CA1228307A - Preform with internal barrier and internal layer of high thermal stability and products made from the same - Google Patents

Preform with internal barrier and internal layer of high thermal stability and products made from the same

Info

Publication number
CA1228307A
CA1228307A CA000469654A CA469654A CA1228307A CA 1228307 A CA1228307 A CA 1228307A CA 000469654 A CA000469654 A CA 000469654A CA 469654 A CA469654 A CA 469654A CA 1228307 A CA1228307 A CA 1228307A
Authority
CA
Canada
Prior art keywords
layers
layer
thermoplastic
thermoplastic resin
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000469654A
Other languages
French (fr)
Inventor
Martin H. Beck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graham Packaging Pet Technologies Inc
Original Assignee
Continental PET Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental PET Technologies Inc filed Critical Continental PET Technologies Inc
Application granted granted Critical
Publication of CA1228307A publication Critical patent/CA1228307A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • B29C45/1643Making multilayered or multicoloured articles having a "sandwich" structure from at least three different materials or with at least four layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • B29C2949/0723Preforms or parisons characterised by their configuration having variable wall thickness at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • B29C2949/0732Preforms or parisons characterised by their configuration having variable diameter at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/077Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the neck
    • B29C2949/0772Closure retaining means
    • B29C2949/0773Threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/081Specified dimensions, e.g. values or ranges
    • B29C2949/0811Wall thickness
    • B29C2949/0819Wall thickness of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/24Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • B29C2949/3009Preforms or parisons made of several components at neck portion partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • B29C2949/3018Preforms or parisons made of several components at body portion partially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • B29C2949/3038Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected having more than three components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/76Neck calibration
    • B29C49/761Forming threads, e.g. shaping neck thread between blowing means and mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/18Polymers of nitriles
    • B29K2033/20PAN, i.e. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles
    • B29L2031/716Bottles of the wide mouth type, i.e. the diameters of the bottle opening and its body are substantially identical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • Y10T428/1383Vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit is sandwiched between layers [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Abstract

PREFORM WITH INTERNAL BARRIER AND
INTERNAL LAYER OF HIGH THERMAL STA-BILITY AND PRODUCTS MADE FROM THE SAME
ABSTRACT OF THE DISCLOSURE

This relates to providing a preform for use in blow molding containers which are suitable for use in conjunction with hot products and products which must be subjected to pasteurization. A preform is injection molded in stages and normally will have five layers including two interior barrier layers surrounding a central core. The core is to be formed of a thermoplastic-having a high termperature thermal stability and is primar-ily selected from polycarbonates and acrylonitriles. This abstract forms no part of the specification of this appli-cation and is not to be construed as limiting the claims of the application.

Description

- 1 - 122~3307 PREFORM WITH INTERNAL BARRIER AND
INTERNAL LAYER OF HIGH THERMAL
STABILITY AND PRODUCTS MADE FROM THE SAME
This invention relates in general to new and useful improvements in preforms formed by injection molding thermoplastic material and which preforms are utilized in the forming of blow molded articles.
There has been developed by others a five-layer preform wherein two intermediate layer are wormed of a barrier material and with there being a fifth single internal layer. In accordance with this invention, in lieu of the fifth layer being formed of the same thermos plastic resin as two other layers, it is proposed bone-filially to utilize as the fifth single layer a thermos plastic resin which has high temperature thermal stability.
The invention will be described in conjunction with the description of the preform, method of forming the preform, and the resultant blow molded articles devised by the other party.
There has been developed a method of forming a preform by injection molding wherein there is incorporated therein a central layer of barrier material. This is 20 disclosed in US patent application No. AYE of Toy Basque Rabashiki Couch (trading as Tub Co. Ltd.) published 4 August 1982. However, because of the cost of the barrier material, the thickness of the barrier layer which is possible in accordance with that patent applique-lion is too great to be commercially feasible.
An object is to provide a laminated preform for forming blow molded articles and the like, said preform including a tubular wall having inner and outer surfaces, said tubular wall in radial cross section comprising inner and outer first layers of a thermoplastic resin, inner and outer layers of a barrier material next to and between said inner and outer first layers, and a second layer of thermoplastic resin between said barrier material - lo - 12Z83~7 layers, said second layer of thermoplastic material being a thermoplastic having high temperature thermal stability.
Another object is to provide an intermediate article of manufacture comprising a blow molded article including a base portion in the form of a container having a bottom portion, a body and an open mouth defined by a closure receiving upper portion, said blow molded article further including an upper neck portion, and an expanded upper portion joining said closure receiving upper portion to said upper neck portion, said base portion having a wall of a laminated construction and which in radial cross section includes inner and outer first layers of a thermos plastic resin, inner and outer layers of a barrier material within and next to said inner and outer first layers, and a further layer of thermoplastic resin between said layers of barrier material, and said barrier material layers ton-minuting in said intermediate article of manufacture in the general area of said closure receiving upper portion, said further layer of thermoplastic material being a thermos plastic having high temperature stability.
A further object is to provide a blow molded container of the type including a bottom, a body, and said body terminating in a neck finish, at least said body being of a laminated construction and in radial cross I section includes inner and outer first layers of a thermos plastic resin, inner and outer layers of a barrier material within and next to said inner and outer first layers, and a further layer of thermoplastic resin between said layers of barrier material, said further layer of thermos plastic material being a thermoplastic having high tempera-lure stability.
With the above and other objects in view that will hereinafter appear, the nature of the invention will be more clearly understood by reference to the following detailed description, the appended claims, and the several views illustrated in the accompanying drawings.
IN THE DRAWINGS:
Figure 1 is a schematic sectional view taken through one injection mold cavity, and shows the manner in which material is directed into the cavity to form a preform in accordance with this invention.
Figure 2 is an enlarged fragmentary schematic view showing the manner in which a first quantity ox thermoplastic resin is injected into the bottom of the mold cavity and the resultant cooling upon contact with cold wall surfaces.
Figure 3 is a schematic sectional view similar to Figure 2, and shows the injection of a barrier material into the bottom of the mold cavity and the resultant tunnel flow of both the first quantity of thermoplastic resin and the barrier material.
Figure 4 is a schematic fragmentary sectional view similar to Figures 2 and 3, and shows the progressive I flow of a second quantity of thermoplastic resin into and through the layers of the first thermoplastic resin and the barrier material.
Figure 5 is an enlarged fragmentary radial sectional view showing the flow of the thermoplastic material forming the first layers of the laminated preform.
Figure 6 is a diagram plotting the inaction of the materials into the mold cavity against time.
Figure 7 is another diagram plotting pressure within the mold cavity against time.
Figure 8 is an enlarged radial sectional view through the neck finish end of a preform in accordance with this invention for forming a blow molded bottle, and shows one arrangement of material layers within the preform.
Figure 9 is a fragmentary sectional view similar to Figure 8, but showing another relationship of the material layers in the area of the neck finish.

Figure lo is yet another enlarged fragmentary sectional view similar to Figure 8, and shows yet another arrangement of the material layers within the preform.
Figure 11 is an enlarged fragmentary sectional view similar to Figure 8, but through a slightly different type of preform, and shows the arrangement of the layers therein.
Figure 12 is yet another enlarged fragmentary sectional view similar to Figure 8, but with respect to a preform of the type shown in Figure 11 and showing yet another arrangement of material layers.
Figure 13 is a vertical sectional view taken through an intermediate article of manufacture utilizing a preform such as that shown in Figures 11 and 12.
Figure I is a fragmentary enlarged radial sectional view taken generally along the line 14-14 of Figure 13, and shows the arrangement of the layers of material within the article.
figure 15 is an enlarged fragmentary sectional view similar to Figure 14, and shows a different arrange-mint of the material layers.
Figure 16 is a vertical sectional view taken through a mottle or like container formed utilizing one of the preforms of Figures 8-10.
figure 17 is an enlarged fragmentary radial sectional view taken generally along the line 17-17 of Figure 16, and shows the relationship of layers of material in the finished bottle.
- Referring now to the drawings in detail, it will I be seen that there is illustrated in Figure 1 a conventional injection mold generally identified by the numeral 20. It is to be understood that this is a schematic showing in that a conventional injection mold for forming a preform will include numerous cavities, for example sixteen or more, arranged in rows and columns. Such an injection mold is generally of a solid construction and each injection mold unit will include a mold cavity 22. Each mold unit I
will also include a neck ring 24 which forms an extension of the mold cavity 22 and defines a neck finish. The neck ring 24 may be of a split construction. Further, each mold unit 20 is provided with a core 26.
It will be seen that the neck ring 24 in con-junction with the core 26 closes what may be considered to be the upper end of the mold cavity 22 while the lower end of the mold cavity is provided with an opening 28 lo which may receive in sealed relation the nozzle of an extrude.
In lieu of the nozzle of the extrude being directly received within the opening 28, a nozzle-like end 30 of a rotary valve member 32 is received in the opening 28 in sealed relation. The valve member 32 is mounted in sealed relation within a valve block 34 which has formed therein a first passage 36 which receives the conventional nozzle 40 of a plasticizer or injection head.
The passage 36 opens radially toward the rotary valve 2Q member 32. The rotary valve member 32 has a through passage 42 which at one end terminates in a generally radial passage 44 which can be aligned with the passage 36. There is also associated with the valve block 34 a second material dispenser 46 which in its simplest form may include a dispensing piston 48 and which has a flow passage 50 exiting therefrom toward the valve block 34.
The valve block 34 has a radial passage 52 which is axially aligned with and in communication with the passage 50. The passage 52 terminates at the -valve member 32.
The valve member 32 has a further passage 54 extending generally radially from the passage 42 and so cimcum-ferentially spaced from the passage 44 such that when the passage 44 is aligned with the passage 36 the passage 54 is spaced from the passage 52 in a circumferential direct lion. By rotating the valve member 32, the passage 44 maybe moved out of communication with the passage 36 and the ~2Z8307 passage 54 moved into communication with the passage 52.
In accordance with this invention there will be a second plasticizer (not shown and the valve will be modified to selectively receive hot melt from either of the two plasticizers in the 5upplv device 46.
The material delivered by the first of the plasticizers will be a suitable thermoplastic resin in the form of a hot melt. This resin may be such materials as PET, PUP, PEW PVC and PC. The barrier material which is supplied by the supply device 46 may be of any conventional known barrier material including, for example, EVIL, EVE, POOH and the like, or such barrier materials as may be developed in the future.
With respect to the foregoing, it is to be noted that EVIL has barrier properties on the order of one hundred times that of PET; EYE has barrier properties on the order of one hundred to two hundred times that of PET;
and POOH has barrier properties on the order of two thousand times that of PET. Accordingly, only a very thin layer of these barrier materials is required, and from a commercial standpoint it is highly desirable to maintain such very thin layers because of the much higher cost of the barrier materials than the acceptable thermoplastic resins include in PET.
It is also to be understood that the external thermoplastic resin layers must be of sufficient thickness to protect the barrier layer. On the other hand, in the case of a bottle for beverages or other products containing COY, the innermost layer of the thermoplastic material, i.e. that which defines the interior of the container, must be relatively thin so as not to absorb COY.
The resin delivered by the second plasticizer, in accordance with this invention, will be different from the material delivered by the first plasticizer and will be a hot melt of a thermoplastic resin having high them-portray thermal stability. Resins which at the present ~Z28307 are commercially feasible from a cost standpoint include polycarbonates and acrylonitriles. The acrylonitriles may be a homopolymer but are preferably copolymers with a second monomer such as styrenes methylacrylate and methyl-methacrylate.
Referring first to Figure 2, it will be seen that a preselected limited amount of a first thermoplastic resin 56 will be injected into the bottom of the mold cavity 22 and as it flows through the mold cavity, due to lo the relatively cool temperature ox the mold unit 20 include in the core 26, there will be solidification of the thermos plastic resin 56 both externally and internally of the mold cavity 22 to define inner and outer layers 58, 60 of the first thermoplastic resin.
Reference is particularly made to Figure 5 at this time wherein it will be seen that the thermoplastic resin 56 has a luminary flow with the velocity of the advancing thermoplastic resin being the greatest in the center and diminishing toward zero adjacent the mold come I pennants. The velocity of the advancing thermoplastic resin 56 is generally indicated by an arrow schematic arrange-mint 62. It is to be understood that as the thermoplastic resin 56 solidifies upon contacting the mold components, the flow of the thermoplastic resin will discontinue adjacent the walls of the mold cavity 22 and there will be a tunnel flow effect between the layers I 60. Further, due to the relatively cool air within the mold cavity 22, there will be a slight cooling of the advancing front of the thermoplastic resin 56, which front is identified by the numeral 64.
It is to be understood that the thickness of the layers 56, 60 will be varied depending upon factors such as:
l. material properties (viscoelastic and thermal
2. Cavity dimensions
3. Injection velocity pressure).
It is to be understood that a precise amount of the first thermoplastic resin 56 will be injected into the mold cavity 22 over a selected period of time, with this being schematically shown in Figure 6, and at a low pros-sure as indicated in Figure 7. The quantity of the thermos plastic resin which is injected into the mold cavity may be controlled in many conventional manners. Basically, in-section of the thermoplastic resin is effected by axially advancing the feed screw ox a plasticizer, and a suitable stop may be provided to limit the advance of the feed screw.
There also will be the timed rotation of the valve member 32 to move the passage 44 out of alignment with the passage 36 and thus the quantity of thermoplastic resin 56 injected into the mold cavity 22 may be controlled by the timing of the actuation of the valve member 32.
As is schematically shown in Figure 6, the barrier material which is next injected into the mold cavity and is identified by the numeral 66, is fed toward the mold cavity I in slightly overlapping relation with respect to the thermos plastic resin 56. It is to be understood that the mechanism for feeding the barrier material 66, as schematically shown in Figure l, may be of a single shot type so as to inject the exact amount of barrier material required.
With respect to Figure 7, it will be seen that the barrier material 66 will be injected into the mold cavity 22 at a pressure only slightly higher than the pressure of the thermoplastic resin 56 with there being a very slight pressure drop as at 67 between the discontinue anion of injecting the thermoplastic resin 56 and the initiation of the injection of the barrier material 66.
The overlap in injection is to keep the pressure drop to a minimum.
Referring now to Figure 3, it will be seen that the barrier material 66 will have a tunnel flow through the cavity defined between the layers 58, 60 and at the same ~228307 time will advance the previously injected thermoplastic material 56. Normally the barrier material will have a lower melting temperature than the thermoplastic resin 56, and therefore the cooling effect of the thermoplastic resin layers 58, on on the barrier material 66 will not be as great as the mold surfaces on the thermoplastic material 56. Thus, while there will be solidification of the barrier material 66 as it contacts the solidified layers 58, 60 and there will be formed inner and outer solidified layers 68, 70 of the barrier material, these layers will be materially thinner than the layers 58, 60.
For example, the layers 58, 60 will have a thickness vary-in from Lola to .040 inch. while the barrier material layers 68, 7Q will have a thickness as low as .003 inch.
Referring now to Figure 4, the thermoplastic resin identified by the numeral 72 is injected into the mold cavity 22 from the second plasticizer to fill the covet The thermoplastic resin 72 will be a resin having a high temperature stability as described herein before.
The thermoplastic resin 72 as it advances within the con-fines of the layers 68, 70 of the barrier material will no-melt the barrier material and advance it together with the barrier material melt 66 through the tunnel defined by the layers 68, 70, thereby reducing the thickness of the layers 68, 70. As will be apparent from Figure 4, the advancing thermoplastic resin 72 will advance the barrier material 66 which, in turn, will continue to advance the thermoplastic resin 56.
Further with respect to Figure 4, it will be seen that the advancing large quantity of the thermoplastic resin 72 as it engages the layers 58, 68 at the-end of the core 26, will melt portions of the solidified layers 58, 68 and advance the same with the result that there may be no portion of either the layer 58 or the layer 68 at the extreme end of the core 26.

g Referring next to Figure 6, it will be seen that the thermoplastic resin 72 is advanced in slightly over-lapping relation with the barrier material 66. It is to be understood that once the injection of the barrier material 66 has been completed the valve member 32 will be rotated to a position to receive the thermoplastic resin 72. In the illustrated embodiment, the valve member 32 will be returned to its starting position since the thermoplastic resin 72 is delivered from the same supply as the thermoplastic resin 56.
With respect to the diagram of Figure 7, it will be seen that the thermoplastic resin 72 will be in-jetted first at a gradually increasing pressure above the pressure of the injection of the barrier material 66 with a slight initial pressure drop, as indicated at 74. Then, when the cavity 22 has been filled, there will be a pros-sure boost, as at 76, followed by a holding period 78 wherein the pressure of the hot melt material injected into the mold cavity will gradually decrease as the thermos plastic material 72 gradually solidifies.
Depending upon usage of the preform which informed in the manner described above, the amounts of the thermoplastic resin 56 and the barrier material 66 injected into the mold cavity 22 will vary. Further, the shape of the preform at the front end thereof will vary.
In Figures 8, 9 and 10, there are illustrated preforms which are particularly adapted to be used in their entireties in the blow molding of bottles and like containers wherein a small diameter closure is applied I by means of screw threads.
With respect to Figure 8, the illustrated pro-form portion is part of a preform identified by tune numeral 80 and includes a laminated body 82 which term-notes in a neck finish generally identified by the numeral 84. The neck finish 84 includes injection molded threads 86 and a shoulder member 88 by means of which the ~8307 preform 80 is supported during reheating and blow mold-in.
In the preform 8Q, the quantity of thermoplastic resin 56 injected into the mold cavity is sufficient to have the layers 58, 60 extend to the extreme end of the preform 80 and to form at the extreme end an end wall 59.
Further, the quantity of barrier material injected into the mold cavity is sufficient to have the layers 68, 70 extend to a point adjacent the extreme end of the preform lo and to form an end wall 69 adjacent the end wall 59. Of course, the thermoplastic resin 72 will also extend to the extreme end of the preform 80 as permitted by the end wall 69.
In Figure 9 there is illustrated a preform 90 which will be of the same configuration as the preform 80.
Further, while the quantity of the thermoplastic resin 56 directed into the mold cavity will be sufficient for the layers 58, 60 to go to the extreme end of the preform including a neck finish portion 92 thereof and to form the end wall, the quantity of the barrier material 66 injected into the mold cavity will be such that the layers 68, 70 will terminate interiorly of the preform short of the neck finish 92 into that area of the resultant bottle which becomes the shoulder of the bottle, as will be described in detail hereinafter.
With respect to Figure lo the preform 94 thereof is also of an identical configuration to the preform 80.
However, the quantity of the thermoplastic resin 56 intro-duped into the mold cavity will be only sufficient for the layers 58, 60 to extend to a point adjacent to the neck finish 96 of the preform 94. Thus, the neck finish part of the preform 94 will be formed solely by the thermos plastic resin 72. Further, the quantity of the barrier material 66 injected into the mold cavity will be such that the layers 68, 70 terminate internally of the preform short of the termination of the layers 58, 60.

~22~307 In Figures 11 and 12 there are illustrated pro-forms for ~oXming containers and like hollow articles other than bottles or containers with small diameter neck finishes. An extreme end portion only in radial section of such preform is illustrated in each of Figures 11 and 12.
With particular reference to Figure 11, it will be seen that there is illustrated a preform 98 having an open end portion 100 which may include a supporting flange or collar 102. Inasmuch as the end portion 100, as will be described in detail hereinafter, is utilized solely as a support in the blow molding of the preform 98 into a tubular shape, it is not necessary that the barrier material 66 extend into the end portion 100. Therefore, only sufficient barrier material is injected into the mold cavity of the preform 98 so as to permit the layers 68,70 to terminate adjacent the end portion 100. In a like manner, the quantity of thermoplastic resin 56 injected into the mold cavity will be only sufficient to have the layers 58, 60 extend generally into the area of the end - 20 portion 100. Thus, the end portion 100 will be formed entirely by the thermoplastic resin 72.
In Figure 12 there is illustrated yet another preform 104 which is identical to the preform 98 including an-end portion 106 and a flange or collar 108, except that the end portion 106 is formed entirely by the thermoplastic resin 56 and the layers formed by the resins 66 and 72 terminate in-relatively-great spaced relation to the end portion 106. The preform 104 is advantageous in forming a container or like tubular body wherein an intermediate 3Q article of manufacture is involved.
Referring now to Figure 13, it will be seen that there is illustrated an intermediate article of manufacture generally identified by the numeral 110 and blow molded from a preform such as the preform 98 or the preform 104.
The intermediate article of manufacture includes a base portion 112 in the form of a container. The base portion 112 includes a tubular body 114 having an integral bottom 116 and terminating in a closure receiving portion 118.
The illustrated closure receiving portion 118 is in the form of a flange adapted to be engaged by a conventional metal end unit and forming part of a conventional double seam securing the metal end unit (not shown) to the base port lion 112 which, when separated from the remainder of the intermediate article of manufacture 110, becomes a con-trainer.
Although it has not been so illustrated, the intermediate article of manufacture 110 may have the closure receiving portion 118 in the form of a neck finish which may be threaded or otherwise modified to receive a closure unit. At this time it is to be understood that except for the fact that it is formed from a laminated preform the intermediate article of manufacture 110 has been formed prior to this invention.
It will be seen that the intermediate article of manufacture also includes an upper blow molded portion 120 which terminates in an end portion 112 which will correspond to the end portions 100, 106 of the preforms 98, 104.
With respect to Figure 14, the intermediate article of manufacture illustrated therein was formed from a preform such-as the preform 104 of Figure 12. It is to be understood that the upper portion 120 is to be separated from the base portion 112 by a cutting action, such as a fusion cutting action, with the removal of a portion 124.
It will be seen that in this embodiment of the invention the layers 68, 70 terminate in the closure receiving port lion 118 and that the layer formed by the thermoplastic material 72 terminates entirely within the base portion 112.
Thus all of the intermediate article of manufacture 110 which is to be severed from the base portion 112 will be formed by the thermoplastic resin 56 and may be recoin-ditioned and reused.

On the other hand, with respect to Figure 15, there may be occasions where it is desired that the barrier material layers 68, 70 extend beyond the closure receiving portion 118 into the upper portion 120. Thus, when the base portion 11~ is removed from the remainder of the intermediate article of manufacture 110, the layers 68, 70 of the barrier material will extend through the cut edge of the hose portion 112 into the upper portion 120. In a like manner, the layers 58, 60 of the first thermoplastic resin will also extend into the upper portion 120. Thus, when the base portion 112 is severed from the remainder of the intermediate article of manufacture 110 by removal of the material in the area 126, the intermediate article of manufacture 110 illustrated in Figure 15 may be formed, for example, from the preform of Figure 11. When the cutting action involves heat fusion of the cut layers to one another this may be effected at the end of the base portion 120.
In Figure 16 there is illustrated a conventional bottle which may be formed from any one of the preforms of Figures 8, and 10. The bottle is generally identified by the numeral 128 and includes a tubular body 130 having an integral bottom 132. The body 130 at its upper end is con-netted by way of a shoulder 134 to a neck finish 136.
With particular reference to the bottle 128, it is to be understood that in the normal blow molding of such bottle the body portion 13D will be very thin, having been reduced in thickness on the order of one-tenth or less so that the material forming the body 130 will have a post-live and desired biaxial orientation. On the other hand, the material of the bottle 128 in the shoulder 134 closely adjacent the neck finish 136 will have only a inure reduce lion in thickness while the material in the neck finish 136 will not be reduced in thickness at all. Thus, the barrier material 66 may beneficially terminate in the shoulder 134 as described above.

122~3307 It is also pointed out here that the extreme center of the bottom 132 is of a much greater thickness than the body 13Q, and therefore the absence of barrier material in the central part of the bottom 132 will not be a material omission.
Reference is finally made to Figure 17 which is a radial cross section of the body 13n and shows inner and outer layers 58, 60 of the first thermoplastic material 56, inner and outer layers 68, 70 of the barrier material 66, and a central core of the other thermoplastic material 72. Inasmuch as there is a reduction in thickness of the laminated preform on the order of ten times, the thickness of the layers 58, 60 in the bottle 128 will be on the order of Owl to .Q04 inch, while the thickness of the barrier material layers 68, 70 will be on the order of .0003 inch. The thickness of the layer 58 will be surf-fishnet to protect the barrier layer 68 against the con-tents of the bottle 128 including available C02.
further, it has been found that when the barrier material 66 does not have properties which permit the heat bonding thereof to the thermoplastic resin and the thick-news of the layers 68, 70 have been relatively great as required by known practices, when the blow molded article has been formed there has been a positive delamination of the layers of barrier material from the remainder of the blow molded article. However, when the barrier material layers in the preform are very thin, as described hereinabove, it has been found that the prior pronounced delamination does not occur. A conventional test for delamination is the squeezing of the body of a blow molded article, and if there is delamination there will be a squeaking noise emitted. When the barrier material layers are very thin at the start, the blow molded articles utilizing such a preform do not emit the squeaking noise and do not show evidence of a complete delamination.

lZ28307 It will be understood that by utilizing a thermos plastic resin having a high temperature thermal stability for the central core material, further beneficial results may be obtained over preforms formed of the same therm plastic resin for both the inner and outer layers 58, 60 and the central core in that blow molded articles formed from such preforms will be shape maintaining at much higher temperature and may be used in packaging hot products as well as products such as beer which require pasteurization.
There has recently been developed by others a five-layer tubular prison which is formed as an extruded tube. Such prison does have a barrier layer which is thin, but which is not directly bonded to the thermoplastic resins which form the primary layers of the prison. The method of forming such a multi-layer prison is not con-disavow to the diffusion bonding of a barrier layer to a con-ventional- thermoplastic resin layer by way of pressure when the materials of the two layers are not normally heat bond-able together in that the components of such a tubular 2Q prison are extruded at a low pressure on the order of 200Q to 5000 pi and as soon as the tube leaves the extrusion head, at which time all components are hot, the pressure is relieved and as the components cool they shrink and tend to separate.
On the other hand, as is schematically shown in Figure 7, when the various materials are introduced into the mold cavity 22 by a conventional injection molding process, the barrier layers 68, 70, in addition to being very thin and thus relatively incompressible, are clamped between the core 72 and the layers 58, 60 at a very high pressure on the order of 15,000 to 17,000 pi There-fore, while the barrier layers 68, 70 may not be heat bond-able to the thermoplastic resin layers 58, 60 and the core 72, there is a considerablediffu5ion bonding effected between these layers at the high forming temperatures and pressures.
Further, as is also shown in Figure 7, after the injection step has been completed there is a maintaining of a high pressure on the materials previously injected into the mold cavity and thus the pressure is maintained between the layers as the materials of the layers shrink, thereby pro-venting any tendency to separate due to relative shrinkage.
Since the thickness of the barrier layers 68, Moe be as low as .003 inch, it will be apparent that it is of a relatively incompressible thinness. Further, as disk closed herein before, the preform, at least in the body port lion of the resultant blow molded hollow member, will restretched on the order of ten times, thereby reducing the thickness of the barrier layers 68, 70 to be as low as .0003 inch, which thinness results in the resultant barrier - layers as being extremely thin and thus incompressible for all practical purposes. The net result is that in the resultant blow molded hollow member the barrier layers 68, 70 maintain a pressure bond with the thermoplastic resin layers 58, 6Q and the core 72.
Although only several preferred embodiments of the invention have been specifically illustrated and described herein, it is to be understood that material layers within the preforms may be varied in accordance with the desired uses of the preforms and the resultant blow molded articles.

Claims (20)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. A laminated preform for forming blow molded articles and the like, said preform including a tubular wall having inner and outer surfaces, said tubular wall in radial cross section comprising inner and outer first layers of a thermoplastic resin, inner and outer layers of a barrier material next to and between said inner and outer first layers, and a second layer of thermoplastic resin between said barrier material layers, said second layer of thermoplastic material being a thermoplastic having high temperature thermal stability.
2. A laminated preform according to claim 1 wherein said second layer of thermoplastic material is a polycarbonate.
3. A laminated preform according to claim 1 wherein said second layer of thermoplastic material is an acrylonitrile.
4. A laminated preform according to claim 1 wherein said second layer of thermoplastic material is an acrylonitrile copolymer with a second monomer of the group including styrene, methyacrylate and methymethacrylate.
5. A laminated preform according to claim 1 wherein said second layer of thermoplastic material terminates between said barrier layers.
6. A laminated preform according to claim 1 wherein said second layer of thermoplastic material ter-minates beyond said barrier layers within said inner and outer first layers.
7. A laminated preform according to claim 1 wherein said preform has an open end portion, and said second layer of thermoplastic material extends beyond said barrier layers and said inner and outer first layer and forms said end portion.
8. An intermediate article of manufacture com-prising a blow molded article including a base portion in the form of a container having a bottom portion, a body and an open mouth defined by a closure receiving upper portion, said blow molded article further including an upper neck portion, and an expanded upper portion joining said closure receiving upper portion to said upper neck portion, said base portion having a wall of a laminated construction and which in radial cross section includes inner and outer first layers of a thermoplastic resin, inner and outer layers of a barrier material within and next to said inner and outer first layers, and a further layer of thermo-plastic resin between said layers of barrier material, and said barrier material layers terminating in said inter-mediate article of manufacture in the general area of said closure receiving upper portion, said further layer of thermoplastic material being a thermoplastic having high temperature stability.
9. An intermediate article of manufacture according to claim 8 wherein said further layer of thermo-plastic resin is a polycarbonate.
10. An intermediate article of manufacture according to claim 8 wherein said further layer of thermo-plastic resin is an acrylonitrile.
11. An intermediate article of manufacture according to claim 8 wherein said further layer of thermo-plastic resin is an acrylonitrile copolymer with a second monomer of the group including styrene, methyacrylate and methymethacrylate.
12. An intermediate article of manufacture according to claim 8 wherein said barrier material layers and said further layer of thermoplastic resin terminate in said base portion.
13. An intermediate article of manufacture according to claim 8 wherein said further layer of thermo-plastic resin extends beyond said barrier material layers and terminates in said expanded upper portion.
14. A blow molded container of the type including a bottom, a body, and said body terminating in a neck finish, at least said body being of a laminated construction and in radial cross section includes inner and outer first layers of a thermoplastic resin, inner and outer layers of a barrier material within and next to said inner and outer first layers, and a further layer of thermoplastic resin between said layers of barrier material, said further layer of thermoplastic material being a thermoplastic having high temperature stability.
15. A blow molded container according to claim 14 wherein said further layer of thermoplastic resin is a polycarbonate.
16. A blow molded container according to claim 14 wherein said further layer of thermoplastic resin is an acrylonitrile.
17. An intermediate article of manufacture according to claim 8 wherein said further layer of thermo-plastic resin is a polycarbonate copolymer with a second monomer of the group including styrene, methyacrylate and methymethacrylate.
18. A blow molded container according to claim 14 wherein said further layer of thermoplastic resin forms said neck finish.
19. A blow molded container according to claim 14 wherein said further layer of thermoplastic resin extends into said neck finish and terminates within said barrier layers.
20. A blow molded container according to claim 14 wherein said further layer of thermoplastic resin extends into said neck finish beyond said barrier layers and terminates within said inner and outer first layers.
CA000469654A 1984-02-17 1984-12-07 Preform with internal barrier and internal layer of high thermal stability and products made from the same Expired CA1228307A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US581,148 1984-02-17
US06/581,148 US4550043A (en) 1984-02-17 1984-02-17 Preform with internal barrier and internal layer of high thermal stability and products made from the same

Publications (1)

Publication Number Publication Date
CA1228307A true CA1228307A (en) 1987-10-20

Family

ID=24324082

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000469654A Expired CA1228307A (en) 1984-02-17 1984-12-07 Preform with internal barrier and internal layer of high thermal stability and products made from the same

Country Status (8)

Country Link
US (1) US4550043A (en)
EP (1) EP0157475B1 (en)
JP (1) JPS60193614A (en)
AT (1) ATE105528T1 (en)
AU (1) AU573289B2 (en)
CA (1) CA1228307A (en)
DE (1) DE3587820T2 (en)
MX (1) MX164487B (en)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129960A (en) 1983-04-13 2000-10-10 Pechiney Plastic Packaging, Inc. Methods and apparatus for injection molding and injection blow molding multi-layer plastic and the articles made thereby
US5037285A (en) 1983-04-13 1991-08-06 American National Can Company Apparatus for injection molding and injection blow molding multi-layer articles
US4751035A (en) * 1983-04-13 1988-06-14 American National Can Company Plastic containers with folded-over internal layers and methods for making same
US4892699A (en) * 1983-04-13 1990-01-09 American National Can Company Methods for injection molding and injection blow molding multi-layer articles
US4946365A (en) * 1983-04-13 1990-08-07 American National Can Company Apparatus for injection molding and injection blow molding multi-layer articles
US5523045A (en) 1983-04-13 1996-06-04 American National Can Company Methods for injection molding and blow-molding multi-layer plastic articles
JPS6071207A (en) * 1983-09-29 1985-04-23 Toyo Seikan Kaisha Ltd Multilayer preform for elongation blow molding and its manufacture
US4550043A (en) * 1984-02-17 1985-10-29 Continental Plastic Containers, Inc. Preform with internal barrier and internal layer of high thermal stability and products made from the same
US4609516A (en) * 1984-02-17 1986-09-02 Continental Pet Technologies, Inc. Method of forming laminated preforms
JPS61108542A (en) * 1984-10-31 1986-05-27 三菱瓦斯化学株式会社 Multilayer vessel
US4942008A (en) * 1985-07-10 1990-07-17 Cahill John W Process for molding a multiple layer structure
JPS62227712A (en) * 1986-03-31 1987-10-06 Toyo Seikan Kaisha Ltd Manufacture of injection-molded body of olefin-vinyl alcohol copolymer
US4800053A (en) * 1987-01-28 1989-01-24 Air Products And Chemicals, Inc. Injection molding process with reactive gas treatment
US4752428A (en) * 1987-01-28 1988-06-21 Air Products And Chemicals, Inc. Injection molding process with reactive gas treatment
AU610555B2 (en) * 1987-02-06 1991-05-23 Mitsubishi Gas Chemical Company, Inc. Parison and blow-moulded containers and processes for production thereof
JP2577232B2 (en) * 1987-02-27 1997-01-29 日精エー・エス・ビー機械株式会社 Heat-resistant structure of synthetic resin container neck
JPH0813499B2 (en) * 1987-03-04 1996-02-14 三菱瓦斯化学株式会社 Multilayer container and manufacturing method thereof
US4764405A (en) * 1987-07-22 1988-08-16 Air Products And Chemicals, Inc. Method for increasing barrier properties of thermoplastic substrates
US4880675A (en) * 1988-04-25 1989-11-14 Air Products And Chemicals, Inc. Hot-fillable plastic containers
US4936473A (en) * 1988-09-16 1990-06-26 Continental Pet Technologies, Inc. Hot-fill product container with multi-layer wall structure
US4847129A (en) * 1988-09-16 1989-07-11 Continental Pet Technologies, Inc. Multilayer preform for hot fill containers
US5123554A (en) * 1988-10-31 1992-06-23 Abbott Laboratories Retortable plastic containers
US4979631A (en) * 1988-11-14 1990-12-25 Continental Pet Technologies, Inc. Vented recyclable multilayer barrier container
US4910054A (en) * 1988-12-01 1990-03-20 Continental Pet Technologies, Inc. Plastic preform having reinforced container base forming portion and container formed therefrom
US4954376A (en) * 1988-12-30 1990-09-04 Continental Pet Technologies, Inc. Two material three/five layer preform
US5032341A (en) * 1988-12-30 1991-07-16 Continental Pet Technologies, Inc. Method of forming two material three/five layer preform
US5011648A (en) * 1989-02-14 1991-04-30 Van Dorn Company System, method and apparatus for hot fill PET container
US5067622A (en) * 1989-11-13 1991-11-26 Van Dorn Company Pet container for hot filled applications
US5077111A (en) * 1990-01-12 1991-12-31 Continental Pet Technologies, Inc. Recyclable multilayer plastic preform and container blown therefrom
US5221507A (en) * 1990-04-24 1993-06-22 Devtech Labs, Inc. Process for coinjection molding of preforms for multi-layer containers
US5242085A (en) * 1990-12-17 1993-09-07 The Coca-Cola Company Liquid container system
US5344045A (en) * 1990-12-17 1994-09-06 The Coca-Cola Company Liquid container system
US5381927A (en) * 1990-12-17 1995-01-17 The Coca-Cola Company Method of dispensing from a liquid container system
US5251424A (en) * 1991-01-11 1993-10-12 American National Can Company Method of packaging products in plastic containers
JP2555782B2 (en) * 1991-01-31 1996-11-20 豊田合成株式会社 Mall and its manufacturing method
US5652034A (en) * 1991-09-30 1997-07-29 Ppg Industries, Inc. Barrier properties for polymeric containers
AR001460A1 (en) * 1995-03-29 1997-10-22 Continental Pet Technologies Refillable plastic container for pressurized applications, method for manufacturing it, preform for manufacturing the container and method for molding the preform.
NL1001417C2 (en) * 1995-10-13 1997-04-15 Inter Tooling Services Bv Device for manufacturing hollow plastic objects.
JP3261289B2 (en) * 1995-11-02 2002-02-25 本田技研工業株式会社 Method for producing sandwich-like synthetic resin molded article
JP2832692B2 (en) * 1995-11-02 1998-12-09 本田技研工業株式会社 Manufacturing method of bumper for automobile
US5595799A (en) * 1995-12-14 1997-01-21 Dtl Technology Limited Partnership Coinjection molding of decorative preforms and containers produced from such preforms
US5906285A (en) * 1996-05-10 1999-05-25 Plastipak Packaging, Inc. Plastic blow molded container
US5965081A (en) * 1996-05-16 1999-10-12 The Coca-Cola Company Method of making side-gated preforms for use in blow molding plastic bottles
US5851471A (en) * 1996-05-16 1998-12-22 The Coca-Cola Company Method for injection molding a multi-layer preform for use in blow molding a plastic bottle
DE19626967C2 (en) * 1996-07-04 1999-08-12 Gaplast Gmbh Process for producing a container and containers with pressure equalization openings
US6063325A (en) * 1996-08-22 2000-05-16 Continental Pet Technologies, Inc. Method for preventing uncontrolled polymer flow in preform neck finish during packing and cooling stage
US6123211A (en) * 1997-10-14 2000-09-26 American National Can Company Multilayer plastic container and method of making the same
US6312772B1 (en) 1997-10-20 2001-11-06 Hoechst Celanese Corporation Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-polyester thermoplastic polymer
US6268026B1 (en) 1997-10-20 2001-07-31 Hoechst Celanese Corporation Multilayer laminate formed from a substantially stretched non-molten wholly aromatic liquid crystalline polymer and non-liquid crystalline polyester and method for forming same
US6426128B1 (en) 1998-01-06 2002-07-30 Hna Holdings, Inc. Co-processable multi-layer laminates for forming high strength, haze-free, transparent articles and methods of producing same
US6382946B1 (en) 1998-04-01 2002-05-07 Dtl Technology Limited Partnership Molding multi-layered articles using coinjection techniques
US6179142B1 (en) 1998-04-13 2001-01-30 The Coca-Cola Company Wire-frame bottle and method of manufacturing same
US6440350B1 (en) 1999-03-18 2002-08-27 Mold-Masters Limited Apparatus and method for multi-layer injection molding
US6655945B1 (en) 1999-03-18 2003-12-02 Mold Masters Limited Apparatus and method for multi-layer injection molding
US6398537B2 (en) 1999-04-02 2002-06-04 Mold-Masters Limited Shuttle system for an apparatus for injection molding
US6196826B1 (en) 1999-05-28 2001-03-06 Mold-Masters Limited Seepage system for an injection molding apparatus
DE60118377T2 (en) * 2000-06-27 2006-12-07 Graham Packaging Co., L.P. METHOD FOR PRODUCING A MULTILAYER BLAST-MOLDED CONTAINER
US7033656B2 (en) 2002-04-12 2006-04-25 Graham Packaging Pet Technologies, Inc. Graded crystallization of container finishes
US7481961B2 (en) * 2004-04-01 2009-01-27 Graham Packaging Pet Technologies, Inc. Multilayer container trimming
US7399442B2 (en) * 2004-07-07 2008-07-15 Kortec, Inc. Multilayer molding using temperature adjustment of flow rate in conjunction with shooting pot technology
US20070026173A1 (en) 2005-07-27 2007-02-01 Owens-Illinois Healthcare Packaging Inc. Multilayer containers and methods of manufacture
US20080093772A1 (en) * 2006-10-06 2008-04-24 Graham Packing Company, Lp Method and apparatus for delivering sequential shots to multiple cavities to form multilayer articles
GB2478732B (en) 2010-03-15 2014-08-20 Kraft Foods R & D Inc Improvements in injection moulding
US8822001B2 (en) 2010-04-27 2014-09-02 Graham Packaging Company, L.P. Delamination resistant multilayer containers
US20130221572A1 (en) * 2012-02-24 2013-08-29 The Procter & Gamble Company High Thermal Conductivity Co-Injection Molding System
IT202100017447A1 (en) * 2021-07-02 2023-01-02 Lumson Spa Method of making a container for a dispensing device for a fluid substance, and dispensing device for that fluid substance

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1007184A (en) * 1972-11-24 1977-03-22 Emery I. Valyi Multilayered hollow plastic container
FR2257404B1 (en) * 1973-09-21 1976-05-14 Billion Sa
GB1489635A (en) * 1975-03-03 1977-10-26 Toyo Seikan Kaisha Ltd Packaging materials
US4174413A (en) * 1976-07-27 1979-11-13 Asahi-Dow Limited Multi-layered molded articles
US4217161A (en) * 1976-08-10 1980-08-12 Toyo Seikan Kaisha Limited Process for making a container
US4526821A (en) * 1979-07-20 1985-07-02 American Can Company Multi-layer container and method of making same
US4398642A (en) * 1979-11-02 1983-08-16 Toyo Boseki Kabushiki Kaisha Multi-ply vessel and method for production thereof
JPS57123050A (en) * 1980-12-01 1982-07-31 Toray Industries Polyester composite film
AU549286B2 (en) * 1981-01-22 1986-01-23 Toyo Boseki K.K. Blow moulded multiply vessel
EP0076366B1 (en) * 1981-10-05 1987-09-02 Ball Corporation Multilayer tubular body with uncentered barrier layer
US4439493A (en) * 1983-02-04 1984-03-27 Mobil Oil Corporation Multilayer heat sealable oriented packaging film and method of forming same
US4550043A (en) * 1984-02-17 1985-10-29 Continental Plastic Containers, Inc. Preform with internal barrier and internal layer of high thermal stability and products made from the same

Also Published As

Publication number Publication date
DE3587820T2 (en) 1994-08-18
US4550043A (en) 1985-10-29
AU3640484A (en) 1985-08-22
JPS60193614A (en) 1985-10-02
EP0157475A1 (en) 1985-10-09
EP0157475B1 (en) 1994-05-11
AU573289B2 (en) 1988-06-02
DE3587820D1 (en) 1994-06-16
MX164487B (en) 1992-08-19
ATE105528T1 (en) 1994-05-15
JPH0442966B2 (en) 1992-07-15

Similar Documents

Publication Publication Date Title
CA1228307A (en) Preform with internal barrier and internal layer of high thermal stability and products made from the same
CA1232214A (en) Preform with internal barrier and products made from the same
US6123211A (en) Multilayer plastic container and method of making the same
US4923723A (en) Multi-layer preform, method of forming preform, and container formed from the preform
US4847129A (en) Multilayer preform for hot fill containers
EP0170594B1 (en) Injection molding method for multi-layer bottomed parisons
NZ215789A (en) Triple layered plastics bottle blow moulded from injection moulded parison having thick inner layer
JPH0215370B2 (en)
US3496597A (en) Container forming apparatus
JPS62164504A (en) Manufacture of preform for oriented polyester vessel
JPS6251423A (en) Manufacture of oriented polyester container
JPH0521732B2 (en)
JPH0371972B2 (en)
JPS6367469B2 (en)
JPH0415725B2 (en)
JPS6211624A (en) Preform for orientation blow forming and manufacture thereof
JPS61268434A (en) Multilayer plastic vessel and manufacture thereof
JPH0211314A (en) Synthetic resin multilayer container and molding thereof

Legal Events

Date Code Title Description
MKEX Expiry