CA1295708C - Solid-state optical position determining apparatus - Google Patents

Solid-state optical position determining apparatus

Info

Publication number
CA1295708C
CA1295708C CA000556130A CA556130A CA1295708C CA 1295708 C CA1295708 C CA 1295708C CA 000556130 A CA000556130 A CA 000556130A CA 556130 A CA556130 A CA 556130A CA 1295708 C CA1295708 C CA 1295708C
Authority
CA
Canada
Prior art keywords
radiant energy
target zone
position determining
determining apparatus
optical position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA000556130A
Other languages
French (fr)
Inventor
James L. Griffin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WELLS-GARDNER ELECTRONICS Corp
Original Assignee
WELLS-GARDNER ELECTRONICS CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WELLS-GARDNER ELECTRONICS CORPORATION filed Critical WELLS-GARDNER ELECTRONICS CORPORATION
Application granted granted Critical
Publication of CA1295708C publication Critical patent/CA1295708C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • G06F3/0423Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen using sweeping light beams, e.g. using rotating or vibrating mirror

Abstract

SOLID-STATE OPTICAL POSITION DETERMINING APPARATUS

ABSTRACT OF THE DISCLOSURE

An optical position determining apparatus for detecting radiant energy reflected from a target zone includes an emission device for generation and emission of radiant energy, a device for redirecting radiant energy across the target zone, a reflecting device for reflecting the radiant energy back from the target zone, and a detector device for sensing the presence of radiant energy reflected from the target zone. The emission device is stationary and emits a beam of radiant energy toward the redirecting device, which redirects the radiant energy along a primary beam path. The redirecting device also is configured for permitting a return beam of light from the target zone to impinge upon the detector device, which is located therebehind with respect to the direction of travel of the return beam. The detector device includes a CCD (charge coupled device) linear sensor formed of a plurality of sensor elements. The sensor elements are pulsed in successive order for scanning the target zone for the presence of the reflected radiant energy and for producing an electrical signal in response to the presence of such reflected radiant energy.

Description

~57~

SOLID-STATE OPTICAL POSITION DETERMINING APPARATUS

BACKGROUND OF THE IN~ENTION

This invention relates generally to optical position location apparatuses for locating the position of an object along one or more coordinate axes and more specifically, it relates to a solid-state optical position determining apparatus for achieving such location.

Heretofore, there are known in the prior art several optical touch screen input apparatuses which have optically, or through a combination of mechanical and optical devices, been capable of determining the location of an object within a two dimensional target fiPld. In particular, examples of such optical touch screen input devices are disclosed in U. S. Patent No. 4,267,443 issued on May 12) 1 sa1 to Carroll et al/ and U. S. Patent No.
4,420,261 issued on December 13, 1983, to Barlow et al.

Further, there is disclosed in U. S. Patent No.
4,553,B42 entitled "Optical Position Determining Apparatus," which was issued on November 19, 19a5, and is . .

~Z9~
assigned to the same assignee as this application, an optical position location apparatus for locating an object in two dimensions which includes a housing defining a target zone. The location of objects is to be determined within the target zone by detection of interruption of light paths dispersed across such target zone. In one corner of the housing, there are provided a light directing means9 a mechanical scanner-detector assembly, and a light source. The scanner-detector assembly 1D consists of a drive motor for rotating a detector housing containing a photo-detector. By rotating the detector housing with its assoclated aperture and lens, the photo-detector scans the target zone for the presence of returning light and produces an electrical signal in ; 15 response to the presence of such light, However, this prior art location apparatus has the undesirable aspect of being susceptible to mechanical vibrations due to its use of a rotating detector housing, thereby affecting its reliability and accuracy in use. Further, this location apparatus suffers from the disadvantage of requiring large and heavyweight components occupying relatively large areas of space which increases cost in its manufacture and assembly.

~' .

~2,~;701:~1 It would therefore be desirable to provide an optical position determining apparatus which is forntled completely of solid-state components and has a high degree oE resistance to vibrations. The solid-state optical positioning determining apparatus of the present invention is, by its very design, efficient, low-cost, and reliable in nature. rrhe present invention represents an improvement over U.S. Patent No. 4,5$3,842.
SUMMARY QF THE~ INVENTION
Accordingly, it is a general object of the present ;nvention to provide an improved optical position determining apparatus which is relatively simple and economical to manu-facture and assemble, but yet overcomes the disadvantages of the prior art location apparatuses.
It is an object of the present invention to provide an optical position determining apparatus which is formed completely of solid-state components and has a high degree of resistance to vibrations.

~;~9570~3 It is another object of the present invention to provide an efficient, low-cost and accurate optical position determining apparatus requiring a minimal number of components, which is substantially compact and light-S weight~

It is still another object of the present invention to provide an optical position determining apparatus which ~ includes a detector device formed of a CCD linear image - sensor having a plurality of sensor elements.

It is yet still another object of the present invention to prouide an optical position determining apparatus which includes a CCD linear image sensor for producing an electrical signal in response to the presence of reflected radiant energy and a microprocessor responsive to the electrical signal for calculating the vertical and horizontal coordinates of an obstruction located within the target zone.

It is yet still another object of the present invention to provide an optical position determining apparatus which includes a light-redirecting device formed ;713~

of a split mirror having a first portion and a second portion spaced apart from the first portion and forming a gap therebetween.

~. .

It is yet still a further object of the present invention to provide an optical position determining apparatus which includes a light-redirecting device formed of a single-piece mirror.

In accordance with these aims and objectives, the present in~ention is concerned with the provision of an optical position determining apparatus for detecting radiant energy reflected from a target zone which includes an emission device for generation and emission of radiant energy, a light-redirecting device for redirecting the radiant energy across the target zone, a reflecting device for reflecting the radiant energy back from the target zone, and a detector device for sensing the presence of radiant energy reflected from the target zone. The emission device is stationary and emits a beam of radiant energy toward the redirecting device, which directs the radiant energy along a primary beam path. The redirecting device also is configured for permitting a return beam of light from the target zone to impinge upon the detector ;70~3 device, which is located therebehind with respect to the direction of travel of the return beam. The detector device includes a C~D (charge coupled device) linear image sensor formed of a plurality of sensor elements. The sensor elements are pulsed in successive order for scanning the target zone for the presence of the reflected radiant energy and for producing an electrical signal in response to the presence of such reflected radiant energy.

In another aspect of the present invention, the light-redirecting device includes a split mirror formed of a first po~tion and a second portion spaced apart from the first portion and forming a gap therebetween. Each of the first and second portions has a substantially flat reflective surface facing away from the detector device.
The gap extends through the reflectiva surfaces and is substantially centered with respect to the detector device and the primary beam path.

In still another aspect of the present invention, the light-redirecl;ing device may alternately be formed of a single-piece mirror rather than using the split mirror structure.

129~7~

~RIEF DESCRIPTION OF THE DRAWINGS

:, ` These and other objects and advantages of the present invention will become more fully apparent from the following detailed description when read ;n conjunction with the accompanying drawings with like reference numerals indicating corresponding parts throughout, wherein:

Figure 1 is a front plan view of a solid-state optical position determining apparatus constructed in 1û accordance'with the principles of the present invention;

Figure 2 is a perspective view of the optical transmitter/detector module for use in the optical position determining apparatus of the present invention;

Figure 3A is a side elevational view, somewhat schematic in form, of the optical module, taken along the lines 3-3 of Figure 2;

Figure 3B is a side elevational view of an alternate embodiment of the optical module of Figure 3A;

' 1~5~08 Figure 4 is a block diagram of the electronic circuitry used in connection with the solid~state optical pisition determining apparatus of Figure 1;

~.:
Figures 5A and 5B, when connected together, is a detailed schematic circuit diagram showing circuitry suitable for use in certain of the blocks of Figure 4; and Figure 6 is a waueform of the optical pattern appearing on the screen.

DESCRIPTION OF THE PREFERRE~ EMBDDI~ENT

Referring now in detail to the various views of the drawings, there is shown in Figure 1 a solid-state optical position determining apparatus 10 of the present invention for detecting the presence and position of an object or obstruction such as a finger and the like relative to a surface, and in particular, relative to the surface of a touch screen input device of a computer terminal.
Generally, the touch screen input device takes on the form of an overlay for creating a light curtain in front of a cathode ray tube or other display screen, such that penetration of the light curtain is detectable by the apparatus 10. Furthermore, the penetration of the light ~L29~;;7013 curtain by the finger and the like is interpreted to fix its location relative to the screen for a particular application, such as for selection or indicating an item displayed on the touch screen.

The solid-state optical positioning determining apparatus 10 includes a substantially rectangular-shaped housing 12 which serves to maintain the various elements thereof in their proper relative positions and is used to define a target zone 14 within which the location of objects is to be determined. There are arranged within the housing 12 about the targst zone 14 a flat reflector such as a mirror 16, a retroreflector 18, and a retro-reflector assembly 20. The retroreflector assembly 20 consists of a retroreflector strip 22 and a plurality of retroreflector elements 24 arranged in echelon adjacent to the retroreflector strip 22. In one corner of the housing 12~ there is provided a solid-state optical transmitter/
receiver module Z6 which will be described in greater detail hereinafterO

Briefly, in the operation of the solid-state optical position determining apparatus 10 of the present inven-tion, the relative locations of objects or obstructions 57~)~

28, 30 and 32 along the coordinate axes within the target zone 14 may be determined by a conventional triangulation method as is well known in the artu To this end, the respective beams of light 34, 36 and 38 are emitted from the optical transmitter/receiver module 26. As can be seen, the light beam 34 intersects directly both ob-structions 28 and 30 and the light beam 36 intersects directly ths obstruction 32. On the other hand, the light beam 38 initially strikes the mirror 16 and is thereafter reflected by the rnirror as light beam 3Ba, at an angle equal and opposite its angle of incidence, to intersect both obstructions 3Z and 30. 5imilarly, the light beam 36 initially strikes tha mirror 16 ano is also thereafter reflected by the mirror as light beam 36a to intersect the 1S obstruction 28.

As a result, it can thus be seen that each of the objects or obstructions is intersected by two separate beams of light emitted from the optical transmitter/
receiver module 26 at two different angles. The first angle produced by the light beam striking directly the obstruction is referred to as the primary angle~ and the second angle produced by the reflected light beam striking the obstruction after initially striking the mirror and then reflected is referred to as a secondary angle.

~29~;7~3 ., Hence, by determining the primary and secondary angles caused by each of the intersecting light beams the coordinates of the obstruction can be readily calculated using the triangulation method. It will be appreciated that a retroreflector such as the retro-reflectors 18 and 20 reflect a beam of light directly upon itself along the path of incidence of the light received. This phenomena is indicated by the bidirectional arrows depicted adjacent the light beams 34, 36a, 38 and 38a. Therefore, a detector means formed within the optical transmitter/
receiver module detects each of the obstructions Z8, 30 and 3Z along the paths of at least two separate ones of the light' beams 34, 36 and 38. The detector means determines the location of the objects by the presence or absence of the return beam of light on each of the paths along which the light beam is directed.

~ ' Referring now to Figures 2 and 3A of the drawings, there i5 shown a perspective view of the specially-designed optical transmitter/receiver module ~6 which houses a stationary light emission means 40, a transmitter or concentrator lens 42, light-redirecting means 44, a receiver lens 46, and a detector means 48. The module 26 includes a main body portion 50 which has mounted thereon the receiver lens 46 and the detector means 48. The front ii70~

section of the body portion 5~ has an angularly-disposed surface 52 for mounting of the light-redirecting means 44.
The module 26 also includes a flat plate member 54 having an aperture 56 formed therein for holding the light-emission means 40 and the transmitter lens 42 above thelight-redirecting means 44.

As can best be seen from Figure 3A, the light emis-sion means 40 is used to introduce radia'nt energy or light into the module 26 to be distributed to the target zone 14. While ths emission means 40 may consist of an incan-dsscent bulb, in the preferred embodiment of the invention it comprises a light-emitting diode (LED). Alternatively, the emission means may be formed of a laser diDde if desired. The beams of light from the LED 40 are preferably first received by a front portion 5B formed integrally with the LED, which light beams are indicated by the generally diverging lines 60 emanating therefrom.
The transmitter lens 42 is also sometimes referred to as a concentrator lens and serves to focus the light beams 60 to a predetermined area on the light~redirecting means 44, which will be discussed in detail hereinbelow. The light-redirecting means 44 redirects the beams of light as indicated at reference numeral 62 in a first direction along a primary beam ~path 64, generally in a converging ~%~57~3 fashion toward the target zone 14. Accordingly, in view of the action of the retroreflectors 18 and 20, the return beam will be substantially along the same line 62. The re~ceiver lens 46 is of a special design and has approxi-mately a 3 mm focal length. The receiver lens is used tofocus the return beams so as to cause them to converge in a second direction opposite to the first direction along the primary beam path 64 in the direction of the detector means 48. It will be noted that the detector means 48 is 1û located behind the receiver lens 46 and an opening 47 in alignment with the primary beam path 64.

In accordance with a preferred form of the invention, the light redirecting means comprises a split mirror 44 formed of a substantially flat first or top portion 66a and substantially flat second or bottom portion 66b spaced apart from the first portion and forming a gap or opening 6B therebetween. Each of the first and second mirror portions has a substantially flat reflective s~lrface 67 which is disposed at a 45~ angle so as to redirect the beam from the emission means 40 along the primary beam path 64 substantially at a right angle.

~e It will/noted that the opening 6B between the first and second portions of the split mirror diverges from the left end thereof to the right end thereof (Figure 2). These ~LZ~S7~8 ,.

mirror portions 66a and 66b are positioned advantageously so as to selectively control the intensity of the return llght beams received on various portions of the detector means 48. This gap 6~ has a relatively narrow dimension ln one plane for thereby maximizing the depth of field of focus to be achieved by the receiver lens 46 and a considerably greater dimension in the other plane to optimize or maximize the net radiant energy permitted to pass therethrough.

In accordance with an alternate preferred form of the invention ~hown in Figure 3B, the light-redirecting means comprises a single-piece mirror formed of only the substantially flat top portion 66a of Figure 3A. In other words, the bottom portion 66b of the split mirror ~4 is omitted. Except for this structura~ differançe, the optical transmitter/receiver modules of Figures 3A and 36 are constructed and operate in an identical manner.

As best viewed in Figure 3A, it can be seen that the mirror portion 66a and 66b are disposed for substantially centering the opening 6a so as to be perpendicular to the center of curvature of the inside radius of the trans-mitter lens 42 and the receiver lens 46. In other words, 7~13 "

the two center lines of the transmitter lens and the receiver lens must intersect at the plane of the surface of the split mirror. Further, the edges of the mirror portion 66a and 66b adjacent the opening 6B are chamfered S at approximately 50 so as to reduce the amount of light transmitted from the LED 40 that can be passed directly through the mirror portions. Also, this reduces inad-vertent stray reflected beams from the target zone 14 from being received by the detector means 48, thereby causing ; 10 an erroneous effect on the operation of the apparatus.

Most 'advantageously 9 the transmitter lens 42 is selected and positioned to cause convergence of the emitted beams from the LED 4D upon the split mirror 44 in an area 69 immediately surrounding the gap 68 Therefore, the location at which the beams are detected by the detector means 48 is substantially coincident with the apparent source of these emitted beams at the surfaces of the split mirror 44. In this regard, and with reference also to Figure 3A, it will be seen that this area 69 sub-stantially surrounds the gap 6B. Moreover, the gap 68extends through the reflective surfaces 67 (facing away from the detector means) of the split mirror and is sub-stantially centered with respect to the detector means 4B
and the primary beam path 64.

In accordance with a further feature of the illustrated embodiment, the detector means 48 comprises preferably a CCD (charge coupled device) linear image sensor 70 which is similar to one that is commercially available from Toshiba and designated by their Part No.
TCD104C. The image sensor 70 includes an array of 128 ~? 1 "~
~ ~}ReaTa~r arranged optical sensor elements which accepts ; light photons and generates electronic charge packets that are proportional to the intensity of the return beam. The image sensor 70 is located closely behind the receiver lens 46 and the opening 47, and also in direct alignment with the primary beam path. Accordingly, the return beams from the t'arget zone 14 traveling in the second or oppo-site direction along the primary beam path are directed through the opening 68 between the mirror portions, the receiver lens 46, and the opening 47 to the image sensor 70.

Each of the 1Z8 optical sensor elements is pulsed in successive order at a desired rate in order to scan the ~0 target zone 14 for the presence of returning light beam and produces an electrical signal in response to the presence of such light. A waveform 72 of an electrical signal is illustrated in Figure 6 corresponding to the optical pattern when none of the sensor elements are .

~5~

blocked by an obstruction (a non-touch pattern when the screen has not been touched). As can be seen, the waveform 72 illustrates the voltage level (intensity of the return beam) relative to the 12a sensor elements corresponding to 90 of the target zone 14. When one or more of the sensor elements are blocked by an obstruction (a touch patter.n), the voltage levels will decrease so as to cause the appearance of two notches A and B. The first notch A is located at the primary angle and i.s caused by a direct light beam hitting the obstruction (such as the beam 34 striking the obstruction 2B in Figure 1). The second notch B is located at the secondary angle and is caused by 'a reflected light beam hitting the obstruction (such as the beam 36a striking the obstruction 28 in Figure 1).
:

A block diagram of external electronic circuitry 74 for processing the electrical signal generated from the image sensor 7û to pinpoint the ,oosition of the obstructions is illustrated in Figure 4. The electronic circuitry 74 includes a CCD interface circuit 76 which has its input connected to the output of the image sensor 70.
The interface circuit 76 produces at its output the electrical signal shown in the waveform of Figure 6 by delivering analog samples for each scan from each of the 70~3 128 sensor elements. This analog electrical signal is fed to an analog-to-digital (A/D) converter 78 which converts the same to digital signals for use by a microprocessor 80.

Before the touch screen is activated (no obstruction is touching the screen), each of the 128 sensor elements is initially scanned to produce the electrical signal or waveform 72 of Figure 6. This signal is amplified by the interface circuit 7~, digitized by the A/D converter 78, and shifted into a random-access memory (RAM) 82 for storage fo~ future reference via a latch circuit 84 under the control of the microprocessor 80. When the digitized data is retrieved from the RAM B2 and compared with corresponding samples from subsequent scans, any difference between the initial scan and other later scans will indicate an obstruction of so~e of the sensor elements by the appearance of two notches in the waveform 72. tFor example, the notches A and B in Figure 6.) These notches are indicative of angular displacement from a reference of an obstruction located within the target zone. By using the location of these two notches (primary and secondary angles), the microprocessor 80 utilizes a stored program for calculating the horizontal and vertical coordinates on the screen where the obstruction is 1~95~
~. .

occurring by the triangulation technique and transmits this information to a host computer (not shown) via input/
output buffer circuits ~a, 86b, and a6c~

While the various blocks of the interface circuit 76, S LED driver circuit 77, A/D converter 78, microprocessor 80, clock 81, RAM 82, latch circuit 84, and input/output buffer circuits 8Ba-86c may take on various forms, suitable circuitry therefor is illustrated in Figures 5A
and 5B when connected together. This detailed schematic circuit diagram is believed to be self-explanatory to those skilled in the art in view of the foregoing description and thus a detailed discussion of the operation of each block is believed to be unnecessary.

For completeness in th~ disclDsure of the present invention, but not for purposes of limitation, the following component identifications of the integrated circuits are submitted for Figures 5A and 5B. Those skilled in this art will recognize that alternative components and values to those illustrated and described 2B may be employed in constructing the circuit in accordance with the present invention.

:~L29570 !3 IC1a Regulator, 7aL12 ' IC1b ' Regulator, 7ao5 IC2 Op Amp, TLOa2 IC3 A/D Converter, ADC0820 IC4 up, P8749H
IC5 Latch, 74LS373 IC6 RAM, HM6116P4 1û IC7 One-shot, 74LS123 IC6~-8D AND gate, 74LS08 IC9A-9E Inverter, 74LS04 IC,10,IC11 Clock Driver, DS0026CN

From the foregoing detailed description, it can th~s be seen that the present invention provides an optical position determining apparatus which is formed totally of solid-state components and has a high degree of resistance to vibrations~ The optical positioning determining apparatus includes a detector device formed of a OCD
ZO linear image sensor having a plurality of sensor elements.
The sensor elements are pulsed in successive order for scanning the target zone for the presence of the reflected radiant energy and for producing an electrical signal in response to the presence of such reflected radiant energy.
Furtherl there is provided an improved light-redirecting device formeo of a split mirror having a substantially flat first portion and a substantially flat second portion ,~ sp ~
3pa~ apart From the first porti,on and forming a gap therebetween.

:~Z95~013 , .

While there has been illustrated and described what is at present considered to be a preferred embodiment of the present invention, it will be understood by those s~illed in the art that various changes and modifications may be made, and equivalents may be substituted for elements thereof without departing from the true scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the central scope thereof. Therefore, it is intended that this invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out the invent~on, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (20)

1. An optical position determining apparatus for detecting radiant energy reflected from a target zone comprising:

emission means for generating and for emitting of radiant energy;

means for redirecting the radiant energy across the target zone;

means for reflecting the radiant energy back from the target zone, detector means for sensing the presence of radiant energy;

said emission means being stationary and emitting a beam of radiant energy toward said redirecting means to be directed therefrom along a primary beam path in a first direction to the target zone;

said detector means being located along said primary beam path for detecting the radiant energy reflected from the target zone back along the primary beam path in a second direction substantially opposite to said first direction;

said redirecting means being configured for permitting at least a portion of an incident beam traveling in said second direction along said primary beam path to pass therethrough for detection by said detector means; and said detector means including a CCD (charge coupled device) linear image sensor formed of a plurality of sensor elements, said sensor elements being pulsed in successive order for scanning the target zone for the presence of the reflected radiant energy and for producing an electrical signal in response to the presence of such reflected radiant energy.
2. An optical position determining apparatus as claimed in Claim 1, further comprising electronic processing circuit means connected to said linear image sensor for processing of said electrical signal, said electronic processing circuit means including interface circuit means for indicating angular displacements from a reference so that when an obstruction is located within the target zone a first notch having a secondary angle and a second notch having a primary angle will appear in said electrical signal.
3. An optical position determining apparatus as claimed in Claim 2, wherein said electronic processing circuit means further includes microprocessor means for calculating the vertical and horizontal coordinates of the obstruction based upon said primary and secondary angles.
4. An optical position determining apparatus as claimed in Claim 1, wherein said redirecting means comprises a split mirror formed of a first portion and a second portion spaced apart from the first portion and forming a gap therebetween, each of said first and second portions having a substantially flat reflective surface facing away from said linear image sensor, said gap extending through said reflective surfaces and being substantially centered with respect to said linear image sensor and said primary beam path.
5. An optical position determining apparatus as claimed in Claim 4, wherein said gap between said first and second mirror portions diverge from one end thereof to the other end thereof.
6. An optical position determining apparatus as claimed in Claim 5, wherein said mirror portions have edges adjacent the opening which are chamfered at approximately 50° so as to reduce the amount of light transmitted from the emission means that can be passed directly through the mirror portions.
7. An optical position determining apparatus as claimed in Claim 1, wherein said emission means comprises a light-emitting diode.
8. An optical position determining apparatus as claimed in Claim 4, further comprising a transmitter lens interposed between said emission means and said split mirror for focusing the beam of radiant energy produced by said emission means upon an area of said mirror portions substantially surrounding said gap therein.
9. An optical position determining apparatus as claimed in Claim a, further comprising a receiver lens interposed between said split mirror and said linear image sensor for focusing of the reflected radiant energy from said target zone received through said gap upon said linear image sensor.
10. An optical position determining apparatus as claimed in Claim 4, wherein said reflective surfaces of said first and second mirror portions are disposed for redirecting the beam of radiant energy from said emission means substantially at a right angle, said emission means being located above said primary beam path.
11. An optical position determining apparatus for detecting radiant energy reflected from a target zone comprising:

emission means for generating and for emitting of radiant energy;

means for redirecting the radiant energy across the target zone;

means for reflecting the radiant energy back from the target zone;

detector means for sensing the presence of radiant energy and for producing an electrical signal in response thereto;

said emission means being stationary and emitting a beam of radiant energy toward said redirecting means to be directed therefrom along a primary beam path in a first direction to the target zone;

said detector means being located along said primary beam path for detecting the radiant energy reflected from the target zone back along the primary beam path in a second direction substantially opposite to said first direction;

said redirecting means being configured for permitting at least a portion of an incident beam traveling in said second direction along said primary beam path to pass therethrough for detection by said detector means; and said redirecting means including a split mirror formed of a first portion and a second portion spaced apart from the first portion and forming a gap therebetween, each of said first and second portions having a substantially flat reflective surface facing away from said detector means, said gap extending through said reflective surfaces and being substantially centered with respect to said detector means and said primary beam path.
12. An optical position determining apparatus as claimed in Claim 11, wherein said gap between said first and second mirror portions diverge from one end thereof to the other end thereof.
13. An optical position determining apparatus as claimed in Claim 12, wherein said mirror portions have edges adjacent the opening which are chamfered at approximately 50° so as to reduce the amount of light transmitted from the emission means that can be passed directly through the mirror portions.
14. An optical position determining apparatus as claimed in Claim 11, wherein said reflective surfaces of said first and second mirror portions are disposed for redirecting the beam of radiant energy from said emission means substantially at a right angle, said emission means being located above said primary beam path.
15. An optical position determining apparatus as claimed in Claim 11, further comprising electronic processing circuit means connected to said detector means for processing of said electrical signal, said electronic processing circuit means including interface circuit means for indicating angular displacements from a reference so that when an obstruction is located within the target zone a first notch having a secondary angle and a second notch having a primary angle will appear in said electrical signal.
16. An optical position determining apparatus as claimed in Claim 15, wherein said electronic processing circuit means further includes microprocessor means for calculating the vertical and horizontal coordinates of the obstruction based upon said primary and secondary angles.
17. An optical position determining apparatus for detecting radiant energy reflected from a target zone comprising:

emission means for generating and for emitting of radiant energy;

means for redirecting the radiant energy across the target zone;

means for reflecting the radiant energy back from the target zone;

detector means for sensing the presence of radiant energy and for producing an electrical signal in response thereto;

said emission means being stationary and emitting a beam of radiant energy toward said redirecting means to be directed therefrom along a primary beam path in a first direction to the target zone;

said detector means being located along said primary beam path for detecting the radiant energy reflected from the target zone back along the primary beam path in a second direction substantially opposite to said first direction;

said redirecting means including a single-piece mirror having a substantially flat reflective surface facing away from said detector means, said single-piece mirror being configured for permitting at least a portion of an incident beam traveling in said second direction along said primary beam path to pass through an opening adjacent to said single-piece mirror for detection by said detector means.
18. An optical position determining apparatus as claimed in Claim 17, further comprising electronic processing circuit means connected to said detector means for processing of said electrical signal, said electronic processing circuit means including interface circuit means for indicating angular displacements from a reference so that when an obstruction is located within the target zone a first notch having a secondary angle and a second notch having a primary angle will appear in said electrical signal.
19. An optical position determining apparatus as claimed in Claim 18, wherein said electronic processing circuit means further includes microprocessor means for calculating the vertical and horizontal coordinates of the obstruction based upon said primary and secondary angles.
20. An optical position determining apparatus as claimed in Claim 1, wherein said redirecting means comprises a single-piece mirror.
CA000556130A 1987-04-28 1988-01-08 Solid-state optical position determining apparatus Expired - Fee Related CA1295708C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/043,503 US4820050A (en) 1987-04-28 1987-04-28 Solid-state optical position determining apparatus
US043,503 1987-04-28

Publications (1)

Publication Number Publication Date
CA1295708C true CA1295708C (en) 1992-02-11

Family

ID=21927487

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000556130A Expired - Fee Related CA1295708C (en) 1987-04-28 1988-01-08 Solid-state optical position determining apparatus

Country Status (7)

Country Link
US (1) US4820050A (en)
JP (1) JPS63275906A (en)
CA (1) CA1295708C (en)
DE (1) DE3802059A1 (en)
FR (1) FR2614701A1 (en)
GB (1) GB2204126A (en)
IT (1) IT1219927B (en)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980547A (en) * 1985-05-24 1990-12-25 Wells-Gardner Electronics Corp. Light distribution and detection apparatus
US4990901A (en) * 1987-08-25 1991-02-05 Technomarket, Inc. Liquid crystal display touch screen having electronics on one side
US4951035A (en) * 1987-08-25 1990-08-21 Technomarket, Inc. Liquid crystal display touch screen with cross-aligned scanning
US5248856A (en) * 1992-10-07 1993-09-28 Microfield Graphics, Inc. Code-based, electromagnetic-field-responsive graphic data-acquisition system
US5317140A (en) * 1992-11-24 1994-05-31 Dunthorn David I Diffusion-assisted position location particularly for visual pen detection
GB2275770A (en) * 1993-03-04 1994-09-07 Augustine Kamugisha Tibazarwa X-Y position based on reflected light
IL106544A (en) * 1993-08-01 1996-10-16 Israel State Area surveying apparatus for communication system
US5484966A (en) * 1993-12-07 1996-01-16 At&T Corp. Sensing stylus position using single 1-D image sensor
SE9400947L (en) * 1994-03-22 1995-09-11 Nabla Hb Device for three-dimensional control
US5764223A (en) * 1995-06-07 1998-06-09 International Business Machines Corporation Touch-screen input device using the monitor as a light source operating at an intermediate frequency
DE19539955A1 (en) * 1995-10-26 1997-04-30 Sick Ag Optical detection device
GB2348489B (en) * 1996-07-23 2001-03-28 Russell Thrall Butts Arrow location apparatus
US6480187B1 (en) * 1997-08-07 2002-11-12 Fujitsu Limited Optical scanning-type touch panel
JP2000222110A (en) * 1999-01-29 2000-08-11 Ricoh Elemex Corp Coordinate input device
JP4043128B2 (en) * 1999-02-24 2008-02-06 富士通株式会社 Optical scanning touch panel
JP2000347807A (en) * 1999-06-08 2000-12-15 Newcom:Kk Coordinate input device capable of input using finger, pen, and the like
JP2001014091A (en) * 1999-06-30 2001-01-19 Ricoh Co Ltd Coordinate input device
JP3905670B2 (en) * 1999-09-10 2007-04-18 株式会社リコー Coordinate input detection apparatus, information storage medium, and coordinate input detection method
JP4052498B2 (en) 1999-10-29 2008-02-27 株式会社リコー Coordinate input apparatus and method
JP2001184161A (en) 1999-12-27 2001-07-06 Ricoh Co Ltd Method and device for inputting information, writing input device, method for managing written data, method for controlling display, portable electronic writing device, and recording medium
JP3934846B2 (en) * 2000-03-06 2007-06-20 株式会社リコー Coordinate input / detection device, electronic blackboard system, light receiving element positional deviation correction method, and storage medium
US6803906B1 (en) 2000-07-05 2004-10-12 Smart Technologies, Inc. Passive touch system and method of detecting user input
KR100622404B1 (en) * 2002-10-23 2006-09-13 주식회사 애트랩 an optical image detector and optical mouse employing the same
US6954197B2 (en) 2002-11-15 2005-10-11 Smart Technologies Inc. Size/scale and orientation determination of a pointer in a camera-based touch system
US8456447B2 (en) 2003-02-14 2013-06-04 Next Holdings Limited Touch screen signal processing
US8508508B2 (en) * 2003-02-14 2013-08-13 Next Holdings Limited Touch screen signal processing with single-point calibration
US7629967B2 (en) 2003-02-14 2009-12-08 Next Holdings Limited Touch screen signal processing
US7532206B2 (en) * 2003-03-11 2009-05-12 Smart Technologies Ulc System and method for differentiating between pointers used to contact touch surface
JP2005025415A (en) * 2003-06-30 2005-01-27 Sony Corp Position detector
US7411575B2 (en) 2003-09-16 2008-08-12 Smart Technologies Ulc Gesture recognition method and touch system incorporating the same
US7274356B2 (en) * 2003-10-09 2007-09-25 Smart Technologies Inc. Apparatus for determining the location of a pointer within a region of interest
US7355593B2 (en) 2004-01-02 2008-04-08 Smart Technologies, Inc. Pointer tracking across multiple overlapping coordinate input sub-regions defining a generally contiguous input region
US7232986B2 (en) * 2004-02-17 2007-06-19 Smart Technologies Inc. Apparatus for detecting a pointer within a region of interest
US7460110B2 (en) 2004-04-29 2008-12-02 Smart Technologies Ulc Dual mode touch system
US7538759B2 (en) 2004-05-07 2009-05-26 Next Holdings Limited Touch panel display system with illumination and detection provided from a single edge
US8120596B2 (en) * 2004-05-21 2012-02-21 Smart Technologies Ulc Tiled touch system
US20070165007A1 (en) * 2006-01-13 2007-07-19 Gerald Morrison Interactive input system
US20070205994A1 (en) * 2006-03-02 2007-09-06 Taco Van Ieperen Touch system and method for interacting with the same
US9442607B2 (en) 2006-12-04 2016-09-13 Smart Technologies Inc. Interactive input system and method
US8115753B2 (en) 2007-04-11 2012-02-14 Next Holdings Limited Touch screen system with hover and click input methods
US8094137B2 (en) 2007-07-23 2012-01-10 Smart Technologies Ulc System and method of detecting contact on a display
JP4531081B2 (en) * 2007-07-30 2010-08-25 富士通株式会社 Optical scanning touch panel
CN101802760B (en) 2007-08-30 2013-03-20 奈克斯特控股有限公司 Optical touch screen with improved illumination
AU2008280952A1 (en) * 2007-08-30 2009-03-19 Next Holdings Ltd Low profile touch panel systems
WO2009048365A1 (en) 2007-10-10 2009-04-16 Flatfrog Laboratories Ab A touch pad and a method of operating the touch pad
US20120306816A1 (en) * 2011-06-06 2012-12-06 Simon James Bridger Simplified Optical Position Sensing Assembly
US8405636B2 (en) * 2008-01-07 2013-03-26 Next Holdings Limited Optical position sensing system and optical position sensor assembly
US20090278816A1 (en) * 2008-05-06 2009-11-12 Next Holdings Limited Systems and Methods For Resolving Multitouch Scenarios Using Software Filters
US8902193B2 (en) 2008-05-09 2014-12-02 Smart Technologies Ulc Interactive input system and bezel therefor
US20100079385A1 (en) * 2008-09-29 2010-04-01 Smart Technologies Ulc Method for calibrating an interactive input system and interactive input system executing the calibration method
US8339378B2 (en) * 2008-11-05 2012-12-25 Smart Technologies Ulc Interactive input system with multi-angle reflector
SE533704C2 (en) 2008-12-05 2010-12-07 Flatfrog Lab Ab Touch sensitive apparatus and method for operating the same
US20100229090A1 (en) * 2009-03-05 2010-09-09 Next Holdings Limited Systems and Methods for Interacting With Touch Displays Using Single-Touch and Multi-Touch Gestures
JP2010277122A (en) * 2009-05-26 2010-12-09 Xiroku:Kk Optical position detection apparatus
US8692768B2 (en) 2009-07-10 2014-04-08 Smart Technologies Ulc Interactive input system
US20110095977A1 (en) * 2009-10-23 2011-04-28 Smart Technologies Ulc Interactive input system incorporating multi-angle reflecting structure
JP5525798B2 (en) * 2009-11-20 2014-06-18 株式会社ニューフレアテクノロジー Charged particle beam drawing apparatus and method for correcting charging effect thereof
KR20110062824A (en) * 2009-12-04 2011-06-10 삼성전기주식회사 Apparatus for detecting coordinates of an event within interest region, display device, security device and electronic blackboard including the same
US8937612B2 (en) * 2010-02-04 2015-01-20 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Coordinate locating method, coordinate locating device, and display apparatus comprising the coordinate locating device
US8711125B2 (en) * 2010-02-04 2014-04-29 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Coordinate locating method and apparatus
JP5489886B2 (en) * 2010-06-30 2014-05-14 キヤノン株式会社 Coordinate input device, light receiving device in the device, and manufacturing method thereof
TWI424343B (en) * 2010-11-22 2014-01-21 Pixart Imaging Inc Optical screen touch system and method thereof
US10168835B2 (en) 2012-05-23 2019-01-01 Flatfrog Laboratories Ab Spatial resolution in touch displays
TWI489350B (en) 2012-10-01 2015-06-21 原相科技股份有限公司 Optical touch apparatus and image capturing apparatus
WO2014168567A1 (en) 2013-04-11 2014-10-16 Flatfrog Laboratories Ab Tomographic processing for touch detection
US9874978B2 (en) 2013-07-12 2018-01-23 Flatfrog Laboratories Ab Partial detect mode
US10126882B2 (en) 2014-01-16 2018-11-13 Flatfrog Laboratories Ab TIR-based optical touch systems of projection-type
WO2015108479A1 (en) 2014-01-16 2015-07-23 Flatfrog Laboratories Ab Light coupling in tir-based optical touch systems
EP3161594A4 (en) 2014-06-27 2018-01-17 FlatFrog Laboratories AB Detection of surface contamination
WO2016122385A1 (en) 2015-01-28 2016-08-04 Flatfrog Laboratories Ab Dynamic touch quarantine frames
US10318074B2 (en) 2015-01-30 2019-06-11 Flatfrog Laboratories Ab Touch-sensing OLED display with tilted emitters
US10496227B2 (en) 2015-02-09 2019-12-03 Flatfrog Laboratories Ab Optical touch system comprising means for projecting and detecting light beams above and inside a transmissive panel
EP3265855A4 (en) 2015-03-02 2018-10-31 FlatFrog Laboratories AB Optical component for light coupling
WO2017099657A1 (en) 2015-12-09 2017-06-15 Flatfrog Laboratories Ab Improved stylus identification
WO2018096430A1 (en) 2016-11-24 2018-05-31 Flatfrog Laboratories Ab Automatic optimisation of touch signal
EP4152132A1 (en) 2016-12-07 2023-03-22 FlatFrog Laboratories AB An improved touch device
US10963104B2 (en) 2017-02-06 2021-03-30 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
US10606414B2 (en) 2017-03-22 2020-03-31 Flatfrog Laboratories Ab Eraser for touch displays
CN110663015A (en) 2017-03-28 2020-01-07 平蛙实验室股份公司 Touch sensitive device and method for assembly
CN111052058B (en) 2017-09-01 2023-10-20 平蛙实验室股份公司 Improved optical component
US11567610B2 (en) 2018-03-05 2023-01-31 Flatfrog Laboratories Ab Detection line broadening
WO2020153890A1 (en) 2019-01-25 2020-07-30 Flatfrog Laboratories Ab A videoconferencing terminal and method of operating the same
WO2021162602A1 (en) 2020-02-10 2021-08-19 Flatfrog Laboratories Ab Improved touch-sensing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558313A (en) * 1981-12-31 1985-12-10 International Business Machines Corporation Indicator to data processing interface
US4507557A (en) * 1983-04-01 1985-03-26 Siemens Corporate Research & Support, Inc. Non-contact X,Y digitizer using two dynamic ram imagers
US4553842A (en) * 1983-05-09 1985-11-19 Illinois Tool Works Inc. Two dimensional optical position indicating apparatus
GB2166831B (en) * 1984-11-06 1988-08-03 L C Automation Limited Infra-red guard

Also Published As

Publication number Publication date
IT8847873A0 (en) 1988-04-20
GB8809354D0 (en) 1988-05-25
DE3802059A1 (en) 1988-11-10
FR2614701A1 (en) 1988-11-04
JPS63275906A (en) 1988-11-14
IT1219927B (en) 1990-05-24
US4820050A (en) 1989-04-11
GB2204126A (en) 1988-11-02

Similar Documents

Publication Publication Date Title
CA1295708C (en) Solid-state optical position determining apparatus
EP1083514B1 (en) Coordinate inputting/detecting apparatus, method and computer program product
KR20010014970A (en) Optical unit for detecting object and coordinate input apparatus using the same
US6927386B2 (en) Optical position detecting device and recording medium including an operational defect judgment
US4936683A (en) Optical tablet construction
JP2003202215A (en) Photoelectron detection apparatus
US6700129B1 (en) Electronic board system and coordinates-inputting pen
JP2589278Y2 (en) Apparatus for detecting an object in sheet form
JP2007031103A5 (en)
US4192612A (en) Device for contact-free thickness measurement
JP3265449B2 (en) Distance sensor
JPH0778538B2 (en) Light beam object detector
JP4004177B2 (en) Optical scanning touch panel
JP3998116B2 (en) Coordinate detection device
EP0204436A1 (en) Light distribution and detection apparatus
CN219328896U (en) Laser scanning sensor
JPH0119178B2 (en)
JP4175715B2 (en) Optical scanning touch panel
JPS58213386A (en) Optical scanning type input device
JPS63231286A (en) Tracking distance measuring instrument for moving body using laser beam
US20230408700A1 (en) Optical distance-measuring device and image forming apparatus
JP2003099197A (en) Touch panel type projector
JP3194673B2 (en) Optical touch panel and input coordinate detection method using the same
JP4043178B2 (en) Coordinate input device and coordinate input method
JPS6010967A (en) Detecting system of scanning position

Legal Events

Date Code Title Description
MKLA Lapsed