CA1155805A - Aseptic system for total parenteral nutrition and the like - Google Patents

Aseptic system for total parenteral nutrition and the like

Info

Publication number
CA1155805A
CA1155805A CA000387787A CA387787A CA1155805A CA 1155805 A CA1155805 A CA 1155805A CA 000387787 A CA000387787 A CA 000387787A CA 387787 A CA387787 A CA 387787A CA 1155805 A CA1155805 A CA 1155805A
Authority
CA
Canada
Prior art keywords
flexible
tubular
connector member
cannula
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000387787A
Other languages
French (fr)
Inventor
Luc M. Dossin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Travenol European Research and Development Center
Original Assignee
Travenol European Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Travenol European Research and Development Center filed Critical Travenol European Research and Development Center
Application granted granted Critical
Publication of CA1155805A publication Critical patent/CA1155805A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/05Containers specially adapted for medical or pharmaceutical purposes for collecting, storing or administering blood, plasma or medical fluids ; Infusion or perfusion containers
    • A61J1/10Bag-type containers

Abstract

ABSTRACT OF THE DISCLOSURE

An improved flexible, collapsible container (10) for holding a sterile solution such as protein hydroly-sate or amino acid solutions is disclosed, it being in-tended for sterile connection with another flexible, collapsible container (38) of carbohydrate solutions or the like. The two containers carry connector mem-bers (24, 34) of a specific design. A flexible tubu-lar boot member (18) is provided to the container of this invention, which carries the connector and a tubu-lar cannula (20) defining an inwardly-pointed spike adapted to penetrate puncturable diaphragm means (17) for opening the contents in sterile manner. The boot member is of a parituclar shape as disclosed to permit inward deflection of its end without forcing the sides to expand substantially outwardly.

Description

ASEPTIC SYSTEM FOR TOTAL PARENTERAL
NUTRITION AND THE LIKE
Description TECHNICAL FIELD
This application relates to systems for making sterile transfer of particularly fluids from one flexi-ble, collapsible container toanother. The application also relates to an improved design of collapsible boot for use with a penetrating spike usable in such systems.

BACKGROUND ART
In parenteral solution administration it is of course necessary to maintain the highest aseptic stan-dards.
Particu]arly in the area of total parenteral nutri-tion, where a patient is completely maintained for sig-nificant periods of time by nutrients administered parenterally, there is a significant need for preserving sterility when the various nutrient solutions are mixed for administration. Specifically, when dextrose or other carbohydrate solutions are mixed with amino acid or protein hydrolysate solutions, bacteria growth can be explosively rapid in the resulting mixture. Accor-dingly, extra care must be taken in such circumstances.
Particularly, in the present techniques of use, such solutions are mixed only immediately before use despite their sterile environment, to avoid the risk of the ex-plosive growth of bacteria.
However, it would be desirable to have a system which permits the safe mixing of parenteral solutions such as dextrose or other carbohydrate solutions with an amino acid or protein hydrolysate solution, while permitting the resulting mixture to be stored for a
-2- 1~580~

period of days. The hospital administration of such materials would be greatly facilitated by permitting the premixing of the materials.
In a present system, a standard VIAFLEX~ container, which is a flat, collapsible bag manufactured by Travenol Laboratories, Inc., is initially about half-filled with a parenteral solution such as 50% Dextrose. Protein hydrolysate solution may be administered into the VIAFLEX bag through the end spike of an administration set which passes through a diaphragm port of the VIAFLEX
bag, which diaphragm port is carried by the peripheral heat seal of the bag.
After the protein hydrolysate is passed through the set into the bag, filling it, the flexible tubing of the set may be conventionally sealed and then cut through the seal to separate the bag, so that the spike penetrating into the port of the VIAFLEX bag and a sealed section of tubing connected to the spike serves as a seal.
As stated above, such a system is not recommended for storage, but should be infused shortly after mixing.
By this invention, a system is provided in which large volume parenteral solutions and the like may be mixed without a reduction in their shelf life r 50 that protein hydrolysate and carbohydrates, for example, may be mixed for total parenteral nutrition and then stored for a period of days, awaiting the time of use.
Furthermore, a flexible, collapsible container of this invention is disclosed in which a flexible, tubular boot member of improved design is provided to avoid substantially outward expansion of the boot mem-ber as it is collapsed to advance a cannular through a diaphragm, for opening of the container. Thus, the boot member can operate in a crowded area adjacent other 1155~0S

ports, since it does not expand into interfering con-tact with closely adjacent ports.
DISCLOSURE OF THE INVENTION
- In accordance with an aspect of this invention, - 5 a flexible, collapsible container for holding sterile solutions and for transferring and receiving solutions in a sterile manner is provided. The container com-prises a closure carried on the container~ a tubular port passing therethrough, and a connector member carried on the tubular port for providing sealed con-nection between the connector member and a corres-ponding connection member.
The connector member comprises housing means defining a transparent wall portion and a thermoplastic, opaque wall portion positioned as part of the wall of the housing means. Means are provided for connecting the housing means to a housing means of the corres-ponding connector member having a corresponding thermo-plastic wall portion in such a manner as to bring the respective wall portions together into facing contact.
As the result of this, upon exposure of the connected housings to radiant energy, the wall portions in faclng contact can fuse together and open an aperture through contacting wall portions, to provide a connec-tion between the interiors of the respective housings.
The tubular port defines a diaphragm sealing~low through the bore of the tubular port with the connector member being carried by-a tubular port with the connector member being carried by a tubular cannula defining an inwardly-pointed spike adapted to penetrate the puncturable diaphragm means and a flexible, tubular boot member sealed to the tubular port and also sealingly carrying the cannula therein.

..,li 1 15$80$

In accordance with an aspect of this inven-tion, the flexible, tubular boot member defines an outer end portion including a terminal portion sealed to the cannula. An annular, radial portion extends outwardly in substantially normal relation to the axis of the cannula, curving to join a generally cylindrical portion which, in turn, joins the remainder of the flexible tubular boot member. As the result of this, upon advancement of the cannula to rupture the diaphragm, the annular/ radial portion deflects inwardly without forcing the generally cylindrical portion to expand substantially o~twardly. As stated above, the containers of this application may be equipped with one or more additional ports in close proximity to at least part of the boot member. Thus, since the boot member does not have to expand outward-ly for operation, the close proximity of other ports does not interfere with its action.
Furthermore, the above container is adapted to be placed in sealed flow-communicating relation with the corresponding connector member of an additional flexible, collapsible container. The corresponding connector member may be attached to at least one foot of flexible tubing with the flexible tubing communica-tlng at its other end to the additional container.
Thus the two containers, after connection to form an integral unit, may be placed at different vertical helghts to facilitate the flow of solution from the one container to the other.
The corresponding connector member may be carried on a second cannula member associated with frangible means for initially closing flow through the flexible length of tubing, but capable of being opened from the exterior of the tubing in sterile manner. The frangible means may include a closed end wall positioned at the _5_ l~ 5~

end of the cannuIa opposed to the connector member, with means being provided for rupturlng the closed end wall to open the end upon manual manipulation thereof from the exterior of the tubing.
The tubular boot member may also define an annular ridge projecting outwardly and positioned circumfer-entially about a central portion thereof. This ridge provides hoop strength to the structure, and also serves as a molding aid in that it facilitates the gating of the molded tubular boot member, which is preferably made of an elastic latex material, for example natural rubber latex.
The circumferential ridge may be positioned at the inner end of the generally cylindrical portion of the member, opposed to the connector member which is carried thereby. The boot member may also define a portion whlch tapers inwardly from the annular ridge as it extends away from the annular ridge and connector member, the inwardly tapered portion being terminated with a cylindr~cal portion which, in turn, is sealed to the tubular port.
Various other aspects of the invention are as follows:
A flexible, collapsible container for holding sterile solution and for transferring and receiving solu-tions in a sterile manner, which comprises a closure carried on said container, a tubular port passing therethrough, and a connector member carried on said tubular port for providing sealed connection between said connector member and a corresponding connector member, said connector member comprising housing means defining a transparent wall portion and a thermoplastic, opaque wall portion positioned as i' .
~ . , -5a- 1~ 5 ~ ~ O ~
part of the wall of said housing means, and means for con-nect~ng said housing means to a housing means of the corres-ponding connector member having a corresponding thermoplastic wall portion in such a manner as to bring the respective wall portions together into facing contact whereby, upon exposure of the connec~ed housings to radiant energy, the wall portions in facing contact can fuse together and open an aperture through said contacting wall portions, to provide a connection between the interiors of the respective housings, said tubular port defining a diaphragm sealing flow through the bore of said tubular port, said connector member being carried by a tubular cannula defining an inwardly-pointed spike adapted to penetrate said puncturable diaphragm means and a flexible, tubular boot member sealed to said tubular port and also sealingly carrying said cannula therein, the improvement comprising, in combination:
the flexible, tubular boot member defining an outer end portion including a terminal portion sealed to said cannula, an annular radial portion extending radially outwardly in substantially normal relation to the axis of said cannula, and curving to join a generall~ cylindrical portion, which joins the remainder of the flexible, tubular boot member, said tubular boot member further including an annular ridge projecting outwardly and positioned cir-cumferentially about a central portion of said boot memberfor substantially preventing the outward expansion of said generally cylindrical portion upon inward deflection of said annular radial portion.
A flexible, collapsible container for holding sterile solution and for transferring and receiving solutions in a sterile manner, which comprises a closure carried $
-5b-on said container, a tubuIar port passing therethrough, and a connector member carried on said tubuIar part for providing sealed connection between said connector member and a corresponding connector member, said tubular port defining a diaphragm sealing flow through the bore of said tubular port, said connector member being carried by a tubular cannula defining an inwardly pointed spike adapted to penetrate said puncturable diaphragm means and a flexible, tubular boot member sealed to said tubular port and also sealingly carrying said cannula therein, the improvement comprising, in combination:
the flexible, tubular boot member defining an outer end portion including a terminal portion sealed to said cannula, an annular radial portion extending radially outwardly in substantially normal relation to the axis of said cannula, and curving to join a generally cylindrical portion, which joins the remainder of the flexible, tubular boot member, said tubuIar boot member further including an annular ridge projecting outwardly and positioned cir-cumferentially about a central portion of said boot memberfor substantially preventing the outward expansion of said generally cylindrical portion upon inward deflection of said annular radial portion.
A flexible, collapsible container for holding sterile solution and for transferring and receiving solutions in a sterile manner, which comprises a closure carried on said container, a tubuIar port passing therethrough, and a connector member carried on said tubular port for providing sealed connection between said connector member and a corresponding connector member, said tubular port defining a diaphragm sealing flow through the bore of said .~ .

1 1 ~5~
-5c-tubular port, said connector member belng carried by a tubular cannula defining an inwardly pointed spike adapted to penetrate said pucturable diaphragm means and a flexible, tubular boot member sealed to said tubular port and also sealingly carrying said cannula therein, the improvement comprising, in combination:
the flexible, tubular boot member defining an outer end portion including a terminal portion sealed to said cannula, an annular radial portion extending radially outwardly in substantially normal relation to the axis of said cannula, and curving to join a generally cylindrical portion, which joins the remainder of the flexible, tubular boot member, said tubular boot member further including an annular ridge projecting outwardly and positioned cir-cumferentially both at the inner end of said generallycylindrical portion opposed to the connector member and about the central portion of said tubular boot member, said tubular boot member defining a portion which tapers inwardly from said annular ridge as it extends away from sald annular ridge and connector member, said inwardly tapered portion terminating with a cylindrical portion sealed to said tubular port.
BRIEF DESCRIPTION OF DRAWINGS
Referring to the drawings, Figure 1 is an eleva-tional view of the container of this invention, adapted to carry a parenteral solution such as a protein hydroly-sate or amino acid solution, for example, associated with an additional flexible, collapsible container having an extension of flexible tubing and a connector member on the end thereof.

& ~ ~
-Sd-Figure 2 i5 an enlarged fragmentary elevational view, with portions broken away, of the connector member and boot of the container of this invention.
Figure 3 is a fragmentary elevational view showing S the tube connectors placed into sterile, communicating , . .~ .
i .
~_ . ,4 1 ~5S~

relation for transfer of the contents of one of the containers to the other.
Figure 4 is a fragmentary elevational view showing how the two containers may be separated after transfer of the contents.
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to the drawings, flexible, collaps-ible container 10 is shown, being of any conventional design except as otherwise described herein, but specifically shown to be of a design as disclosed in Canadian Patent No. 1,118,389. The container, which is wedge-shaped in its original form, collapses flat except for shoulder 12 to expel essentially all the contents of the containex. Container 10 is shown to be about half-filled with a protein hydro-lysate or amino acid solution.
Sealed to head 14 of container 10 is access port 16, with flexible, tubular boot member 18 being sealed at one end thereof to port 16, and sealed at its other end to rigid cannula 20, having a free, pointed inner end 22 penetrating into the interior of tubular boot member 18. Cannula spike 20 carries connector member 24, which may be of a known deslgn.
Port 19 and other ports as may be desired are also present at the closed outer end of neck portion 14, with a pop-off cap 21 being provided to seal port 19, which may be used for the addition of supple-mental medication, or may be a site to which an addi-tional set may be connected, or the like. Because of the close proximity of port 19 and pop-off cap 21 to boot 18, it is desirable for the boot to collapse~
as cannula spike 20 is advanced toward diaphragm 17 to penetrate it, in a manner in which boot 18 does not expand outwardly.
The inventive principle of the sterile connector , .

-7- 1~5~S

24 which is utilized in this invention is as described in Granzow et al. U.S. Patent No. 4,157,723, as well as Ammann et al. Canadian Patent No. 1,121,844;
Boggs et al. Canadian Patent Application Serial No.
347,269; and Bellamy et al. Canadian Patent Application Serial No. 361,983. The sterile connectors used for connector 24 may make use of any of the design features disclosed in the above-cited patent and pending appli-cations.
As described above, connector 24 has housing means defining a transparent wall portion 26 and a thermoplas-tic, opaque wall portion 28 positioned as part of the wall of the housing means. In this specific embodiment, tongue 30 and groove 32 are provided to lockingly mate with a corresponding tongue 30a and groove 32a of a corresponding connector member 34 which may be of identical design to connector member 24, and is adapted to lock the opaque wall portions 28, 28a together into facing contact.
Then, the joined connector members 24, 34 are ex-posed to radiant energy as taught in the prior cited patent and applications, causing the wall portions in facing contact to fuse together to open an aperture through contacting wall portions, and at the same time to kill bacteria on the non-sterile surfaces of the wall portions by the high melting temperature of the wall portions 28, 28a. Accordingly, a sterile connection may be made between the two containers having nonsterile outer surfaces.
Alternatively, only one of wall portions 28, 28a has to be opaque, with the other wall portion being heated by conduction.

~s~

Connector 34 is carried on the end of flexible tubing 36 which may preferably be from about one to three feet in length, communicating with the interior of collapsible bag 38, which may be of a pair of peripher-ally heat-sealed polyvinyl chloride plastic sheets or the like, in accordance with a conventional design, for example a design similar to the VIAFLEX containers sold by Travenol Laboratories, Inc. Container 38 may be ap-proximately half-filled with a carbohydrate parenteral solution.
Bag 38 may also contain a conventional medicament addition port 40. Port 42 also may be present, and may serve as a connection port for solution administration.
Accordingly, connectors 24, 34 of the separate con-tainers 10, 38 may be locked together in the manner il-lustrated in Figure 3, with the opaque, thermoplastic wall portions 28, 28a being positioned in abutting, facing relationship. The joined connectors 26, 34 are then irradiated with infrared or light radiation in the known manner, causing the selective absorption of heat of the opaque portions 28, 28a compared with the trans-parent housing portion, with the result that opaque membranes 28, 28a fuse together and melt, opening a hole between them. When a preferably crystalline, high-melting thermoplastic is used for containers 28, 28asuch as a carbon-filled poly(4-methyl-1-pentene), which is sold under the name TPX by Mitsui Chemical Company, the very melting step can result in a sterilizing bacteria kill since the melting and hole opening takes place at a temperature of 200 C. or above. Thus a sterile path is opened between connectors 24, 34.
Following the sterile connection between connectors 24, 34, as illustrated in Figure 3, rupture of auxiliary seals behind each connector 24, 34 is effected. Tubing 1 ~ 5 5 ~

36 of container 38 contains an internal auxiliary seal 44, carried on stiff cannula 45 attached to connector 34, which may, for example, be of the design disclosed in U. S. Patent 4,181,140 or in U. 5. Patent 4,340,349.
These internal seals include a closed wall of a cannula attached to sterile connector 34 with an elon-gated member projecting outwardly from the closed wall, with the structure being situated inside of a generally enlarged flexible tubing 46. Accordingly, projecting member 45 may be manually bent to rip away closed wall and to open flow through tubing 36.
The auxiliary seal for sterile connector 24 con-stitutes pointed cannula 20 having pointed end 22, which may be moved to pass through diaphragm 17 ~or sterile opening, collapsing boot 18 as it moves.
In accordancs with this invention, boot member 18 defines an outer end portion including a terminal tubular portion 46 which is sealed to cannula 20.
An annular, radial portion 48 of boot member 18 extends radially outwardly in substantially normal re-lation to the axis of said cannula, curving through annular portion 50 to join a generally cylindrical portion 52 which, in turn, joins the remainder of the flexible boot member 18.
Annular ridge 54 projects outwardly from the member and is positioned circumferentially about a central portion thereof. Ridge 54 provides hoop strength to the boot member~ and also its presence facllitates the molding of the hollow, tubular boot member 18, which may be made of a natural latex, forexample.
As seen, circumferential ridge 54 is positioned at the inner end of generally cylindrical portion 52, opposed to connector member 24. Boot member also de-, ~ ~

fines a portion 56 which tapers inwardly from annularridge 54 as it extends away from the annular ridge 54 and connector member 24. The inwardly tapering portion 56 is then terminated with a cylindrical portion 58 which is sealed to tubular port 16.
As cannula 20 is advanced to puncture diaphragm 17, annular radial portion 48 is collapsed within boot mem-ber 18 as cannula 20 is advanced. However, due to the particular design of the boot mem~er 18 of this inven-tion, the walls of generally cylindrical portion 52 andtapered portion 56 do not expand outwardly to a signifi-cant extent, so that the collapsing boot member is not interfered with by the presence of adjacent ports and their closures, for example port 19 and pop-off cap 21.
Thus, the opening of both auxiliary ports to the sterile connectors 24, 34 can take place with ease.
One purpose of the auxiliary ports is to prevent the contents of the containers from coming into contact with the interior of each sterile connector 24, 34 until after the connectors have been placed together and ir-radiated, to open the sterile connection between them.
This avoids unexpected effects which may take place due to the presence of liquid container contents in the sterile connectors during the irradiation process.
After the opening steps, the contents of container 10, for example, rnay flow through the newly-opened, connected conduit to container 38 in a sterile manner, for example to mix protein hydrolysate with glucose solution in a manner permitting the continued storage of the mixture.
E'ollowing this, tubing 36 may be sealed to a flat, heat-sealed portion 60 by a conventional heat sealing device and severed through the rniddle of the heat seal.
The remaining portion of tubing 36 which remains con-5 ~ ~ 5 nected to container 10, and the container 10 may bediscarded, while container 38 remains in sterile condi-tion for further storage or use as may be desired.
The above has been offered for illustrative pur-poses only, and is not intended to limit the scope of this invention, which is as defined in the claims below.

Claims (12)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A flexible, collapsible container for holding sterile solution and for transferring and receiving solu-tions in a sterile manner, which comprises a closure carried on said container, a tubular port passing therethrough, and a connector member carried on said tubular port for providing sealed connection between said connector member and a corresponding connector member, said connector member comprising housing means defining a transparent wall portion and a thermoplastic, opaque wall portion positioned as part of the wall of said housing means, and means for con-necting said housing means to a housing means of the corres-ponding connector member having a corresponding thermoplastic wall portion in such a manner as to bring the respective wall portions together into facing contact whereby, upon exposure of the connected housings to radiant energy, the wall portions in facing contact can fuse together and open an aperture through said contacting wall portions, to provide a connection between the interiors of the respective housings, said tubular port defining a diaphragm sealing flow through the bore of said tubular port, said connector member being carried by a tubular cannula defining an inwardly-pointed spike adapted to penetrate said puncturable diaphragm means and a flexible, tubular boot member sealed to said tubular port and also sealingly carrying said cannula therein, the improvement comprising, in combination:
the flexible, tubular boot member defining an outer end portion including a terminal portion sealed to said cannula, an annular radial portion extending radially outwardly in substantially normal relation to the axis of said cannula, and curving to join a generally cylindrical portion, which joins the remainder of the flexible, tubular boot member, said tubular boot member further including an annular ridge projecting outwardly and positioned cir-cumferentially about a central portion of said boot member for substantially preventing the outward expansion of said generally cylindrical portion upon inward deflection of said annular radial portion.
2. The flexible, collapsible container of Claim 1 in which the connector member is in sealed flow communic-ating relation with a corresponding connector member, said corresponding connector member being attached to at least 1 foot of flexible tubing, said flexible tubing communicat-ing at its other end with an additional flexible, collapsible container.
3. The flexible, collapsible container of Claim Z in which said corresponding connector member is carried on a second cannula member associated with frangible means for initially closing flow through said flexible length of tubing, but capable of being opened from the exterior of said tubing in sterile manner.
4. The flexible, collapsible container of Claim 3 in which said frangible means comprises a closed end wall positioned at the end of said cannula opposed to the connector member, and means for rupturing said closed end wall to open said end upon manual manipulation thereof from the exterior.
5. The flexible, collapsible container of Claim 1 in which said annular ridge is positioned at the inner end of said generally cylindrical portion opposed to the connector member, and said boot member defines a portion which tapers inwardly from said annular ridge as it extends away from said annular ridge and connector member, said inwardly tapered portion being terminated with a cylindrical portion which is sealed to said tubular port.
6. The flexible, collapsible container of Claim 5 in which said flexible, tubular boot member is an integral piece of latex.
7. A flexible, collapsible container for holding sterile solution and for transferring and receiving solutions in a sterile manner, which comprises a closure carried on said container, a tubular port passing therethrough, and a connector member carried on said tubular port for providing sealed connection between said connector member and a corresponding connector member, said tubular port defining a diaphragm sealing flow through the bore of said tubular port, said connector member being carried by a tubular cannula defining an inwardly pointed spike adapted to penetrate said puncturable diaphragm means and a flexible, tubular boot member sealed to said tubular port and also sealingly carrying said cannula therein, the improvement comprising, in combination:
the flexible, tubular boot member defining an outer end portion including a terminal portion sealed to said cannula, an annular radial portion extending radially outwardly in substantially normal relation to the axis of said cannula, and curving to join a generally cylindrical portion, which joins the remainder of the flexible, tubular boot member, said tubular boot member further including an annular ridge projecting outwardly and positioned cir-cumferentially about a central portion of said boot member for substantially preventing the outward expansion of said generally cylindrical portion upon inward deflection of said annular radial portion.
8. The flexible, collapsible container of Claim 7 in which the connector member is in sealed, flow commun-icating relation with a corresponding connector member, said corresponding connector member being attached to at least one foot of flexible tubing, said flexible tubing communicating at its other end with an additional flexible, collapsible container.
9. The flexible, collapsible container of Claim 7 in which said tubular member defines an annular ridge projecting outwardly and positioned circumferentially about the central portion thereof.
10. The flexible, collapsible container of Claim 7, in which said annular ridge is positioned at the inner end of said generally cylindrical portion opposed to the connector member, and said boot member defines a portion which tapers inwardly from said annular ridge as it extends away from said annular ridge and connector member, said inwardly tapered portion being terminated with a cylindrical portion which is sealed to said tubular port.
11. The flexible, collapsible container of Claim 10 in which said flexible, tubular boot member is an integral piece of latex.
12. A flexible, collapsible container for holding sterile solution and for transferring and receiving solutions in a sterile manner, which comprises a closure carried on said container, a tubular port passing therethrough, and a connector member carried on said tubular port for providing sealed connection between said connector member and a corresponding connector member, said tubular port defining a diaphragm sealing flow through the bore of said tubular port, said connector member being carried by a tubular cannula defining an inwardly pointed spike adapted to penetrate said pucturable diaphragm means and a flexible, tubular boot member sealed to said tubular port and also sealingly carrying said cannula therein, the improvement comprising, in combination:
the flexible, tubular boot member defining an outer end portion including a terminal portion sealed to said cannula, an annular radial portion extending radially outwardly in substantially normal relation to the axis of said cannula, and curving to join a generally cylindrical portion, which joins the remainder of the flexible, tubular boot member, said tubular boot member further including an annular ridge projecting outwardly and positioned cir-cumferentially both at the inner end of said generally cylindrical portion opposed to the connector member and about the central portion of said tubular boot member, said tubular boot member defining a portion which tapers inwardly from said annular ridge as it extends away from said annular ridge and connector member, said inwardly tapered portion terminating with a cylindrical portion sealed to said tubular port.
CA000387787A 1980-10-14 1981-10-13 Aseptic system for total parenteral nutrition and the like Expired CA1155805A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US196,966 1980-10-14
US06/196,966 US4368729A (en) 1980-10-14 1980-10-14 Aseptic system for total parenteral nutrition and the like

Publications (1)

Publication Number Publication Date
CA1155805A true CA1155805A (en) 1983-10-25

Family

ID=22727488

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000387787A Expired CA1155805A (en) 1980-10-14 1981-10-13 Aseptic system for total parenteral nutrition and the like

Country Status (6)

Country Link
US (1) US4368729A (en)
BE (1) BE890713A (en)
CA (1) CA1155805A (en)
DE (1) DE3136791A1 (en)
GB (1) GB2089332B (en)
SE (1) SE8106041L (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984000492A1 (en) * 1982-07-30 1984-02-16 Baxter Travenol Lab Increased yield continuous flow blood component collection systems
US4828557A (en) * 1984-04-06 1989-05-09 Persidsky Maxim D Sterile connector and method
US4639251A (en) * 1985-06-28 1987-01-27 Kabivitrum, Inc. Flexible collapsible container with liquid level indicating device
DE3738162A1 (en) * 1987-11-10 1989-05-24 Baxter Travenol Lab SYSTEM FOR THE STORAGE, PREPARATION AND APPLICATION OF INFUSION SOLUTIONS FOR PARENTERAL NUTRITION
SE9103395D0 (en) * 1991-11-18 1991-11-18 Gambro Ab SYSTEM USING ENSTERIL MEDICAL SOLUTION CONTAINING GLUCOSE OR GLUCOSE-LIKE SUBSTANCES AND A SOLUTION INTENDED FOR THIS SYSTEM
CA2076178C (en) * 1992-08-14 1996-04-23 Baruch Dagan Container for contact lens solution
US5393101A (en) * 1992-10-02 1995-02-28 Pall Corporation Connector assembly
US5810398A (en) 1992-10-02 1998-09-22 Pall Corporation Fluid delivery systems and methods and assemblies for making connections
DE4422100C1 (en) * 1994-06-24 1995-12-14 Fresenius Ag Flexible medical packaging unit for haemodialysis
US5738671A (en) * 1996-07-30 1998-04-14 Bracco Diagnostics Inc. Flexible plastic container for the containment and delivery of diagnostic contrast media and parenteral drug formulations
US5836907A (en) * 1996-11-05 1998-11-17 Campbell; Sharon L. Disposable gastric lavage kit
EP1716885A3 (en) 1997-05-09 2006-11-15 Pall Corporation Connector assemblies, fluid systems, and methods for making a connection
US6726672B1 (en) 1998-09-28 2004-04-27 Icu Medical, Inc. Intravenous drug access system
DE19958952B4 (en) * 1999-12-08 2004-05-27 Fresenius Kabi Deutschland Gmbh Withdrawal system for medical solutions and containers with such a removal system
DE102007005407A1 (en) 2007-02-03 2008-08-07 Fresenius Kabi Deutschland Gmbh Cap for a container for holding medical fluids and container for receiving medical fluids
CA2682650A1 (en) * 2007-04-24 2008-10-30 Hyclone Laboratories, Inc. Sterile connector systems
US7938454B2 (en) 2007-04-24 2011-05-10 Hyclone Laboratories, Inc. Sterile connector systems
US8454059B2 (en) 2010-09-13 2013-06-04 Pall Corporation Connector assemblies, fluid systems including connector assemblies, and procedures for making fluid connections
GB2520315B (en) 2013-11-15 2017-12-06 Babyhappy Ltd Oral Syringes
CN112020345A (en) * 2018-04-13 2020-12-01 费森尤斯卡比股份公司 Apparatus and method for providing a preparation for parenteral nutrition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849156A (en) * 1955-04-11 1958-08-26 Mansted Svend Axel Jorgen Dispensing device
US2855131A (en) * 1956-05-09 1958-10-07 Baxter Laboratories Inc Parenteral solution equipment
US3416528A (en) * 1959-08-17 1968-12-17 Cutter Lab Blood handling equipment
US3127892A (en) * 1960-07-13 1964-04-07 Baxter Laboratories Inc Blood handling apparatus
US3648693A (en) * 1969-05-28 1972-03-14 Jintan Terumo Co Bag apparatus for transfusion of blood or fluid involving heat shrinkable tube means
US3685795A (en) * 1970-07-06 1972-08-22 Baxter Laboratories Inc Fluid flow valve
GB1428391A (en) * 1972-06-23 1976-03-17 Avon Medicals Couplings
US4056116A (en) * 1976-09-08 1977-11-01 Baxter Travenol Laboratories, Inc. Valve for interconnecting sterile containers and the like
US4080965A (en) * 1976-09-30 1978-03-28 Baxter Travenol Laboratories, Inc. In-line cannula valve assembly
US4157723A (en) * 1977-10-19 1979-06-12 Baxter Travenol Laboratories, Inc. Method of forming a connection between two sealed conduits using radiant energy

Also Published As

Publication number Publication date
DE3136791A1 (en) 1982-06-24
BE890713A (en) 1982-02-01
SE8106041L (en) 1982-04-15
GB2089332A (en) 1982-06-23
GB2089332B (en) 1984-12-12
US4368729A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
CA1155805A (en) Aseptic system for total parenteral nutrition and the like
EP0079326B1 (en) Fluid transfer assembly
EP0554988B1 (en) Mixing apparatus
EP0091311B1 (en) Sterile coupling and method of making same
US4583971A (en) Closed drug delivery system
US5176673A (en) Method and device for manipulating and transferring products between confined volumes
US4548606A (en) Dual compartmented container with activating means
US20070244447A1 (en) Luer connector, medical connector and transfer set comprising such a connector
US5368586A (en) Closure for a drug-vial
EP0091310A2 (en) A closed system and a method for mixing two separately stored components
KR100569223B1 (en) Integrated infusion container
EP0132632A2 (en) Compartmented flexible solution container
NO865151L (en) CLUTCH DEVICE AVOIDING POLLUTION.
JP2001522280A (en) Sterile connector
JP2019508326A (en) Pouch with attachment and method of making the pouch
MX2012009458A (en) Closure cap for a receptacle for receiving medical liquids, and receptacle.
GB2117733A (en) Sterilized liquid mixing system
EP0069768A4 (en) One-piece connector members and sterile connector system.
US5122126A (en) Nozzle member provided with sealing membrane
EP0904234B1 (en) Improved medical containers
JP3497800B2 (en) Dissolution liquid container
JPH05337163A (en) Infusion liquid container provided with communicating means
AU6577280A (en) System for the sterile mixing of materials
JPH0975425A (en) Medical vessel
AU8146182A (en) One-piece connector members and sterile connector system

Legal Events

Date Code Title Description
MKEX Expiry