CA2042887A1 - Functionalized thermoplastic elastomers - Google Patents

Functionalized thermoplastic elastomers

Info

Publication number
CA2042887A1
CA2042887A1 CA002042887A CA2042887A CA2042887A1 CA 2042887 A1 CA2042887 A1 CA 2042887A1 CA 002042887 A CA002042887 A CA 002042887A CA 2042887 A CA2042887 A CA 2042887A CA 2042887 A1 CA2042887 A1 CA 2042887A1
Authority
CA
Canada
Prior art keywords
block
polymerized
polymer
block polymer
aromatic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002042887A
Other languages
French (fr)
Inventor
Donn A. Dubois
Carl L. Willis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Canada Ltd
Original Assignee
Shell Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Canada Ltd filed Critical Shell Canada Ltd
Publication of CA2042887A1 publication Critical patent/CA2042887A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/048Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers, conjugated dienes and polar monomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

A B S T R A C T

FUNCTIONALIZED THERMOPLASTIC ELASTOMERS

Block copolymers of particular structure comprising blocks of polymerized alkenyl aromatic compound and polymerized conjugated alkadiene, as well as selectively hydrogenated derivatives thereof, are functionalized by the presence of additional polar blocks of polymerized alkyl methacrylate.

Description

;2042~387 FUNCTIONALIZED THERMOPLASTIC ELASTOMERS

This invention relates to certain novel, optionally selectively hydrogenated, block copolymers having a polar block and non-polar blocks. More particularly, the invention relates to thermoplastic elastomers comprising optionally selectively hydrogenated block polymers of at least one block of polymerized alkenyl aromatic compound, a block of polymerized con~ugated alkadiene and at least one block of polymerized alkyl methacrylate.
Elastomeric polymers, both homopolymers and polymers of more than one monomer, are well known in the art and include natural rubbers as well as a wide variety of synthetic materials. A
particularly useful class of synthetic elastomers is the class of thermoplastic elastomers which demonstrates elastomeric properties at ambient temperatures but which is processable at somewhat elevated temperatures by methods more conventionally employed for non-elastomeric thermoplastics. Such thermoplastic elastomers are illustrated by a number of types of block polymers including, for example, block polymers of alkenyl aromatic compounds and conjugnted alkadiene. Block polymers of styrene and but~diene are illustrative. This particular type of block polymer is well known in the art and a number are commercially available as KRATON
Thermoplastic Rubber (KRATON is a trade mark).
The properties of block polymers, even containing the same or similar monomers, will vary considerably with the arrangement of the monomeric blocks within the block polymer and with the relative molecular weight of each block. To obtain good elastomeric properties a so-called "hard" phase, e.g., a polymerized alkenyl aromatic compound portion, of the molecule must be at least a terminal or outer portion of the polymeric molecule with the "rubber" phase, e.g., a polymerized alkadiene portion of the molecule being internal. If a block polymer contains the rubber -- 204;~:8~37 - 2 phase as the outer portion of the molecule and the hard phase as an internal portion, the polymer will not demonstrate the desired elastomeric properties and will be somewhat waxy in character with little tensile strength.
It is also known that certain of the properties such as resistance to oxidation of this class of block polymers are improved by the selective hydrogenation of some or all of the carbon-carbon unsaturation in the polyalkadiene or aliphatic portion of the molecule and, on occasion, by the hydrogenation of substantially all the carbon-carbon unsaturation including that unsaturation in the poly(alkenyl aromatic compound) portion of the molecule. A number of the selectively hydrogenated block polymers are also well known and commercially available as KRATON G
Thermoplastic Rubber.
An alternate method of modifying selected properties of the block polymers is to provide polarity or functionality within the block polymer as by introducing functional groups as substituents within the molecule or by providing one or more additional blocks within the polymeric structure which are polar in character. -An example of the former method of introducing carboxylic acid functionality is the introduction of functional substituents onto the aromatic rings of a block copolymer in which the carbon-carbon unsaturation of the aliphatic portion has been selectively hydrogenated. This type of functionalization is accomplished by the successive steps of metallation, carboxylation and acidification. This overall carboxylation proce-ss is considered conventional.
Illustrative of the method comprising ~he introduction of :
blocks containing functional groups are the polymers disclosed in the published European Patent Application 298,667, which include at least one block of polymerized alkyl methacrylate. These block polymers are polyalkadiene-polystyrene-poly(alkyl methacrylate) materials and thus are not true thermoplastic elastomers by virtue of the hard or polystyrene phase being an internal portion of the molecule and the rubber or polyalkadiene phase being terminal. It 2~
would be of advantage to provide block polymers, functionalized by the presence of additional blocks containing functional groups, which exhibit properties of thermoplastic elastomers.
The present invention provides novel thermoplastic elastomeric block polymers of at least one block of at least predominantly polymerized alkenyl aromatic compound, one internal block oi at least predominantly polymerized conjugated alkadiene and at least one terminal block of polymerized alkyl methacrylate, which block polymers are optionally selectively hydrogenated in the polyalkadiene or aliphatic segment, The novel thermoplastic elas~omers of the invention are base block polymers, or selectively hydrogenated derivatives thereof, .
having (l) at least one block of at least predominantly polymerized poly(alkenyl aromatic compound), (2) an internal block of at least predominantly polymerized conjugated alkadiene and (3) at least one terminal block of polymerized alkyl methacrylate. In the modification of the block polymers of the invention which are sa].ectively hydrogenated, the hydrogenation is of the polyalkadiene or aliphatic block with little or no hydrogenation of the poly(alkenyl aromatic compound) block or the polymethacrylate block.
The non-hydrogenated or base block polymers of the invention are represented by the formula (C ~ A - B ( A ~ C (I) wherein A independently is polymerized alkenyl aromatic compound.
For convenience, the A portion of the block polymer molecule is referred to as the aromatic portion. B is a block of polymerized conjugated alkadiene, also referred to as the aliphatic block. C
is polymerized alkyl methacrylate, also referred to as the methacrylate portion, polymerized through the ethylenic unsaturation of the methacrylate moiety. The terms x and y independently are integers from 0 to l which signify whether the polymer is a triblock polymer, a tetrablock polymer or a pentablock polymer. W~len y is 1, x must also be l, however.

.

~:

-2~)~2~3~7 The alkenyl aromatic compound employed as the precursor of the A portion of the polymers of formula I is a hydrocarbon compound of up to 18 carbon atoms having an alkenyl group of up to 6 c~rbon atoms attached to a ring carbon atom of an aromatic ring system of up to 2 aromatic rings. Such alkenyl aromatic compounds are illustrated by styrene (vinylbenzene), 2-butenylnaphthalene, 3-isopropenylbiphenyl and isopropenylnaphthalene. The preferred alkenyl aromatic compounds have an alkenyl group of up to 3 carbon atoms attached to a benzene ring as exemplified by styrene and styrene homologs such as those of the formula R ~ ~l - CH2 (II) wherein R independently is hydrogen or alkyl of up to 4 carbon atoms, particularly methyl. These alkenyl benzenes include styrene, ~-methylstyrene, p-methylstyrene and ~,4-dimethylstyrene.
Styrene and ~-methylstyrene are particularly preferred alkenyl a.romatic compounds, especially styrene.
Each A block of the block polymers is at least predominantly the polymerized alkenyl aromatic compound and is preferably homopolymeric. An A block containing a polymerized mixture of more than one alkenyl aromatic compound is al50 suitable but is less preferred. Also useful are A blocks w~herein the nlkenyl aromatic compound is copolymerized with a lesser proporti.on of the conjugated alkadiene of the B block portion. One type of this latter block is conventionally termed "tapered" and such blocks will contain at least 80% by mole of the alkenyl aromatic compound with any remainder being the conjugated alkadiene. The average molecular weight of an A block will be from 5,000 to 50,000, preferably from 5,000 to 20,000.
The B block of the block polymer of formula I is a block of at least predominantly polymerized conjugated alkadiene. The alkadienes useful as the precursors of the B block have up to 8 carbon atoms such as those conjugated alkadienes of the formula ` .

20~
R R
R - CH = C - C = CH2 (III) wherein R has the previously stated meaning. Illustrative of such conjugated alkadienes are 1,3-butadiene (butadiene), 2-methyl-1,3-butadiene (isoprene), 1,3-pentadiene (piperylene), 1,3-octadiene and 2-methyl-1,3-pentadiene. Preferred conjugated alkadienes are butadiene and isoprene, particularly butadiene. A B
block which contains more than one conjugated alkadiene or a tapered block with the monomer of an A block is also useful.
Satisfactory B blocks contain at least 90~ of conjugated alkadiene with any re~ainder being the alkenyl aromatic compound of block A.
B blocks which are homopolymeric are preferred. The average molecular weight of the B block is from 20,000 to 500,000 but preferably from 30,000 to 200,000.
Within a polymerized conjugated alkadiene block, either or both of two modes of polymerization may have taken place, i.e., ;
1,4-polymerization and 1,2 polymerization. The nature of and the control of these modes is well understood in the art and depend, inter alia, on the reaction conditions and reaction diluent.
Within the polyalkadiene block of the polymers of formula I, the percentage of units produced by 1,4 polymerization is at least 5 and preferably at least 20~.
The alkyl methacrylate employed as the precursor of the C
portion of the polymers of formula I is an alkyl methacrylate wherein the alkyl group has up to 14 carbon atoms inclusive.
Illustrative of such methacrylate esters are methyl methacrylate, ethyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, i-amyl methacrylate, hexyl methacrylate, decyl methacrylate and dodecyl methacrylate. Largely because of ease of polymerization, the preferred alkyl methacrylates are branched-butyl methacrylates, i.e., iso-butyl methacrylate and t-butyl methacrylate. The desired - 30 poly(alkyl methacrylate) block is produced by directly polymerizing the corresponding alkyl methacrylate monomer or alternatively the desired block is obtained by polymerizing a more easily ~0~2~
polymerizable methacrylate and subsequently transesterifying the product to introduce the desired alkyl group.
The process of producing the block polymers of formula I is, at least in part, rather particular because of the tendency of the methacrylate monomer to form species which terminate polymerization. In the process of producing a more conventional block polymer, i.e., a block polymer of styrene and butadiene, a variety of process schemes are available. Such procedures includP
the production by anionic polymerization of a so-called "living"
polymer of either type of monomer before "crossing over" to the polymerization of the other type of monomer. It is also conventional to produce such block polymers by sequential polymeri-zation or by the use of coupling agents to obtain branched or radial polymers. In the production of the polymers of the invention, the aliphatic and aromatic portions are produced by sequential polymerization and the alkyl methacrylate block is then produced as a final process step.
In a typical procedure to form a polymer of formula I wherein x and y are zero, the alkenyl aroma~ic compound is anionically polymerized in the presence of a metal alkyl initiator, preferably an alkali metal alkyl. The use of such initiators in block polymerizations is well known and conventional. A particularly preferred initiator is sec butyllithium. The polymerization takes place in a non polar hydrocarbon solve~nt such as cyclohexane or in mixed polar~non-polar solvents, e.g., mixtures of cyclohexane and an ether such as tetrahydrofuran or diethyl ether. Suitable reaction temperatures are from 20C to 80C and the reaction pressure is sufficient to maintain the mixture in the liquid phase.
The resulting product is a poly(alkenyl aromatic compound) species with a terminal organometallic site which is used for further polymerization. This species is then used to initiate polymerization of the conjugated alkadiene by introducing the alkadiene into the product mixture of the initial polymeriæation.
Polymerization of the alkadiene results in the production of the B
block of the polymers of formula I with the product also retaining :

2~ 8~37 an organometallic site for further polymerization. When the reaction solvent is non-polar, the desired degree of 1,4 polymerization takes place, whereas the presence of polar material in a mixed solvent results in an increased proportion of 1,2 polymerization. Polymers resulting from 6% to 95~ of 1,2 polymerization are of particular interest. In the case of 1,4 polymerization, the presence of ethylenic unsaturation in the polymeric chain results in cis and trans configurations.
Polymerization to give a cis configuration is predominant. If the polymerization of the alkenyl aromatic compound is substantially complete before the conjugated alkadiene is introduced, substantially homopolymeric A and B blocks will result. If the conjugated alkadiene is introduced before the polymerization of the alkenyl aromatic compound is complete, the resulting blocks will be lS tapered.
The third polymerization step in the production of the block polymers of formula I wherein y is zero will depend upon the nature of the block polymer desired. In the embodiment wherein the block polymer is a triblock polymer, i.e., x is also zero, the living diblock species resulting from conjugated alkadiene polymerization is used to initiate polymerization of the alkyl methacrylate. When the production of a tetrablock polymer is desired, i.e., x is 1, the diblock species is used to initiat:o the polymerization of the second A block in the media of the production of the diblock species by substantially the same procedure as that used to polymerize the prior blocks. The resulting living triblock polymeric species retains an organometallic site which is then used to initiate alkyl methacrylate polymerization.
The production of the non-hydrogenated polymer of the invention in which x and y are each 1 is somewhat different procedurally, although the process technology is broadly old. In this modification, the central B block is produced first by polymerizing the conjugated alkadiene in the presence of a difunctional initiator, e.g., 1,3-bis(l-lithio-1,3-dimethyl-pentyl)benzene, to produce a living polyalkadiene species with two ' 2~ 887 reactive organometallic sites. This polymeric species is then reacted with an alkenyl aromatic compound to produce a triblock polymeric species of two A blocks and a central B portion, also with two reactive organometallic sites. This species is then employed to initiate polymerization of the alkyl methacrylate at each of the two terminal reactive sites.
As stated, a living diblock species or triblock species is used to initiate alkyl methacrylate polymerization. The polymeric species is reacted, typically in situ without need for recovery or purification, with alkyl methacrylate to add a polymethacrylate block at the reactive site of the polymeric species of formula IV.
The relative proportion of the alkyl methacrylate to be employed will be determined by the composition of the functionalized block copolymer whose production is desired. Typically, sufficient alkyl methacrylate is added to constitute from 1~ to 50~ of the molecular weight of the block copolymer. Reaction to produce the methacrylate block takes place in the mixed solvent at a temperaturQ from 10C to 50C, preferably from 10C to 30C.
Subsequent to production of the polymethacrylaco block, the polymeri~ation is terminated by reaction with a protic material, typically an alkanol such as methanol or ethanol. The polymer is then recovered by well known procedures such as precipitation or solvent removal.
In terms of formula I, the polymers produced by the above procedure are of the type ABC or ABAC depending upon whether a second block of alkenyl aromatic compound was introduced into the polymer. The polymers will have an average molecular weight of from 20,000 to l,000,000, preferably from 40,000 to 500,000, as determined by gel permeation chromatography.
An alternate and generally conventional method oE indicating the composition of polymers such as those of formula I is to indicate the monomer whose polymerization has formed the block.
Thus, a triblock polymer of styrene, butadiene and alkyl methacrylate is termed SBMA where S represents a polystyrene block, B represents a butadiene block and MA represents a methacrylate 20g~8~
block. A tetrablock polymer of the same components would be termed SBSMA and a triblock polymer having a block of isoprene rather than butadiene would be termed an SIMA. Block polymers of the SBMA type are particularly preferred. A pentablock polymer would be tenned MASBSMA.
In a second modification of the functionalized block polymers of the invention, the block polymers of alkenyl aromatic compound, conjugated alkadiene and alkyl methacrylate are selec~ively hydrogenated to reduce the extent of unsaturation in the aliphatic portion of the block polymer while not substantially reducing the aromatic carbon-carbon unsaturation of the aromatic portion of the block copolymer or hydrogenating or hydrogenolyzing the alkyl methacrylate portion. A number of catalysts, particularly transition metal catalysts, are capable of selectively hydrogenating the aliphatic unsaturation of a hydrocarbon SBS
polymer, but the presence of the poly(methacrylate) block makes the selective hydrogenation more difficult. To selectively hydrogenate the aliphatic unsaturation it is preferred to employ a "homogeneous" catalyst formed from a soluble nickel compound and a trialkylaluminum. Nickel naphthenate or nickel octoate is a prefer~ed nickel salt. Although this catalyst system is one of the catalysts sonventionally employe.d for selective hydrogenation of an SBS polymer, other "conventional" catalysts for the SBS selective hydrogenation are not suitable for selective hydrogenation of the poly(methacrylate)-containing block polymers of the invention.
In the selective hydrogenation process, the base block polymer is reacted in situ or if isolated is dissolved in a suitable solvent such as cyclohexane or a cyclohexane-ether mixture and the resulting solution is contacted with hydrogen gas in the presence of the homogeneous nickel catalyst. Hydrogenation takes place at temperatures from 25C to 150C and hydrogen pressures from l bar to 70 bar. Hydrogenation is considered to be complete when at least 90~, preferably at least 98~, of the carbon-carbon unsaturation of the aliphatic portion of the base block polymer has been saturated, as can be determined by nuclear magnetic resonance spectroscopy.

.

- ~.

: . : .:
'`.: ' ': ' ' :, ~

2~4;2~387 ~nder the conditions of the selective hydrogenation no more than 5 and preferably even fewer of the units of the aromatic portion and the polymethacrylate portion will have undergone reaction with ~he hydrogen. The selectively hydrogenated block polymer is recovered by conventional procedures such as washing with aqueous acid to remove catalyst residues and removal of the solvent and other volatiles by evaporation or distillation. The resulting selectively hydrogenated block polymer is of the general formula (C )y A - B' ( A )x C (IV) wherein A, C, x and y have the previously stated meanings and B' is a block of hydrogenated, polymerized alkadiene, B, wherein at least Y0~ of the carbon-carbon unsaturation of B has been saturated with hydrogen.
The selectively hydrogenated block copolymer is identified by the structures of the aromatic and methacrylate portions and by the "apparent" structure of the hydrogenated aliphatic portion. For example, an SBMA block polymer, wherein the B block is produced with a high percentage of 1,4 polymeri.zation, is selectively hydrogenated to a SEMA block polymer. The selectively hydrogenated aliphatic portion is termed "E" because oE its apparent similarity to polyethylene. A corresponding tetrablock polymer would be termed SESMA. If the aliphatic block of an SBSMA polymer results from 1,2 and 1,4 polymerization, the resulting selectively hydrogenated block polymer is termed SE/BS~ or SEBSM~ because of the similarity of the hydrogenated aliphatic portion to an ethylene/butylene copolymer. By way of yet another illustration, the selectively hydrogenated block polymer derived from an SIMA
polymer having a high degree of 1,4 polymerization in the polyisoprene block is termed an SE/PMA or SEPMA polymer because of the similarity of the hydrogenated polyisoprene block to an ethylene/propylene copolymer.
The block polymers of the invention, both the base block polymers and the selectively hydrogenated derivatives thereof, are thermoplastic elastomers and have utilities conventional for such block polymers. However, because of the functionality, i.e., ~04~ 37 polarity, of the block polymers they are useful in applications where the properties imparted by the functionality are important.
The polymers are particularly useful in adhesive formulations, coatings formulations, especially those based on water emulsions, and the polymers demonstrate improved high temperature tensile strength. The selectiveiy hydrogenated triblock polymers are particularly useful in lubricating oil formulations to improve the viscosity index of the resulting formulation.
The invention is further illustrated by the following examples, which should not be construed as limiting.
Example I
To a 11.4 litre autoclave maintained under an inert nitrogen gas atmosphere was added 2.67 kg of cyclohexane, 0.92 kg of diethyl ether and 0.93 kg of styrene. The resulting solution was titrated with sec-butyllithium until a slight exotherm was noted, after which sufficient sec-butyllithium was added to give a concentration of 317 ppm. The polymerization which resulted took place at 25C
over a 30 minute period. At the end of this period 0.64 kg of 1,3-butadiene was added and the resulting polymerization was allowed to proceed at 25C for approximately 40 minutes. The next addition was 0.13 kg of styrene which polymerized over a 30 minuee period at 25C. The final addition was 0.19 kg of t-butyl methacrylate which polymerized in less than 1 minute at 25C.
The polymer product solution was analyzed by gel permeation chromatography (GPC) and by nuclear magnetic resonance (NMR). GPC
analysis indicated a number average molecular weight of 125,000 with a molecular weight distribution (Mw/~n) of 1.3. Analysis by 3C-NMR gave a composition of 16~ by mol of polymerized styrene, 76~ by mole of polymerized 1,3-butadiene (36% by mol 1,2 polymerization and 40% by mol 1,4 polymerization) and 8% by mol polymerized t-butyl methacrylate, each percentage based on the total polymer~
Example II
The solution of functionalized block copolymer of Example I
~as hydrogenated with molecular hydrogen employing a " . :
:- . ,:
.: :
, ::

": "

- 12 - 2~887 homogeneous nickel catalyst obtained by reducing nickel octoate with triethylaluminum. The ratio of nickel to aluminum was 1:2~3.
The temperature of the solution was gradually increased with the total catalyst charge of 105 ppm being added in three portions.
At 35C the first 25~ of the catalyst was added with the addition of the second 25~ at 55C and the remainder at 90C. The conversion of base block polymer as a function of time was determined by NMR spectroscopy and is shown in Table I. The residual aliphatic unsaturation of the final hydrogenated polymer was estimated to be 25 milliequivalents of aliphatic carbon-carbon double bonds per gram of polymer. Expressed differently, 97.4~ of the aliphatic carbon-carbon double bonds had been saturated by hydrogenation.

TABLE I
Conversion, ~Elapsed time, minutes 31.5 15 95.9 50 96.8 85 97.4 150 Example III
A number of block polymers of varying structure were dissolved in tetrahydrofuran and the solutions ~ere used to prepare cast films. The stress at break of these films was determined at two temperatures The values, which reflect the tensile strength of the polymers, are shown in Table II wherein, in referring to polymer type, S refers to a polystyrene block, B refers to a polybutadiene block, I refers to a polyisoprene block EB refers to an hydrogenated polybutadiene block having at least some 1,2 configuration, EP refers to an hydrogenated isoprene block and t-Bu MA refers to a block of polymerized t-butyl methacrylate.

Z0~ 8~3~

TABLE II

Stre~s at Break (bar) Polymer Type 25C 100C
S-B-tBuMA a a S-EB-tBuMA a a SB-S-tBuMA 351.7 3.10 S-EB-S-tBuMA 358.6 12.4 S-EB-S 379.3 2.76 I-S-tBuMA 25.5 b EP-S-tBuMA 27.6 b a) Sample stretched to limit of testing apparatus but did not break.
b) No measurable tensile strength.

`
. . . :,'' ::

' 1 ' ' ~ ~

Claims (10)

1. A functionalized block polymer comprising (1) at least one block of at least predominantly polymerized alkenyl aromatic compound, (2) an internal block of at least predominantly polymerized conjugated alkadiene or hydrogenated derivative thereof, and (3) at least one terminal block of polymerized alkyl methacrylate polymerized through the ethylenic unsaturation thereof.
2. The block polymer of claim 1 represented by the formula wherein A independently is at least predominantly polymerized alkenyl aromatic compound, B is at least predominantly polymerized conjugated alkadiene, C is polymerized alkyl methacrylate, and x is zero or 1 and y is zero or 1, with the proviso that when y is 1, x is also 1.
3. The selectively hydrogenated block polymer of claim 1 of the formula wherein A independently is at least predominantly polymerized alkenyl aromatic compound, C is polymerized alkyl methacrylate, x is zero or 1 and y is zero or 1 but when y is 1, x is also 1, and B' is at least predominantly polymerized conjugated alkadiene wherein at least 90% of the carbon-carbon aliphatic unsaturation has been hydrogenated.
4. The block polymer of claim 2 or 3 wherein the alkenyl aromatic compound is wherein R independently is hydrogen or methyl.
5. The block polymer of claim 1 or 2 wherein the conjugated alkadiene is wherein R independently is hydrogen or methyl.
6. The selectively hydrogenated block polymer of claim 3 wherein the conjugated alkadiene from which the B' block results is wherein R independently is hydrogen or methyl.
7. The block polymer of claims 1-6 wherein the alkyl moiety of the alkyl methacrylate is branched butyl, in particular t.butyl.
8. The block polymer of claims 1-7 wherein each of x and y is zero.
9. The block polymer of claim 8 wherein the conjugated alkadiene is butadiene or isoprene.
10. The block polymer of claim 8 wherein the alkenyl aromatic compound is styrene.
CA002042887A 1990-05-21 1991-05-17 Functionalized thermoplastic elastomers Abandoned CA2042887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/525,812 US5194510A (en) 1990-05-21 1990-05-21 Thermoplastic elastomers
US525,812 1990-05-21

Publications (1)

Publication Number Publication Date
CA2042887A1 true CA2042887A1 (en) 1991-11-22

Family

ID=24094703

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002042887A Abandoned CA2042887A1 (en) 1990-05-21 1991-05-17 Functionalized thermoplastic elastomers

Country Status (5)

Country Link
US (2) US5194510A (en)
EP (1) EP0458379A3 (en)
JP (1) JPH04227917A (en)
KR (1) KR910020054A (en)
CA (1) CA2042887A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4032237A1 (en) * 1990-10-11 1992-04-16 Hoechst Ag NEW AMPHIPHILES ELASTOMER BLOCK COPOLYMERISATES AND METHOD FOR THE PRODUCTION THEREOF
US5214082A (en) * 1992-03-18 1993-05-25 Shell Oil Company Asphalt acrylic monomer-containing polymer composition
US5218053A (en) * 1992-05-08 1993-06-08 Shell Oil Company Polymers having stable anhydride rings
US5292795A (en) * 1992-05-08 1994-03-08 Shell Oil Company Very fine stable dispersions of block copolymers
US5278207A (en) * 1992-11-06 1994-01-11 Shell Oil Company Asphalt amine functionalized polymer composition
US5344887A (en) * 1992-12-21 1994-09-06 Shell Oil Company Star polymers of dienes, vinylarenes and alkyl methacrylates as modiied viscosity index improvers
US5272211A (en) * 1992-12-21 1993-12-21 Shell Oil Company Block copolymers of dienes, vinylarenes, and alkylmethacrylates as modified viscosity index improvers
US5514753A (en) * 1993-06-30 1996-05-07 Bridgestone Corporation Process for preparing a block copolymer
US5403658A (en) * 1994-04-15 1995-04-04 Shell Oil Company Adhesives containing vinyl aromatic hydrocarbon/diene/acrylic monomer block copolymers
BR9605241A (en) 1995-10-26 1998-07-21 Shell Int Research Soft-touch block copolymer composition Multi-layer polymer composition and molded articles
US5850086A (en) * 1996-06-21 1998-12-15 Regents Of The University Of Minnesota Iron complexes for bleach activation and stereospecific oxidation
ES2172941T3 (en) 1997-10-31 2002-10-01 Kraton Polymers Res Bv FOAM COMPOSITION CONTAINING OIL, THERMOPLASTIC ELASTOMERO AND EXPANDABLE PARTICLES.
CA2265345A1 (en) 1998-03-25 1999-09-25 The Lubrizol Corporation Vinyl aromatic-(vinyl aromatic-co-acrylic) block copolymers prepared by stabilized free radical polymerization
US6369162B1 (en) 1998-10-26 2002-04-09 The Lubrizol Corporation Radial polymers prepared by stabilized free radical polymerization
US6303550B1 (en) * 1998-11-06 2001-10-16 Infineum Usa L.P. Lubricating oil composition
US7034079B2 (en) * 1999-10-20 2006-04-25 The Lubrizol Corporation Radial polymers prepared by stabilized free radical polymerization
GB0013643D0 (en) 2000-05-31 2000-07-26 Unilever Plc Targeted moieties for use in bleach catalysts
GB0030877D0 (en) 2000-12-18 2001-01-31 Unilever Plc Enhancement of air bleaching catalysts
GB0103871D0 (en) 2001-02-16 2001-04-04 Unilever Plc Bleaching composition of enhanced stability and a process for making such a composition
GB0106285D0 (en) 2001-03-14 2001-05-02 Unilever Plc Air bleaching catalysts with moderating agent
WO2002072746A1 (en) 2001-03-14 2002-09-19 Unilever Plc Bleaching catalysts with unsaturated surfactant and antioxidants
US6930143B2 (en) * 2001-11-01 2005-08-16 Arco Chemical Technology, L.P. Acrylic latex composition
DE10257279A1 (en) * 2002-12-07 2004-06-24 Clariant Gmbh Liquid bleaching agent components containing amphiphilic polymers
US20100130670A1 (en) * 2008-11-21 2010-05-27 Kraton Polymers Us Llc End use applications prepared from certain block copolymers
WO2015046510A1 (en) * 2013-09-30 2015-04-02 株式会社クラレ Block copolymer, self-organizing composition for forming pattern, and pattern forming method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3431323A (en) * 1964-01-20 1969-03-04 Shell Oil Co Hydrogenated block copolymers of butadiene and a monovinyl aryl hydrocarbon
US3567798A (en) * 1967-02-28 1971-03-02 Shell Oil Co Block copolymers containing certain polar end blocks
FR2013030A1 (en) * 1968-07-16 1970-03-27 Idemitsu Kosan Co
US3607977A (en) * 1968-09-12 1971-09-21 Shell Oil Co Block copolymer compositions exhibiting altered surface activity
BE759737A (en) * 1969-12-03 1971-06-02 Stamicarbon PROCESS FOR THE PREPARATION OF ELASTOMERIC BLOCK COPOLYMERS
CA973295A (en) * 1970-07-29 1975-08-19 Her Majesty The Queen, In Right Of Canada, As Represented By The Ministe R Of The National Research Council Of Canada Block copolymers and process for producing them
CA973300A (en) * 1970-09-04 1975-08-19 Henry L. Hsieh ESTERS OF .alpha.,.beta.-UNSATURATED ACIDS AS COUPLING AGENTS FOR ALKALI METAL CONTAINING POLYMERS
US3842145A (en) * 1971-01-21 1974-10-15 Phillips Petroleum Co Polymerization of unsaturated monomers with multilithium initiators
GB1412584A (en) * 1971-11-01 1975-11-05 Ici Ltd Block copolymer dispersions
US3792005A (en) * 1972-02-07 1974-02-12 Shell Oil Co Low molecular weight block copolymers and coating compositions thereof
DE2401629A1 (en) * 1974-01-15 1975-07-24 Basf Ag BLOCK OR Graft copolymers
SU520327A1 (en) * 1974-06-06 1976-07-05 Leather goods making device
SU520373A1 (en) * 1974-11-22 1976-07-05 Институт Высокомолекулярных Соединений Ан Ссср The method of producing block copolymers
IT1149951B (en) * 1980-04-10 1986-12-10 Anic Spa THREE-BLOCK THERMOELASTOMERIC COPOLYMETER PREPARATION PROCEDURE
US4388448A (en) * 1981-02-23 1983-06-14 E. I. Du Pont De Nemours And Company Glycidyl methacrylate polymers, their preparation and solvolysis products
WO1983000492A1 (en) * 1981-08-13 1983-02-17 Shiraki, Toshinori Modified block copolymer composition
FR2514011A1 (en) * 1981-10-02 1983-04-08 Philippe Teyssie CIPO-Patent
JPS60252614A (en) * 1984-05-29 1985-12-13 Toa Nenryo Kogyo Kk Block copolymer
US4638072A (en) * 1984-07-12 1987-01-20 Standard Oil Company (Indiana) Disubstituted maleic anhydride compounds
US4665131A (en) * 1985-06-14 1987-05-12 Nippon Oil And Fats Company, Ltd. Block copolymer
AU608016B2 (en) * 1987-07-06 1991-03-21 Dow Chemical Company, The Block polymers of methacrylates and derivatives thereof
DE9016663U1 (en) * 1990-10-11 1991-02-28 Hoechst Ag, 6230 Frankfurt, De

Also Published As

Publication number Publication date
EP0458379A3 (en) 1992-03-25
US5194510A (en) 1993-03-16
US5278245A (en) 1994-01-11
KR910020054A (en) 1991-12-19
EP0458379A2 (en) 1991-11-27
JPH04227917A (en) 1992-08-18

Similar Documents

Publication Publication Date Title
US5278245A (en) Thermoplastic elastomers
US3231635A (en) Process for the preparation of block copolymers
AU649990B2 (en) Vulcanizable liquid compositions
US3700748A (en) Selectively hydrogenated block copolymers
CA2031452C (en) Block copolymers
US4152370A (en) Preparation, composition, and use of block polymers
EP1474458A1 (en) Novel block copolymers and method for making same
JPS6150120B2 (en)
US4168286A (en) Tetrablock polymers and their hydrogenated analogs
CN101460598A (en) Viscosity index improver for lubricating oils
US4960842A (en) Amine containing initiator system for anionic polymerization
US3959412A (en) Block polymer preparation
US4138536A (en) Polymerization of 1,3-cyclodiene with vinylaromatic hydrocarbon
JPS5871909A (en) Block copolymer of conjugate diene or vinyl substituted aromatic hydrocarbon and acryl ester and manufacture
USH1730H (en) Functionalized star polymers
US5218053A (en) Polymers having stable anhydride rings
US5461116A (en) Core functionalized star block copolymers
CA2152178C (en) Epoxidized block copolymers
EP0653452A1 (en) Method for preparing asymmetric radial copolymers
US5338802A (en) Low temperature conversion of polymerized esters
USH1464H (en) Method for preparing asymmetric radial copolymers having two first arms and two second arms
US4134928A (en) Tetrablock polydienes
US4049753A (en) Coupling of alkali metal-terminated polymers
JPH0848709A (en) Production of industrially applicable bifunctional anionic polymerization initiator and use of the initiator
US5932663A (en) Block copolymer and preparation thereof by anionic polymerization

Legal Events

Date Code Title Description
FZDE Discontinued