CA1272440A - Paper converting rewinder - Google Patents

Paper converting rewinder

Info

Publication number
CA1272440A
CA1272440A CA000511316A CA511316A CA1272440A CA 1272440 A CA1272440 A CA 1272440A CA 000511316 A CA000511316 A CA 000511316A CA 511316 A CA511316 A CA 511316A CA 1272440 A CA1272440 A CA 1272440A
Authority
CA
Canada
Prior art keywords
paper
sheet
bedroll
rewinder
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000511316A
Other languages
French (fr)
Inventor
Kevin Benson Mcneil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Application granted granted Critical
Publication of CA1272440A publication Critical patent/CA1272440A/en
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H35/00Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers
    • B65H35/04Delivering articles from cutting or line-perforating machines; Article or web delivery apparatus incorporating cutting or line-perforating devices, e.g. adhesive tape dispensers from or with transverse cutters or perforators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/465Cutting motion of tool has component in direction of moving work
    • Y10T83/4766Orbital motion of cutting blade
    • Y10T83/4795Rotary tool
    • Y10T83/4824With means to cause progressive transverse cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/465Cutting motion of tool has component in direction of moving work
    • Y10T83/4766Orbital motion of cutting blade
    • Y10T83/4795Rotary tool
    • Y10T83/4824With means to cause progressive transverse cutting
    • Y10T83/4827With helical cutter blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/929Tool or tool with support
    • Y10T83/9309Anvil

Abstract

IMPROVED PAPER CONVERTING REWINDER
ABSTRACT
An improvement in paper converting rewinders in which bulk rolls of paper are converted into consumer product rolls of paper such as tear-separable multi-sheet rolls of toilet tissue or paper towels. In such rewinders of the type which include a perforator cylinder, and a bedroll/chop-off roll combination, changes in sheet length and/or sheet count commonly require changing one or more of such rotating, paper contacting machine elements. The present invention enables broad changes in both sheet length and sheet count in such rewinders without changing either the perforator cylinder or the bedroll or the chop-off roll.
The invention also enables adjustments to assure true cross machine direction orientation of inter-sheet lines of perforation throughout the range of adjusting sheet length and/or sheet count per product roll.

Description

IMPROVED PAPE~ CONVERTING REWINDER

DESCRI PTION

Technical Field 5The invention pertains to apparatus -- commonly called rewinders -- for unwinding one or more parent rolls of paper and rewinding the paper onto cores to produce consumer rolls of paper products: for example, ro71s of paper towels, or rolls of toilet paper. More specifically it pertains to providing such a 10rewinder in which sheet length and sheet count per roll can be changed .

Background Rewinders for paper ~- apparatus for unwinding parent rolls of paper and rewinding them into consumer product rolls having 15multiple tear-apart sheets (eg., toilet paper or paper towe1s~ --of the type which include a fixed pitch perforating cylinder for perforating the paper at sheet length intervals to provide tear apart convenience, and a fixed pitch bedroll/chop-off roll combination for separating roll lengths of paper, and which 20operate such cylinders and rolls in surface speed matched timed relation with advancing the paper have a number of shortcomings.

First, the perforating cylinder has a circumference which is somewhat (eg., about two ~2) or three (3) pereent) greater than an integer number of sheet lengths, and are ~itted with that integer number of cross machlne oriented perforating ~lades whlch are evenly circumferencially spac2d: I.e., Fixed pitch. The paper is forwarded under sufficient tension when perforated that when subsequently relaxed (i.e., tension removed), the desired sheet iength is achieved. Such prior art apparatuses have, of course, means for controlling draw in the paper to compensate for differences whTch would otherwise precipitate relaxed sheet length differences using a fixed pitch perforating cylinder. Inasmuch as changes in draw normally result in changes in the machine direction tension applied to the paper, greater tension may be applied than is required ~or paper control. Such greater tension generally pulls more crepe out of creped paper than is desired for paper product performance, and necessitates providing greater boncl strength across the lines of perforation than would otherwise be required. Such lines of perforation having greater strength than otherwise required are, of course, harder for the ultimate user to tear apart and thus are a negative attribute.
Also, to provide a desired degree of crepe in the finished product, the paper may have to be over-creped on the papermaking machine, and this has a negative impact on the production capacity of the papermaking machine as well as the production cost for the paper. Alternatively, constant tension or draw may be maintained in the rewinder with resultant relaxed sheet length variability which Ts a consumer negative; and requires oversizing some sheets to insure that none are undersized which might otherwise precipitate falr packaging re~ulation infractions.

Second, the bedroll is commonly sized to have a circumference equal to an integer number of nominally tensioned sheet lengths: eg., four. Thus, changes of sheet count per roll are normally one or more times that integer: i.e., one times four;
two tlmes four, etc. Such bulk changes in sheet count are of course negative restraints on manufacturlng/product definition.

The Tmproved rewinder provided by the present invention enables, without requiring machine cylinder or roll changes:
adjustable sheet length at low tension/draw; changing sheet counts per product=rol I by one sheet increment; and insures that ~7~

roll ends coincide with sheet ends. Thls results, of eourse, in such benefits as reduced costs (I.e., not having to buy new cylinders andtor anvlls and/or rolls), less downtime, and more manufacturing flexib;lity with respect to product configuration changes.

Di_losure Of The Invention The invention provides improved paper rewinders of the type which include means such as a per~orator cylinder and compatible anvil for perforating a running paper web at sheet length intervals to provide tear-apart convenience; means such as a bedroll and compatible chop-off roll for breaking or otherwise parting the running paper web at product roll length intervals;
and means such as a multi-mandrel turret assembly for winding each product roll length of the paper onto, for example, a lS disposable core to make such rolled paper products as toilet paper ancl disposable paper towels. In accordance with one aspect of the present invention, such an improved paper rewinder for converting parent rolls of paper into multi-separable-sheet product rolls is provided which comprises means for adjusting sheet length and sheet count without changing rolls or cylinders in the rewinder.

The improved rewinder also preferably includes means for assuring an Tnteger sheet count of whole sheets per product roll by providing dynamic (i.e, adjustable while the rewinder is running) phase adjùsting means disposed between means such as a perforator cylinder (for perforatlng the paper at sheet length intervals to provide tear apart convenience), and means for breaking or otherwise parting the paper at product roll length intervals so that each product roll end is coincident with a line of perforations intermediate adjacent sheets. The means for adjusting sheet length may comprise means for rotating a perforator cylinder at a different circumferential surface velocity than the paper is being forwarded through the rewinder; and the means for effecting sheet count per product roll changes comprises means for adjusting the drive ratio between a perforator cylinder and roll end means which rneans may be a 1~ 7~4{1 paired combination of a bedroll and a chopper roll as described herein .

In an aspect of the Invention which pertains to a rewinder wherein the perforating means comprises a fixed pitch perforator cylinder having true cross machine directlon oriented perforating blades, and a fixed-pitch-helix, stationary anvil, the Improvement further eomprises means for associating and moving, said anvil and said perforator cylinder so that they can jointly be skewed with respect to the paper being forwarded through the rewinder to assure true cross rnachine direction orientation of the lines of perforation regardless of whether the surface velocity -of the perforator cylinder and the paper velocity are matched or unequal. The improved rewinders may also include means f~r adjusting the draw imparted to the paper as It courses ~hrough the rewinder: preferably means which are independent from the sheet length and sheet count elements, and which enable independently adjusting such draw in the several free spans of the paper path.

BRIEF DESCRIPTIONS OF THE DRAWINGS

While the specification concludes with claims which particularly point out and distinctly claim the subject matter regarded as forming the present invention, it is believed the invention will be better understood from the following description taken In conjunction with the accompanyiny drawings in which identical features in the several views are identicaily designated and in which:

Figure 1 is fragmentary, somewhat schematic side elevational view of an improved paper rewlnder which Is an embodiment of the present invention.

Figure 2 is a fragmentary, somewhat schematic front elevational view of the drive means for the sheet count and length components of the improved paper rewinder of Figure 1.

Figure 3 is a fragmentary side elevational view of the drive means shown in Fig~re 2.

7X~O

Figure 4 is an enlarged scale, somewhat schematic fragmentary side elevational vlew of the bedroll, chopper roll, and portions of the rewind turret of the improved paper rewinder shown in Figure 1.

DETAIL7:D DESCRIPTION OF THE INVENTiON

A fragmentary portion of an exemplary paper rewinder 20 embodiment of the invention for rewinding paper 21 is shown in Figure 1 to comprise paper drive oomponents which Include a Mount Hope Roll 22, feed roll 23, slitter roll 26, and one of plural rewind mandrels 29 which are disposed on an indexing turret sheet length and sheet count components which inciude . a perforator cylinder 24 that coacts with stationary anvil 2$, bedroll 27, and chopper roll 28; drive and master speed control 35, speed adjuster 36 for the paper drive components, speed adjuster 37 for the sheet length and count components, fine speed adjusters 41 through 44 for independently adjusting the draw between various driven paper drive components, stepwise speed adjuster 47 disposed intermediate perforator cylinder 24 and bedroll ~7, and a phase adjuster 48 which enables circumferentially indexing the perforator cylinder 24 with the bedroll 27 so that the bedroll 27 and the chopper roll 28 always coact to break or otherwise part the paper 21 along a line of perforations imposed by the perforator cylinder 24 to define the end of each roll of paper being wound onto cores 30 on mandrels 29. Additionally, Figure 1 shows perforator cylinder 24 and anvil 25 mounted on a sub-frame 32, and means 33 for skewing sub-frame 32 with respect to the path of paper 21 ~or a purpose described below .

Briefly, as compared to unimproved rewinders of the general type shown and described herein -- for example Model 150 made by Paper Converting Machine Co. -- the Improved rewinder provided by the present invention enables adjusting sheet length and sheet count in rolled paper products produced thereon without having to change either the perforator cylinder, the anvil, the bedroll, or the chopper roll. Essentially this is enabied by substar~tially reducing the extent the paper wraps the ~7~

perforator cylinder and the bedrolt: and by providing independent speed li.e., surface velocity) control means for the paper drive components as compared to the sheet length and count components as identified above. For example in an unmodified PCMC Series 150 rewinder, the paper path wraps about two-hundred-twenty-five (225) degrees of the perforator cyllnder 24, and about ninety (90) degrees of bedroll 27; and, in those modifled in accordance wlth the present invention, the wraps are about fifty-five l55~ and fifty (5û) degrees, respectively. The substantially reduced wraps enable the paper - web to slip with respect to the perforator cylinder and the bedroll without undue friction or IOS5 of web control which might otherwise break the paper web coursing through the rewinder.
Accordingly, sheet length can be increased or decreased by speeding up or slowing down, respectively, the paper relative to the surface velocity of the perforator cylinder and sheet count per finished product roll can be adjusted by changing a pair of gears drivingly disposed intermediate the bedroll and the perforator cylinder as described below. Additionally, inasmuch as such prior art rewinders commonly have a fixed pitch helical anvil configuration which coacts with true cross machine direction oriented perforating blades disposeci at fixed pitch intervals on the perforator cylinder to avoid making entire lines of perforations at the same time as would occur with a single cross machine clirection oriented anvil, such prior art rewinders require the paper velocity to be equal to the surface velocity of the perforator cylinder In order to achieve true cross machine directlon orlented lines of perforation. The means for skewing the anvil and perforator cylinder in the improved rewinder of the present invention by skewing their sub-frame 32 relative to the paper path enables such fixed pitch elements to precipitate true cross machine direction oriented lines of perforation at velocity mismatched conditions i . e ., when the paper web is being forwarded at a greater or lesser velocity than the surface velocity of the perforator cylinder for sheet length control purposes.

Sheet length adjustability provided by the present invention may be most clearly understood by first considering a rewinder , having a fixed pitch perforator cylinder, and which is being operated at a stead~y state condition with the paper velocity equal 4~(3 to the ~urface vel~city of the perforator cylind~r: and by then introducing the changes required to effect sheet length changes.

For example, a perforator cylinder having perforator blades disposed at one-hundred-twenty (120) degree intervals, and siIed to provide sheels having relaxed lengths of ten ~10~ inches (25.4 crn. ) by perforating a running web of paper under a draw of one 11 ) percent would have a circumference of about thirty-and-three-tenths ~30.3) inches (about 77 cm.~. In order to shorten the sheets to nine (9) inches (22. 86 cm. ), the circumferential velocity of the perforator cylinder is increased by ten ( 10~ percent relat1ve to the velocity of the paper . This can be achieved by increasing the velocity of the perforator cylinder per se through adjuster 37 (eg., a variable pitch sheave), or decreasing the paper velocity by adjuster 36. Opposite changes may similarly be made to increase sheet lengths. Concurrently, of course, any change made in the relative velocity between the paper and the perforator cylinder requires adjustment of the skew of the sub-frame 32 by skew adjuster 33 to insure that the lines of perforation which separate the sheets are oriented in the true cross machine direction of the paper as described above. By thus effecting sheet length changes by independently controlling the paper velocity and the perforator cylinder velocity, and by using the skew adjust to maintain true cross machine direction orientation of the lines of perforation, the former need to replace the perforator cylinder with a larger or smaller diameter cylinder, - and the helical anvil to one which is sized to match the perforator cylinder's increased or decreased cliameter to effect sheet length changes is obviated by the present invention.

Parenthetically, this also enables the rewinder to rewind papers having different draw/relaxation properties by first adjusting the draw elements to effect the degree of draw required for sheet control, and then adjusting the paper vs perforator velocity to achieve the desired relaxed sheet lengths.

Sheet count changes may best be described ~y referring to the gear train drives for the perforator cylinder 24, the bedroll 27, and the chopper roll 28 as shown in Figures 2 and 3 and then describing wh~t is done to achieve a sheet count change.

In an exemplary embodiment of the present invention which, when set up for a sheet count per product roll of ninety-two (92~
sheets, and having a nominally f~ur (4) sheet per revolution bedroll, the several gears of the gear train shown in Figures 2 and 3 have the followins tooth counts: gear 54, one-hundred (100) teeth: gear 55, fifty 150) teeth; gears 57 and 59, ninety-two (92) ~eeth each; gears 61 and 63, ~orty (407 teeth each; and gear 65, seventy-five ~75) teeth. Thus, for each ninety-two sheet product roll 3~, Figure 1, the bedroll 27 rotates - 10 twenty-three ~23) revolutions; and the perforator cylinder rotates - thirty-and-two-thirds (30 2/3) revolutions. The Chopper roll 28 is geared to turn two (2) revolutions per revolution -of the bedroll. The method of com~uting the gear changes required to effect different sheet counts is delineated below. However, suffice it to say that the following tabulation of sheet counts can be provided by the gear sets set forth in the tabulation for a tensioned sheet length of eleven-and-one-quarter ( 11 . 25) inches (about 28.6 cm. ) using a bedroll 27 having a circumference of forty-five (45) inches (about 114.3 cm.).

20SHEET COUNT TEETH, BEDROLL TEETH, PERFORATOR

86 ~8 86 ~5 88 ~8 88 89 88 8g 94 g6 9 The general method of computing the number of teeth for gears 57 and 59 for particular sheet counts is:

a. Gear 59: The number of teeth on gear 59 is exactly equal to =the sheet count. For example, gear 59 has ~;~7~
- g one hundred (100) teeth for a sheet count of one hundred (100), ninety (90) teeth for a sheet count of ninety (90), etc.

b. Gear 57: The number of teeth on gear 57 is exactly equal to the number of bedroll reYolutions per product roll multiplied by four (4): I.e., the nominal number of sheets per bedroll circumference. The number of bedroll revolutions per product roll is the closest integer to: sheet count multiplied by nominal sheet length divided by bedroll circum~erence. For example, the number of bedro11 revolutions for a sheet c~unt of ninety-five (95) and a sheet length of eleven-and-one-quarter tll.25~ inches (about 28.6 cm.) is equal to 95 x 11 . 25/45 = 23. 75. Rounding to the nearest integer yields twenty-four (24) bedroll revolutions per product rol 1. The number of teeth on gear 57 is then twenty-four (24) times four (4) which is ninety-six (96).

An exemplary phase adjustor 48, Figure 1, for a modified PCMC Series 150 rewinder as described herein is Model OL. 0. 254 - 6:7 ratio which is manufactured by Andantex Incorporated, U. S. Ao Wanamassa, New Jersey .

Referring back to Figure 2, coupler 67 and the coupler portion of coupler/phase adjustor 69 are provided to compensate for the center to center variations which are incurred due to gear changes. Exemplary couplers for this purpose are Schmidt couplings, Model L375CIF, available from Zero Max, Minneapolis, Minnesota. Also, in Figure 2, the input drive shaft 51 to the gear train assembly 50 is provided with drive pinion 52.

Turning now to Figure 4, some of the features of bedroll 27 and chopper roll 28, and their relationships with the rewinder's turret which carries plural mandrels (eg., six (6) mandrels on the turret on Serles 150 Rewinders marketed by Paper Converting Machine Co. ) are described in order ~o understand the overall operation of improved rewinders which embody the present invention.

Bedrolt 27, Figure 4, comprises a shell 71, plural radially moveable members 72 having radially outwardly extending fences 74 and plns 76, and radially moveable booties 78. Except for roll end/be~in events, these radially moveable members are disposed In their retracted positions below the surface of shell 71. During roll end/begin events they are extended through a cross machine direction oriented array of slots in shell 71 for the purposes described below.

Chopper roll 28 has a radially outwardly extending blade 80 and a cushion 82. It is indexed through the above described gear train so that blade 80 will extend into the space between the fences 74 when they are extended during roll end/begin events.

Briefly, during a roll end/begin event, members 72 are extended and raise the path of the paper web from the surface of shell 71 to drape across the distal tips of fences 74. At the same time, pins 76 impale the web of paper adjacent the closest fence 74. As the bedroll 27 and chopper roll 28 rotate to move the blade 80 between fences 74, the paper web 21 is broken along a line of perforations due to its resistance to having its path length Increased between fences 74 by the blade 80 descending therebetween. Referring back to Figures 1, and 2, the phase adjusting means 48, Figure 1, which schematically is included in couplerlphase adjuster 69, Figure 2, is provided to angularly phase the perforator cylinder 24 with the bedroll 27 50 that lines of perforation do In fact ~all between fences 74 durlng roll end/begln events.

Stlll referring to Figure 4, 21a indicates a roll of paper 21 on core 30; and 29a indicates a second mandrel on the turret which mandrel 29a has a core 30 dlsposed thereon. Thus, mandrel 29a is ready to be indexed to the position where the leading edge of the next roll of paper will be afixed to core 30, and then indexed on down to where mandrel is positioned to complete wind7ng the roll 21a. At other turret positions not shown, completed rolls 21a are stripped from their mandrels, and empty cores are placed on the mandrels to continue the machine cyc le, 44l~

While particular embodiments of the present Jnvention have been illustrated and described, it would be obvious to those skilled in the art that various other chan~es and modifications can be made without departing from the spirit and scope of the S invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention~

Claims (4)

WHAT IS CLAIMED IS:
1. In an improved paper converting rewinder of the type which includes means for continuously unwinding successive parent roils of paper and forwarding the paper through the rewinder, means including a perforator cylinder for providing transverse lines of perforations across the paper at product sheet length intervals in the machine direction to define product sheets of the paper, means including a bedroll having means for breaking the paper along lines of the perforations which lines are product roll length spaced in the machine direction to define product roll lengths of the paper consisting of a predetermined count of the product sheets, and means for winding each product roll length of the paper on a tubular core to thereby make successive product rolls of the paper, the improvement comprising means for adjusting sheet length and means for effecting integer changes in sheet count per said product roll without changing either the perforation cylinder or the bedroll.
2. The improved paper converting rewinder of Claim 1 wherein said means for adjusting sheet length comprises means for rotating said perforator cylinder and said bedroll at surface velocities which may be unequal to the machine direction velocity of the paper, and said means for effecting integer changes in sheet count comprises means for effecting stepwise gear drive ratio changes between said perforator cylinder and said bedroll.
3. The improved paper converting rewinder of Claim 1 which further includes a stationary anvil that is helically configured and disposed with respect to a cross machine direction oriented perforating blade on the perforator cylinder to provide true cross machine direction oriented lines of perforation when the velocity of the paper is equal to the surface velocity of the perforating cylinder, said improvement further comprising a frame in which the perforator cylinder and said anvil are mounted, and means for skewing said frame sufficiently with respect to the paper to provide true cross machine direction orientation of the lines of perforation when the velocity of the paper is not equal to the surface velocity of the perforator cylinder.
4. The improved paper converting rewinder of Claim 1, 2 or 3 further comprising dynamic angular phase adjusting means intermediate the perforator cylinder and the bedroll for enabling aligning each line of perforation to be broken by the means for breaking disposed on the bedroll as the paper is being forwarded through said rewinder.
CA000511316A 1985-06-18 1986-06-11 Paper converting rewinder Expired - Lifetime CA1272440A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US746,154 1976-11-30
US06/746,154 US4687153A (en) 1985-06-18 1985-06-18 Adjustable sheet length/adjustable sheet count paper rewinder

Publications (1)

Publication Number Publication Date
CA1272440A true CA1272440A (en) 1990-08-07

Family

ID=24999686

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000511316A Expired - Lifetime CA1272440A (en) 1985-06-18 1986-06-11 Paper converting rewinder

Country Status (2)

Country Link
US (1) US4687153A (en)
CA (1) CA1272440A (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919351A (en) * 1989-03-07 1990-04-24 The Procter & Gamble Company Web rewinder having improved chop-off mechanism
IT1238717B (en) * 1990-04-27 1993-09-01 Perini Navi Spa REWINDING MACHINE WITH MEANS TO VARY THE NUMBER OF PERFORATIONS WRAPPED ON EACH TRAINING ROLL
IT1247332B (en) * 1991-04-03 1994-12-12 Perini Fabio Spa METHOD AND DEVICE FOR CUTTING TAPE MATERIAL IN SPECIES IN A REWINDER
US5151077A (en) * 1991-07-31 1992-09-29 Ark, Inc. Method and apparatus for perforating material
CA2177513C (en) * 1995-06-02 2000-06-13 Kevin Benson Mcneil Method of winding a web
AU723336B2 (en) 1995-06-02 2000-08-24 Procter & Gamble Company, The Method of controlling a turret winder
US5667162A (en) * 1995-06-02 1997-09-16 The Procter & Gamble Company Turret winder mandrel cupping assembly
WO1996038362A1 (en) * 1995-06-02 1996-12-05 The Procter & Gamble Company Method of winding logs with different sheet counts
US5732901A (en) * 1995-06-02 1998-03-31 The Procter & Gamble Company Turret winder mandrel support apparatus
US5690297A (en) * 1995-06-02 1997-11-25 The Procter & Gamble Company Turret assembly
CA2177507C (en) * 1995-06-02 2001-02-13 Kevin Benson Mcneil Web winding apparatus
US5839688A (en) * 1997-08-08 1998-11-24 Paper Converting Machine Co. Method and apparatus for producing a roll of bathroom tissue or kitchen toweling with a pattern being repeated between each pair of transverse perforations
US6009781A (en) * 1998-02-27 2000-01-04 The Procter & Gamble Company Differential-spacing perforating roll
EP0956804A1 (en) 1998-05-13 1999-11-17 The Procter & Gamble Company Paper tissue roll
EP1016608B1 (en) 1998-12-31 2003-11-05 M T C - Macchine Trasformazione Carta S.r.l. Rewinding method and machine for making logs of paper web and the like
US6308909B1 (en) * 1999-02-09 2001-10-30 The Procter & Gamble Company Web rewinder chop-off and transfer assembly
US6265052B1 (en) * 1999-02-09 2001-07-24 The Procter & Gamble Company Tissue paper
US6702227B1 (en) 1999-04-30 2004-03-09 Kimberly-Clark Worldwide, Inc. Wipes dispensing system
US6659391B1 (en) 1999-04-30 2003-12-09 Kimberly-Clark Worldwide, Inc. Method for dispensing wet wipes
US6537631B1 (en) 1999-04-30 2003-03-25 Kimberly-Clark Worldwide, Inc. Roll of wet wipes
US6705565B1 (en) 1999-04-30 2004-03-16 Kimberly-Clark Worldwide, Inc. System and dispenser for dispensing wet wipes
US6745975B2 (en) 1999-04-30 2004-06-08 Kimberly-Clark Worldwide, Inc. System for dispensing plurality of wet wipes
US7063245B2 (en) * 2000-05-04 2006-06-20 Kimberly-Clark Worldwide, Inc. System for dispensing plurality of wet wipes
US6805316B2 (en) 2001-10-23 2004-10-19 Kimberly-Clark Worldwide, Inc. Apparatus for severing, carrying or winding a web
US6851642B2 (en) 2001-12-19 2005-02-08 Kimberly-Clark Worldwide, Inc. Apparatus for web cut-off in a rewinder
US20030199404A1 (en) * 2002-04-23 2003-10-23 The Procter & Gamble Company Hotmelt compositions and related articles
US20040052988A1 (en) * 2002-09-17 2004-03-18 Jean-Marc Slovencik Cushioning product and method and apparatus for making same
DE10242998B4 (en) * 2002-09-17 2004-07-22 Storopack Hans Reichenecker Gmbh Upholstery of paper, and method and device for the production thereof
US6877689B2 (en) 2002-09-27 2005-04-12 C.G. Bretting Mfg. Co., Inc. Rewinder apparatus and method
US7441681B2 (en) * 2003-08-29 2008-10-28 The Procter & Gamble Company Apparatus for separating a web material
US20050202068A1 (en) 2004-03-12 2005-09-15 Hasenoehrl Erik J. Disposable nonwoven mitt
US7455260B2 (en) * 2005-08-31 2008-11-25 The Procter & Gamble Company Process for winding a web material
US7392961B2 (en) * 2005-08-31 2008-07-01 The Procter & Gamble Company Hybrid winder
US20070084958A1 (en) * 2005-10-18 2007-04-19 Daul Thomas J Center rewinder with two turrets and a bedroll with two transfer positions for transferring a web to each of the turrets
US8459586B2 (en) * 2006-03-17 2013-06-11 The Procter & Gamble Company Process for rewinding a web material
US7559503B2 (en) * 2006-03-17 2009-07-14 The Procter & Gamble Company Apparatus for rewinding web materials
US7541589B2 (en) 2006-06-30 2009-06-02 General Electric Company Scintillator compositions based on lanthanide halides, and related methods and articles
US20080028902A1 (en) * 2006-08-03 2008-02-07 Kimberly-Clark Worldwide, Inc. Dual roll, variable sheet-length, perforation system
US9409372B2 (en) * 2008-12-29 2016-08-09 Kimberly-Clark Worldwide, Inc. Method for perforating tissue sheets
US8162251B2 (en) * 2009-07-24 2012-04-24 The Procter & Gamble Company Hybrid winder
US8157200B2 (en) * 2009-07-24 2012-04-17 The Procter & Gamble Company Process for winding a web material
US9566193B2 (en) * 2011-02-25 2017-02-14 Curt G. Joa, Inc. Methods and apparatus for forming disposable products at high speeds with small machine footprint
US20170101281A1 (en) 2015-10-13 2017-04-13 Curt G. Joa, Inc. Disposable product assembly systems and methods

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2266995A (en) * 1940-07-26 1941-12-23 Schultz Engineering Corp Automatic rewinding machine
US3056323A (en) * 1958-04-14 1962-10-02 Paper Converting Machine Co Progressive transverse web cutting apparatus
US3190163A (en) * 1961-01-06 1965-06-22 John J Bradley Cutting device
US3782650A (en) * 1972-04-28 1974-01-01 Egan Machinery Co Web winder control
IT1167967B (en) * 1981-08-26 1987-05-20 Fabio Perini HIGH SPEED REWINDER FOR PAPER TAPES IN SPECIES WITH CROSS PERFORATIONS

Also Published As

Publication number Publication date
US4687153A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
CA1272440A (en) Paper converting rewinder
US6010090A (en) Method of perforating a web
US9365379B2 (en) Rewinding machine and method for producing logs of web material
US6308909B1 (en) Web rewinder chop-off and transfer assembly
EP0386819B1 (en) Web rewinder having improved chop-off mechanism
US3823887A (en) Device for forming lightweight paper into rolls without any core
US3770172A (en) One-at-a-time alternate dispensing method
US5839688A (en) Method and apparatus for producing a roll of bathroom tissue or kitchen toweling with a pattern being repeated between each pair of transverse perforations
JP2014501211A (en) Rewinding device and winding method
US3470052A (en) Method and apparatus for winding a multiple ply web
US20070215741A1 (en) Process for rewinding a web material
US3524539A (en) Multiple-ply web winding
JPH11506984A (en) Apparatus for aligning the markings with the end line on the sheet being transported
EP2055471A1 (en) Machine and method for the production of tubes through winding of one or more strips of web material and tube thereby obtained
US3477658A (en) Papermaking method and apparatus
US7559503B2 (en) Apparatus for rewinding web materials
JP2528777B2 (en) Coreless toilet paper winding device

Legal Events

Date Code Title Description
MKEX Expiry