CA2041299C - Splice tray and method - Google Patents

Splice tray and method Download PDF

Info

Publication number
CA2041299C
CA2041299C CA002041299A CA2041299A CA2041299C CA 2041299 C CA2041299 C CA 2041299C CA 002041299 A CA002041299 A CA 002041299A CA 2041299 A CA2041299 A CA 2041299A CA 2041299 C CA2041299 C CA 2041299C
Authority
CA
Canada
Prior art keywords
splice
tray
fibers
optical fibers
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002041299A
Other languages
French (fr)
Other versions
CA2041299A1 (en
Inventor
Barbara Lynn Justice
Wesley Alan Raider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of CA2041299A1 publication Critical patent/CA2041299A1/en
Application granted granted Critical
Publication of CA2041299C publication Critical patent/CA2041299C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4453Cassettes
    • G02B6/4454Cassettes with splices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4452Distribution frames
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4452Distribution frames
    • G02B6/44524Distribution frames with frame parts or auxiliary devices mounted on the frame and collectively not covering a whole width of the frame or rack
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4453Cassettes
    • G02B6/4455Cassettes characterised by the way of extraction or insertion of the cassette in the distribution frame, e.g. pivoting, sliding, rotating or gliding

Abstract

A splice organizing tray can protect the optical fibers from excessive stress if the fibers stored in the tray are organized in paths which do not require bending of the fibers beyond their approved bend radius, which do not require the fibers to cross, and which maintain the fibers in contact with the support substantially all the time.

The tray has a convex bottom wall to urge the fibers against the edges of the tray, a recessed splice support area, and resilient snaps to engage the ends of the splices to permit the splices to be placed closer together. Holes below the splices afford the removal of the splices without danger to the adjacent fibers.

Description

F.N. 45262 CAN 8A
SPLICE TRAY AND METHOD
Backqround of the Invention 1. Field of the Invention 'rhe present invention relates to splice trays and slack optical fiber organizing trays, and more particularly to an improved organizer tray for spliced optical fibers and the splicing elements, affording safe, efficient handling of the individual fibers when splicing the multiple fibers from buffer tubes.
2. Description of the Prior Art A typical buffer tube encases from six to twelve optical fibers. The buffer tube is removed from one end to expose from one to four meters of the fibers. The ends of the optical fibers are spliced to the ends of fibers in another buffer tube of another cable or to the pigtail fibers of other optical fiber devices, couplers, 2o connectors, attenuators, switches etc.
The trays for storing the optical fiber splices and the slack fiber, that is optimally provided to permit repair and replacement of a splice, has been an area of inventive endeavor :far some time now and the literature is replete with disclosures of various types and styles of fiber storage trays and assemblies to store optical fiber and splices. Each marketable tray must have adequate size to allow storage of slack optical fiber in a loop at least twice the minimum prescribed bend radius of the optical fiber. Also, an area is provided to maintain the splice in a suitable fixed po4~ition to restrict movement which could readily fracture the fiber near the end of the splice.
Still ther~a is need to have access to the fibers and splices occasionally and tray assemblies should make the splices and slack fiber accessible. Storage trays are utilized in closures where cables having a plurality of buffer tubes are spliced. They are also used in closures where a cax>le is opened and one or more buffer tubes are spliced into a branch line. The trays also appear in distribution panels where optical fiber cables are terminated and distribution fibers are directed throughout a network.
The known trays however are not user and fiber oriented such that the fibers are safely stored and readily accessible without danger of damaging adjacent fibers or groups of fibers in an adjacent tray assembly. They do not afford separation of the terminated fibers in a buffer tube.
They do not allow easy removal of the splice without danger to the fibers at the ends of the splices.
The tray of the present invention affords rapid fiber orientation, easy access to the fibers to locate desired fibers by color or number and restrict the possibility of damaging adjacent fibers. It accommodates up to 24 optical fiber splices and the respective fibers. The tray has eight channels at one end which accept eight buffer tubes, and the tubes are retained by their snug fit into channel retention snaps and below lips on the top of the channels and other buffer ties or clamps are not needed.
These and other unique features will be described below.
Summarv of the Invention The present invention provides a splice tray for use in storing the spliced ends of optical fibers from a first and a second buffer tube, each of which includes a plurality of said optical fibers, said tray comprising: an elongate molded casing having two generally parallel spaced side walls, first and second end walls, and a bottom wall, said end walls including arcuate inner wall surfaces and said side walls and said end wall surfaces having free edges defining generally a plane formed with retaining means projecting inwardly therefrom and spaced from said bottom wall for receiving and retaining lengths of optical fibers positioned along said side walls and end wall surfaces; a splice receiving portion disposed generally centrally of said bottom wall, said splice receiving portion comprising a plurality of side-by-side channels, each having an axis parallel to the axis of an adjacent channel, for receiving splices joining the ends of two abutting optical fibers, said channels being disposed with their axes at an acute angle to said side walls; and said first end wall surface having an opening therein adjacent to one of said side walls and communicating with an area extending beyond said first end wall which has an arcuate surface opposite said first end wall surface and a spaced arcuate inner wall surface communicating with an edge wall parallel to the second of said side walls affording entry of at least a pair of buffer tubes into said casing.
The invention also provides a splice tray for use in storing the spliced ends of optical fibers from a first and a second buffer tube, each of which includes a plurality of said optical fibers, said tray comprising: an elongate molded casing having two generally parallel spaced side walls, first and second end walls, and a bottom wall, said end walls including arcuate inner wall surfaces and said side walls and said end wall surfaces having free edges defining generally a plane formed with retaining means projecting inwardly therefrom and spaced from said bottom wall for receiving and retaining lengths of optical fibers positioned along said side walls and end wall surfaces; and a splice receiving portion disposed generally centrally of said bottom wall and recessed in the bottom wall, said recessed portion having edge walls generally parallel to said side walls and a plurality of spaced finger means extending from at least one of said edge walls toward the I

-3a-opposite edge wall for resiliently engaging an end of a splice positioned in said recessed portion.
The first end wall surface of the casing has an opening adjacent to one of said side walls and the opening communicates with an extended portion of said first end wall which has an arcuate surface opposite the first end wall surface and a second spaced arcuate inner wall surface communicating with the side wall affording smooth stress free entry of the fibers of the buffer tubes into the casing.
Further, the tray preferably has a tapered or convex bottom wall affording increased fiber storage around the tray perimeter, below the level at which the fibers exit the splices while maintaining support for the fibers going into and out of the splice.
The splice receiving recess is formed integrally with the casing and side-by-side areas or channels have an end wall formed as a snap for resiliently retaining a splice within the individual channel by engaging the splice at the end. Each channel is also provided with an opening in the bottom of the channel for allowing access for a tool to remove a splice from a channel.
Additionally, the splice tray entry area for the buffer tubes has adjacent thereto resilient retaining means for receiving and resiliently retaining buffer tubes in said edge wall and channels which are radiused to direct fibers into and out of the storage area of the casing.
The splice tray, in a further embodiment comprises a cover pivotally connected to the casing along a side wall to cover the open side of the casing. The casing and cover are provided with means cooperating with _4-each other to permit stacking of said splice trays and hinge-like movement between the trays in a stack.
'The present invention further includes a novel method of handling and storing spliced ends of optical fibers between a pair of buffer tubes encasing a plurality of optical fibers. The method includes the steps of stripping an end of the buffer tube to expose a length of the optical fibers, placing the remaining end of the buffer tube in one end of a tray and snapping the same in place to retain the remaining end of the buffer tube in the casing, extending the optical fibers along the side and end walls of the tray to wrap approximately one wrap of slack fiber of each optical fiber within the tray, directing the optical fibers past the midpoint of one side wall of the tray, cutting the fibers from the buffer tube at a predetermined point to make the exposed optical fibers the same length. The same steps are repeated for the other buffer tube' to be spliced. Placing the ends to be spliced in a splice and p1<~cing the splices in a side-by-side relationship along t:he length of the tray, whereby the loops of the fibers will be. spaced progressively at different distances from one end wall of the tray. The splices are snapped into channels sufficiently for resilient retainers to engage an end of the splice to hold the same in fixed relationship in the tray.
Brief Description of the Drawincts Z'he prese:nt~ invention will be further described hereinafter with reference to the accompanying drawing wherein:
Figure 1 is a top plan view of a tray constructed according to the present invention;
Figure 2 is an end view of the left end of Figure 1;

Figure 3 is a transverse sectional view of the tray of Figure 1 taken along the line 3 - 3 of Figure 1;
Figure 4 is a transverse sectional view taken along the line 4 - 4 of Figure 1;
Figure 5 is a cross sectional view taken along the axis on splice retaining channel in the casing and illustrating a splice and optical fiber in the splice;
Figure 6 is an end view of the right end of the tray according to the present invention;
Figure 7 is a front view of the tray;
Figure 8 is an enlarged fragmentary right end view of tray illus~.rating the hinge members;
Figure 9 is an enlarged detail plan view of the entry area of the casing;
Figure 10 is a sectional view of the entry area of Figure 9 taken along the line 10 - 10;
Figure 11. is a sectional view of the entry area of Figure 9 taken along the line 11 - 11; and Figure 12 is a diagrammatic plan view of the casing of the tray illustrating the method of splicing, storing and organizing optical fibers in a tray according to the present invention.
Description of the Presently Preferred Embodiments The optical fiber splice organizer tray of the present invention will now be described in greater detail with reference to the accompanying drawing wherein like reference numerals refer to like parts throughout the several views. The splice tray 15 comprises a base or casing 16 and a cover 20. In one embodiment the casing is approximately 15.5 inches (39.4 cm) long, 4.25 inches (10.8 cm) wide and 0.41 inch (10.4 mm) in height. Each tray can accommodate up to 24 splices, and stores the respective slack fiber with maximum organization in a minimum amount of space without violating a minimum bend radius of 2 inches (5.08 cm) for the normal fibers and can handle up to 8 buffer tubes.

The casing 16 is preferably a single integrally molded structure and comprises two generally parallel spaced side walls 17 and 18, first 21 and second 22 end walls, and a bottom. wall 23. The side walls 17 and 18 have inner generally parallel fiber directing surfaces and the end walls 21 and 22 include arcuate inner wall surfaces 24 and 25. 'fhe side and end walls have free edges opposite the bottom wall 23, defining generally a plane at the upper open side of the casing. About the periphery of the open side, as illustrated, are formed eight optical fiber retaining lips 26 which extend into the area defined by the inner surfaces of the side and end walls, and are spaced from the bottom wall, for retaining the fibers between the lips 26 and the bottom wall 23. The bottom wall 23 is provided with an opening opposite each of the retaining lips 26 for purposes of molding only. Otherwise the bottom wall is substantially continuous, but is formed with tapered surfaces that. drop from the central area towards the side and end walls to make the casing deeper about the perimeter of the inside surface. This allows for increased fiber storage. ThE bottom wall 23 thus has a convex surface fox' urging the optical fibers placed about the side and end walls to migrate or fall toward the sides or perimeter. The bottom wall 23 is also formed with a recessed parallelogram shaped central area 45 for receiving and storing the splices, to be described later. This convex structure increases support for the fibers at the splice storage area.
At the first end wall inner surface 24 is an opening 30, formed adjacent the side wall 18 through which optical fibers are introduced and exit the casing. The end wall 21 also includes an extended area leading to an arcuate outer wall 31, spaced from the inner wall surface 24, affording a lead-in to the opening 30. The extended area has a bottom wall 32 disposed at the level of the bottom wall 23 at inner wall surfaces of the side walls 17 and 18 and has a ~?lurality of side-by-side buffer tube i _7_ receiving channels 34 disposed therein. The channels extend from a first edge 35 of the extended area along the path of the wall 31 and are defined by raised arcuate spaced ribs 36, see Figure 9. Adjacent the edge 35, see Figures 9 and 11, and forming retaining means for the buffer tubes are headed pins 38 which are flexible sufficiently to receive a buffer tube 40 therebetween and the heads serve to restrict the buffer tube from movement out of the channel. Further, and spaced from the edge 35 are buffer tube retention snaps 39, one for each channel 34 which grasp and hold the sides of the buffer tubes 40, see Fig. 10. The headed pins and the retention snaps serve to form means in each of the channels for retaining the buffer tubes in the channels and effectively affording strain relief on the buffer tubes to restrict pull-out of the buffer tubes. Buffer tubes with an outer diameter of approximately 0.118 inch (3 mm) fit easily into the channels and snap into the retention snaps 39 and below the channel lips 38. The buffer tubes are retained without needing any extra tools or parts and the amount of pressure on the buffer tubes of fibers is controlled eliminating the possibility of inducing transmission losses due to over stressing of the fibers.
The central area of the casing 16 is provided with means for retaining splices in the casing which splices are used to join the ends of the fibers in end to end abutting relationship. The splice tray illustrated is formed specifically to retain a splice corresponding to the splice described and claimed in U.S.A. patent No. 4,818,055. As illustrated in Figs. 1 and 5, the splice retention means comprises a central recessed area 45, positioned between two upstanding posts 44 which support the cover 20. The recess i s -7a-45 has a parallelogram shape with the longitudinal edges generally parallel to the side walls 17 and 18. The ends are disposed at about 70 degrees to the side walls 17 and 18. Along the edges of the area 45 _g_ are a plurality of opposed resilient retaining members or snaps 46. The snaps are best illustrated in Figure 5 wherein a section is made oblique to the casing longitudinal axis and through an optical fiber splice 47 of the type described in patent No. 4,818,055. The snaps 46 are molded integrally with the casing and comprise finger-like members which extend upwardly and inwardly from the edges so the ends can be flexed toward the end of the splice 47. The free ends of the fingers 46 do not extend above the top surface of bottom wall 23 to restrict interference with the .fibers during the positioning of the fibers. The fingers are spaced along the edge and cooperate with a similar finger along the opposite edge to receive and retain the opposite ends of a splice 47 as illustrated. The splice 47 comprises a base 48, fiber aligning element 49, end inserts 50 and a cap or cover 51 which serves to hold the ends of fibers 40A and 80A in abutting relationship. The end inserts 50 of the splice are recessed within the base of the splice and the recesses at the ends of the splice 47 cooperate with the snaps 46 to receive the finger members placed against the ends of the splice 47 to hold the splice in place. In the bottom of the recessed area 45 and between each pair of snaps 46 is an opening 52 which allows insertion of a tool against the cover 51 of the splice 47 to dislodge the splice from the snaps 46. In the tray 15, the splice is disposed oblique to the side walls 17 and 18 of the casing 16 and the bending radius is reduced when the fiber splice is positioned in the splice retaining area.
When a regular screw driver head is inserted into the slot and pushed upwards against the splice cap, the splice pops straight up and out of the retention snaps 46 in such a manner that no other splice is touched or affected and the fibers from the splice are not bent such :35 that loss may be induced. This construction controls where pressure is applied to the splice to remove the splice from the tray. This differs from other trays where it is necessary to enter the tray from the top to remove the splice from a channel grasping opposite sides of the splice.
The optical fibers in the splice are also positioned adjacent or touching the bottom wall 23 of the casing 16 when positioned in the recess 45 to limit the bending of the fiber adjacent to the ends of the splice.
External forces applied to the casing or tray 15, when moving the tray in relationship to adjacent trays, do not have as grEaat a tendency to swing the fibers about the ends of the splice when supported on the surface of bottom wall 23, which swinging motion can cause stress on the fibers at the end of the splice. Therefore, the recess coupled with the rotation of th~~ fiber splice to place the top of the splice in t:he bottom of the recess, provide support for the fibers and the easy removal of the splice by pressing a tool against the flat top surface of the cap 51 of the splice.
The casing 16 is provided with cover retention 2o snaps or hinge members 60 on the free edge of the side wall 17, and the cover is provided with an opening spaced from an edge of the cover 20 to form a bar which is designed to fit under the hinges members 60 to provide the pivot axis for the cover. On the opposite side of the cover is a projection which fits into a slat 62 formed in a retention lip 26 along the side wall 18. The projection and slot 62 provide a latch for the cover 20 to the casing 16.
A plurality of trays 15 can be stacked one above the other to provide a plurality of trays in a storage unit. To this end, each casing 16 is provided with a stud 65 projecting from the end wall 21 and 22, which studs are of a size and shape to be received in openings 66 formed in ears 68. Therefore,, one tray 15 can pivot in relationship to a lower tray to afford access to the lower tray. To hold the trays in a stack, the front edge of the trays are provided with a resilient snap latch 70 which projects forwardly normally from the side wall 18 and has a pawl -lo-which projects above the surface of the generally planar free edge of the side and end walls and the cover. Also positioned on the side wall 18, along the lower edge, in the path o:f the latch is a detent 71 to receive the pawl of the latch of a lower tray to restrict the pivoting of the trays in relationship to one another.
In the illustrated form of the invention the tray can receive eight buffer tubes at one end and splice the associated fiber. The method for using the tray to its greatest advantage in splicing the fibers from the buffer tubes is hereafter described. The buffer tubes of optical fibers to be spliced are chosen. Depending on the application, a group of buffer tubes of fibers (two or more) may be spliced to one buffer tube of fibers, for example, two 6 fiber buffer tubes of fibers may be spliced to one 12 fiber buffer tube of fibers. The buffer tubes are trimmed by cutting the end of the buffered tubes without cutting then fibers to allow approximately one to two meters of the fibers to be exposed beyond the free end of the buffer tube:a. The grease sealant is removed from the fibers and th~~ end of the first buffer tube 40 is placed in <~ channel 34 at the one end of the casing. The fibers are then placed around the inner periphery of the casing and the ends are brought past a mark 75 on the bottom wall 23 adja<:ent the side wall 18, which mark 75 has indica adjacent to .it which says "cut here". The fibers in the buffer tube 40 are all cut to the same length and then the fibers" not the end of the buffer tube, are removed from the casing. The second buffer tube 80, containing the optical fibers to which the first optical fibers are to be spliced, are similarly prepared. The free end of buffer tube 80 is placed into a channel 34 and is snapped into place. The fibers 80A are placed about the periphery of the casing and approximately two loops are made. The ends of the fibers are drawn past a second mark 78 which is similarly indicated as a "cut here" mark. The fibers of the second buffer tube are cut to the same length at the ~f~~~. ~.w~~~

mark 78. These fibers are then removed from the casing.
The ends of the fibers are then prepared for splicing. The free ends of selected optical fibers to be spliced are placed ini~o opposite ends of a splice 47. The splices 47 and the fibers are then returned to the casing and the splices 47 are positioned to place the ends thereof, having the fiber ends therein, in a row along the side wall 18.
The splices are then inverted to place the cover of each splice in the recess 45 with the ends between two opposed splice regaining snaps 46 and each splice is pressed into snapped locked position with a snap 46 against each end of the splice:, as illu~>trated. The fibers at the ends of the splice are: positioned adjacent the bottom wall 23 and the splice is mounted. As the fibers are spliced and the splices 47 are placed in the desired position in the splice tray 15, the fibers placed in splices positioned farther from an end wall surface causes the last loop of the fiber to progressively move away from the inner wall surface 24 or 25, as the case may be, and this provides a separation of the fibers such that the individual fibers can be located and separated from the other fibers spliced in the tray more easily.
The combination of features in the tray of this invention :provides for all the fibers to enter the tray at one point, the splices are all located along the center of the tray, the fibers do not cross over each other during the splicing, and the cutting of the fibers entering one end of the splices t:o one length offers a unique ability to better organize the fibers than offered by other competitive trays.
'the casing of the present invention can be formed with a splice holder in the central portion of the casing to accommodate splices different from the splice 47 illustrated. A mold can be formed to have a center section removed and replaced by a different section and a different splice receiving area can be incorporated in the casing.

Other modification may also be made in the structure illustrated and not. depart from the present invention as defined in the appended claims.

Claims (12)

1. A splice tray for use in storing the spliced ends of optical fibers from a first and a second buffer tube, each of which includes a plurality of said optical fibers, said tray comprising:
an elongate molded casing having two generally parallel spaced side walls, first and second end walls, and a bottom wall, said end walls including arcuate inner wall surfaces and said side walls and said end wall surfaces having free edges defining generally a plane formed with retaining means projecting inwardly therefrom and spaced from said bottom wall for receiving and retaining lengths of optical fibers positioned along said side walls and end wall surfaces:
a splice receiving portion disposed generally centrally of said bottom wall, said splice receiving portion comprising a plurality of side-by-side channels, each having an axis parallel to the axis of an adjacent channel, for receiving splices joining the ends of two abutting optical fibers, said channels being disposed with their axes at an acute angle to said side walls; and said first end wall surface having an opening therein adjacent to one of said side walls and communicating with an area extending beyond said first end wall which has an arcuate surface opposite said first end wall surface and a spaced arcuate inner wall surface communicating with an edge wall parallel to the second of said side walls affording entry of at least a pair of buffer tubes into said casing.
2. A splice tray according to claim 1 wherein said bottom wall is convex and has said splice receiving portion disposed in a central longitudinally extending portion of said bottom wall which is nearer said plane of said free edges of said side and end walls than the outer peripheral edges of said bottom wall for urging slack from optical fibers to rest adjacent said edge walls and said end wall surfaces.
3. A splice tray according to claim 1 wherein said splice receiving channels are formed integrally with said casing and each channel comprises end wall means for resiliently retaining a said spline within said channel.
4. A splice tray according to claim 3 wherein said channel has an opening in the bottom of the channel for allowing access of a tool to remove a splice from a channel.
5. A splice tray according to claim 1 wherein said edge wall has adjacent thereto resilient retaining means for receiving and resiliently retaining buffer tubes in said edge wall directed into arid out of said casing.
6. A splice tray according to claim 2 wherein said tray further comprises a cover pivotally connected to said casing along a said side wall to cover the side of the casing opposite said bottom wall.
7. A splice tray according to claim 6 wherein said cover and said bottom wall have means cooperating with each other to permit stacking of said splice trays and hinge-like movement between the trays in a stack.
8. A splice tray for use in storing the spliced ends of optical fibers from a first and a second buffer tube, each of which includes a plurality of said optical fibers, said tray comprising:
an elongate molded casing having two generally parallel spaced side walls, first and second end walls, and a bottom wall, said end walls including arcuate inner wall surfaces and said side walls and said end wall surfaces having free edges defining generally a plane formed with retaining means projecting inwardly therefrom and spaced from said bottom wall for receiving and retaining lengths of optical fibers positioned along said side walls and end wall surfaces; and a splice receiving portion disposed generally centrally of said bottom wall and recessed in the bottom wall, said recessed portion having edge walls generally parallel to said side walls and a plurality of spaced finger means extending from at least one of said edge walls toward the opposite edge wall for resiliently engaging an end of a splice positioned in said recessed portion.
9. A splice tray according to claim 8 wherein an opening is disposed in the bottom of said recessed area between edges of said recess affording access therethrough to the splice for removing a splice from the resilient finger means.
10. A method of handling and storing spliced ends of optical fibers between a pair of buffer tubs, each of said buffer tubes encasing a plurality of optical fibers, comprising the steps of:
stripping a length of the buffer tube from the plurality of optical fibers placing the end of the buffer tube in one end of a tray and snapping the same in place to retain the free end of the buffer tube in the casing;
extending the optical fibers along the side and end walls of the tray to wrap approximately one to two wraps of slack fiber of each optical fiber within the tray directing the optical fibers past the midpoint of one side wall of the trays cutting the fibers from the buffer tube at a predetermined point to make the exposed optical fibers the same length;
placing an end of each fiber in a splice;
and placing the splices in side-by-side position along the length of the tray, whereby the loops of the fibers will be spaced progressively at different distances from one end wall of the tray.
11. The method of claim 10 further comprising the steps of:
placing a second buffer tube in the casing stripping a length of the second buffer tube to expose the individual optical fibers;
wrapping the optical fibers about the inside walls of the tray making one or two wraps and terminating along the other side wall of the tray and cutting the optical fibers to the same length; and placing the ends o~ the optical fibers into the other end of a splice receiving one end of a fiber from the first buffer tube whereby, when the splices are positioned in the tray, the loops of the fibers will be spaced progressively at different distances from the other end wall of the tray.
12. The method according to claim 11 further including the step of snapping the splices into channels sufficiently for resilient retainers to engage opposite ends of the splices to hold the same in side-by-side relationship in the tray.
CA002041299A 1990-05-21 1991-04-26 Splice tray and method Expired - Fee Related CA2041299C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/525,608 US5074635A (en) 1990-05-21 1990-05-21 Splice tray and method
US525,608 1990-05-21

Publications (2)

Publication Number Publication Date
CA2041299A1 CA2041299A1 (en) 1991-11-22
CA2041299C true CA2041299C (en) 2003-04-22

Family

ID=24093940

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002041299A Expired - Fee Related CA2041299C (en) 1990-05-21 1991-04-26 Splice tray and method

Country Status (5)

Country Link
US (1) US5074635A (en)
JP (1) JP2594938Y2 (en)
KR (1) KR0136261Y1 (en)
CA (1) CA2041299C (en)
DE (1) DE9106205U1 (en)

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4221475C2 (en) * 1992-06-30 1999-12-09 Siemens Ag Fiber optic splice insert for a terminal block housing
DE4302837A1 (en) * 1993-01-28 1994-08-18 Krone Ag Housing for passive optical components
FR2703160B1 (en) * 1993-03-26 1995-06-02 Corning Inc Cassette for optical fiber device, fitted with a bundle of flexible fiber protection tubes.
GB2283373B (en) * 1993-10-01 1997-04-30 Bicc Plc Breakout
GB9320262D0 (en) * 1993-10-01 1993-11-17 Bicc Plc Breakout
GB9400626D0 (en) * 1994-01-14 1994-03-09 Augat Limited Management of optical fibres
GB2305739B (en) * 1994-09-28 1998-11-04 Telephone Cables Ltd Optical fibre splice tray
US5689605A (en) * 1995-02-09 1997-11-18 Lucent Technologies Inc. Splice holder assembly for an optical fiber cable splice closure
GB2298496B (en) * 1995-02-28 1998-06-03 Bowthorpe Plc Optical fibre splice storage arrangements
US5825961A (en) * 1995-03-20 1998-10-20 Psi Telecommunications, Inc. Fiber optic closure with cable adapter spool
US5568584A (en) * 1995-03-20 1996-10-22 Psi Telecommunications, Inc. Fiber optic closure with cable adapter spool
NZ303594A (en) * 1995-03-31 1999-01-28 Minnesota Mining & Mfg Optical fibre splice tray arrangement
US5590234A (en) * 1995-03-31 1996-12-31 Minnesota Mining And Manufacturing Company Fiber optic splice organizers
TW286371B (en) * 1995-03-31 1996-09-21 Minnesota Mining & Mfg
US5617501A (en) * 1995-03-31 1997-04-01 Minnesota Mining And Manufacturing Company Shield bond strain connector for fiber optic closure
US5553183A (en) * 1995-04-03 1996-09-03 Antec Corp. Apparatus for and methods of splitting fiber optic signals
US5613030A (en) * 1995-05-15 1997-03-18 The Whitaker Corporation High density fiber optic interconnection enclosure
WO1997022025A1 (en) * 1995-12-08 1997-06-19 Psi Telecommunications, Inc. Fiber optic splice tray
US5832162A (en) * 1995-12-15 1998-11-03 Tii Industries, Inc. Multiple fiber fusion splice protection sleeve
US5694511A (en) * 1996-09-09 1997-12-02 Lucent Technologies Inc. Optical switching apparatus and method for use in the construction mode testing of a modular fiber administration system
US5796908A (en) * 1996-09-11 1998-08-18 Lucent Technologies Inc. Optical fiber organizing tray
US5892877A (en) * 1997-06-30 1999-04-06 Tii Industries, Inc. Optical fiber strain relief system
US6263141B1 (en) 1998-09-09 2001-07-17 Adc Telecommunications, Inc. Optical fiber cable management device including storage tray
US6215938B1 (en) * 1998-09-21 2001-04-10 Adc Telecommunications, Inc. Fiber optic cabinet and tray
US6353697B1 (en) * 1999-07-30 2002-03-05 Lucent Technologies, Inc. Modular layered splice holder
US6379166B1 (en) * 2000-06-26 2002-04-30 Randl Industries, Inc. Fiber optic cable outlet box
US6612515B1 (en) 2000-08-28 2003-09-02 Adc Telecommunications, Inc. Telecommunications cable storage spool
GB2367378B (en) * 2000-09-27 2004-08-25 Krone Gmbh Patch panel
US6625374B2 (en) 2001-03-07 2003-09-23 Adc Telecommunications, Inc. Cable storage spool
US6567601B2 (en) * 2001-06-19 2003-05-20 Lucent Technologies Inc. Fiber-optic cable routing and management system and components
US6819857B2 (en) 2001-10-12 2004-11-16 Adc Telecommunications, Inc. Rotating vertical fiber tray and methods
US20030147604A1 (en) * 2002-02-01 2003-08-07 Tapia Alejandro L. Housing assembly for providing combined electrical grounding and fiber distribution of a fiber optic cable
US7027695B2 (en) * 2003-06-28 2006-04-11 General Dynamics Advanced Information Systems, Inc. Fiber transition segment for use in optical fiber hydrophone array
US6879545B2 (en) * 2003-06-28 2005-04-12 General Dynamics Advanced Information Systems, Inc. Woven fiber protection cable assembly for use in optical fiber hydrophone array
US6904222B2 (en) * 2003-06-28 2005-06-07 General Dynamics Advanced Information Systems, Inc. Optical fiber splice protection apparatus for use in optical fiber hydrophone array
US6934451B2 (en) * 2003-06-28 2005-08-23 General Dynamics Advanced Information Systems, Inc. Mount for use in optical fiber hydrophone array
US6870997B2 (en) * 2003-06-28 2005-03-22 General Dynamics Advanced Information Systems, Inc. Fiber splice tray for use in optical fiber hydrophone array
US6865334B2 (en) * 2003-06-28 2005-03-08 General Dynamics Advanced Information Systems, Inc. Termination assembly for use in optical fiber hydrophone array
JP3870270B2 (en) * 2003-11-18 2007-01-17 独立行政法人物質・材料研究機構 Optical fuse and optical fuse manufacturing parts
US20050207711A1 (en) * 2004-03-19 2005-09-22 Vo Chanh C Optical termination pedestal
US20060067636A1 (en) * 2004-09-24 2006-03-30 3M Innovative Properties Company Connector and splice holder device
US7333709B2 (en) * 2004-09-24 2008-02-19 3M Innovative Properties Company Splice holder device
US20060215980A1 (en) * 2005-03-24 2006-09-28 Yilmaz Bayazit Splice tray arrangement
WO2007016443A2 (en) * 2005-07-29 2007-02-08 Afl Telecommunications Llc Storage device for use in fiber optic communication systems and method of using the same
US7272291B2 (en) * 2005-08-25 2007-09-18 Adc Telecommunications, Inc. Splice chip device
US7310471B2 (en) 2005-08-25 2007-12-18 Adc Telecommunications, Inc. Stackable splice chip device
US7274852B1 (en) * 2005-12-02 2007-09-25 Adc Telecommunications, Inc. Splice tray arrangement
US20070280619A1 (en) * 2006-05-23 2007-12-06 Conner Mark E Multi-directional optical splice organizer
WO2008048791A1 (en) * 2006-10-16 2008-04-24 3M Innovative Properties Company Splice holder device
US7936960B2 (en) * 2006-11-09 2011-05-03 Corning Cable Systems Llc Optical fiber slack storage for splice trays and splice assemblies
US7822310B2 (en) 2007-02-28 2010-10-26 Corning Cable Systems Llc Fiber optic splice trays
US7418184B1 (en) 2007-03-15 2008-08-26 Curtis Paul Gonzales Fiber optic categorization and management tray
US8798427B2 (en) * 2007-09-05 2014-08-05 Corning Cable Systems Llc Fiber optic terminal assembly
US7809230B2 (en) 2007-09-25 2010-10-05 Ksaria Corporation Apparatus for shaping the end of an optical fiber
US20090211171A1 (en) * 2008-02-25 2009-08-27 Timothy Frederick Summers Multi-dwelling unit multipurpose signal distribution apparatus
US7889961B2 (en) 2008-03-27 2011-02-15 Corning Cable Systems Llc Compact, high-density adapter module, housing assembly and frame assembly for optical fiber telecommunications
US8009954B2 (en) * 2008-04-21 2011-08-30 Adc Telecommunications, Inc. Fiber optic splice tray
US8452148B2 (en) 2008-08-29 2013-05-28 Corning Cable Systems Llc Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US11294136B2 (en) 2008-08-29 2022-04-05 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
CN102209921B (en) * 2008-10-09 2015-11-25 康宁光缆系统有限公司 There is the fibre-optic terminus supported from the adapter panel of the input and output optical fiber of optical splitters
US8879882B2 (en) * 2008-10-27 2014-11-04 Corning Cable Systems Llc Variably configurable and modular local convergence point
EP2221932B1 (en) * 2009-02-24 2011-11-16 CCS Technology Inc. Holding device for a cable or an assembly for use with a cable
EP2237091A1 (en) * 2009-03-31 2010-10-06 Corning Cable Systems LLC Removably mountable fiber optic terminal
US8699838B2 (en) 2009-05-14 2014-04-15 Ccs Technology, Inc. Fiber optic furcation module
US9075216B2 (en) 2009-05-21 2015-07-07 Corning Cable Systems Llc Fiber optic housings configured to accommodate fiber optic modules/cassettes and fiber optic panels, and related components and methods
US8280216B2 (en) 2009-05-21 2012-10-02 Corning Cable Systems Llc Fiber optic equipment supporting moveable fiber optic equipment tray(s) and module(s), and related equipment and methods
US8712206B2 (en) 2009-06-19 2014-04-29 Corning Cable Systems Llc High-density fiber optic modules and module housings and related equipment
CN106918885B (en) 2009-06-19 2021-09-21 康宁光缆系统有限责任公司 High density and bandwidth fiber optic devices and related apparatus and methods
AU2010262903A1 (en) * 2009-06-19 2012-02-02 Corning Cable Systems Llc High capacity fiber optic connection infrastructure apparatus
EP2443498B1 (en) * 2009-06-19 2020-06-24 Corning Optical Communications LLC High fiber optic cable packing density apparatus
US8467651B2 (en) 2009-09-30 2013-06-18 Ccs Technology Inc. Fiber optic terminals configured to dispose a fiber optic connection panel(s) within an optical fiber perimeter and related methods
US8625950B2 (en) * 2009-12-18 2014-01-07 Corning Cable Systems Llc Rotary locking apparatus for fiber optic equipment trays and related methods
US8992099B2 (en) * 2010-02-04 2015-03-31 Corning Cable Systems Llc Optical interface cards, assemblies, and related methods, suited for installation and use in antenna system equipment
US9547144B2 (en) 2010-03-16 2017-01-17 Corning Optical Communications LLC Fiber optic distribution network for multiple dwelling units
US8913866B2 (en) 2010-03-26 2014-12-16 Corning Cable Systems Llc Movable adapter panel
AU2011265751B2 (en) 2010-04-16 2015-09-10 Corning Optical Communications LLC Sealing and strain relief device for data cables
US8792767B2 (en) 2010-04-16 2014-07-29 Ccs Technology, Inc. Distribution device
EP2381284B1 (en) 2010-04-23 2014-12-31 CCS Technology Inc. Under floor fiber optic distribution device
US9075217B2 (en) 2010-04-30 2015-07-07 Corning Cable Systems Llc Apparatuses and related components and methods for expanding capacity of fiber optic housings
US8879881B2 (en) 2010-04-30 2014-11-04 Corning Cable Systems Llc Rotatable routing guide and assembly
US9720195B2 (en) 2010-04-30 2017-08-01 Corning Optical Communications LLC Apparatuses and related components and methods for attachment and release of fiber optic housings to and from an equipment rack
US8660397B2 (en) 2010-04-30 2014-02-25 Corning Cable Systems Llc Multi-layer module
US9632270B2 (en) 2010-04-30 2017-04-25 Corning Optical Communications LLC Fiber optic housings configured for tool-less assembly, and related components and methods
US9519118B2 (en) 2010-04-30 2016-12-13 Corning Optical Communications LLC Removable fiber management sections for fiber optic housings, and related components and methods
US8705926B2 (en) 2010-04-30 2014-04-22 Corning Optical Communications LLC Fiber optic housings having a removable top, and related components and methods
US8254738B2 (en) 2010-08-27 2012-08-28 Ksaria Corporation Methods and systems for efficient installation of cables in watercraft
US8718436B2 (en) 2010-08-30 2014-05-06 Corning Cable Systems Llc Methods, apparatuses for providing secure fiber optic connections
US9547145B2 (en) 2010-10-19 2017-01-17 Corning Optical Communications LLC Local convergence point for multiple dwelling unit fiber optic distribution network
US9279951B2 (en) 2010-10-27 2016-03-08 Corning Cable Systems Llc Fiber optic module for limited space applications having a partially sealed module sub-assembly
US9116324B2 (en) 2010-10-29 2015-08-25 Corning Cable Systems Llc Stacked fiber optic modules and fiber optic equipment configured to support stacked fiber optic modules
US8662760B2 (en) 2010-10-29 2014-03-04 Corning Cable Systems Llc Fiber optic connector employing optical fiber guide member
EP2646867B1 (en) 2010-11-30 2018-02-21 Corning Optical Communications LLC Fiber device holder and strain relief device
CN103380391B (en) 2011-02-02 2016-04-13 康宁光缆系统有限责任公司 Be applicable to set up optics and be connected to the optical backplane extension module of the information processing module be arranged in equipment rack and relevant assembly
US9008485B2 (en) 2011-05-09 2015-04-14 Corning Cable Systems Llc Attachment mechanisms employed to attach a rear housing section to a fiber optic housing, and related assemblies and methods
CN103649805B (en) 2011-06-30 2017-03-15 康宁光电通信有限责任公司 Fiber plant assembly of shell using non-U-width size and associated method
US8953924B2 (en) 2011-09-02 2015-02-10 Corning Cable Systems Llc Removable strain relief brackets for securing fiber optic cables and/or optical fibers to fiber optic equipment, and related assemblies and methods
US9239428B2 (en) 2011-09-28 2016-01-19 Ksaria Corporation Epoxy dispensing system and dispensing tip used therewith
US9038832B2 (en) 2011-11-30 2015-05-26 Corning Cable Systems Llc Adapter panel support assembly
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
BR112014024266B1 (en) * 2012-04-05 2020-06-23 Prysmian S.P.A. FIBER OPTIC TRAY, AND, FIBER OPTIC MANAGEMENT TRAY SET
US9004778B2 (en) 2012-06-29 2015-04-14 Corning Cable Systems Llc Indexable optical fiber connectors and optical fiber connector arrays
US9250409B2 (en) 2012-07-02 2016-02-02 Corning Cable Systems Llc Fiber-optic-module trays and drawers for fiber-optic equipment
US9049500B2 (en) 2012-08-31 2015-06-02 Corning Cable Systems Llc Fiber optic terminals, systems, and methods for network service management
US9042702B2 (en) 2012-09-18 2015-05-26 Corning Cable Systems Llc Platforms and systems for fiber optic cable attachment
US8909019B2 (en) 2012-10-11 2014-12-09 Ccs Technology, Inc. System comprising a plurality of distribution devices and distribution device
EP2725397B1 (en) 2012-10-26 2015-07-29 CCS Technology, Inc. Fiber optic management unit and fiber optic distribution device
US8985862B2 (en) 2013-02-28 2015-03-24 Corning Cable Systems Llc High-density multi-fiber adapter housings
US11516327B2 (en) 2018-05-01 2022-11-29 Commscope Technologies Llc Tray tower with position indexing trays
WO2020239827A1 (en) * 2019-05-30 2020-12-03 CommScope Connectivity Belgium BVBA Splice holder and adapter for a telecommunications product
US11575228B2 (en) 2020-07-27 2023-02-07 Raytheon Company Helical strain relief for electrical conductors, fiber optic cables, or other cables
SE545433C2 (en) * 2022-01-31 2023-09-12 Tykoflex Ab Splicing device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2564989B3 (en) * 1984-05-25 1986-08-08 Signalisation FIBER OPTIC CABLES STORAGE DEVICE
US4702551A (en) * 1984-10-11 1987-10-27 Reliance Comm/Tec Corporation Method and apparatus for handling and storing cabled spliced ends of fiber optics
US4687289A (en) * 1985-09-17 1987-08-18 Brintec Corporation Fiberoptic splice organizer
JPS62112106A (en) * 1985-09-17 1987-05-23 エ−デイ−シ− テレコミユニケ−シヨンズ,インコ−ポレイテイド Mutual connection of optical fibers and optical fiber distributor for implementing the same
US4679896A (en) * 1985-09-27 1987-07-14 Preformed Line Products Company Optical fiber splice organizer
JPS62188707A (en) * 1986-02-14 1987-08-18 Yoshinobu Kobayashi Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
EP0331479A1 (en) * 1988-03-02 1989-09-06 BRITISH TELECOMMUNICATIONS public limited company Fibre and splice organiser
GB8805017D0 (en) * 1988-03-02 1988-03-30 British Telecomm Splice tray
JPH063487B2 (en) * 1988-03-15 1994-01-12 住友電気工業株式会社 Multi-fiber optical fiber cable junction box
US4932744A (en) * 1988-10-04 1990-06-12 Communications Technology Corporation Closure for optical fiber splice connectors
US4989830A (en) * 1990-01-26 1991-02-05 Ratnik Industries, Inc. Motorized hydrant

Also Published As

Publication number Publication date
JP2594938Y2 (en) 1999-05-24
DE9106205U1 (en) 1991-09-19
JPH0498005U (en) 1992-08-25
KR0136261Y1 (en) 1999-05-15
KR910020712U (en) 1991-12-20
US5074635A (en) 1991-12-24
CA2041299A1 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
CA2041299C (en) Splice tray and method
US5515472A (en) Fiber optic splice holder
US6424782B1 (en) Fiber optic splice closure and method of routing optical fiber ribbons
US5835657A (en) Fiber optic splice tray
US6507691B1 (en) Fiber optic splice organizer with splicing tray and associated method
US5278933A (en) Fiber optic splice organizer and associated method
EP0490644B1 (en) Optical fiber cable closure having enhanced storage capability
US4489830A (en) Retainer for packaged optical fiber splices and organizing tray utilizing such retainers
US6192180B1 (en) Tray for splicing optical ribbon fibers
US5566268A (en) Strain relieving holder for optical fiber cable
AU625975B2 (en) Optical fibre jointing
KR20030085568A (en) Optical fibre organiser
EP0646811A2 (en) Breakout for optical fibres
EP0150568B1 (en) Retainer for packaged optical fiber splices and organising tray utilising such retainers
WO2003017684A2 (en) Optical fibre management assembly with storage trays
GB2368136A (en) Optic fibre splice storage tray
AU752334B2 (en) Fibre optic splice closure
GB2283373A (en) Breakout
AU716215B2 (en) Fiber optic splice closure
NZ314586A (en) Fibre optic splice holder, compliant base with rigid cover

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed