000.
The active hydrogen containing compounds used in the present invention should contain essentially no ethylenically Mo-1870 - 7 -3L~L;23~66 unsaturated groups.

As is recognized in the art, most polyether polyols will contain very small amounts of terminal unsaturated groups. By "essentially no ethylenically unsaturated groups"
is meant that component (2) does not contain so many ethylenically unsaturated groups that they begin to take a significant part in the free radical polymerization during step (C) with the carbon-carbon double bonds of the acrylate.
Apart from compounds containing amino groups, thiol groups or carboxyl groups, compounds of this type which are preferred are polyhydroxyl compounds. Particularly preerred com-pounds are those containing 2 to 8 hydroxyl groups, and expecially those with molecular weights of from 800 to 10,000 (most preferably 1,000 to 6,000). Examples include, polyesters, polyethers, polythioethers, polyacetals, poly-carbonates and polyesteramides containing at least 2 and ~ -; generally 2 to 8 and preferably 2 to 4 hydroxyl groups, of the type known per se for the production of homogeneous and cellular polyurethanes.

Examples of suitable polyesters containing hydroxyl groups include reaction products of polyhydric, preferably dihydric, and, optionally, trihydric alcohols with polyvalent, preferably divalent carboxylic acids. Instead of the free polycarboxylic acids the corresponding polycarboxylic acid anhydrides or esters with lower alcohols or mixtures thereof may also be used for the production of the polyesters. The polycarboxylic acids may be aliphatic, cycloaliphatic, aromatic and/or heterocyclic, and may optionally be substituted, for example, by halogen atoms. Examples of these polycarboxylic acids are succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, tri-Mol870 - 8 -3~

mellitic acid, phthalic acid anhyclride, hexahydrophthalic acid anhydride, glutaric acid anhydride. Examples of suitable polyhydric alcohols include ethylene glycol, 1,2-and 1,3-propylene glycol, 1,4- ancl 2,3-butylene glycol, 1,6-hexane diol, 1,8-octane diol, neopentyl glycol, cyclohexane dimethanol (1,4-bis-hydroxymethyl--cyclohexane), 2-methyl 1,3-propane diol, glycerol, trimethylol-propane, 1,2,6-hexane triol, 1,2,4-butane triol, trimethylolethane, penta-erythritol, quinitol, mannitol, sorbitol, methyl glycoside, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycols, dipropylene glycol, polypropylene glycols, dibutylene glycol and polybutylene glycols. The ; polyesters may contain terminal carboxyl groups. Polyesters glycols of lactones, for example, ~-caprolactone, or hydroxycar-boxylic acids, for example, ~-hydroxycaproic acid, may also be used.

Polyethers containing at least two and usually two to eight, and preferably two to three hydroxyl groups suitable for use in accordance with the invention, include those obtained by the polymerization of epoxides, such as ethylene oxide, propylene oxide, butylene oxide, tetrahydro-furan, styrene oxide or epichlorohydrin, for example, in the presence of B~3, or by the chemical addition of these epoxides to starting components with reactive hydrogen atoms, such as water, ethylene glycol, 1,2- or 1,3-propylene glycol, trimethylolpropcme, 4,4'-dihydroxydiphenylpropane, aniline, ammonia, ethanolamine and ethylene diamine, tolylene diamine 4,4'-diaminodiphenyl methane, and the like. In many cases, it is preferred to use polyethers of the type which con*ain primary OH-groups (e.g., either by tipping the polyol with Mo-1870 - 9 -3~;6 ethylene oxide or by using a polyether containing as much as 90% by weight of primary OH groups or based on all the OH-groups present in the polyether).

Among the polythio-ethers usable are included the condensation products of thiodiglycol with itself and/or with other glycols, dicarboxylic acids, formaldehyde, amino-carboxylic acids or aminoalcohols. Depending on the co-components, these products are polythio-mixed ethers, poly-thio-ether esters or polythio-ether ester amides.

Suitable polyacetals include those compounds which may be obtained from glycols, such as diethylene glycol, triethylene glycol, and hexane diol, and formaldehyde. Poly-acetals suitable for thepurposes of the invention may also be obtained by polymerizing cyclic acetals.
' Suitable polycarbonates containing hydroxyl groups include those obtainable by reacting diols, such as 1,3-propane diol, 1,4-butane diol and/or 1,6-hexane diol, diethylene glycol, triethylene glycol and tetraethylene glycol, with diarylcarbonates, such as diphenylcarbonate or phosgene.

Examples of polyester amides and polyamides include the predominant:Ly linear condensates obtained from polyvalent saturated carbo~{ylic acids or their anhydrides and polyhydric, saturated amino alcohols, diamines, polyamines and mixtures thereof.

Polyhydroxyl compounds already containing urethane or urea groups and modified natural polyols, such as castor oil, carbohydrates and starch, may also be used. The Mo-1870 - 10 -- , , ,. ~

31~

addition products of alkylene oxides with phenol-formaldehyde resins or even with urea-formaldehyde resins may also be used in accordance with the invention.

Further examples of suitable active hydrogen con-taining compounds are known and can be found, e.g., in HighPolymers, Vol. XVI, "Polyurethanes, Chemistry and Technology"
by Saunders-Frisch, Interscience Publishers, New York, London Vol. I, 1962, pages 32 to 42, and Vol. II, 1964, pages 5 to 6 and 198 and 199, and in Kunststoff-Handbuch, Vol. VII, Vieweg-Hochtlen, Carl-Hanser-Verlag Munich, 1966, pages 45 to 71.

The most preferred high molecular weight compounds containing active hydrogen groups are polyethers with a high primary hydroxyl content. They include compounds having a molecular weight of from about 400 to 10,000, and preferably from 2,000 to 6,000, and having hydroxyl numbers of from about 15 to 100, and preferably from 28 to 56.

Polyesters are generally not preferred because of their hydrolytic instability.

It is preferred but not necessary that a chain extender be used in the resin formulation. Such extenders include compounds having molecular weights of from 32 to about 400 which contain at least two hydrogen atoms capable of reacting with isocyanate;s. These include compounds containing hydroxyl groups and/or amino groups and/or thiol groups and/or carboxyl groups, and preferably compounds containing hydroxyl groups and/or amino groups. They generally contain from 2 to 8 hydrogen atoms capable of reacting with isocyanates, and preferably contain 2 or 3 such hydrogen atoms. The following Mo-1870 ~LZ3~l~i6 are mentioned as examples of such compounds: ethylene glycol; propylene glycol-(1,2) and -(1,3); butylene glycol -(1,4), -(1,3) and -(2,3); pentanediol-(1,5); hexanediol-(1,6); octanediol-(1,8); neopentylglycol; 1,4-bis-hydroxy-5 methylcyclohexane; 2-methyl-1,3-propanediol; glycerol;
trimethylolpropane; hexanetriol-(1,2,6); trimethylolethane;
pentaerythritol; quinitol; mannitol and sorbitol; diethylene glycol; triethylene glycol; tetraethylene glycol; polyethylene glycols having a molecular weight of up to 400; dipropylene glycol, polypropylene glycols having a molecular weight of up to 400; dibutylene glycol; polybutylene glycols having a mo-lecular weight of up to 400; 4,4'-dihydroxy diphenylpropane;
di(hydroxyethyl)hydroquinone; ethanolamine; diethanolamine;
triethanolamine; 3-aminopropanol; ethylenediamine- 1,3-diamino-propane; 1-mercapto-3-aminopropane; 4-hydroxyphthalic acid or 4-aminophthalic acid; succinic acid, adipic acid; hydrazine;
N,N'-dimethylhydrazine, 4,4'-diaminodiphenylmethane, tolylene diamine and diethyl tolylene diamine. ~ixtures of these various compounds may also be used.

These extenders may generally be used in, amounts varying from about 0.5 to about 30 parts by weight, preferably 5 to 15, based on the total amount of above-mentioned higher molecular weight active hydrogen containing compound (2).

The isocyanates suitable for the process according to the invention include essentially any organic polyisocyanate such as aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates of the type known and described, for example, by W. Siefken in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136. Specific examples include ethylene - Mo-1870 - 12 -~L~Z3~

diisocyanate; 1,4-tetramethylene diisocyanate; 1,6-hexamethy-lene diisocyanate; 1,12-dodecane diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,3- and 1,4-diisocyanate, and mix-tures of these isomers; l-isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (Ge~man Auslegeschrift 1,202,785);
2,4- and 2,6-hexahydrotolylene diisocyanate, and mixtures of these isomers; hexahydro-1,3- and/or 1,4-phenylene diisocyanate;
perhydro-2,4' and/or -4,4l-diphenylmethane diisocyanate; 1,3-and 1,4-phenylene diisocyanate; 2,4- and 2,6-tolylene diiso-cyanate, and mixtures of these isomers; diphenylmethane 2,4'-and~or -4,4'-diisocyanate; naphthylene-1,5-diisocyanate;
triphenylmethane-4,4',4"-triisocyanate; polyphenylpolymethv-lene ~olvisocvanates of the tyPe obtained bY condensing aniline with formaldehyde, followed by phosgenation and described, for example, in the British Patents 874,430 and 848,671; perchlorinated arylpolyisocyanates of the type des-cribed, for example, in German Auslegeschrift 1,157,601;
polyisocyanates containing carbodiimide groups of the type described in German Patent 1,092,007; diisocyanates of the type described in U. S. Patent 3,492,330; polyisoayanates containing allophanate groups of the type described, for example, in British Patent 994,890, Belgian Patent 761,626 and published Dutch Patent Application 7,102,524; poly-isocyanates containing isocyanurate groups of the type described, for example,in German Patents 1,022,789;
; 1,222,067 and ].,027,394 and German Offenlegungsschriften 1,929,034 and 2,004,048; polyisocyanates containing urethane groups of the t:ype described, for example, in Belgian Patent 752,261 or U. S. Patent 3,394,164; polyisocyanates containing acylated urea groups as disclosed in German Patent 1,230,778;
polyisocyanates containing biuret groups of the type des-cribed, for example, in British Patent 956,474 and 1,072,956, Mo-1870 - 13 -~3~6~

U. S. Patent 3,567,763 and German Patent 1,231,688; and reaction products of the aforementioned isocyanates with acetals as described in German Pat~ent 1,072,385. It is also possibIe to use the distillation residues containing isocyanate groups accumulating in the commercial production of isocyanates, optionally dissolved in one or more of the aforementioned polyisocyanates. It is also possible to use mixtures of the aforementioned polyisocyanates.

In general, it is preferred to use the readily avail-able polyisocyanate such as 2,4- and 2,6-tolylene diisocyanate and mixtures of these isomers ("TDI"). Particularly preferred are polyphenyl polymethylene polyisocyanates, of the type obtained by aniline-formaldehyde condensation and subsequent phosgenation ("crude-MDI") in various isomeric distributions.
The functionality of the crude MDI may vary from 2.0 to 4.0 but is preferably from 2.5 to 3Ø The volatility OI tolylene diisocyanate generally deters its advantageous use under many circumstances.

Also suitable are polyisocyanates containing carbo-diimide groups, urethane groups, allophanate groups, isocyan-urate groups, urea groups or biuret groups ("modified poly-isocyanates").

Isocyanate terminated prepolymers may also be used in the process of the invention. Such~prepolymers are made by reacting a stoichiometric excess of a polyisocyanate with an active hydroglen containing compound. Blocked isocyanates which may be formed by adding a monofunctional organic compound such as phenol to a polyisocyanate may also be used.

Mo-1870 - 14 -~23:~L66 In general, it is preferred that the foam index (eq, of NCO/ eq. of active hydrogens) be in the range from about 100 to about 200, and prefer,ably from 125 to 150.

A particularly advantageous embodiment of the invention is the pre-reacting of at least part of the poly-isocyanate used as component (1) with the hydroxy functional acrylate, component (3). Acrylates are known irritants to a number of susceptible people. Thus, by this method, the acrylate need only be handled once and need not be contained as a volatile component in the resin blend system which is often transported from the manufacturer to the processor as a blend. This prepolymer can be prepared by reacting all or part of the polyisocyanate with the hydroxy acrylate under typical conditions known for the preparation of NC0-terminated prepolymers with other hydroxy functional compounds.

It is preferred to prepare a froth of the reaction components rather than using blowing techniques normally used to make foams i.e. with thP use of water and/or Freon.
Froths are normally prepared by dispersing an inert gas throughout the reaction mixture to form a heat curable froth.
With the use of heat activated catalysts, the froth is basic-ally structurally and chemically stable and workable at ambient conditions. Frothing techniques are well known and are described, for example, in U. S. Patents 3,108,976; 3,849,156 and 3,772,224. Sufficient air or inert gas is included to produce foams of desired density. The density of the froth is essentially the same as the foam product.

Readily volatile organic substances may be also used as blowing agents in the production of the polyurethane foams.
Mo-1870 - 15 -3~L66 Suitable organic blowing agents include halogen-su~stituted alkanes, such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluorotrichloromethane, chlorodifluoromethane, and dichlorodifluoromethane; butane;
hexane; heptane; or diethylether. A blowing effect, may also be obtained by adding compounds which decompose spontaneously at temperatures above room temperature, giving off gases such as nitrogen. Further examples of blowing agents and details of the use of blowing agents may be found in Kunststoff-Handbuch Vol~ VII, published by Vieweg and Hoechtlen, Carl-Hanser-Verlag, Munich 1966, for - example, on pages 108 and 109, 453 to 455 and 507 to 510.
These blowing agents may be used in amounts from 0 to 10 parts by weight per 100 parts of components (2), (3), (4), (5) and (7).

When using the amidine heat activated catalysts discussed below, it is preferred to use a carboxylic acid (preferably aliphatic and optionally halogen substituted) with from 1-30 carbon atoms and which may be mono or difunctional.
They may be used exclusively or in addition to the above mentioned blowing agents. Particularly preferred among this group are oleic acid, lauric acid, trichloroacetic acid, cyanoacetic acid, phthalic acid, adipic acid, propionic acid, butyric acid, fumaric, isophthalic, terephthalate, ricinoleic, stearic, cyclohexanecarboxylic acid, ~-hydroxy caproic acid and polyesters of dicarboxylic acids and glycols which have a high acid number. These acids may be used in amounts varying from 0 to about 5 parts by weight per 100 parts of Components (2), (3), (4), (5) and (7) preferably from .01 to 2 parts by weight. It is also preferred to use in addition thereto from Mo-1870 - 16 -3~li~i 0 to about 1 part by weight of water, most preferably from 0 to .1 part by weight.

Any of the many catalysts known in and/or used polyurethane chemistry may be used, including organo-tin compounds; tertiary amines; tertiary amines containing hydrogen atoms which can react with isocyanate groups; silamines with carbon-silicon bonds; nitrogen containing bases; alkali metal hydroxides, phenolates or alcoholates; hexahydrotriazines and the like. However, it is preferred to use a heat activated catalyst e.g. bicyclic and monocyclic amidine catalysts;
nickel acetylacetonate or Union Carbide's LC 5613; catalysts produced by Witco (particularly UL 29); and Dabco WT and the like. Amidine catalysts are preferred. In fact, in order to allow for a reasonable working time in which the reaction mixture will remain stable and workable while it is being spread on the fabric, it is best only to use a heat activated catalyst.

Cyclic amidines usable as catalysts or accelerators in the instant invention are known and are described in United States Patent 3,814,707. They are generally used in quantities of from about 0.001 to about 10 percent by weight, preferably from about 0.1 1:o about 5, and most preferably from about 0.3 to about 1 percent by weight (based on all the components).
Suitable bicyclLc amidines include compounds of the following general formula:

(CH2)m Mo-1870 - 17 -~:

llZ3166 wherein m = 2 or 3 and n = 3, 4 or 5.

Suitable monocyclic amid.ines include compounds of the following general formula:

~C\
~ N N-R
I
C ~ / C 2 :~

in which R represents an aliphatic, cycloaliphatic, araliphatic - or aromatic group with 1 to 15 carbon atoms which may be branched and/or may contain hetero atoms. Examples of R
include methyl, cyclohexyl, 2-ethylhexyl, benzyl, cyclohexyl- :
methyl, ethoxy, or a group of the following formula:

; -CH2-CH2-N N
CH ~ / 2 ~.
. CH2 2,3-Dimethyl-3,4,5,6-tetrahydropyrimidine and 1,5-diazabicyclo [5.4.0] undec-5-ene are preferred catalysts according to the invention.
`' :
According to the invention, surface-active additives (emulsifiers and foam stabilizers) may also be used. Examples of emulsifiers include the sodium salts of castor oil sul-phonates or of fatty acids or salts of fatty acids with amines, such asdiethylamine/oleic acid or diethanol-amine/stearlc acid.
Alkali or ammonium salts of sulphonic acids, such as those of Mo-1870 - 18 -~, 3l~Z31~iE;

dodecyl-benzene sulphonic acid or dinaphthyl-methane disulphonic acid, or even of fatty acids, such as ricinoleic acid, or of polymeric fatty acids, may also be used as surface-active additives.

Suitable foam stabilizers include water-soluble poly-e~ther siloxanes. These compounds are generally of such structure that a copolymer of ethylene oxide and propylene oxide is attached to a polydimethylsiloxane radical. Foam stabilizers of this type are described, for example, in U. S.
Patent 3,201,372, Column 3, line 60 to Column 4/ line 3.
From 0.1 to 10 parts by weight of a stabilizer per 100 parts of Component (2) are generally used.

It is particularly useful to use anywhere from 0 to about 500 parts by weight and preferably from 300 to 500 parts by weight per 100 parts of Component (2) of an inorganic filler in finely divided form, (e.g. with a particle size from 0.3 to 80 ~m). Suitable inorganic fillers include e.g. barium sulphate (baryta) calcium carbonate (chalk), alumina trihydrate, kieselguhr and clays (e.g. kaolin), silica talc, quartz, ground shale, fly ash microspheresand the like. The use of a filler is not only advantageous for improving the general backing properties but also significantly enables the fabric to comply with burn tests, such as the Motor Vehicle Safety Standard 302, without the use of fire retardants, and improves the economics of the process. In general, the filler must be mixed, mechanically or otherwise, with the other resin blend components in a separate operation. Barium sulphates, calciur.
carbonate and alumina trihydrate are preferred.

Mo-1870 - 19 -~;Z3~6 According to the invention, it is also possible to use reaction retarders such as hydrochloric acid or organic acid halides; cell regulators such as pa~affins or fatty alcohols or dimethyl polysiloxanes; pigments or dyes; flame-proofing agents such as trischloroethylphosphate or ammonium phosphate and polyphosphate; stabilizers against the effects of ageing and weather; plasticizers; substances with fungi-static and bacteriostatic effects.

Ithas also been found advantageous to use an anti-oxidant in amounts varying from 0 to .5 part by weight per 100 parts of Components (2), (3), (4), (5) and (7). Examples include 2,6-di-t-butyl-4-methylphenol (BHT3, hydroquinone, 4-t-butylcatechol, resorcinol, and 4-methoxyphenol (MEHQ).
. .
Further examples of the surface-active additives and foam stabilizers optionally used in accordance with the invention, and of cell regulators, reaction retarders, sta-~ bilizers, flameproofing agents, plasticizers, dyes, fillers, - substances with fungistatic and bacteriostatic effects, and details on the way in which these additives are to be used and how they work, are known and may be found, e.g., in Kunststoff-Handbuch, Vol. VI, published by Vieweg and Hochtlen, Carl-Hanser-Verlag, Munich, 1966, pages 103 to 113.
`:~
It is also preferred in some instances, to use dehydra-ting or water-binding agents in the process of the instant invention. The presently preferred agents are the alkali metal ; alumino-silicates (so-called molecular sieves) such as those known under the trade name "Zeolite" and described e.g. in U. S. Patent 3,326,844. The oxides of calcium and barium may also be used. The dehydrating agents are generally used in a Mo-1870 - 20 -- .. .

~;23~66 quantity sufficient to ensure that the maximum quantity of moisture which can be carried in with the fillers will be from about 1 to about 10~ by weight, based on the poly-urethane. It is preferred to use a Zeolite paste, particularly a sodium aluminum silicate as a 50~ suspension in castor oil.

According to the instant invention, the reactants may be reacted together in a known manner by the one-step, prepolymer, semi-prepolymer or frothing process, often using mechanical devices such as those described in United States Patent 2,764,565 are used. Details concerning suitable pro-- cessing apparatus may be found, e.g., in Kunststoff-Handbuchr Volume VI, published by Vieweg and Hochtlen, Carl-Hanser-Verlag, Munich, 1966, pages 121 to 205.

Essentially any fabric may be used in the instant inven-tion. They may be woven, non-woven, knitted, spun bonded, or felted, and made of natural or synthetic fibers and/or filaments. It is preferred, however, to use carpet type materials. The type of carpeting which is generally contem-plated by the presen~ invention includes any conventional carpet backing material (e.g., jute or polypropylene) and the fibers can be mechanically anchored to the first backing by any conventional. means (e.g., by sewing, tufting or needle punching). The fibers can be composed of any conventional carpeting material (e.g., cotton, rayon, wool, nylon, acrylo-nitrile polymers, vinyl halide polymers, etc.). The fibers can be in any suitable form (e.g., in the form of pile yarns threaded through the first backing having cut or looped pile faces on the front side of the first backing). The froth can be applied to the first backing ky any suitable procedure ~e.g., knife coating). The backing can have any desired thick-Mo-1870 - 21 -3~

ness (e.g., from 1/16 to 1/2 inch).

The reactive mass may either flow onto a s~itable conveyor belt in front of a doctor knife and the fabric allowed to run thereon (reverse coating), or the mixture may be applied directly to the fabric in front of a doctor knife.

Any number of known pieces of equipment may be used to carry out the invention, e~g., low pressure mixheads with solvent flushes, conveyor means, heated molds, ovens and the like.

The polyurethane foam layer which results from the present process is generally between about 1 and about 25 mm thick and has a closed surface skin. The foam density will vary anywhere from 10 to 100, preferably 20 to 60 and most preferably from 30 to 50 lbs./ft .

The time, temperature, pressure and formulation parameters are all interdependent and the various choices will depend on the particular properties to be engineered.
The following examples serve to explain the process of the invention. All parts and percentages are by weight unless otherwise indicated. In the examples, the following materials were used:

Polyol A is an ethylene oxide tipped polypropylene glycol with a molecular weight of 4800 and an OH number of 35.

Polyol B is a modified version of Polyol A with a Mw of 6000 and an OH number of 28.

DEG is diethylene glycol.

L6202 and L 5612 are Union Carbide polysiloxane surfactants.
Mo-1870 - 22 -3~6~

The catalyst is CH3 ~C
N IN~CH3 CH2 ~CH2 \CH2 HEA is 2-hydroxyethyl aerylate.
HPA is 2-hydroxypropyl acrylate.
AIBN is azobis (isobutyronitrile).
Zeolith T Paste is a sodium-aluminum silieate type paste used as a dessieant.
CS-15 is a hydroxy terminated polybutadiene-styrene eopolymer available from ARCO.
R45HT is a hydroxy terminated polybutadiene homopolymer available from ~RCO.
Polyisoeyanates A and B are polymethylene polyphenyl poly-isocyanates with NCO contents of 31.5% and functional-ities averaging from 2.6 to 2.7.
Polyisoeyanate C is a polymethylene polyphenyl polyisoeyanate with earbodiimide and uretonimine modifieation with a 30~ NCO eontent and a functionality of about 2.
Polyisocyanate D is a liquid modified diphenyl methane diiso- ;
cyanate with an NCO content of 22.6~.

Mo-1870 - 23 -~2~

EXAMPLES

The following method was followed in preparing the foam-backed carpets from the formulations mentioned in the Table below. All of the components except the filler and isocyanate were pre-blended. The filler (e.g., barium sulfate) was then mixed with the liquid resin blend via a feed hopper and static mixer. The polyisocyanate was then blended with the resin/filler in a mixhead. The effluent from the mix-head ran through a pipe into which an air nozzle is placed for injecting air into the mixture. The air-reactive com-ponent mix was then homogenized in a froth producing mixer.
:
- The froth was dispensed onto the carpet via a re-ciprocating applicator and was evenly spread over the carpet by a doctor knife. The carpet was then placed in a heated oven for curi~g for about 4 minutes at an oven temperature of about 110C.

At this point, the polyurethane backing was fully ~; foamed and was in a tack-free gelled state. It could be stored in rolls for substantial periods of time. When a ~0 piece of moldable carpet is needed, the proper sized piece was cut off from the roll. In the present case, the piece was placed in a heated mold, under pressure, for the period of time indicated and then removed.

Mo-1870 - 24 -~3~6~;

_ - 1 ~ o o o o o o o o o ~
5~
~1 0 ~ N CO ~SI r-/ IJ') I
N ~ N ~ ~ ~ ~ N

_ I

~1 141 ~ ~ ~J ~ N ~ ~ N ~
1~ ~
_ -I 'I '\ 'I 'I J ~ 1 o o o o o o o o I I t ~o . ~ ' ,, I I I ,, ' I
- _ _ .
. ~ o ~ o I o o o .
o o o o o o o o o . .

N O O O O O O O O O
t:l _ __ _-'~'~ ~ . ,' I ' ~ I ' I
, .
,,,,'IIIIIO

U- I I ' ' I I ~ ,, ,, _ O o u~ n o In n ~b-1870 - 25 -., ~ , , . , ~. -: ~.

JL~23~G Ei In Examples 1-6, the carpet was post shaped in a mold heated to 320F and pressed at 0.5 psi for approximately one minute. The carpets had been stored for three weeks follow-ing the initial spreading of the polyurethane reaction mixture onto the back of the carpet.

Each finished product had good to excellent moldability, stiffness and yet were flexible enough not to crack when flexed.
- They also had very good mold definition (i.~., the final foam surface duplicated the inside of the mold).

In Examples 7-9, the carpets had been stored for five weeks and were similarly molded but at a mold temperature of 280F. Comparable results to the carpets of Examples 1-6 were obtained.

The use of only 3 or 5 parts of hydroxy ethyl acrylate in Example~l and 3 or 5 parts of hydroxy propyl acrylate in Examples 2 and 6 resulted in products with poorer moldability which were too soft to retain their molded shape.

Experiments similar to Examples 3-6 using polyiso-cyanate C at a 110 index also did not mold well. This is presumably due to the isocyanate's lower functionality.

Experiments similar to Examples 2 and 3 using 3, 5 and 10 parts of trimethylol propane di-2-propenyl ether CH3-CH2-C-(CH -O-CH -CH = CH2)2 also resulted in foams without good shape retention. Appar-ently, only those compounds with carbon-carbon double bonds which are activated by a proximate carbonyl group (e.g. acrylates, methacrylates etc.) are effective.
Mo-1870 - 26 -~231Ç~

The following formulation has been found to be par-ticularly useful in preparing excellent molded fabrics by the : same general method outlined in the above examples Polyol B 88 HEA lO
L5612 4.0 AIBN .3 Catalyst .45 Oleic Acid l.0 - BaSO4 320 Polyisocyanate D 100 ~Index = 150) To 660 parts by weight of a polymethane polyphenyl polyisocyanate (85% dinuclear polymeric isocyanate, 15% wt.
and higher nuclear and 10% of the dinuclear being 2,4' isomer) were added 125 parts by weight 2-hydroxyethyl acrylate at 40C
over 10 minutes. The reaction mixture exothermed to 90C. The batch was cooled to 80C and held at that temperature for one hour. The reaction product had an NCO content of 21.9%. This prepolymer can be effectively used as the isocyanate component (1) in the process of the present invention in the absence of additional hydroxy acrylate to form excellent.molded foam-backed fabrics~.

The foam-backed carpets in Examples l-il can survive the following physical testing conditions without suffering cracking.
(1) Heat ageing for 14 days at 70C;
_~ (2) Cold ageing for 14 days at -30C;

M~ 7n - 27 -~23:~6~

(3) humid ageing for 72 hours at 35C and 10096 relative humidity.

Mo-1870 - 28 -

Claims (13)

The embodiments of the invention in which exclusive property or privilege is claimed are defined as follows:
1. A process for preparing a molded, polyurethane foam-backed fabric comprising the steps of:
(A) applying a foamable mixture or froth of poly-urethane reaction components to the back of a fabric, said reaction components consisting essentially of:
(1) a polyisocyanate;
(2) an organic compound containing at least two hydrogen atoms capable of reacting with isocyanate groups, having a molecular weight of between 400 and 16,000 and containing essentially no ethylenically unsaturated groups;
(3) hydroxyl containing esters of acrylic and alkyl acrylic acids;
(4) a free radical initiator;
(5) a heat activated catalyst for the reaction between components (1) and (2);
(6) a blowing agent, or inert gas for frothing;
(7) a surface active agent for foam stability;
(B) heating the coated fabric for from 15 seconds to 10 minutes at a temperature of from about 80 to about 250°F
to allow the polyurethane reaction to proceed to produce a fully foamed, gelled, tack-free polyurethane foam; and (C) thereafter molding the resultant foam-backed fabric by a hot-molding process to produce a complex shape.
2. The process of Claim 1 wherein Step (C) comprises placing the fabric in a heated mold where at least the poly-urethane side is subjected to temperatures of from 200 to 350°F

Mo-1870 -29-and a pressure of from 0.1 to 20 psi for from 15 seconds to 5 minutes.
3. The process of Claim 1 wherein Step (C) comprises heating the fabric to a temperature of from 200 to 350°F and then shaping the heated carpet in an unheated mold at a pressure of from 0.1 to 20 psi.
4. The process of Claim 3 wherein the fabric is laid flat and heated by forced heated air, infrared radiation or microwave radiation.
5. The process of Claim 1 wherein component (3) is represented by the formula wherein R1 is an x + y valent, optionally branched C1-C18 alkylene, arylene or aralkylene group R2 is H or C1-C18 alkyl x & y are integers which may be the same or different and represent 1-8, with the proviso that x + y does not exceed 8.
6. The process of Claim 5 wherein x and y are each 1, R1 is a C1 to C4 alkylene and R2 is H or methyl.
7. The process of Claim 1 wherein said reaction components comprise Component (1): in an amount such that the isocyanate index is from 100 to 200; 100 parts by Mo-1870 -30-weight of Component (2); of from 0.5 to 50 parts by weight of Component (3); from .01 to 1 part by weight of Component (4), said Component (4) being a thermally activated free radical initiator which has a half life of less than 1 minute at the molding temperature of Step (C);
from 0.05 to 1 part by weight of Component (5); and further comprising (8) from 0 to 30 parts by weight of a chain extender;
(9) from 0 to 50 parts by weight of a compound containing at least one ethyl-enically unsaturated group and a hydroxyl group and being different than Component (3); and (10) from 0 to 500 parts by weight of an inorganic filler based on the total weight of Components (2) to (9).
8. The process of Claim 7 wherein the isocyanate index is from 125-150; and Component (3) is used in amounts of from 5 to 20 parts; Component (8) is used in amounts of from 0.5 to 30 parts ; Component (9) is used in amounts of from 8 to 15 parts; and Component (10) is used in amounts of from 300 to 500 parts; the amounts of Components (3), (8), (9) and (10) being per 100 parts by weight of Component (2).
9. The process of Claim 8 wherein from 8 to 15 parts of hydroxyfunctional acrylate and from 5 to 15 parts of chain extender is used.

Mo-1870 - 31 -
10. The process of Claim 9 wherein the acrylate is 2-hydroxyethyl acrylate or 2-hydroxypropyl acrylate.
11. The process of Claim 1 wherein Component (1) and all of Component (3) are prereacted to form a preadduct.
12. The product of the process of Claim 1.
13. The product of the process of Claim 8.

Mo-1870 - 32 -
CA326,314A 1978-05-24 1979-04-25 Moldable polyurethane foam-backed fabrics Expired CA1123166A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/909,156 US4241131A (en) 1978-05-24 1978-05-24 Moldable polyurethane foam-backed fabrics
US909,156 1986-09-19

Publications (1)

Publication Number Publication Date
CA1123166A true CA1123166A (en) 1982-05-11

Family

ID=25426723

Family Applications (1)

Application Number Title Priority Date Filing Date
CA326,314A Expired CA1123166A (en) 1978-05-24 1979-04-25 Moldable polyurethane foam-backed fabrics

Country Status (6)

Country Link
US (1) US4241131A (en)
EP (1) EP0005549B1 (en)
JP (1) JPS54153871A (en)
CA (1) CA1123166A (en)
DE (1) DE2960153D1 (en)
ES (1) ES480890A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4372900A (en) * 1980-11-13 1983-02-08 Detroit Gasket & Mfg. Co. Method of forming reinforced foam structure
EP0076126B1 (en) * 1981-09-29 1986-01-22 Olin Corporation Modified polyurethane liquid polymer compositions
DE3309127A1 (en) * 1983-03-15 1984-09-20 Basf Ag, 6700 Ludwigshafen CELLED POLYURETHANE MOLDED BODIES, METHOD FOR THE PRODUCTION THEREOF BY THERMOPLASTIC DEFORMING OF POLYESTER-POLYURETHANE FOAMS AND THE USE THEREOF
US4937012A (en) * 1985-01-25 1990-06-26 Basf Corporation Low temperature stable polymethylene polyphenylene polyisocyanates
US4835030A (en) * 1987-10-14 1989-05-30 C. H. Masland & Sons In situ pattern molding and adhesion of PVC heel pad blanks to automotive carpeting without dielectric means
DE4001249A1 (en) * 1990-01-18 1991-07-25 Bayer Ag Cold formable open cell rigid polyurethane foam prodn. - from specified poly:ol component and crude MDI, used for car canopy
US5104693A (en) * 1990-12-20 1992-04-14 The Dow Chemical Company Polyurethane carpet-backing process based on soft segment prepolymers of diphenylmethane diisocyanate (MDI)
US5296182A (en) * 1992-05-28 1994-03-22 Creme Art Corporation Method for making formed laminate
EP0704474A1 (en) * 1994-03-29 1996-04-03 Air Products And Chemicals, Inc. Process for the preparation of rigid polyurethane foam
US5662994A (en) * 1994-06-23 1997-09-02 Eduard Kusters Maschinenfabrik Gmbh & Co. Kg Molded part and method of its production
AU4705596A (en) * 1995-06-07 1996-12-30 Pt Sub, Inc. Thiol-containing photosensitive polymeric foam compositions
CA2252496C (en) * 1996-04-23 2002-10-08 Hehr International Inc. Modified rigid, foamable urethane composition and method
US6096401A (en) * 1996-08-28 2000-08-01 The Dow Chemical Company Carpet backing precoats, laminate coats, and foam coats prepared from polyurethane formulations including fly ash
WO1998025984A1 (en) * 1996-12-10 1998-06-18 The Dow Chemical Company Preparation of filed reactive polyurethane carpet backing formulations using an in-line continuous mixing process
US5908701A (en) * 1996-12-10 1999-06-01 The Dow Chemical Company Preparation of filled reactive polyurethane carpet backing formulations using an in-line continuous mixing process
US20020197443A1 (en) * 1997-03-17 2002-12-26 Schrock Alan K. Process for preparing carpets having polyurethane backings obtained from polyurethane latex formulations
US6455606B1 (en) 1997-04-02 2002-09-24 Sanyo Chemical Industries, Ltd. Polyurethane foam, process for producing the same, and foam forming composition
US5918309A (en) * 1997-10-14 1999-07-06 Second Chance Body Armor, Inc. Blunt force resistant structure for a protective garment
US6171678B1 (en) * 1998-07-14 2001-01-09 Bayer Antwerp N.V. Polyurethane carpet backings with improved tuft bind
US6576577B1 (en) * 1998-12-03 2003-06-10 Foam Products Corporation Underlayment for floor coverings
BR9917064A (en) 1998-12-18 2001-09-25 Dow Chemical Co Aqueous polyurethane dispersions useful for preparing polymers with improved moisture resistance properties
CA2357050A1 (en) 1998-12-29 2000-07-06 The Dow Chemical Company Polyurethane foams prepared from mechanically frothed polyurethane dispersions
US6490828B1 (en) 2000-07-20 2002-12-10 Steelcase Development Corporation Partition wall system
AU2005308923A1 (en) * 2004-11-29 2006-06-01 Fritz Nauer Ag. Polyurethane foam
US20070021518A1 (en) * 2005-07-21 2007-01-25 Lear Corporation Additives to spray urethane
US20070222105A1 (en) * 2006-03-24 2007-09-27 Century-Board Usa, Llc Extrusion of polyurethane composite materials
KR101637045B1 (en) * 2007-12-19 2016-07-06 바스프 에스이 Molded parts made of carrier materials which contain foaming reactive resin
DE102008001855A1 (en) * 2008-05-19 2009-11-26 Evonik Degussa Gmbh Two-component composition for the production of flexible polyurethane gelcoats
US20110086933A1 (en) * 2009-08-14 2011-04-14 Boral Material Technologies Inc. Filled polyurethane composites and methods of making same
US8846776B2 (en) * 2009-08-14 2014-09-30 Boral Ip Holdings Llc Filled polyurethane composites and methods of making same
AU2012318528A1 (en) 2011-10-07 2014-05-22 Boral Ip Holdings (Australia) Pty Limited Inorganic polymer/organic polymer composites and methods of making same
WO2014168633A1 (en) 2013-04-12 2014-10-16 Boral Ip Holdings (Australia) Pty Limited Composites formed from an absorptive filler and a polyurethane
US9752015B2 (en) 2014-08-05 2017-09-05 Boral Ip Holdings (Australia) Pty Limited Filled polymeric composites including short length fibers
WO2016118141A1 (en) 2015-01-22 2016-07-28 Boral Ip Holdings (Australia) Pty Limited Highly filled polyurethane composites
WO2016195717A1 (en) 2015-06-05 2016-12-08 Boral Ip Holdings (Australia) Pty Limited Filled polyurethane composites with lightweight fillers
US20170267585A1 (en) 2015-11-12 2017-09-21 Amitabha Kumar Filled polyurethane composites with size-graded fillers
US10133305B1 (en) 2017-04-24 2018-11-20 Oculus Vr, Llc Facial-interface systems for head-mounted displays
US10545349B1 (en) 2017-05-12 2020-01-28 Facebook Technologies, Llc Facial-interface cushion, system, and method for head-mounted displays
US10653016B1 (en) 2017-06-07 2020-05-12 Facebook Technologies, Llc Facial-interface cushion, system, and method for head-mounted displays
BE1025561B1 (en) * 2017-09-18 2019-04-15 Eoc Belgium Nv METHOD FOR PRODUCING A POLYURETHANE CLEAN RUN MAT

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3175936A (en) * 1965-03-30 Method of preparing laminated foam articles
CA551994A (en) * 1958-01-21 The Kendall Company Decorative laminated foam rubber product and method of making same
US2946713A (en) * 1955-10-06 1960-07-26 Gen Motors Corp Process for embossing decorative articles
US3104192A (en) * 1955-10-13 1963-09-17 Agricola Reg Trust Method of forming a smooth surface on expanded plastic
US2914109A (en) * 1957-04-08 1959-11-24 Gen Motors Corp Method for making embossed decorative articles
US3012283A (en) * 1957-07-01 1961-12-12 Mobay Chemical Corp Shaping polyurethane plastics
US3046177A (en) * 1958-03-31 1962-07-24 C H Masland And Sons Method of applying polyurethane foam to the backs of carpets and equipment therefor
US3523093A (en) * 1961-11-28 1970-08-04 Paul Stamberger Method of producing polyurethanes by reacting polyisocyanate with a preformed polymer resulting from polymerization of ethylenically unsaturated monomers
US3210447A (en) * 1963-07-08 1965-10-05 Allen Ind Process for making patterned foam padding material
GB1087943A (en) * 1964-04-30 1967-10-18 Cabin Crafts Inc Method and apparatus for applying synthetic resin material foam backing to fabrics
AT294000B (en) * 1965-01-11 1971-11-10 Diersch & Schroeder Process for making carpets or rugs
US3398224A (en) * 1965-07-07 1968-08-20 Pepperell Mfg Company Method of and apparatus for providing a polyurethane foam with a dense surface layer
US3378432A (en) * 1966-05-20 1968-04-16 West Point Pepperell Inc Limp and drapeable polyurethane foam sheeting and method of making it
US3453351A (en) * 1966-06-22 1969-07-01 Textile Rubber & Chem Co Process of making padding material
US3576706A (en) * 1968-07-25 1971-04-27 Mobay Chemical Corp Carpet underlay
US3849156A (en) * 1969-01-31 1974-11-19 Union Carbide Corp Process for providing a backing on carpets
US3772224A (en) * 1969-01-31 1973-11-13 Union Carbide Corp Process for production of a polyurethane foam from a heat curable froth
BE759006A (en) * 1969-11-20 1971-05-17 Marles Kuhlmann Wyandotte COPOLYMERS GRAFTS AND PREPARATION OF POLYURETHANES
GB1382986A (en) * 1971-08-18 1975-02-05 Ici Ltd Foamed shaped article
US3819781A (en) * 1972-03-08 1974-06-25 Kornylac Co Textured surface,cellular core sheet material
JPS5517155B2 (en) * 1973-05-21 1980-05-09
US4041104A (en) * 1975-08-29 1977-08-09 Hooker Chemicals & Plastics Corporation High impact corrosion resistant polymers
DE2557858A1 (en) * 1975-12-22 1977-06-30 Ver Foerderung Inst Kunststoff Polyurethane foam prodn. from polyisocyanates and polyols - with addition of polymerisable monomer to reduce viscosity of the polyols
DE2748085A1 (en) * 1976-11-04 1978-05-18 Mobay Chemical Corp PROCESS FOR THE PRODUCTION OF CARPET BACKING COATINGS

Also Published As

Publication number Publication date
DE2960153D1 (en) 1981-03-26
JPS54153871A (en) 1979-12-04
EP0005549A3 (en) 1980-01-09
US4241131A (en) 1980-12-23
EP0005549B1 (en) 1981-02-11
ES480890A1 (en) 1980-02-01
EP0005549A2 (en) 1979-11-28

Similar Documents

Publication Publication Date Title
CA1123166A (en) Moldable polyurethane foam-backed fabrics
US4098731A (en) Process for the production of foams
US3931450A (en) Polyurethane foam composite
US3993606A (en) Process for the production of polyurethane foams
US4582658A (en) Process for the production of a cellular composite plastic part
US4035529A (en) Coating the back of a textile floor covering with a polyurethane foam
US3966521A (en) Polyurethane foam composite
CA1338075C (en) Process for the preparation of compression molded materials
CA1320783C (en) Polyurethane ureas
WO1994016008A1 (en) Plastic skin cladded polyurethanes having improved surface appearance
US4539166A (en) Process for the production of a lightfast and colorfast composite plastic part
US3647609A (en) Flame retarded composite
GB2268750A (en) Low- density RRIM using mineral fibre filler
US4013701A (en) Process for the production of polyisocyanates
CA1109186A (en) High resilience flexible foamed polyurethanes, foamable mixtures and process therefor
CA1115900A (en) Process for the production of cold setting foams which contain urethane groups
US3075930A (en) Expanded polyurethane plastic containing zein and process for preparing same
US4190417A (en) Process for dyeing and printing sheets
CA1134804A (en) Catalyst system for polyurethane foams
GB1573778A (en) Process for preparing polyurethane-backed carpet
US3840628A (en) Manufacture of resilient compound foams
US2898312A (en) Production of a cellular polyvinyl polyester plastic composition
JPH1135654A (en) Production of sheet-like soft polyurethane mold foam
US4022720A (en) Process for the production of polyurethane foams
EP0343180A4 (en) Method for forming thermoformable polyurethane foam articles

Legal Events

Date Code Title Description
MKEX Expiry