CA2054487C - Ptc element - Google Patents

Ptc element

Info

Publication number
CA2054487C
CA2054487C CA002054487A CA2054487A CA2054487C CA 2054487 C CA2054487 C CA 2054487C CA 002054487 A CA002054487 A CA 002054487A CA 2054487 A CA2054487 A CA 2054487A CA 2054487 C CA2054487 C CA 2054487C
Authority
CA
Canada
Prior art keywords
ptc element
element according
electrodes
polymer composition
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002054487A
Other languages
French (fr)
Other versions
CA2054487A1 (en
Inventor
Tomas Hansson
Per-Olof Karlstrom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB AB
Original Assignee
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE9003448A external-priority patent/SE9003448L/en
Priority claimed from SE9003814A external-priority patent/SE467513B/en
Application filed by Asea Brown Boveri AB filed Critical Asea Brown Boveri AB
Publication of CA2054487A1 publication Critical patent/CA2054487A1/en
Application granted granted Critical
Publication of CA2054487C publication Critical patent/CA2054487C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/027Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of conducting or semi-conducting material dispersed in a non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/1406Terminals or electrodes formed on resistive elements having positive temperature coefficient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/025Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection

Abstract

A PTC element comprises at least one body (10), provided with two parallel surfaces, of an electrically conductive polymer composition with a positive temperature coefficient and two electrodes. At least one of the parallel surfaces on the body, or on one of the bodies, of polymer composition is adapted to make free contact with an electrode (11) or with a parallel surface on another body of electrically conductive polymer composition. A pressure device is adapted to exert on the electrodes a pressure directed perpendicular to the parallel surfaces on the body, or the bodies, of polymer composition. The pressure device is preferably provided with pressure-exerting devices (15, 16, 17, 17a, 17b) with the ability to be resilient. After changing from a low resistance to a high resistance state, the PTC element returns to the initial resistance and is reusable after having been subjected to short-circuit currents. The parallel surfaces on the body, or the bodies, of polymer composition may be concentric.

Description

~ ~n~4487 PTC ELEMENT

A PTC element often comprises a body, provided with two parallel end surfaces, of an electrically conductive polymer composition wlth a resistivity with a positive temperature coefficient and two electrodes, arranged in contact with the end surfaces, for carrying current through the body, the polymer con-position comprising a polymer material and an electrically conductive powdered material distributed in the polymer material. The expression PTC element is the accep-ted term for an element whose resistivity has a positive temperature coefficient. PTC elements are used in electric circuits as overcurrent protection.

The resistance of a PTC element of the above described kind is low, for example a few mQ, in the normal operating range of the element, which may extend to, for example, 80~C, and increases slightly with the temperature. If the temperature of the element exceeds this value, for example because of an overcurrent, the resistance increases more rapidly, and when exceeding a certain temperature, the element suddenly changes from a low resistance to a high resistance state, in which the resistance may amount to one or a few tens of kQ.
It is well-known that the resistance of the PTC element, after changing from low resistance to high resistance state, does not return to the initial resistance. In more serious cases when it is subjected to very great electrical stresses, such as short-circuit currents, blistering and crack formation occur in central or other parts of the poly-mer composition of the PTC element, so that the the PTC ele-ment can no longer function, that is, the element becomes destroyed.

In the known PTC elements, the aim has been to secure the electrodes as efficiently as possible to the body of polymer composition to achieve the best possible electrical contact and hence minimize the contact resistance. To achieve the good securing of the electrodes, they are normally formed ~ .

? ~ O ~ 4 4 8 7 '~

with an uneven surface structure on the side facing the body of polymer composition, so that the polymer composition during the manufacturing of the PTC element is able to melt and penetrate into cavities in the electrode 5 surface. Usually, the electrodes consist of metal foils and are applied by being pressed onto the body under heating.

According to the present invention it has proved to be 10 possible to counteract or completely eliminate the above-described unfavourable processes during operation of the PTC elements and to produce a PTC element which, after transition from a low resistance to a high resistance state, returns to the initial resistance, and which is 15 reusable also after having been subjected to short-circuit currents. Further, the PTC element changers its resistance in case of a lower energy development, that is, its current limiting properties are improved.

20 According to the present invention, there is provided a PTC element comprising a body of an electrically conductive polymer composition having a positive temperature coefficient, said body defining two parallel surfaces; a plurality of electrodes for carrying current 25 through said body, one of said plurality of electrodes being in free contact with one of said parallel surfaces of said body; and a pressure device which presses said electrodes against said body in a direction perpendicular to said parallel surfaces of said body, said pressure 30 device applying a pressure of at least 14.5 psi on said electrodes.

According to the present invention, there is also provided a PTC element comprising at least two bodies, each provided with two parallel surfaces of electrically ~ ~0544~ 7 conductive polymer compositions with a positive temperature coefficient in which one of the parallel surfaces on the body of polymer composition and one of the parallel surfaces on the other body included in the PTC
5 element are arranged in electrical contact with electrodes included in the PTC element for carrying current through the bodies of polymer composition, wherein at least one of the bodies of polymer composition has at least one of its parallel surfaces in free contact with one of the parallel 10 surfaces of one other body of polymer composition, and including a pressure device which presses the electrodes against the bodies in a direction perpendicular to the parallel surfaces on the bodies of polymer composition, said pressure device applying a pressure of at least 14.5 lS psi on said electrodes.

The expression "to make free contact" or "in free contact"
here and in the following means that the respective elements making free contact are not fixed to each other 20 but make contact with each other only by abutment.

A feasible explanation of the result obtained according to the invention may be the following. During normal passage of current, a low contact resistance is maintained between the elements which make free contact with each other due to the pressure exerted on the contact surface. In case of short-circuit currents, electrodynamic repulsion forces occur between the elements making free contact with each other, which leads to a separation of the elements and hence a reduction of the number of contact points between electrode and conducting particles in the body of the polymer composition making free contact therewith or between conducting particles in bodies of the polymer composition making free contact wlth each other. This leads to a current concentration at the remaining contact "~ ~ 2 0 5 ~4 8 7 3a points, which causes molten phases to occur in the polymer composition at the contact surface and the PTC element to trip at the contact surface without the rest of the ~/

CA 020~4487 1997-11-12 being subjected to any stress with ensuing unfavourable effects. Since the pressure against the contact surface remains, when the surface is still hot after the short circuit, the original contact and the original contact resistance may be reestablished between the elements making free contact with one another.

The polymer composition may be of a known kind and its composition or constituents constitute no part of the present invention. Thus, the polymer material may consist of thermo-plastic resins, elastomers, thermosetting resins or mixtures thereof, used in prior art polymer compositions with PTC
behaviour. As examples of suitable polymer materials may be particularly mentioned polyolefins such as polyethylene, crosslinked polyethylene, polypropylene, polybutene and copolymers or ethylene and propylene. The polymer material preferably has a crystallinity of at least 5%. The conducting powdered material preferably consists of conducting carbon black or conducting soot. However, it is possible, per se, to use, together with or instead of the mentioned powdered material, conducting particles of another kind, such as particles of metallic materials, for example nickel, cobalt, copper and silver. A suitable particle size of the powdered material is O.ol - 10 ~m and a suitable content of the powdered filler is 10-60 per cent of the total volume of the powdered filler and the polymer material. The resistivity of the polymer composition is preferably within the range of 10 mQcm - 100 Qcm and has the ability, after a transition, to exhibit a resistivity of 1 Qcm - 1 kQcm. If more than one body of electrically conductive polymer composition is included in the PTC element, the bodies may be of the same or different polymer composition and then with the same or different resistivity.

In those embodiments of the present invention in which at least one of the electrodes is firmly secured to a body of conducting polymer composition, such an electrodes or such electrodes may be of a conventional kind. They may consist of metal foils or of thin metal plates or metal nettings which are rolled on the polymer composition in heated state or fixed in some other way thereto, such as by spraying or vapour deposition. Usually, the surface facing the polymer composition has an irregular structure. The electrodes may also consist of a combination of two or more elements, for example a thin foil of nickel and a thicker plate of copper fixed thereto. According to one embodiment of the present invention, such fixed electrodes may consist of a tight plate or foil or metal, which on the side facing the polymer composition is coated with a layer of metal with an irregular surface structure, applied by thermal spraying such as plasma spraying, flame spraying or arc spraying, which metal layer comprises protruding portions with a height of 1-50 ~m and a width of 1-50 ~m.

In those embodiments of the present invention where at least one of the electrodes makes free contact with a body of conducting polymer composition, such an electrode may in itself, that is, apart from the fact that it is not fixed to the body of conducting polymer composition, be of the same kind as indicated in the preceding paragraph. It may also consist of a more or less thick plate with a surface with an even structure facing the body of conducting polymer composition. It is also possible, per se, to use other high conductivity materials than metallic materials in the electrodes, such as polymer material containing very high contents of electrically conductive powdered fillers, such as conducting carbon black, conducting soot, copper or nickel.

The pressure which is maintained on the electrodes perpendicularly to the parallel surfaces on the body, or bodies, of polymer composition preferably amounts to at least 0.1 MPa. Especially preferred is a pressure of 0.1 MPa -lo MPa.

The pressure on the electrodes of the PTC element may be achieved purely mechanically or by utilizing forces gene 4 ~ 8 7 rated by electric currents. When utilizing purely mecha-nical forces, the pressure device may, for example, consist of two plates arranged in parallel with the parallel sur-faces of the body, or bodies, of electrically conductive polymer composition and arranged outside the electrodes, and of drawing devices or clamping devices aranged in or adja-cent the plates. when utilizing forces generated by elec-tric currents, the pressure device may comprise plates of high conductivity material making contact with the elec-trodes, in which the current paths are adapted to be sub-stantially parallel to the parallel surfaces of the body, orbodies, and directed in substantially the same direction as the plates, or yokes of a ferromagnetic material arranged outside the plates of high conductivity material.

According to a particularly preferred embodiment of the invention, the pressure device is provided with pressure-exerting devices with the ability to be elastic. Such a design of the pressure device significantly facilitates a separation of the electrode and the body of polymer com-position making free contact with each other, or of bodiesof polymer composition making free contact with each other, at short-circuit currents. In a preferred embodiment the pressure device comprises two pressure-exerting parts, making contact with the electrodes of the PTC element by abutment, and a layer of rubber or another elastic material, for example an elastic plastic, is arranged between one of the electrodes and one of the pressure-exerting parts.
According to another preferred embodiment the pressure device comprises parts exerting pressure against the electrodes of the PTC element, and at least one resilient element arranged between the pressure-exerting parts outslde en electrode.

According to an additionalpreferred embodiment of the invention, a PTC element according to the invention is stacked on top of another PTC element according to the invention in the same pressure device, which is thereby adapted to exert a CA 020~4487 1997-11-12 pressure directed perpendicularly to the parallel surfaces of the body, or the bodies, of polymer composition in each one of the PTC elements, and the outwardly-facing elactrodes are electrically parallel-connected as are the inwardly-facing ones, which may possibly be designed to form one single electrode. Preferably, the device is formed with separate inwardly-facing electrodes and with a layer of rubber or other elastic material, such as elastic plastics, arranged between the electrodes. These embodiments with parallel-connected outwardly-facing and inwardly-facing electrodes have very good curxent-limiting properties also in case of a total area of the PTC elements which is relatively large.

According to yet another preferred embodiment of the invention, the body of polymer composition, if only one such body is included in the PTC element, or the bodies of polymer composition, if more than one such body is included in the PTC
element, at surfaces exposed between the electrodes is/are surrounded by a casing of insulating material, which may advantageously be of the same kind and thus have the same physical properties as the polymer material which is included in the polymer composition. The casing of insulating material increases the dielectric strength of the PTC element. The reason is that the casing prevents flashover between particles of the conducting powdered material, which may be exposed at surfaces of the polymer composition, which are exposed between the electrodes, when the PTC element is subjected to short-circuit currents.

According to a particularly preferred embodiment of the invention, the pressure device comprises a pressure-absorbing frame arranged around the electrodes and the body, or bodies, of electrically conducting polymer composition, with wedge-shaped elements insertable into the frame. The frame may have the shape of an apparatus housing provided with a lid and at least one of the wedge-shaped elements may 4 ~ 8 7 be arranged in the apparatus housing itself and at least one of the wedge-shaped elements may be secured to the lid.

5 Another preferred embodiment of the invention is characterized in that the parallel surfaces on the body, or bodies, of electrically conductive polymer composition consist of concentric surfaces. The electrodes are thereby concentric with the mentioned concentric surfaces 10 of the body, or bodies, of polymer composition. This embodiment requires an extremely small space.

A PTC element of the kind mentioned in the preceding paragraph may be designed such that, inside an electrode 15 which is arranged at an inwardly-facing concentric surface on the body, or on that body of polymer composition which is arranged furthest towards the interior, there is arranged a body which is expansible in a direction perpendicular to the concentric surface and that, outside 20 an electrode which is arranged at an outwardly-facing concentric surface of the body, or on that body of polymer composition which is located furthest toward the exterior, there is arranged a counter-support or this electrode is itself designed to constitute a counter-support.
The invention will be explained in greater detail by describing embodiments with reference to the accompanying drawings, wherein:
- Figure 1 shows a curve of the resistivity as a function 30 of the temperature for an electrically conductive polymer composition included in a PTC element according to the present invention;
- Figures 2 and 3 show PTC elements consisting of two electrodes and respectively one and two bodies of an electrically conductive polymer composition arranged 4 8 i between the electrodes;
- Figures 4 and 5 show cross sections of two different embodiments of a PTC element according to the present invention with a pressure device acting purely 5 mechanically;
- Figures 6 and 7 show two cross sections, perpendicular to each other, of a PTC element according to the present invention with a pressure device in which electric currents are utilized to generate compressive forces;
10 - Figure 8 shows a device comprising two PTC elements with parallel-connected electrodes;
- Figure 9 shows a PTC element which is provided with an insulating casing at surfaces exposed between the electrodes;
15 - Figures lOa, lOb and lOc show perspective views of different parts of a device according to the invention in disassembled state;
- Figure 11 shows a perspective view of a part of the same device in a vertical section in assembled state;
20 - Figures 12 and 13 show PTC elements according to the invention consisting of two concentric electrodes and respectively one and two tubular concentric bodies of electrically conductive polymer composition arranged between the electrodes, and with a pressure device 25 comprising an expansible body arranged inside the inner electrode as well as a counter-support arranged outside the outer electrode;
- Figure 14 shows a modification of the PTC element according to Figure 12;
30 - Figure 15 shows a PTC element according to the present invention with a pressure device comprising a drawing or clamping device arranged outside the outer electrode;
- Figure 16 shows a modification of the PTC element according to Figure 15; and ~ 7 9a - Figure 17 shows a circuit diagram of a device in which the PTC element according to the invention is used as overcurrent protective device.

5 Figure 1 shows the ~esistivity R as a function of the temperature T for the electrically conductive polymer composition which is included in the PTC element according to the present invention. Tt is the temperature, the transition temperature, at which the polymer composition 10 changes from a low resistance to a high resistance state.

The PTC element according to Figure 2 comprises a centrally arranged body 10 of an electrically conductive polymer composition with a positive temperature 15 coefficient, for example consisting of 67 per cent by volume polyethylene (e.g. LUPOLEN 6031 M from BASF, Germany) and 33 per cent by volume carbon black (e.g. N

Zt~ 7 . .
in the form of a rectangular 1 mm thick plate as well as two electrodes 11 and 12 with associated terminals 13 and 14, respectively, arranged at the parallel end surfaces 10' and 10" of the body (the flat sides of the plate). The elec-trode 11 consists of an 0.5 mm thick plate of nickel with an even surface structure on both sides. On the outside, the plate is coated with a thin layer of copper. It makes free contact with the body 10, that is, makes contact only by abutting the body, and thus not being fixed to the body.
The electrode 12 consists of an 0.3 mm thick copper foil which on the side facing the body 10 is coated with an 0.1 mm thick layer of copper with uneven surface structure, applied by plasma spraying. The electrode 12 is fixed to the polymer by being pressed against the body 10, when the body has been heated, so that the polymer material in liquid state may penetrate into irregularities in the inwardly-facing side of the electrode.

The device according to Figure 3 includes two bodies, 10a and 10b, of the same electrically conductive polymer com-position as that in the body 10 in Figure 1, in the form of 1 mm thick rectangular plates with the parallel surfaces 10a', 10a" and 10b', 10b", respectively. These plates make electrical contact only by abutment without being fused or otherwise fixed to each other, that is, make free contact with each other. The electrodes 11 and 12 may be of the same kind as the electrodes 11 and 12 in Figure 1. However, the electrode 11 may also be of the same kind as the electrode 12 and, like this electrode, be fixed to the body 10a. In the device according to Figure 3, the bodies 10a and 10b may be of different electrically conductive polymer compositions and have different resistivities to modify the properties of the PTC element. The device may also be modified so as to comprise more than two bodies (10a and 10b) of conductive polymer composition with the same or a different resisti-vity. If the electrodes are fixed to adjacent bodies of electrically conductive polymer composition, at least one of the bodies must make free contact with another one of the 11 2~ 37 bodies. If one of or both of the electrodes make free con-tact with an adjacent body of electrically conductive poly-mer composition, all the polymer bodies may be fixed to each other, for example by fusion.

Figure 4 illustrates a device according to the invention in which a PTC element according to Figure 2 is arranged in a pressure device comprising two plates 15, 16, which are parallel to the parallel end surfaces of the body 10 (the flat sides of the plate 10) and to the electrodes 11 and 12.
The terminals 13 and 14 are not shown in the figure. The plates are of electrically insulating material, for example resin reinforced with glass fibre. The pressure against the electrodes and against the end surfaces of the body 10 is brought about by tightening a number of bolts 17. Between the bolt heads 17a and one of the plates 16 of the pressure device, stiff springs 17b are arranged which are not com-pletely compressed when the PTC element is pressurized and prepared for normal operation. In case of a short circuit, the springs may therefore be further compressed, which permits the electrode 11 to be separated from the body 10.

The device according to Figure 5 differs from the device according to Figure 4 in that the springs 17b are not inclu-ded and in that a 1 mm thick mat 30 of rubber is arranged between the electrode 11 and the plate 15. Such a mat of rubber may possibly be arranged between the electrode 12 and the plate 16 as well.

Instead of the PTC element according to Figure 2, a PTC
element according to Figure 3 may be arranged, in an analogous manner, in the devices according to Figures 4 and 5.

In the device illustrated in Figures 6 and 7, a PTC element according to Figure 2 or 3 is provided with plates 32, 33, arranged outside electrodes 11, 12, of copper or other high conductivity material between two opposite yokes 18 and 19, CA 020~4487 1997-11-12 respectively, of iron or other ferromagnetic material. The iron yokes are U-shaped with a base 18a and 19a, respectively, with a flat shape and with short legs 18b and l9b, respectively.
Alternatively, only plates corresponding to the base 18a and l9a, respectively, may be used. By connecting the PTC element to the network in such a way that the current paths 20 and 21, respectively, become parallel to the end surfaces of the body 10 and directed in the same direction, as shown by dashed lines and arrows in Figure 6, an attractive force is achieved between lo the yokes, which is illustrated by dashed arrows in Figure 7.
In this way, the body 10 is exposed to pressure between the end surfaces when current is conducted through the PTC element.

In the device according to Figure 8, two PTC elements of the kind shown in Figure 2 are arranged one above the other with an intermediate mat 30a of rubber. The two electrodes 11 are parallel-connected as are the two electrodes 12. The PTC
elements can be subjected to pressure in a manner analogous to that of the PTC elements according to Figure 2 in the devices according to Figures 4 and 5 with the two electrodes 12 making contact with the plates 15 and 16. When arranging a rubber mat 30a between the two electrodes 11 in accordance with Figure 8, no advantage is gained by utilizing springs 17b according to Figure 4 or a rubber mat 30 according to Figure 5. If the PTC
element according to Figure 8 is formed without a rubber mat 3Oa, that is, with the two electrodes 11 making contact with each other or replaced by one single electrode which on both sides makes contact with bodies 10 of electrically conductive polymer composition and this PTC element is arranged in the pressure devices according to Figures 4 and 5, it is an advantage to retain the springs 17b and the rubber mat 30.
Instead of the PTC element according to Figure 2, a PTC element according to Figure 3 may be used in the cases described with reference to Figure 8. As explained before, a PTC element according to Figure 8 has particularly good current limiting properties.

CA 020~4487 1997-11-12 The PTC element according to Figure 9 is of the same kind as that shown in Figure 2 but is provided with a casing 31 of insulating material, preferably of polyethylene, which is the polymer material included in the body 10 of electrically conductive polymer composition. The casing 31 is adapted to surround the surfaces 10"' on the body 10 which are exposed between the electrodes ll and 12, which, as explained above, increases the dielectric strength of the PTC element. The PTC
element according to Figure 9 may be arranged in the same way as the PTC element according to Figure 2 in the pressure devices according to Figures 4 and 5. Instead of a PTC element according to Figure 2, a PTC element according to Figure 3 may be used, in an analogous manner, in a PTC element according to Figure 9, the casing surrounding the surfaces lOa"' and lOb"' on the bodies lOa and lOb. The casing 31 of insulating material may be applied around the body lo or the bodies lOa and lOb by applying a ring of insulating material around the body 10 or the bodies lOa and lOb in a tool suitable therefor and be brought to fuse together, by heating, with the edges on the body 10 or the bodies lOa and lOb.

The device according to Figures lOa, b, c and 11 comprises three identical PTC elements, one of which being shown with the parts separated in Figure lOb. The body 10 o~ electrically conductive polymer composition, for example of the same kind as in Figure 2, is arranged in a plastic frame 40 which extends around the body. The two electrodes 11 and 12 consist of 1 mm thick silver-plated plates of copper, which make free contact with the body lo, that is, only by abutting it, and thus not being fixed to it. Each electrode is provided with alternative conductor terminals 13a and 14a for cable connection and 13b (not shown) and 14b for connection to a bar, respectively.
Outside the electrodes 11 there is arranged a wedge-shaped, loose plate 41 and outside the electrode 12 there is arranged a loose spring plate 42 of thin sheet metal. The spring plate is provided with a plurality of tongues 42a cut out and bent CA 020~4487 1997-11-12 out from the plate, which give the plate its resilient properties. A package comprising the plates 41 and 42 and electrodes 11 and 12 arranged therebetween and with an intermediate body lo of conducting polymer composition is arranged in each one of three compartments 43a, 43b and 43c in an apparatus housing 43 with two partitions 43d and 43e forming the compartments. The partitions are parallel to two opposite, parallel walls 43f and 43g in the apparatus housing. The apparatus housing is provided with hollows 44a and 44b for alternative connection of a conductor to the attachment 14a or 14b in the compartment 43a, with hollows 45a and 45b for alternative connection of a conductor to the attachment 14a or 14b in the compartment 43b, and with hollows 46a and 46b for alternative connection of a conductor to the attachments 14a or 14b on an electrode 12 in the compartment 43c. On the opposite, not visible wall of the apparatus housing, there are corresponding recesses for connection of conductors to the attachments 13a and 13b on each electrode 11. The pressure between the electrode 11 and 12 and the body 10 in each one of the packages in the compartments 43a, 43b and 43c is brought about by applying a lid 47 with wedge-shaped plates 48, 49 and 50, fixed to the lid, on the apparatus housing, a wedge-shaped plate being inserted into each one of the compartments 43a, 43b and 43c adjacent a plate 41 located there. The lid is provided with mechanical attachments 47a, 47b, 47c and 47d for mounting.
As will be clear from Figure 11, the apparatus housing is provided with plane-parallel reinforcing walls 51 and 52 on the pressure-absorbing sides. The device according to Figures lOa, b, c and 11 is intended to be connected into a three-phase cable with a PTC element connected into each of the three phase conductors. The apparatus housing 43 with outer walls 43f and 43g, reinforcing walls 51 and 52, lid 47 and wedge-shaped plates 41, 48, 49 and 50 are all manufactured from an electrical insulating material, for example a polyamide, to which a filler, for example in the form of sho~t glass-fibres, has been added.

CA 020~4487 1997-11-12 The PTC element according to Figure 12 comprises a tubular body 10 of an electrically conductive polymer composition with a positive temperature coefficient, for example of the same composition as that used in the body 10 in Figure 2. The interior cylindrical envelope surface is designated 10' and the exterior also cylindrical envelope surface is designated 10".
In a cross section perpendicular to the centre line of the tubular body, each one of the envelope surfaces forms a circle.
The wall thickness of the tubular body amounts to at least 1 mm. The PTC element also has two electrodes 11 and 12 which are arranged in contact with the envelope surfaces 10' and 10"
and concentric therewith. The electrodes are provided with terminals 13 and 14, respectively. The electrode 11 consists of an 0.5 mm thick tube of nickel with an even surface structure on both sides. On the outside the tube is coated with a thin layer of copper. The tube is slitted in the longitudinal direction so that one edge at the slit is able to slide over the other. The electrode 11 makes free contact with the body 10, that is, makes contact only by abutting the body along the envelope surface 10' under pressure, and thus not being fixed to the body. The electrode 12 consists of an 0.3 mm thick copper foil which on the side facing the body 10 is coated with an 0.1 mm thick layer of copper with an uneven surface structure, applied by plasma spraying. The electrode 12 is fixed to the polymer by being pressed against the body 10, after the body has been heated so that the polymer material in liquid state may penetrate into irregularities in the inwardly-facing side of the electrode. Inside the electrode 11 there is arranged a body 31, which is expansible in a direction perpendicular to the envelope surface 10' and the electrode 11 and outside the electrode 12 there is a counter-support 32, for example in the form of a tube of resin reinforced with fibre-glass, which is manufactured in situ, for example by applying the glass-fibre material and the resin in uncured state onto the electrode 12, and thereafter curing the resin. The expansible body 31 consists in the exemplified case of a CA 020~4487 1997-11-12 .

tubular body 31a of rubber or other elastic material, which by means of a bolt 31b, arranged centrally in the body, with a bolt head 31c and a nut 31d and with washers 31e and 31f arranged at the end surfaces, inside the bolt head and the nut, may be brought to expand while achieving a desired pressure against the electrode 11. Instead of providing the PTC element with a separate counter-support, the electrode 12 may be formed as a tube with sufficient thickness to serve itself as a counter-support, such as in the form of a tube of copper which has been drawn down, on the spot, to the intended dimension to make contact directly with the envelope surface 10" on the body 10. In this case both electrodes of the PTC element are adapted to make free contact, under pressure, with the envelope surfaces 10' and 10" on the body 10. Such a copper tube may alternatively be adapted to serve only as a counter-support and then to make contact with the electrode 12. Also when using a separate counter-support, the electrode 12 may, instead of being fixed to the body 10, be adapted to make free contact with the body 10. In a manner analogous to that of a copper tube, a sleeve of memory metal may be used as a separate counter-support or both as a countersupport and an electrode, the sleeve in expanded state being arranged on the spot around the PTC element and thereafter brought to resume its smaller dimension before the expansion. If the expansible body 31 consists of a body of metallic material, it may be suitable or necessary to arrange a layer of rubber or other electrically insulating material between the expansible body and the electrode 11.

The device according to Figure 13 includes two bodies lOa and lOb, of the same electrically conductive polymer composition as that in the body 10 in Figure 12, in the form of concentric tubes with a wall thickness of 1 mm. The concentric envelope surfaces are designated lOa', lOa" and lob', lob", respectively. The two bodies lOa and lOb make free contact with each other, that is, make contact only by abutment under pressure, and thus not by being fused or 1 7 Q~4~37 otherwise fixed to each other. The electrodes 11 and 12 may be of the same kind as the electrodes 11 and 12 in Figure 12. However, the electrode 11 may also be of the same kind as the electrode 12 in the first exemplified case, when this is fixed to the body of polymer composition, and thus be fixed to the body lOa. In the device according to Figure 13, the bodies lOa and lOb may be of different electrically conductive polymer composition and have different resisti-vity to modify the properties of the PTC element. The device can also be modified so as to contain more than two concentric bodies (lOa and lOb) of conductive polymer compo-sition with the same or with different resistivity. If the electrodes are fixed to adjacent bodies of electrically con-ductive polymer composition, at least one of the bodies must make free contact with another one of the bodies. If one of or both of the electrodes make free contact with an adjacent body of electrically conductive polymer composition, all polymer bodies may be fixed to one another, for example by fusion. The device 31 with its parts for maintaining the electrodes 11 and 12 and the bodies lOa and lOb pressed against each other in the PTC element according to Figure 13 is in the exemplified case the same as that in the PTC
element according to Figure 12.

The PTC element according to Figure 14 differs from the PTC
element according to Figure 12 in that a 1 mm thick layer 33 of rubber or other elastic material is arranged between the electrode 12 and the counter-support 32 to increase the capacity of the pressure-exerting parts to be elastic. As in the case according to Figure 12, instead of being fixed to the body 10, the electrode 12 may make free contact with the body, that is, only by abutting the body along the enve-lope surface 10".

In the device according to Figure 15, the electrode consists of a solid wire of copper or nickel with a thin coating of nickel. The electrode 11 makes free contact with the body 10, that is, only by abutting the body along the envelope 1 8 ZC~ 37 surface 10'. The body 10 and the electrode 12 are of the same kind as the corresponding elements in the device according to Figure 12. The electrodes 11 and 12 and the body 10 are maintained pressed against each other by a drawing or clamping device 34, which, for example, may consist of a plate 34a arranged around the electrode 12 with an intermediate elastic insulating layer (not shown), the plate being provided with overlapping edges in the axial direction of the body 10, so that the diameter of the tubular body formed by the plate can be reduced by tightening a screw device 34b, in a manner analogous to that of a hose clamp, or by compressing two jaws with an internally semicylindrical shape in a direction perpendicular to the envelope surfaces 10' and 10" of the body 10. In the illustrated case, the electrode 11 itself serves as a counter-support. It is, of course, possible, instead of using an electrode 11 in the form of a solid wire, in accordance with Figure 15, to use an electrode 11 in the form of a layer of the kind illustrated in Figures 12-14 and a counter-support arranged inside such an elec-trode in the form of a rigid body or an elastic device, for example of the kind designated 31 in Figures 12-14.

The PTC element according to Figure 16 differs from the PTC
element according to Figure 15 in that a 1 mm thick layer 33 of rubber or other elastic material is arranged between the electrode 12 and the plate 34a to increase the capacity of the pressure-exerting parts to be elastic. Instead of the drawing of clamping device 34, it is possible to use a sleeve of memory metal, the sleeve of memory metal in expan-ded state being arranged in place around the PTC element and thereafter being brought to assume a smaller diameter. Such a sleeve may at the same time serve as an electrode in the case illustrated in Figure 15.

Figure 17 exemplifies the use of the PTC element according to the invention as overcurrent and short-circuit protective device in an electric circuit 26 comprising a motor 25. The 1 9 54S~7 PTC element 22, for example of the kind shown in Figure 4, 5, 12 or 13, is series-connected to a contact device 23. In parallel with the contact device there is an excitation coil 24, which is included in a fast magnetic tripping device for the contact device. The tripping device is adapted to in-fluence the contact device for opening this at an over-current.

Claims (47)

1. A PTC element comprising a body of an electrically conductive polymer composition having a positive temperature coefficient, said body defining two parallel surfaces; a plurality of electrodes for carrying current through said body, one of said plurality of electrodes being in free contact with one of said parallel surfaces of said body; and a pressure device which presses said electrodes against said body in a direction perpendicular to said parallel surfaces of said body, said pressure device applying a pressure of at least 14.5 psi on said electrodes.
2. A PTC element according to claim 1, including at least two bodies provided with two parallel surfaces, each made of an electrically conductive polymer composition with a positive temperature coefficient.
3. A PTC element according to claim 2, wherein the bodies are of different electrically conductive polymer compositions with a positive temperature coefficient.
4. A PTC element according to claim 1, wherein said pressure device applies a pressure on the electrodes of 14.5 to 1450 psi.
5. A PTC element according to claim 1, wherein the pressure device is provided with pressure-exerting devices with the ability to be elastic.
6. A PTC element according to claim 1, wherein the pressure device comprises two parts exerting pressure on the electrodes of the PTC element and a layer of rubber or another elastic material is arranged between one of the electrodes and one of the pressure-exerting parts.
7. A PTC element according to claim 1, wherein the pressure device comprises parts exerting pressure on the electrodes of the PTC element and at least one resilient layer-formed element is arranged between the pressure-exerting parts.
8. A PTC element according to claim 1, wherein it is stacked on another said PTC element in the same pressure device, which is adapted to exert a pressure directed perpendicular to the parallel surfaces on the body of polymer composition in each of the PTC elements, and the outwardly-facing electrodes are electrically parallel-connected as are the inwardly-facing ones, said ones may be designed to form one single electrode.
9. A PTC element according to claim 8, wherein a layer of rubber or other elastic material or a resilient layer-formed element is arranged between the inwardly-facing electrodes.
10. A PTC element according to claim 1, wherein at least one of the electrodes consists of a tight plate or foil of metal, which on the side facing the body of polymer composition is coated with a layer of metal applied by thermal spraying, with an uneven surfaces structure comprising projecting portions with a height of 1-50 µm and a width of 1-50 µm.
11. A PTC element according to claim 1, wherein the body of polymer composition at surfaces exposed between the electrodes are surrounded by an insulating casing.
12. A PTC element according to claim 1, wherein the pressure device comprises two plates arranged outside the electrodes and in parallel with the parallel surfaces of the body of electrically conductive polymer composition, as well as drawing devices or clamping devices arranged in or at the plates.
13. A PTC element according to claim 1, wherein the pressure device comprises plates of a high conductively material arranged outside the electrodes, in which plates the current paths are substantially parallel to the parallel surfaces on the body and substantially directed in the same direction, as well as plates or yokes of a ferromagnetic material arranged outside said laths.
14. A PTC element according to claim 1, wherein the pressure device comprises a frame arranged around the electrodes and the body of electrically conductive polymer composition and wedge-shaped elements located within the frame to press the electrodes against the electrically conductive polymer composition.
15. A PTC element according to claim 14, wherein inside an electrode which is arranged at an inwardly-facing concentric surface on the body there is arranged a body which is expansible in a direction perpendicular to the concentric surface, and wherein outside an electrode which is arranged at an outwardly-facing concentric surface on the body there is arranged a counter-support or this electrode is itself designed to constitute a counter-support.
16. A PTC element according to claim 15, wherein the expansible body is elastic.
17. A PTC element according to claim 15, wherein between the electrode arranged at the inwardly-facing concentric surface and the expansible body there is arranged a layer of rubber or other elastic material or a resilient layer-formed element.
18. A PTC element according to claim 15, wherein between the electrode arranged at the outwardly-facing concentric surface and the counter-support there is arranged a resilient layer-formed element.
19. A PTC element according to claim 14, wherein the frame has the shape of an apparatus housing provided with a lid and wherein at least one of the wedge-shaped elements is arranged in the apparatus housing itself and at least one of the wedge-shaped elements is secured to the lid.
20. A PTC element according to claim 1, wherein the parallel surfaces on the body of electrically conductive polymer composition consist of concentric surfaces.
21. A PTC element according to claim 20, wherein outside an electrode which is arranged at an outwardly-facing concentric surface on the body there is arranged a clamping device, and wherein inside an electrode which is arranged at an inwardly-facing concentric surface on the body there is arranged a counter-support.
22. A PTC element according to claim 21, wherein between the electrode located at the outwardly-facing concentric surface and the clamping device a layer of rubber or other elastic material or a resilient layer-formed element is arranged.
23. A PTC element according to claim 21, wherein the counter-support consists of an elastic body.
24. A PTC element according to claim 21, wherein between the electrode arranged at the inwardly-facing concentric surface and the counter-support there is arranged a layer of rubber or other elastic material or a layer-formed resilient element.
25. A PTC element comprising at least two bodies, each provided with two parallel surfaces of electrically conductive polymer compositions with a positive temperature coefficient in which one of the parallel surfaces on the body of polymer composition and one of the parallel surfaces on the other body included in the PTC
element are arranged in electrical contact with electrodes included in the PTC element for carrying current through the bodies of polymer composition, wherein at least one of the bodies of polymer composition has at least one of its parallel surfaces in free contact with one of the parallel surfaces of one other body of polymer composition, and including a pressure device which presses the electrodes against the bodies in a direction perpendicular to the parallel surfaces on the bodies of polymer composition, said pressure device applying a pressure of at least 14.5 psi on said electrodes.
26. A PTC element according to claim 25, wherein the bodies are of different electrically conductive polymer compositions with a positive temperature coefficient.
27. A PTC element according to claim 25, wherein said pressure device applies a pressure on the electrodes of 14.5 to 1450 psi.
28. A PTC element according to claim 25, wherein the pressure device is provided with pressure-exerting devices with the ability to be elastic.
29. A PTC element according to claim 25, wherein the pressure device comprises two parts exerting pressure on the electrodes of the PTC element, and wherein a layer of rubber or another elastic material is arranged between one of the electrodes and one of the pressure-exerting parts.
30. A PTC element according to claim 25, wherein the pressure device comprises parts exerting pressure on the electrodes of the PTC element, and wherein at least one resilient layer-formed element is arranged between the pressure-exerting parts.
31. A PTC element according to claim 25, wherein it is stacked on another said PTC element in the same pressure device, which is adapted to exert a pressure directed perpendicular to the parallel surfaces on the bodies of polymer composition in each of the PTC elements, and wherein the outwardly-facing electrodes are electrically parallel-connected as are the inwardly-facing ones which latter ones may be designed to form one single electrode.
32. A PTC element according to claim 31, wherein a layer of rubber or other elastic material or a resilient layer-formed element is arranged between the inwardly-facing electrodes.
33. A PTC element according to claim 25, wherein at least one of the electrodes consists of a tight plate or foil of metal, which on a side facing the body of polymer compositions is coated with a layer of metal applied by thermal spraying, with an uneven surfaces structure comprising projecting portions with a height of 1-50 µm and a width of 1-50 µm.
34. A PTC element according to claim 25, wherein the bodies of polymer composition at surfaces exposed between the electrodes are surrounded by an insulating casing.
35. A PTC element according to claim 25, wherein the pressure device comprises two plates arranged outside the electrodes and in parallel with the parallel surfaces of the bodies of electrically conductive polymer composition, as well as drawing devices or clamping devices arranged in or at the plates.
36. A PTC element according to claim 25, wherein the pressure device comprises plates of a high conductivity material arranged outside the electrodes, in which plates the current paths are substantially parallel to the parallel surfaces on the bodies and substantially directed in the same direction, as well as plates or yokes of a ferromagnetic material arranged outside said plates.
37. A PTC element according to claim 25, wherein the pressure device comprises a frame arranged around the electrodes and the bodies of electrically conductive polymer composition and wedge-shaped elements located within the frame to press the electrodes against the electrically conductive polymer composition.
38. A PTC element according to claim 37, wherein the frame has the shape of an apparatus housing provided with a lid and wherein at least one of the wedge-shaped elements is arranged in the apparatus housing itself and at least one of the wedge-shaped elements secured to the lid.
39. A PTC element according to claim 25, wherein the parallel surfaces on the bodies of electrically conductive polymer composition consist of concentric surfaces.
40. A PTC element according to claim 39, wherein inside the electrode which is arranged at an inwardly-facing concentric surface on that body of polymer composition which is located furthest towards the interior there is arranged a body which is expansible in a direction perpendicular to the concentric surface, and wherein outside an electrode which is arranged at an outwardly-facing concentric surface on that body of polymer composition which is located furthest towards the exterior there is arranged a counter-support.
41. A PTC element according to claim 40, wherein the expansible body is elastic.
42. A PTC element according to claim 40, wherein between the electrode arranged at the inwardly-facing concentric surface and the expansible body there is arranged a layer of rubber or other elastic material or a resilient layer-formed element.
43. A PTC element according to claim 40, wherein between the electrode arranged at the outwardly-facing concentric surface and the counter-support there is arranged a layer of rubber or other elastic material or a resilient layer-formed element.
44. A PTC element according to claim 39, wherein outside an electrode which is arranged at an outwardly-facing concentric surface on that body of polymer composition which is located furthest towards the exterior there is arranged a drawing or clamping device, and wherein inside an electrode which is arranged at an inwardly-facing concentric surface on that body of polymer composition which is located furthest towards the interior there is arranged a counter-support.
45. A PTC element according to claim 44, wherein between the electrode located at the outwardly-facing concentric surface and the clamping device a layer of rubber or other elastic material or a resilient layer-formed element is arranged.
46. A PTC element according to claim 44, wherein the counter-support consists of an elastic body.
47. A PTC element according to claim 44, wherein between the electrode arranged at the inwardly-facing concentric surface and the counter-support there is arranged a layer of rubber or other elastic material or a layer-formed resilient element.
CA002054487A 1990-10-30 1991-10-29 Ptc element Expired - Fee Related CA2054487C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
SE9003448A SE9003448L (en) 1990-10-30 1990-10-30 PTC element for overcurrent protection - has surface of body of polymer composition that makes free contact with each other or with associated electrode
SE9003448-9 1990-10-30
SE9003814A SE467513B (en) 1990-11-30 1990-11-30 PTC element
SE9003814-2 1990-11-30

Publications (2)

Publication Number Publication Date
CA2054487A1 CA2054487A1 (en) 1992-05-01
CA2054487C true CA2054487C (en) 1998-02-17

Family

ID=26660895

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002054487A Expired - Fee Related CA2054487C (en) 1990-10-30 1991-10-29 Ptc element

Country Status (7)

Country Link
US (1) US5382938A (en)
EP (1) EP0487920B1 (en)
JP (1) JPH04266001A (en)
AT (1) ATE143169T1 (en)
CA (1) CA2054487C (en)
DE (1) DE69122216T2 (en)
ES (1) ES2094180T3 (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228297A1 (en) * 1992-08-26 1994-03-03 Siemens Ag Changeable high current resistor, especially for use as a protective element in power switching technology, and switching using the high current resistor
DE4425330A1 (en) * 1993-07-26 1996-01-25 Siemens Ag Current limiting switch
DE4330607A1 (en) * 1993-09-09 1995-03-16 Siemens Ag Limiter for current limitation
CA2192363C (en) * 1994-06-08 2005-10-25 Daniel A. Chandler Electrical devices containing conductive polymers
JPH07335408A (en) * 1994-06-10 1995-12-22 Murata Mfg Co Ltd Exothermic electronic component
EP0771465B1 (en) * 1994-07-14 2002-11-13 Surgx Corporation Method of making single and multi-layer variable voltage protection devices
DE69529677T2 (en) * 1994-07-14 2004-03-25 Surgx Corp., Fremont PROTECTIVE STRUCTURES AGAINST CHANGEABLE VOLTAGE AND METHOD FOR PRODUCING THEM
SE515262C2 (en) * 1995-02-16 2001-07-09 Abb Research Ltd Device for current limiting and protection against short-circuit currents in an electrical system
FR2733353B1 (en) * 1995-04-18 1997-05-16 Gec Alsthom T & D Sa SHORT CIRCUIT CURRENT LIMITER FOR HIGH VOLTAGE NETWORKS
WO1996036057A1 (en) * 1995-05-10 1996-11-14 Littelfuse, Inc. Ptc circuit protection device and manufacturing process for same
US5663702A (en) * 1995-06-07 1997-09-02 Littelfuse, Inc. PTC electrical device having fuse link in series and metallized ceramic electrodes
JPH11506870A (en) * 1995-06-07 1999-06-15 レイケム・コーポレイション Electrical device with PTC behavior
US5614881A (en) * 1995-08-11 1997-03-25 General Electric Company Current limiting device
US6023403A (en) 1996-05-03 2000-02-08 Littlefuse, Inc. Surface mountable electrical device comprising a PTC and fusible element
US5939968A (en) * 1996-06-19 1999-08-17 Littelfuse, Inc. Electrical apparatus for overcurrent protection of electrical circuits
DE19636932C1 (en) * 1996-09-11 1998-01-02 Siemens Ag Automobile relay with short-circuit protection
US6215388B1 (en) 1996-09-27 2001-04-10 Therm-Q-Disc, Incorporated Parallel connected PTC elements
DE19803919A1 (en) * 1997-02-10 1998-08-13 Gen Electric Current interrupting switch unit with current interrupting switch contacts e.g. for protection of machine tool induction motors
US5929744A (en) * 1997-02-18 1999-07-27 General Electric Company Current limiting device with at least one flexible electrode
US6535103B1 (en) 1997-03-04 2003-03-18 General Electric Company Current limiting arrangement and method
US5977861A (en) * 1997-03-05 1999-11-02 General Electric Company Current limiting device with grooved electrode structure
US7321485B2 (en) 1997-04-08 2008-01-22 X2Y Attenuators, Llc Arrangement for energy conditioning
US6603646B2 (en) * 1997-04-08 2003-08-05 X2Y Attenuators, Llc Multi-functional energy conditioner
US9054094B2 (en) 1997-04-08 2015-06-09 X2Y Attenuators, Llc Energy conditioning circuit arrangement for integrated circuit
US7274549B2 (en) * 2000-12-15 2007-09-25 X2Y Attenuators, Llc Energy pathway arrangements for energy conditioning
US7301748B2 (en) 1997-04-08 2007-11-27 Anthony Anthony A Universal energy conditioning interposer with circuit architecture
US7336468B2 (en) 1997-04-08 2008-02-26 X2Y Attenuators, Llc Arrangement for energy conditioning
US6191681B1 (en) 1997-07-21 2001-02-20 General Electric Company Current limiting device with electrically conductive composite and method of manufacturing the electrically conductive composite
US6104587A (en) * 1997-07-25 2000-08-15 Banich; Ann Electrical device comprising a conductive polymer
US5886860A (en) * 1997-08-25 1999-03-23 Square D Company Circuit breakers with PTC (Positive Temperature Coefficient resistivity
JP2001504983A (en) * 1997-08-25 2001-04-10 スクウエアー ディー カンパニー Current limiting circuit breaker with PTC (positive temperature coefficient resistivity) element and arc extinguishing ability
US5933311A (en) * 1998-04-02 1999-08-03 Square D Company Circuit breaker including positive temperature coefficient resistivity elements having a reduced tolerance
IL121703A0 (en) * 1997-09-03 1998-02-22 Body Heat Ltd Fabrication of PTC heating devices
JP4408003B2 (en) * 1997-10-03 2010-02-03 タイコ エレクトロニクス レイケム株式会社 Electrical assemblies and devices
US6373372B1 (en) 1997-11-24 2002-04-16 General Electric Company Current limiting device with conductive composite material and method of manufacturing the conductive composite material and the current limiting device
US6128168A (en) 1998-01-14 2000-10-03 General Electric Company Circuit breaker with improved arc interruption function
US6282072B1 (en) 1998-02-24 2001-08-28 Littelfuse, Inc. Electrical devices having a polymer PTC array
US6020802A (en) * 1998-04-02 2000-02-01 Square D Company Circuit breaker including two magnetic coils and a positive temperature coefficient resistivity element
US6606023B2 (en) 1998-04-14 2003-08-12 Tyco Electronics Corporation Electrical devices
US6124780A (en) * 1998-05-20 2000-09-26 General Electric Company Current limiting device and materials for a current limiting device
US6290879B1 (en) 1998-05-20 2001-09-18 General Electric Company Current limiting device and materials for a current limiting device
US6133820A (en) * 1998-08-12 2000-10-17 General Electric Company Current limiting device having a web structure
DE19842008A1 (en) * 1998-09-15 2000-03-16 Moeller Gmbh Contact structure, for PTC type conductive polymers used in electrical switching and protection devices, comprises coated copper contact electrodes heat treated to achieve low elasticity modulus
DE19842006A1 (en) * 1998-09-15 2000-03-16 Moeller Gmbh Contact structure, for PTC type conductive polymers used in electrical switching and protection devices, comprises a polymer sheet sandwiched between highly flexible metal contact electrodes
US6582647B1 (en) 1998-10-01 2003-06-24 Littelfuse, Inc. Method for heat treating PTC devices
US5963121A (en) * 1998-11-11 1999-10-05 Ferro Corporation Resettable fuse
US6157528A (en) * 1999-01-28 2000-12-05 X2Y Attenuators, L.L.C. Polymer fuse and filter apparatus
US6144540A (en) * 1999-03-09 2000-11-07 General Electric Company Current suppressing circuit breaker unit for inductive motor protection
US6157286A (en) * 1999-04-05 2000-12-05 General Electric Company High voltage current limiting device
US6854176B2 (en) * 1999-09-14 2005-02-15 Tyco Electronics Corporation Process for manufacturing a composite polymeric circuit protection device
US6640420B1 (en) 1999-09-14 2003-11-04 Tyco Electronics Corporation Process for manufacturing a composite polymeric circuit protection device
US6323751B1 (en) 1999-11-19 2001-11-27 General Electric Company Current limiter device with an electrically conductive composite material and method of manufacturing
US6429533B1 (en) * 1999-11-23 2002-08-06 Bourns Inc. Conductive polymer device and method of manufacturing same
EP1247282A1 (en) * 2000-01-11 2002-10-09 Tyco Electronics Corporation Electrical device
US6388553B1 (en) 2000-03-02 2002-05-14 Eaton Corproation Conductive polymer current-limiting fuse
US6628498B2 (en) 2000-08-28 2003-09-30 Steven J. Whitney Integrated electrostatic discharge and overcurrent device
US7193831B2 (en) * 2000-10-17 2007-03-20 X2Y Attenuators, Llc Energy pathway arrangement
AU1335602A (en) * 2000-10-17 2002-04-29 X2Y Attenuators Llc Amalgam of shielding and shielded energy pathways and other elements for single or multiple circuitries with common reference node
US6411191B1 (en) 2000-10-24 2002-06-25 Eaton Corporation Current-limiting device employing a non-uniform pressure distribution between one or more electrodes and a current-limiting material
EP1213728A3 (en) * 2000-11-27 2005-10-26 Eaton Corporation Current-limiting device
US6863149B2 (en) * 2000-12-12 2005-03-08 Japan Science And Technology Corporation Steering mechanism of electric car
US6798331B2 (en) * 2001-02-08 2004-09-28 Qortek, Inc. Current control device
US7180718B2 (en) * 2003-01-31 2007-02-20 X2Y Attenuators, Llc Shielded energy conditioner
JP5228211B2 (en) * 2003-07-02 2013-07-03 タイコエレクトロニクスジャパン合同会社 Composite PTC element
CN1890854A (en) 2003-12-22 2007-01-03 X2Y艾泰钮埃特有限责任公司 Internally shielded energy conditioner
GB2439862A (en) 2005-03-01 2008-01-09 X2Y Attenuators Llc Conditioner with coplanar conductors
US7817397B2 (en) 2005-03-01 2010-10-19 X2Y Attenuators, Llc Energy conditioner with tied through electrodes
EP1991996A1 (en) 2006-03-07 2008-11-19 X2Y Attenuators, L.L.C. Energy conditioner structures
DE102006053081A1 (en) * 2006-11-10 2008-05-15 Epcos Ag Electrical assembly with PTC resistor elements
DE102006053085A1 (en) * 2006-11-10 2008-05-15 Epcos Ag Electrical assembly with PTC resistor elements
US20090027821A1 (en) * 2007-07-26 2009-01-29 Littelfuse, Inc. Integrated thermistor and metallic element device and method
DE102011077922A1 (en) * 2011-06-21 2012-12-27 Behr Gmbh & Co. Kg Heat exchanger
EP3105766B1 (en) * 2014-04-08 2018-11-14 Siemens Aktiengesellschaft Method for protecting an electrical modular unit from overcurrent damage
JP6305816B2 (en) * 2014-04-11 2018-04-04 Koa株式会社 Metal plate resistor
CN110364321B (en) * 2018-03-26 2021-07-13 国巨电子(中国)有限公司 Method for manufacturing shunt resistor
DE102019108435A1 (en) * 2019-04-01 2020-10-15 Borgwarner Ludwigsburg Gmbh Heater with peeled-off fins and method of making a heating rod

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2978665A (en) * 1956-07-11 1961-04-04 Antioch College Regulator device for electric current
US3878501A (en) * 1974-01-02 1975-04-15 Sprague Electric Co Asymmetrical dual PTCR package for motor start system
US3914727A (en) * 1974-01-02 1975-10-21 Sprague Electric Co Positive-temperature-coefficient-resistor package
DE2939470C2 (en) * 1979-09-28 1982-04-08 Siemens AG, 1000 Berlin und 8000 München PTC thermistor heating device
GB2090710B (en) * 1980-12-26 1984-10-03 Matsushita Electric Ind Co Ltd Thermistor heating device
US4698614A (en) * 1986-04-04 1987-10-06 Emerson Electric Co. PTC thermal protector
JPH01143203A (en) * 1987-11-27 1989-06-05 Murata Mfg Co Ltd Organic positive characteristic thermister
JPH01220403A (en) * 1988-02-26 1989-09-04 Murata Mfg Co Ltd Case-contained positive temperature coefficient thermistor

Also Published As

Publication number Publication date
ATE143169T1 (en) 1996-10-15
EP0487920B1 (en) 1996-09-18
DE69122216D1 (en) 1996-10-24
ES2094180T3 (en) 1997-01-16
US5382938A (en) 1995-01-17
JPH04266001A (en) 1992-09-22
DE69122216T2 (en) 1997-04-30
CA2054487A1 (en) 1992-05-01
EP0487920A1 (en) 1992-06-03

Similar Documents

Publication Publication Date Title
CA2054487C (en) Ptc element
CN101138062B (en) High voltage/high current fuse
US6005470A (en) Arc-quenching filler for high voltage current limiting fuses and circuit interrupters
CA1111881A (en) Electric fuse having folded fusible element and heat dams
WO2001039214A2 (en) Improved conductive polymer device and method of manufacturing same
EP0363746B2 (en) Overcurrent protection device for electrical networks and apparatuses
US5663861A (en) Resettable automotive circuit protection device
US6710699B2 (en) Fusible link
US5793278A (en) Limiter for current limiting
US6388553B1 (en) Conductive polymer current-limiting fuse
CZ109595A3 (en) Apparatus for protection from overload
US20020125982A1 (en) Surface mount electrical device with multiple ptc elements
EP0537486B1 (en) Surge arrester assembly
US6157286A (en) High voltage current limiting device
US6838972B1 (en) PTC circuit protection devices
WO1993007667A1 (en) Device for overload and short-circuit protection in electric plants
US5861795A (en) Current-limiting resistor having PTC behavior
CZ238694A3 (en) Device for protection against overload
US4638285A (en) Surge suppressing resistor for a disconnect switch
WO1993000688A1 (en) Circuit protection devices
US4272750A (en) Power breaker apparatus
WO1998044516A1 (en) Resettable automotive circuit protection device
EP1681685A1 (en) PTC current limiting device having flashover prevention structure
US9959958B1 (en) PTC circuit protection device and method of making the same
KR100697917B1 (en) PTC current limiting device

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed