CA1241084A - Bidirectional bus arrangement for a digital communication system - Google Patents

Bidirectional bus arrangement for a digital communication system

Info

Publication number
CA1241084A
CA1241084A CA000483565A CA483565A CA1241084A CA 1241084 A CA1241084 A CA 1241084A CA 000483565 A CA000483565 A CA 000483565A CA 483565 A CA483565 A CA 483565A CA 1241084 A CA1241084 A CA 1241084A
Authority
CA
Canada
Prior art keywords
gate
transmission line
resistor
line
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000483565A
Other languages
French (fr)
Inventor
Terry O. Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Telecom Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Telecom Ltd filed Critical Northern Telecom Ltd
Priority to CA000483565A priority Critical patent/CA1241084A/en
Priority to US06/743,465 priority patent/US4912724A/en
Application granted granted Critical
Publication of CA1241084A publication Critical patent/CA1241084A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40045Details regarding the feeding of energy to the node from the bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Abstract

A BIDIRECTIONAL BUS ARRANGEMENT FOR A DIGITAL COMMUNICATION SYSTEM
Abstract of the Disclosure A bidirectional data bus arrangement is realized with the use of a single matching resistor. This is achieved by using a current sourcing driver gate which exhibits a low impedance HIGH-state and by using the junction of the series resistor and the transmission line as the receiving node at that end of the line. When the resistor end of the transmission line is receiving data from the other end, the resistor effectively serves as a parallel terminating resistor for the transmission line.

- i -

Description

~2~0~34 A BIDIRECTIONAL ~US ARRANGEMENT FOR A DIGITAL COMMUNICATION SYSTEM
The invention relates generally to digital comm~nication systems and more particularly to a bidirectional bus arrangement for such a system.
A digital communication system usually has one or more data buses for transporting information between various portions of the system. Each bus may be a two-wire balanced system or a single-wire with common ground unbalanced system and usually comprises one, four, eight, sixteen or thirty-two wires or paths. In addition, a bus may be unidirectional, in which case it is adapted to transfer information in only one direction or it may be bidirectional and is adapted for the transmission of data in both directions. Each path of the bus exhibits the characteristics of a transmission line including a characteristic impedance which may be predetermined by design choice of material, spacing of conductors, and other factors influencing the distributed elements of the transmission line.
It is important in a data bus system to have the minimum amount of noise generated by undesired reflections at the driver and receiver gates. This result is achieved by matching the characteristic impedance of each transmission line with an impedance circuit connected to the bus.
The majority of transmission lines have fairly low characteristic impedances; these can range from about fifty to two hundred ohms with a nominal value of about one hundred and twenty ohms. The current necessary to obtain a reasonable voltage swing on such a bus line may be quite large. It is more difficult to couple ~410~34 noise into this low impedance, but it is more difficult to drive, and line drivers must be capable of supplying the necessary current.
The conventional bidirectional bus in a common ground unbalanced system usually comprises a transmission line, including a wirel having a driver gate and a receiver gate at each end of the wire. The gates employed as driver gates are off-the-shelf components available from the semiconductor manufacturers. They are usually three-state devices which when gated OFF offer an almost infinite impedance to the line connected at their output. Since a data bus is basically a transmision line exhibiting a characteristic impedance (ZO), a termination at the opposite end is necessary for each direction of driving. By conventional circuit theory (Thevenin's theorem), it may be determined that a matching impedance network for matching a ZO of 120 ohms is a combination of two resistors from power rail to ground of about 220 and 330 ohms respectively with the junction of the resistors connected to the bus. This type of bidirectional bus arrangement is commonly used in present day digital equipment.
On the other hand, in an application such as an address bus for a memory system, a unidirectional bus system is used. In the realization of such a bus system, it is known to use a matching resistor at the driver end of the transmission line. This resistor is connected in series between a driver gate and the transmission line and is chosen to match its characteristic impedance. The advantage of the circuit is that if the input impedance of the receiver is high, very little power is dissipated and current only flows during the ~.,'2;4~084 transition time which is twice the line delay time.
It has been found that a bidirectional bus system may be realized with the use of a single matching resistor. This is achieved by using a driver gate which is not a three-state device and by using the junction of the series resistor and the transmission line as the receiving node when the resistor end of the transmission line is receiving data from the other end; in this instance, the resistor is effectively connected in parallel with the transmission line and serves to terminate the line.
In accordance with the invention, there is provided a bidirectional data bus arrangement comprising a transmission line having a first end and a second end, the first end terminating at a first node connected to a first gate for receiving data transmitted on the transmission line in a first direction and to one end of a resistor. The other end of the resistor is connected to the output terminal of a current sourcing line driver gate adapted to be controlled for transmitting data on the transmission line through the resistor. The resistor has a value approximately matching that of the characteristic impedance of the transmission line. The second end of the transmission line terminates at a second node connected to a second gate for receiving data transmitted on the line in a second direction and to a third gate for outputting data on the line.
The circuit provides marked advantages over the conventional line termination method described above. Firstly, for each line of the bus, only one resistor is used in the circuit of the invention whereas four resistors are used in the conventional iO84 bidirectional circuit. This results in substantial cost savings as well as surface economy of the printed circuit board. In addition, a substantial power saving is realized with all the ensuing advantages of economy and heat dissipation considerations.
An example embodiment of the invention will now be described in conjunction with the drawings in which:
Figure 1 is a schematic diagram of a conventional bidirectional bus terminating arrangement;
Figure 2 illustrates the circuit output configuration of a typical three-state device; and Figure 3 is a schematic diagram of a bidirectional bus terminating arrangement in accordance with the invention.
Figure 1 illustrates a conventional bidirectional bus termination arrangement for an unbalanced system. A transmission line 10 is connected at one end to a line driver gate 11 and receiver gate 12, and at the other end to receiver gate 13 and line driver gate 14.
Each of these gates may conveniently be an off-the-shelf component such as Texas Instrum`ent gate type SN74S240 for gates 11 and 14 and type SN74LS240 for gates 12 and 13. At each end of the transmission line 10 is a terminating network R1-R2 having its junction connected to the line 10. As discussed above, each network functions to terminate the line and prevent reflections of the data being transmitted from the opposite end of the bus.
Figure 2 shows the totem-pole output circuit configuration of a three-state output gate such as drivers 11 and 14. The output terminal of the device is taken at the collector 1;~4~0~3~

of a drive transistor Q2 which has an internal load impedance to Vcc comprised of transistor Q1 and resistance RL. A three-state gatedl device provides a low impedance LO~-state (Q1-OFF and Q2-ON), a low impedance HIGH-state (Q1-ON and Q2-OFF), and a high impedance OFF-state (Q1 and Q2-OFF). Therefore, when the receive control lead of gates 11 or 14 in figure 1 is activated, that gate is effectively disconnected from the bus 10.
Figure 3 is a circuit diagram of a bidirectional bus termination arrangement in accordance with the invention. A line 30 is connected at one end to a receiving gate 31 and a transmit three-stated gate 32. The other end of line 30 is connected to a data receive gate 33 and to a resistor Rt having a value approximately the same as the characteristic impedance of the transmission line 30.
The other end of the resistor Rt is connected to a current sourcing line driver gate 34 having a first input for connection to a source of data and a second input for receiving transmit/receive control signals.
Gates 31 to 34 may be of a type having a totem-pole output configuration as shown in figure 2; however gate 34 must not be used as a three-state device. Gates 31 - 33 may be type 74LS240 whereas gate 34 may be type 74128. When the transmit/receive control lead of gate 34 is activated, the gate is transmitting data which is received at gate 31 through the series resistor Rt and the line 30.
Since the resistor is matched to the line, the line input initially rises to one half the final voltage. This wavefront travels down the line and is reflected at the receiver. When the reflection reaches node A, the voltage thereat rises to its final amplitude. The receiver however, sees one transition from the initial to the final dmplitude. When the driver gate 34 switches from HIGH to LOW a similar situation occurs, in which the input of the line sees at first a step to one-half the final value and, two line delays later, the final LOW condition.
When gate 32 transmits on the line, the data is received by gate 33 from node A which is the junction of the line 30 and the matching resistor Rt. The transmit/receive lead of gate 34 being set to receive causes a logic HIGH to appear at its output terminal. Gate 34 is not a three-state device and because its transistor Q2 lS OFF but its transistor Ql is ON, Rt effectively serves as a parallel terminating resistor for the line 30. When the gate 32 is driving HIGH, the current requirement is that of the high level input current to gate 33 (e.g. about 20 microamps), and when the gate 32 is driving LOW, the necessary current (about 18 milliamps) is drawn through Rt and transistor Ql of gate 34. On the other hand, when gate 34 is driving HIGH and LOW, the current requirements are simply that of the respective high level and low level current requirements to gate 31. These are about 20 and 20Q microamps respectively for the embodiment described above. These power requirements are very much lower than those for a conventional bidirectional bus terminating arrangement such as described in conjunction with figure 1. Assuming that data flows equally in both directions over a transmission line and that it is equally composed of logic highs and lows, the termination configuration of the invention Q~

provides a reduction of about 27.5 milliamps per path over a conventional configuration using 220/330 ohms terminating resistors at each end of the path. Since lower power gates can be used in this circuit, a further reduction of about 17 milliamps is obtained. For a sixteen-bit wide data bus at five volts, this is a power saving of about 3.5 watts. In view of the miniaturization and compactness of contemporary equipment, this is a significant saving indeed.

Claims

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS DEFINED ARE CLAIMED AS FOLLOWS:
1. A bidirectional data bus arrangement comprising, a transmission line having a first and a second end, the first end terminating at a first node connected to a first gate for receiving data from the transmission line and to a second gate for transmitting data on the transmission line, the second end of the transmission line terminating at a second node connected to a third gate for receiving data transmitted by the second gate and to one end of a resistor having a value approximately matching that of the characteristic impedance of the transmission line, the other end of the resistor being connected to a current sourcing line driver gate having a totem-pole output configuration, the driver gate being controlled conventionally when it is outputting data and controlled to be in its low impedance HIGH-state when data is being received by the third gate.
CA000483565A 1985-06-10 1985-06-10 Bidirectional bus arrangement for a digital communication system Expired CA1241084A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA000483565A CA1241084A (en) 1985-06-10 1985-06-10 Bidirectional bus arrangement for a digital communication system
US06/743,465 US4912724A (en) 1985-06-10 1985-06-11 Bidirectional bus arrangement for a digital communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA000483565A CA1241084A (en) 1985-06-10 1985-06-10 Bidirectional bus arrangement for a digital communication system

Publications (1)

Publication Number Publication Date
CA1241084A true CA1241084A (en) 1988-08-23

Family

ID=4130680

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000483565A Expired CA1241084A (en) 1985-06-10 1985-06-10 Bidirectional bus arrangement for a digital communication system

Country Status (2)

Country Link
US (1) US4912724A (en)
CA (1) CA1241084A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084637A (en) * 1989-05-30 1992-01-28 International Business Machines Corp. Bidirectional level shifting interface circuit
US5134311A (en) * 1990-06-07 1992-07-28 International Business Machines Corporation Self-adjusting impedance matching driver
US5216667A (en) * 1991-05-24 1993-06-01 International Business Machines Corporation Simultaneous bidirectional transceiver
US5355391A (en) * 1992-03-06 1994-10-11 Rambus, Inc. High speed bus system
US5553306A (en) * 1992-12-29 1996-09-03 International Business Machines Corporation Method and apparatus for controlling parallel port drivers in a data processing system
WO1994017615A2 (en) * 1993-01-25 1994-08-04 Electronic Retailing Systems International, Inc. Electronic price display system with data bus isolation
JPH07135513A (en) * 1993-09-17 1995-05-23 Fujitsu Ltd Method and device for termination control for current drive circuit
EP0655846B1 (en) * 1993-11-27 2001-06-06 Volkswagen Aktiengesellschaft Control of transmission device in line communication
FR2736226B1 (en) * 1995-06-27 1997-09-19 Texton METHOD FOR TWO-WAY COMMUNICATION BETWEEN AN ELECTRONIC CENTRAL STATION AND A PERIPHERAL STATION AS WELL AS A TWO-WAY COMMUNICATION ARRANGEMENT FOR THE IMPLEMENTATION OF THIS METHOD
US6366972B1 (en) * 1996-07-23 2002-04-02 Compaq Computer Corporation Multi-user communication bus with a resistive star configuration termination
US6373262B1 (en) * 2000-02-17 2002-04-16 International Business Machines Corporation Method and apparatus for testing a signal line

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2148098A (en) * 1935-08-08 1939-02-21 Emi Ltd High frequency electric transmission line
US3585399A (en) * 1968-10-28 1971-06-15 Honeywell Inc A two impedance branch termination network for interconnecting two systems for bidirectional transmission
US3657478A (en) * 1969-12-30 1972-04-18 Honeywell Inc Interconnection bus system
US3718762A (en) * 1970-07-16 1973-02-27 Yokogawa Electric Works Ltd Pulse transmitting apparatus
US3827026A (en) * 1971-01-04 1974-07-30 Honeywell Inf Systems Encoding technique for enabling a device to process different types of digital information transmitted along a single information channel
FR2308250A1 (en) * 1975-04-18 1976-11-12 Honeywell Bull Soc Ind ADAPTER TRANSFORMING BIPOLAR SIGNALS INTO BINARY SIGNALS
JPS5676654A (en) * 1979-11-29 1981-06-24 Fujitsu Ltd Bus transmission system
US4490631A (en) * 1982-08-30 1984-12-25 National Semiconductor Corporation Totem pole/open collector selectable output circuit

Also Published As

Publication number Publication date
US4912724A (en) 1990-03-27

Similar Documents

Publication Publication Date Title
JP4230545B2 (en) Data processing system and operation method
KR100437233B1 (en) Integrated circuit chip with adaptive input-output port
US7068066B2 (en) System for transmission line termination by signal cancellation
US5528168A (en) Power saving terminated bus
CA1241084A (en) Bidirectional bus arrangement for a digital communication system
US5285477A (en) Balanced line driver for local area networks or the like
US6051989A (en) Active termination of a conductor for bi-directional signal transmission
JPH06224731A (en) Control impedance transistor switching circuit
JPH01501275A (en) Terminator for transceiver
CA2069658C (en) Active intelligent termination
EP1014615B1 (en) Full duplex transmission
US3657478A (en) Interconnection bus system
EP1410589B1 (en) Transmitter with active differential termination
EP0836302B1 (en) Communication system having a closed loop bus structure
US20020130680A1 (en) Method and apparatus for terminating emitter coupled logic (ECL) transceivers
US4535360A (en) Low power wideband switching array element
JP3201666B2 (en) Interface conversion circuit for half-duplex serial transmission
US4807249A (en) Circuit arrangement for serial data transmission between a plurality of subscriber stations
CA1217843A (en) Digital span transmission circuit
JPH03254246A (en) Transmission system for lan
EP0016637A1 (en) Passive coupling arrangement and distributed data processing system including such arrangements
KR20000074847A (en) Low voltage differential signal communication system
JPS62146040A (en) Pair cable network system for home bus system
JPH07107020A (en) Transmitter-receiver
Cooperman et al. Low-power digital communication with unterminated transmission lines

Legal Events

Date Code Title Description
MKEX Expiry