CA2006021C - Process for separating organometallic compounds and/or metal carbonyls from their solutions in organic media - Google Patents

Process for separating organometallic compounds and/or metal carbonyls from their solutions in organic media

Info

Publication number
CA2006021C
CA2006021C CA002006021A CA2006021A CA2006021C CA 2006021 C CA2006021 C CA 2006021C CA 002006021 A CA002006021 A CA 002006021A CA 2006021 A CA2006021 A CA 2006021A CA 2006021 C CA2006021 C CA 2006021C
Authority
CA
Canada
Prior art keywords
membrane
metal
group
organic
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002006021A
Other languages
French (fr)
Other versions
CA2006021A1 (en
Inventor
Helmut Bahrmann
Michael Haubs
Willi Kreuder
Thomas Muller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of CA2006021A1 publication Critical patent/CA2006021A1/en
Application granted granted Critical
Publication of CA2006021C publication Critical patent/CA2006021C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/4038Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals
    • B01J31/4046Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing noble metals containing rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4061Regeneration or reactivation of catalysts containing metals involving membrane separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/786Separation; Purification; Stabilisation; Use of additives by membrane separation process, e.g. pervaporation, perstraction, reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/80Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • C07F15/004Iridium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/006Palladium compounds
    • C07F15/0066Palladium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/04Nickel compounds
    • C07F15/045Nickel compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • C07F19/005Metal compounds according to more than one of main groups C07F1/00 - C07F17/00 without metal-C linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0208Bimetallic complexes, i.e. comprising one or more units of two metals, with metal-metal bonds but no all-metal (M)n rings, e.g. Cr2(OAc)4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/30Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
    • B01J2531/31Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Organometallic compounds and/or metal carbonyls are separated from their solutions in organic media with the aid of semi-permeable membranes made of aromatic polyamides.

Description

_ 2006021 Process for Separating Organometallic Compounds and/or Metal Carbonyls from Their Solutions in Organic Media The invention relates to a process for separation by membrane filtration of organometallic compounds and/or metal carbonyls dissolved in organic media, both classes of compounds being hereinafter referred to as metal compounds.

Background of the Invention Organic compounds and carbonyl compounds of the transition metals, in particular compounds containing a metal of the platinum group as the central atom, are being increasingly used as catalysts in industrial chemical processes. The recovery of the catalyst has a considerable influence on the economy of these processes. It should be recovered as completely and as simply as possible.

Therefore, there have been many attempts to develop techniques which satisfy these requirements. Two main routes have been pursued. The first restricts itself to recovering the catalyst metal and accepts the degradation of the catcllytically active compound.

:
r - ~ -20~)~021 Thermal cleavage, reduction, oxidation and precipitation steps dominate these processes. The aim of the other route is not to allow the catalytically active metal compound to be destroyed, but to recover it undamaged so that it can be recycled without any further treatment.
The following deals in greater detail with this second variant for the recovery of organometallic compounds or metal carbonyls.

One possible route for separating organometallic coordination complexes from organic liquids consists in the use of selective separating membranes. Thus, DE~OS 19 12 380 describes a process in which a mixture of the complex with one or more organic components is brought into contact under pressure with one side of a cellulose membrane. The ratios of the molecular size and shape of the complex to molecular size and shape of the organic components are such that the material diffusing through the membrane has a reduced complex content.

DE-OS 19 53 641 describes a process for separating organometallic compounds from a solution of the compounds in an organic solvent by means of a membrane. This procedure is characterized in that a silicone rubber membrane is used. Furthermore, according to a process described in GB-PS 12 66 180, organometallic compounds are removed from their solutions in organic solvents by means of a polyamide membrane. Finally, DE-OS 24 14 306 describes the separation of organometallic compounds from organic solutions with a polyacrylonitrile membrane.

.
- 2~0~0;~

,, . . . _ .
However, the aforementioned separating processes have the disadvantage that the membranes are not stable in the organic solvents, some of which attack the membranes; in particular, they swell when subjected to pressure and temperature loading and thus lose their beneficial properties. For this reason, no membrane process for such separations has been able to establish itself in industrial practice.

Therefore, the problem was to develop a process which permits the separation of organometallic compounds and/or metal carbonyls from organic media using membranes which not only exhibit the required separating properties under the selected operating conditions, but also are highly stable and thus permit simple and effective separation of the organometallic compounds or the metal carbonyls from organic media.

Brief Description of the Invention The invention comprises a process for separating organometallic compounds and/or metal carbonyls from their solutions in organic ~edia. It is characterized in that the solutions are brought into contact with a semi~
permeable membrane made of an aromatic polyamide (polyaramide). The force behind the separating process can be either a difference in pressure (pressure 25 , filtration) or a difference in concentration (dialysis).

_ It is an object of the present invention to provide a process for concentrating solutions of organometallic compounds and/or metal carbonyls in an organic media by ultrafiltration or dialysis, the process comprising contacting the solutions with a semi-permeable polyaramide membrane having a retention side and a permeation side opposite the retention side, the membrane being permeable only to the organic media.
It is a further object of the present invention to provide a process for concentrating solutions of non-dissociable organometallic complexes and/or metal carbonyl complexes and excess ligands in an organic media by ultrafiltration or dialysis, the process comprising contacting the solutions with a semi-permeable polyaramide membrane having a retention side and a permeation side opposite the retention side, the membrane being permeable only to the organic media.

ycc/sp 3a ~.

:.
2~021 Surprisingly, with the new process it is possible to recover organometallic compounds and/or metal carbonyls more or less completely and in unchanged form;
i.e. without decomposition or change in any other way.
In this context, it is particularly significant that the membrane does not lose its beneficial separating properties either through pressure, temperature, or other influences in the organic media.

Detailed Description of the Invention In the sense of the present invention, organometallic compounds are understood to be compounds in which carbon atoms of organic groups are bound to metal atoms. The metals include the so-called semimetals such as boron and silicon, as well as phosphorus.
According to the invention organometallic compounds are also compounds soluble in an organic solvent in which the bond between the metal and carbon is formed by nitrogen, oxygen or sulfur. Examples of these compounds are acetyl acetonates and dimethylglyoximes.
.~
The organometallic compounds, which also contain nitrogen and oxygen in addition to carbon, are preferably derived from the elements of the groups IVA, VA, VIA, VIIA, VIIIA and IB of the Periodic Table of the ~--- Elements. (All references to the Periodic Table herein are to the IUPAC Version). Organometallic compounds of manganese, cobalt, nickel, palladium, platinum, iridium, and rhodium have special importance.

'-:' r~

- J

20C~i021.

The term metal carbonyls is not restricted to compounds consisting solely of metal and C0 but also covers the compounds which also contain other ligands such as hydrogen, olefins, phosphanes, acetate, and benzonitrile. Suitable carbonyls are those of the metals of the groups VIA, VIIA and VIIIA of the Periodic Table;
in particular, carbonyls of iron, cobalt, nickel, ruthenium, rhodium, and iridium.

The membranes used in accordance with the invention consist of an aromatic polyamide, also called polyaramide, and are already known. The polymers are obtained by polycondensation from aromatic dicarboxylic acids or dicarboxylic acid derivatives and aromatic diamines in a dipolar aprotic solvent. Suitable carboxylic acid components are, for example, terephthalic acid, 4,4'-diphenyldicarboxylic acid, 4,4'rdiphenyletherdicarboxylic acid, 4,4'-diphenyl sulfone dicarboxylic acid, and 2,6rnaphthalene dicarboxylic acid.

Suitable diamine components are prphenylene diamine, 3,3'-dimethoxybenzidine, 3,3'dichlorobenzidine, 3,3'rdimethylbenzidine, 4,4'rdiaminodiphenylmethane, 2,2.bis(4raminophenyl)propane, and 1,4-bis(4-aminor phenoxy)benzene.

- ~~ _ 5 r 2Q~S6~2i Membranes of polyaramides containing various diamines as monomers in addition to a carboxylic acid component have gained special significance. Thus, for example, polyaramides synthesized from terephthalic acid with p-phenylene diamine, 1,4-bis(4~aminophenoxy)benzene, and/or 3,3'-dimethylbenzidine have proved successful.
The amines can be statistically distributed in the polymers. The polyamides can, however, have the structure of block copolymers.

The average molecular weight of the polyaramides can range widely. Normally the range is 5,000 to 200,000. Polyaramides with a molecular mass of 10,000 to 50,000 are preferred.

A process which is described in German Patent Application P 38 02 030 has proved successful for manufacturing the claimed membranes. The membranes disclosed in this publication consist of a copolyamide which is synthesized from three different diamines and a dicarboxylic acid. A solution of this copolyamide in an aprotic polar solvent of the amide type, e.g. N-methyl-2-pyrollidone, is spread onto a flat surface as a liquid layer. The precipitating liquid, in particular water, which is miscible in the solvent of the solution, is added to the liquid layer and precipitates the polymer as a membrane. The precipitating liquid is left to act on the precipitated membrane until the solvent has been ......
',_....

200~

completely replaced by the precipitating liquid. If necessary, the membrane can be subjected to heat treatment. Then the membrane is dried, optionally after prior treatment with glycerin.

The membranes prepared according to the process described above are integrally asymmetric and are known in principle to one skilled in the art. The membranes have a very thin, active separating layer whose thickness is 0.05 to 5 ~ and a porous supporting structure. The thickness of the membrane consisting of active separating layer and supporting structure can be 10 to 400JU, it is preferably 50 to 200 ~.

The shape of the membrane can be selected at will. It can be a disc and, in particular, a hollow fiber or capillary, but can also have any shape suitable for the prescribed use. The decisive factor is to achieve maximum possible stability as possible and, moreover, as large a surface as possible per volume unit in order to attain a satisfactory throughput.

It is recommended to pretreat the membrane before use. In the simplest case it is immersed in the solution to be separated. However, other conditioning processes are also possible. If, for example, the membrane was prepared by precipitation with water, the water is replaced, e.g. by i propanol by placing the membrane in - i~propanol and replacing the alcohol several times. Then 2t~060;~

the i-propanol is replaced in the same manner by the organic medium in which the metal compounds to be ... ~ , , . . ~ . ~
separated are dissolved. The type and method of conditioning the membrane determine the operating conditions to be observed in the claimed process. With a given dissolved metal compound, the decisive variables which can influence the separating process are the pressure applied, the temperature of the solution, the type of solvent and the concentration of the metal compound in the solution.

The separating procedure according to the claimed . process can either be performed as pressure filtration or~-- as dialysis. In the first case, a pressure must be maintained between the retentate and the permeate sides of the membrane which is greater than the osmotic pressure of the system, i.e. of the solutions of different concentration on both sides of the membrane.
It is expedient if the difference in pressure across the membrane is 0.1 to 15 MPa, preferably 0.1 to 10 MPa and in particular 0.2 to 2 MPa. In the second case a flushing solution is passed in countercurrent on the permeate side of the membrane. This process (called dialysis) is particularly advantageous in a hollow fiber or capillary module. Suitable flushing solutions are, for example, organic solvents. The operating temperatures of both process variants are 0 to 200C
and in particular 40 to 130C.

2~0~0;2i The concentrations in the feed solution of the metal compounds to be separated can vary widely. The claimed process makes it possible to successfully separate dissolved metal compounds whose concentration is only a few ppm as well as metal compounds whose concentration is measured in per cent. However, it has proved expedient if the concentrations of the organometallic compounds and/or the metal carbonyls in the organic medium do not exceed 20% by weight. With commercial processes, feed solutions containing 2 to 400 wt. ppm of the metal compounds are of significance and are used with particular success.

The linear flow velocity across the membrane ranges from 0.1 to 10 m/sec, preferably 0.5 to 2.5 m/sec.
, .,--The separating effect is probably due to the fact that the small components of the solution used which, depending on its origin, contains, for example, unreacted starting materials, reaction products and, in some cases, a solvent or solvent mixture as a reaction medium, can diffuse through the active separating layer more easily than the metal compound. Thus, the greater the volume of the metal compound and the greater the difference in size between the metal compound and the other components of , the solution, the better the separation. It is expedient if the metal compound has at least a 50% larger . ~ . cross~section than the largest organic component. To get 2~06021.

a rough approximation, the molecular weight of the components can be considered instead of the size of the molecule to assess the quality of the separation. It is advantageous if the difference in molecular weight between the metal compound and the organic components of the mixture is as great as possible.

The claimed process can be performed batchwise or continuously, in one or more stages. In general, the membrane is located outside the reaction zone so that reaction conditions and separating conditions, e.g.
pressure and temperature, can be optimized independently of each other.

With the one~step variant, the feed solution is added to the membrane under pressure. In the simplest case the permeate is drawn off and the concentrated solution is removed from the separating device as soon as the desired concentration has been reached. This procedure can also be performed continuously to increase the separating efficiency. The feed solution then flows along the membrane, is concentrated and continuously drawn off, as is the permeate.

Multi-stage separation is performed with separating stages either in parallel or in series. The series configuration, in which the permeate is separated in every stage and the concentrated solution is passed to the next separating stage, permits particularly effective 200602i.

use of the available system pressure, i.e. the operating . pressure in the previous process step, and permits the recovery of more-highly concentrated solutions. If, on the other hand, the permeate is passed into consecutive separating stages, the dissolved substances can be more or less completely recovered regardless of the number of separating stages.

When using the process variants described above, the separating efficiency of the membrane can be further improved by increasing the flow rate over the membrane by means of a circulating pump.

--- Finally, by flowing a flushing solution on the permeate side of the membrane concurrently and preferably countercurrently to the flow on the feed side, the concentration of the dissolved substance in the permeate can be reduced and thus the driving force (difference in concentrations) increased (dialysis principle).

The new process has, inter alia, proved to be admirable for separating organometallic compounds and/or metal carbonyls from reaction solutions in which they have, for example, been used as homogeneous catalysts.
The following metal complex compounds soluble in organic media and the reactions which are catalyzed by them are given merely as examples of such compounds: Ni/Al complex compounds, e.g. i-C4HgAlC12/NiC12[P(C6H5)3]
for the dimerization of butadiene to trans~l,4~hexadiene ~11=

20~60;i~1.

and of butene to octenes; Co/Al complex compounds, e.g. i~r4HgAlC12/COcl2[p(c6Hs)3]2 for dimerization of butadiene to cisrl,4~hexadiene;
phosphite-modified Ni/Al-alkyl compounds for the preparation of cyclooctadiene from butadiene;
Pd(CH3COO)2/P(C2H5)3 complex compounds for the preparation of octadiene-1,7; RuHCl[P(C6H5)3]3 or RhCl[P(C6H5)3]3 for the homogeneous hydrogenation of olefins; RhCO[P(C6H5)3]2 for the hydroformylation of formaldehyde;
Ni[P(p.C6H4 CH3)3]4/H for the hydrocyanation of butadiene; Ir(COD)[P(C6Hll)3]Py (COD = 1,5-cyclooctadiene, Py = pyridine) for the hydrogenation of - cyclic alkenes; RuC12[P(C6H5)3] for the hydrogenation of terminal alkenes; [Ru(BINAP)]
(C104)2 (BINAP = 2,2'bis(diphenylphosphino)1,1'-binaphthyl) for the asymmetric hydrogenation of olefinic double bonds; HRhCO[P(C6H5)3]3 for the hydroformylation of alpha~olefinic compounds such as allyl alcohol; Pd[P(C6H5)3]4 for the nucleophilic alkylation of allyl systems and the functionalizing oligomerization of butadiene; rhodium complex compounds such as HRhCO[P(C6H5)3]3 and those which contain triphenylphosphane or alkyl or aryl ammonium salts of sulfonated or carboxylated triarylphosphanes of the general formula: -r 1 2 r -n _ +
~ C6H4 xx /
p - C6H4 - Xx HN - R2 \ C6H4 -- Xx ~ R2 - n as ligands. In the above general formula, X is a sulfonate (S03-) or carboxylate radical (COO~); x1, x2, and x3 are O or 1; R1 and R2 are the same or different alkyl radicals having 4 to 12 carbon atoms or aryl or cycloalkyl radicals having 6 to 12 carbon atoms, and R1 also denotes hydrogen. These compounds and their use are explained in slightly more detail hereafter. Naturally, it is not intended to restrict the scope of the invention to the separation of this special compound class.
In such catalyst systems, disulfonated and trisulfonated, or dicarboxylated and tricarboxylated triphenylphosphanes, are particularly suitable as ligand anions. The compounds do not need to be used in pure form, but can also be used as a mixture or disubstituted and trisubstituted phosphanes.

~r 20(~6,0~

--` The cations of the ligands are derived from secondary or tertiary amines. Preference is given to amines containing a total of 16 to 36 carbon atoms.
Examples are di-2-ethylhexylamine, diisooctylamine, diisononylamine, tri-n~octylamine, triisooctylamine, triisononylamine, triisodecylamine.

Apart from the phosphanes, the rhodium complex compounds can contain other ligands such as H, CO,amines, and `l~ ~aromatics, e.g. cyclopentadienyl or ~olefins such as 1,5-cyclooctadiene.

Together with the phosphane ligand present in excess, the rhodium compounds form a catalyst system which, when homogeneously dissolved in the organic reaction medium, can, for example, be used in the hydroformylation of olefinically unsaturated compounds.
The term olefinically unsatùrated compounds includes straight and branched chain olefins, regardless of the position of the double bond in the molecule, as well as cycloolefins such as n~hexene-l, n-heptene-l, n~octene-l, n~nonene-l, diisobutylene, tripropylene, cyclohexene, and cyclooctene. The olefinically unsaturated compounds also include dienes such as 1,3~butadiene, l,S~hexadiene, and , ..~ , .
dicyclopentadiene, as well as compounds containing functional groups such as acrylic acid, acrylic acid ester, acrylonitrile, methacrylic acid, methacrylic acid ester, vinyl ester, vinyl ether, and acrolein.

~14, - ~

200~0;~1.

The reaction mixture formed during the hydro~ormylation of the olefinic compound contains, for example, mainly the reaction product, an aldehyde, by-products such as the alcohol derived from the aldehyde, as well as higher~boiling addition and condensation products of the aldehyde. Furthermore, a solvent serving as the reaction medium can also be present.

Before the organic components of the reaction mixture are isolated, e.g. by distillation, the rhodium complex compound is generally separated. It is normally present in the mixture in a concentration of 1 to 1,000, in particular, 3 to 400 and preferably 20 to 200 ppm.
According to the new procedure it is now possible to almost completely separate the rhodium compound from the reaction product. In this connection it is particularly important that the rhodium compound is recovered in a form which permits its immediate re~use in the synthesis.

The following describes the preparation of a type of membrane which can be used in the process according to the invention. There is also a description of the separation of organometallic compounds or metal carbonyls from reaction mixtures with the membrane using the new procedure.

.~. ~

' -15.

:

2~Q~l.

Preparation of the membrane The polyaramide is prepared by condensation of 97~99 mole % terephthalic acid dichloride 25 mole % p-phenylene diamine 25 mole % 1,4-bis(4-aminophenoxy)benzene 50 mole % 3,3'~dimethylbenzidine in ~-methylpyrrolidone as a solvent. Enough terephthalic acid dichloride is used so that the polyaramide has a Staudinger index of 200 to 300 ml/g. The amount of solvent is dosed so that a solution is formed containing about 7% by weight polycondensate. After condensation has taken place, the hydrogen chloride loosely bound to the solvent is neutralized by the addition of 100 mole %
CaO. Then 5% by weight anhydrous calcium chloride (based on the polymer solution) is dissolved with stirring in the reaction mixture. The solution is gently warmed, filtered, and degassed. It can be used directly for the preparation of the membrane.

It is possible to prepare the membrane either without a support or on a polyester non-woven fabric as a support. In the following, the preparation of a support-free membrane is described. The slightly warmed polyaramide solution is spread onto a glass plate with a doctor blade to form a uniform film with a thickness of , -16~

- : ~

1060~.

about 150JU and then immersed in a water bath at a temperature of 2C. After approximately 20 minutes the membrane is pulled off the glass plate and placed in hot water at a temperature of 100 C for S minutes. Then the membrane is placed in i~propanol to replace the pore liquid (water) with alcohol. The membrane is then placed in toluene for approximately 10 hours; after this treatment it is suitable for performing separations.
During all these operations, care must be taken to insure that the membrane does not dry out.

Example 1 The separation of the catalyst, which consists of a rhodium complex compound and the triisooctylammonium salt of tris(m-sulfophenyl)phosphane, from the raw product of the hydroformylation of dicyclopentadiene (DCP) is described below.

The separation is performed with 2,646 g of raw product which contains TCD~monoaldehyde and TCDrdialdehyde (TCD = tricyclodecane) in a weight ratio of 18 : 98.2; 24.8 ppm of rhodium (corresponding to 65.6 mg); a total of 698 ppm of phosphorus, i.e. P(III) and P(V) (corresponding to 1,846.9 mg) of which there are 17.4 mmoles of P(III)/kg (corresponding to 1,427.2 mg);
-- as well as toluene as a solvent.

r 17~

t ' ::' '',X .', '.' 20()6~);21.

~ . . .. .. ...

The raw product is passed at 40C and a pressure of 0.5 MPa into a metal cell which is fitted with a membrane having a surface area of 20 cm2 manufactured as described. Any solution which does not diffuse through the membrane is circulated at a rate of approximately 8 l/h. The pass~over rate is approximately 0.15 m/sec.

After the experiment has been completed, 2,139.4 ,, .. . ..., . A ..
-- g of permeate (81% of the feed) and 486.6 g of retentate (18.4% of the feed) are obtained. The permeate contains a total of 357.3 mg of phosphorus (19.3% of the feed), of which 172.4 mg is a P(III) compound (12.1% of the feed), and 2.29 mg of rhodium (3.5 % of the feed). The retentate contains a total of 77.9 % phosphorus (based on the feed) and 95% of the rhodium (based on the feed).
The permeate flow is 12 1/(m2 x h) at the beginning of separation and 5 1/(m2 x h) at the end.

Under the temperature and pressure conditions of the first separating stage, 1,933 g of the permeate are subjected to a second membrane filtration. The permeate flow is 17.5 1/(m2 x h) at the beginning of the - experiment and 10 l(m x h) at the end. The results of the separation are compiled in Table 1.

2~Q60æ~.

Table 1 Permeate Retentate amount (% of feed) 73.1 7.2 P III (% of feed) 8.8 13.1 Total P (% of feed) 5.6 13.2 Rh (% of feed) 0.4 4.3 Example 1 shows that, when the claimed process is used, over 99.5% of the rhodium and 94.4% of the phosphorus (III) compound are retained.

Example 2 ., The combined retentates from Example 1 are used as a catalyst for the hydroformylation of DCP in toluene as a solvent. After the reaction has been completed, GC
analysis shows a conversion of 97.8% and a ratio of monoaldehyde to dialdehyde of 2.0 : 98Ø At 40C and a pressure of 0.5 MPa the permeate flow is 10.5 1/(m2 x h) at the beginning and 3.6 l(m2 x h) at the end of separation. The retention rates correspond to those of Example 1.

.
Example 2 shows that, according to the claimed process, the catalyst system and the excess ligand can be separated and recirculated in their active forms.

'19' i~û0~021 Example 3 Solutions containing higher concentrations of metal complex compounds can also be successfully treated according to the new procedure. The product of the hydroformylation of DCP using the catalyst system of Example 1 but with an Rh concentration of 102 ppm is used as a starting material. It contains TCD-dialdehyde, 16.5 mmoles of P(III)/kg, a total of 681 ppm of phosphorus and, in addition, toluene as a solvent.

Separation takes place under the temperature and pressure conditions and using the cell of Example 1. In the first run, the permeate flow is 10 1/~m2 x h) at the beginning of the experiment and 3 1/(m2 x h) at the end; in the second run, in which the permeate of the first separation is used, 17 and 9 1/(m2 x h).

The results of the separation are compiled in Table 2.
Table 2 Permeate I/II Retentate I/II
amount (% of feed)2,383.0 2,119 403.8 217 P III (~ of feed) 12.9 8.7 67.0 12.3 Total P (~ of feed) 16.8 6.3 76.5 12.0 Rh (% of feed) 2.5 0.2 96.3 2.9 2t~06Q~i.

Example 3 shows that the amount of metal and ligand retained is not reduced even at higher rhodium concentrations.

Example 4 420 g of a product from the hydroformylation of hexadiene~l,5 with rhodium and triphenylphosphane as catalysts are separated according to the claimed process using the membrane cell of Example 1. The Oxo raw product contains 333 ppm of Rh and 30% toluene. The ratio of monoaldehyde to dialdehyde is 15 to 85. The permeate flow at 40C is 5 1/(m2 x h).

The membrane filtration leads to the results compiled in Table 3.

Table 3 Permeate Retentate Amount (g) 137 (32.4% of feed) 270 (67.5% of feed) Rh (ppm) 192 ( 19~ of feed) 400 ( 81~ of feed) As can be seen, 80~ of the rhodium contained in the raw product is separated.

The following examples demonstrate the advantageous physical properties of the membrane used in ~-- 2~a06021.

accordance with the present invention. A membrane with an average thickness of 270 ~ manufactured and located in a cell according to the aforementioned regulations is used.

For separation, the reaction mixture of the hydroformylation of DCP with rhodium and the triisooctylammonium salt of tris(m-sulfophenyl)phosphane as catalysts is used. The rhodium concentration in the Oxo raw product is 25.4 ppm, it also contains 23.4 mmoles in total of phosphorus/kg, 0.013 moles of P(III) and approximately 55% toluene. The ratio of monoaldehyde to dialdehyde is 2:98. The amount of rhodium and phosphorus retained in Examples 5 to 10 is roughly the same as in Example 1.

Example 5 For conditioning, the membrane is first measured for thickness, washed with acetone and then with isopropanol, and then installed into the apparatus while it is still moist from the isopropanol. Immediately afterwards, the apparatus is filled with toluene and the isopropanol is displaced from the membrane by washing it out.

Then the permeate flow is measured at 25C and 0.3 MPa. It stabilizes very quickly from 22 1/(m2 x h) at the beginning to 18 to 19 1/(m2 x h).

2~060~

Example 6 In order to determine the permeate flow and the properties of the membrane compared with a rhodium and phosphane-free, raw TCD~dialdehyde from the hydroformylation of DCP, the toluene is displaced by a product freed from rhodium and phosphane by another means. The permeate flow of the membrane does not change.

This experiment shows that the membrane remains stable in the Oxo raw product, i.e. no swelling takes place.

Example 7 At 0.3 MPa and 25C the membrane is fed with the Oxo raw product described above. Over a period of one hour, the permeate flow is determined in 12 measurements. Immediately, an average constant permeate flow of 5.7 1/(m2 x h) establishes itself.

Example 8 j .. ,.,,. . ~
At a pressure of 0.5 MPa, but otherwise under the same conditions as in Example 7, the permeate flow is determined in 6 individual measurements over a period of 30 minutes. An average value of 9.7 1/(m2 x h) is determined. Example 8 shows an almost linear rise in the permeate flow with a pressure differential of 0.3 to 0.5 MPa.

2Q0~021.

Example 9 By gradually increasing the temperature from 25C to 40C, the permeate flow rises continuously to 13.6 l/(m x h). Thus, its temperature coefficient is about ~ 2.5%/C.

Example 10 The raw product from the hydroformylation of DCP
used in the previous examples is again replaced by toluene. The permeate flow rises spontaneously to 40 1/(m2 x h) at 41C and stabilizes at 26 1/(m2 x h) at 27C and 0.5 MPa. After 1 hour the experiment is interrupted, the membrane removed and its thickness measured. There is almost no change in the thickness. Example 10 shows that the membrane does not lS clog or foul and that it remains stable. Examples 5 to 10 all prove the efficiency of the new process.

Example 11 The previously used membrane cell with a polyaramide membrane prepared according to the manufacturing process described above receives a Cg aldehyde from the high~pressure hydroformylation of _ diisobutylene with rhodium. The rhodium content in the ' Oxo raw product (the metal being present as a carbonyl 200~

compound) is 4.3 ppm. The product contains no phosphorus. The permeate flow is 39 1/(m2 x h) at the beginning of the experiment at 40C and 0.5 MPa. It falls to 16.8 1/(m2 x h) when there is a transition to the Cg Oxo raw product in the first run and is 11.6 1/tm2 x h) at the end of the experiment; the permeate flows in the second run (feed of the permeate of the first separation) are 14.5 and 10.1 1/(m2 x h).

The results are compiled in Table 4.

Table 4 Permeate 1 Permeate 2 Retentate 1 Retentate 2 Amount (g) 625 517 132 104 Rh (~ of feed) 52 18 35 27.9 After the experiment has been completed and the Oxo raw product replaced by toluene, a permeate flow of 40 1/(m2 x h) is again obtained.

~25r

Claims (49)

1. A process for concentrating solutions of organometallic compounds and/or metal carbonyls in an organic media by ultrafiltration or dialysis, said process comprising contacting said solutions with a semi-permeable polyaramide membrane having a retention side and a permeation side opposite said retention side, said membrane being permeable only to said organic media.
2. The process of claim 1 wherein there is a pressure difference between said retention side and said permeation side.
3. The process of claim 2 wherein said pressure difference is greater than an osmotic pressure of said system.
4. The process of claim 2 wherein said difference is 0.2 to 2.0 MPa.
5. The process of claim 1 wherein there is a difference in concentration between said retention side and said permeation side and said separation is carried out by dialysis.
6. The process of claim 5 wherein a flushing solution flows in contact with said permeation side.
7. The process of claim 6 wherein said flushing solution flows countercurrently to said feed.
8. The process of claim 6 wherein said flushing liquid is an organic solvent.
9. The process of claim 6 wherein said flushing solution flows concurrently with said feed.
10. The process of claim 1 wherein said organometallic compound has a carbon atom linked to a first metal directly or through a nitrogen, oxygen, or sulfur atom.
11. The process of claim 10 wherein said first metal is selected from the group consisting of boron, silicon, phosphorous, and Groups IVA, VA, VIA, VIIA, VIIIA, and IB
of the Periodic Table.
12. The process of claim 11 wherein said first metal is selected from the group consisting of manganese, cobalt, nickel, palladium, platinum, iridium, and rhodium.
13. The process of claim 1 wherein said organic metallic compound is selected from the group consisting of acetyl acetonate and dimethylglyoximes.
14. The process of claim 1 wherein said metal carbonyl contains at least one additional ligand.
15. The process of claim 14 wherein said additional ligands are selected from the group consisting of hydrogen, olefins, phosphanes, acetates, and benzonitriles.
16. The process of claim 1 wherein said metal carbonyl has a second metal and a carbonyl group, said second metal being linked directly to said carbonyl group.
17. The process of claim 16 wherein said second metal is selected from the group consisting of Groups VIA, VIIA
and VIIIA of the Periodic Table.
18. The process of claim 16 or 17 wherein said second metal is selected from the group consisting of iron, cobalt, nickel, ruthenium, rhodium, and iridium.
19. The process of claim 1 wherein said membrane is the product of a polycondensation reaction of an aromatic dicarboxylic acid or derivative thereof with an aromatic diamine.
20. The process of claim 19 wherein said polycondensation reaction is in the presence of a dipolar, aprotic solvent.
21. The process of claim 20 wherein said solvent is N-methyl-2-pyrollidone.
22. The process of claim 19 wherein said aromatic dicarboxylic acid or derivative is selected from the group consisting of terephthalic acid, 4,4'-diphenyl-dicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, and 2,6-naphthalene dicarboxylic acid.
23. The process of claim 19 wherein said aromatic diamine is selected from the group consisting of p-phenyldiamine, 3,3'-dimethoxybenzidine, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine, 4,4'-diaminodiphenylmethane, 2,2-bis(4-aminomethyl) propane, and 1,4-bis(4-aminophenoxy)benzene.
24. The process of claim 19 wherein said membrane is precipitated by adding water after said polycondensation reaction, immersing said membrane isopropanol at least once, and then immersing said membrane in said organic medium.
25. The process of claim 1 wherein said polyaramide membrane is the reaction product of terephthalic acid with p-phenylene diamine, 1,4-bis(4-aminophenoxy) benzene, and/or 3,3'-dimethylbenzidene.
26. The process of claim 1 wherein said polyaramide membrane has a molecular weight of 5,000 to 200,000.
27. The process of claim 26 wherein said molecular weight is 10,000 to 50,000.
28. The process of claim 1 wherein said membrane is integrally asymmetric.
29. The process of claim 1 wherein said membrane comprises a porous support and an active layer.
30. The process of claim 29 wherein said active layer has a thickness of 0.05µ to 5.0µ.
31. The process of claim 29 wherein said membrane has a thickness of 10 to 400µ.
32. The process of claim 31 wherein said membrane has a thickness of 50 to 200µ.
33. The process of claim 1 wherein said membrane comprises hollow-fibers and/or capillaries.
34. The process of claim 1 wherein said membrane is preheated by immersing it in said organic medium.
35. The process of claim 1 which is carried out at a process temperature of 0° to 200°C.
36. The process of claim 35 wherein said process temperature is 40° to 130°C.
37. The process of claim 1 wherein said metal compound comprises not more than 20% by weight of said organic medium.
38. The process of claim 37 wherein said metal compound is 2 to 400 ppm by weight based on said organic medium.
39. The process of claim 1 wherein said feed is at a flow velocity of 0.1 to 10 meters/second.
40. The process of claim 39 wherein said flow velocity is 0.5 to 2.5 meters/second.
41. The process of claim 1 wherein said metal compound has a particle size of at least 50% larger than any other organic compound present.
42. The process of claim 1 wherein said separation is carried out in a plurality of stages.
43. The process of claim 42 wherein said stages are in parallel.
44. The process of claim 42 wherein said stages are in series.
45. The process of claim 1 wherein said metal compound is selected from the group consisting of nickel-/aluminum complexes, cobalt/aluminum complexes, phosphate-modified nickel/aluminum alkyl compounds, Pd(CH3COO)2/P(CH2H5)3 complexes, RuHCl[P(C6H5)3]3, RhCl[P(C6H5)3]3, RhCO[P(C6H5)3]2, Ni[P(p-C6H4CH3)3]4/H+, Ir(-COD)[P(C6H11)3]Py (COD=1,5-cyclooctane, Py=-pyridine), RuCl2[P(C6H5)3] Ru(BINAP)(ClO4)2 (BI-NAP=2,2' bis(diphenylphosphino) 1,1'-binaphthyl), HRhCO[P(C6H5)3]3, Pd[P(C6H5)3]4, and complexes containing compounds of the formula wherein X is a sulfonate (SO3) or carboxylate radical (COO);x1,x2, and x3 are 0 or 1; R1 and R2 are the same or different alkyl radicals having 4 to 12 carbon atoms or aryl or cycloalkyl radicals having 6 to 12 carbon atoms, and R1 also denotes hydrogen.
46. The process of claim 1 wherein said metal compound is of rhodium and said compound is present in a catalyst amount of 1 to 1000 ppm based on said organic medium.
47. The process of claim 46 wherein said catalyst amount is 3 to 400 ppm.
48. The process of claim 47 wherein said catalyst amount is 20 to 200 ppm.
49. A process for concentrating solutions of non-dissociable organometallic complexes and/or metal carbonyl complexes and excess ligands in an organic media by ultrafiltration or dialysis, said process comprising contacting said solutions with a semi-permeable polyaramide membrane having a retention side and a permeation side opposite said retention side, said membrane being permeable only to said organic media.
CA002006021A 1988-12-20 1989-12-19 Process for separating organometallic compounds and/or metal carbonyls from their solutions in organic media Expired - Fee Related CA2006021C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3842819A DE3842819A1 (en) 1988-12-20 1988-12-20 METHOD FOR SEPARATING METAL-ORGANIC COMPOUNDS AND / OR METAL-CARBONYLES FROM THEIR SOLUTIONS IN ORGANIC MEDIA
DEP3842819.9 1988-12-20

Publications (2)

Publication Number Publication Date
CA2006021A1 CA2006021A1 (en) 1990-06-20
CA2006021C true CA2006021C (en) 1996-06-11

Family

ID=6369592

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002006021A Expired - Fee Related CA2006021C (en) 1988-12-20 1989-12-19 Process for separating organometallic compounds and/or metal carbonyls from their solutions in organic media

Country Status (11)

Country Link
US (2) US5174899A (en)
EP (1) EP0374615B1 (en)
JP (1) JPH02231435A (en)
KR (1) KR930002965B1 (en)
AT (1) ATE141923T1 (en)
AU (1) AU621968B2 (en)
BR (1) BR8906575A (en)
CA (1) CA2006021C (en)
DE (2) DE3842819A1 (en)
ES (1) ES2092471T3 (en)
HU (1) HU202771B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288818A (en) * 1991-08-20 1994-02-22 Exxon Chemical Patents Inc. Method for separating a water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction
US5215667A (en) * 1991-08-20 1993-06-01 Exxon Chemical Patents Inc. Method for separating water soluble noble metal catalyst from a noble metal catalyzed hydroformylation reaction
GB9119955D0 (en) * 1991-09-18 1991-10-30 Imperial College Treatment of aqueous supplies containing organic material
DK0539870T3 (en) * 1991-10-26 1996-12-09 Hoechst Ag Hydrophilic, asymmetric, chemical resistant polyaramid membranes
IT1256360B (en) * 1992-09-01 1995-12-01 Enichem Spa PROCESS FOR THE SEPARATION OF CATALYSTS IN ORGANIC SOLUTIONS BY MEANS OF SEMI-PERMEABLE MEMBRANES
US5395979A (en) * 1993-02-25 1995-03-07 Exxon Chemical Patents Inc. Method for separating catalyst from a hydroformylation reaction product using alkylated ligands
US5298669A (en) * 1993-03-23 1994-03-29 Exxon Chemical Patent Inc. Perstraction sweep stream for a membrane reactor
KR970703805A (en) * 1995-05-01 1997-08-09 유니온 카바이드 케미칼즈 앤드 플라스틱스 테크놀러지 코포레이션 Membrane Separation
DE19619527A1 (en) * 1996-05-15 1997-11-20 Hoechst Ag Catalyst systems based on rhodium complex compounds with diphosphine ligands and their use in the production of aldehydes
US5618436A (en) * 1996-02-16 1997-04-08 Condea Vista Company Process for clarifying metal alkyls
DE19609337C2 (en) * 1996-03-11 1998-11-19 Hoechst Ag Process for the preparation of aldehydes using a rhodium and substituted diphenyldiphosphanes containing catalyst system
EP0823282B1 (en) * 1996-05-15 2001-11-14 Celanese Chemicals Europe GmbH Aldehydes preparation process
EP0810029B1 (en) * 1996-05-15 2001-11-14 Celanese Chemicals Europe GmbH Aldehydes preparation process
DE19619528A1 (en) * 1996-05-15 1997-11-20 Hoechst Ag Substituted diphosphines and a process for their preparation
EP1065194B2 (en) 1999-07-02 2007-03-28 Mitsubishi Gas Chemical Company, Inc. Production of tricyclodecane dicarbaldehyde, pentacyclopentadecane dicarbaldehyde and corresponding dimethanols
WO2004020380A1 (en) 2002-08-31 2004-03-11 Oxeno Olefinchemie Gmbh Method for the hydroformylation of olefinically unsaturated compounds, especially olefins, in the presence of cyclic carbonic acid esters
DE102006003618A1 (en) * 2006-01-26 2007-08-02 Oxeno Olefinchemie Gmbh Separation of a metal complex catalyst from a reaction mixture obtained from telomerization process comprises using at least a membrane
GB2437519B (en) * 2006-04-28 2010-04-21 Imp Innovations Ltd Method for separation
GB201012083D0 (en) 2010-07-19 2010-09-01 Imp Innovations Ltd Thin film composite membranes for separation
GB201012080D0 (en) 2010-07-19 2010-09-01 Imp Innovations Ltd Asymmetric membranes for use in nanofiltration
GB201117950D0 (en) 2011-10-18 2011-11-30 Imp Innovations Ltd Membranes for separation
DE102012223572A1 (en) * 2012-12-18 2014-06-18 Evonik Industries Ag Control of the viscosity of reaction solutions in hydroformylation processes
DE102013215004A1 (en) * 2013-07-31 2015-02-05 Evonik Industries Ag Membrane cascade with decreasing separation temperature
TWI669317B (en) 2014-09-22 2019-08-21 德商贏創德固賽有限責任公司 Method for improved reactive monomer production

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1266180A (en) * 1969-12-19 1972-03-08
US3966595A (en) * 1972-07-20 1976-06-29 E. I. Du Pont De Nemours And Company Method of making group VIII metal complex compounds
US3853754A (en) * 1972-07-20 1974-12-10 Du Pont Membrane separation of homogeneous catalysts from nitrile solutions
US3957504A (en) * 1974-11-11 1976-05-18 Allied Chemical Corporation Membrane hydro-metallurgical extraction process
US4544484A (en) * 1983-06-24 1985-10-01 E. I. Du Pont De Nemours And Company Reverse osmosis membrane quenching
DE3802030A1 (en) * 1988-01-25 1989-07-27 Hoechst Ag MACROPOROISE, ASYMMETRICAL, HYDROPHILE MEMBRANE MADE OF POLYARAMIDE

Also Published As

Publication number Publication date
BR8906575A (en) 1990-09-04
CA2006021A1 (en) 1990-06-20
KR930002965B1 (en) 1993-04-16
AU621968B2 (en) 1992-03-26
ATE141923T1 (en) 1996-09-15
KR900009674A (en) 1990-07-05
AU4685889A (en) 1990-06-28
EP0374615B1 (en) 1996-08-28
ES2092471T3 (en) 1996-12-01
JPH02231435A (en) 1990-09-13
US5174899A (en) 1992-12-29
JPH0480013B2 (en) 1992-12-17
EP0374615A3 (en) 1991-05-02
HU896491D0 (en) 1990-03-28
DE58909716D1 (en) 1996-10-02
EP0374615A2 (en) 1990-06-27
HU202771B (en) 1991-04-29
USRE35292E (en) 1996-07-09
DE3842819A1 (en) 1990-06-21
HUT52709A (en) 1990-08-28

Similar Documents

Publication Publication Date Title
CA2006021C (en) Process for separating organometallic compounds and/or metal carbonyls from their solutions in organic media
US3853754A (en) Membrane separation of homogeneous catalysts from nitrile solutions
AU721042B2 (en) Process for preparing aldehydes
US5681473A (en) Membrane separation process
JP2002509127A (en) Method for producing aldehyde
CN101146618B (en) Unsymmetrically substituted phospholane catalysts
JP2828169B2 (en) Method for producing aldehyde
US5922634A (en) Catalyst systems based on rhodium complexes containing diphosphine ligands and their use in the preparation of aldehydes
AU653073B2 (en) Process for reactivation of water-soluble hydroformylation catalysts
KR20010015673A (en) Method For Producing Phosphabenzene Compounds
MXPA97003389A (en) Procedure for the preparation of aldehi
JP4380832B2 (en) Separation of transition metal coordination complexes
KR102313566B1 (en) Method for regenerating spent hydroformylation catalysts
DE19632600A1 (en) Aldehyde preparation by hydroformylation of olefinically unsaturated compounds
TH31638A (en) Methods for preparing aldehyde
DE19632602A1 (en) Hydroformylation of olefin to aldehyde using easily separated catalyst system with high activity and selectivity
TH31333A (en) Methods for preparing aldehyde
MXPA97003390A (en) Procedure to prepare aldehi

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed