CA2055441C - Her2 extracellular domain - Google Patents

Her2 extracellular domain Download PDF

Info

Publication number
CA2055441C
CA2055441C CA002055441A CA2055441A CA2055441C CA 2055441 C CA2055441 C CA 2055441C CA 002055441 A CA002055441 A CA 002055441A CA 2055441 A CA2055441 A CA 2055441A CA 2055441 C CA2055441 C CA 2055441C
Authority
CA
Canada
Prior art keywords
use according
her2
tissue
cell
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002055441A
Other languages
French (fr)
Other versions
CA2055441A1 (en
Inventor
Robert M. Hudziak
H. Michael Shepard
Axel Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23392786&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2055441(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of CA2055441A1 publication Critical patent/CA2055441A1/en
Application granted granted Critical
Publication of CA2055441C publication Critical patent/CA2055441C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Abstract

An extracellular portion of the HER2 molecule, essentially free of transmembrane and cytoplasmic portions, which is anti-genic in animals. Isolated DNA encoding the extracellular portion; an expression vector containing the isolated DNA; and a cell containing the expression vector. A process for producing the extracellular domain. A vaccine containing the extracellular do-main.

Description

~BACKGROI,TND OF THE INVENTION
Field of the Invention The present invention is generally directed to the extracellular domain of p185HER2, a receptor-like protein which is encoded by the human homolog of the rat neu oncogene.
More specii:ically, the present invention is directed to a form of the: extracellular domain which is essentially free of transmernbrane and cytoplasmic domains, to the DNA
encoding this form, and to a process for producing this form of the extracellular domain in a host cell.
Description of Fsackaround and Relevant Materials Human epidE:rmal growth factor receptor 2 (HER2, also known as NGL and human c-erbB-2, or ERBB2), is the human homolog of the rat proto-oncogene neu. HER2 encodes a 1,255 amino acid.tyrosine kinase receptor-like glycoprotein with homology to the human epidermal growth factor receptor. Althaough no ligand binding to this probable growth factor receptor has yet been isolated, the HER2 gene product, p185HE~~2, has the structural and functional properties of subclass I growth factor receptors (Yarden et al., Ann. Rev. H~iochem., 57:443-478 (1988); Yarden et al., Biochem., 27:311.3-3119 (1988)).
The receptor tyrosine kinases all have the same general structural motif; an extracellular domain that binds ligand, and an intracellular tyrosine kinase domain that is necessaz-y for signal transduction, or in aberrant cases, for transformation. These 2 domains are connected by a single stretch of approximately 20 mostly hydrophobic amino acids, called the transmembrane spanning sequence.
This sequence is thought to play a role in transferring the signal generated by ligand binding from the outside of the cell to the inside. It has also been suggested to play a role in the proper positioning of the receptor in the plasma membrane.
Consistent with this general structure, the p185"ERZ
glycoprotein, which is located on the cell surface, may be divided into three principle portions: an extracellular domain, or ECD (also known as XCD); a transmembrane spanning sequence; and a cytoplasmic, intracellular tyrosine kinase domain. While it is presumed that the extracellular domain is a ligand receptor, as stated above the corresponding ligand has not yet been identified.
The HER2 gene is of particular interest because its amplification has been correlated with certain types of cancer. Amplification of the HER2 gene has been found in human salivary gland and gastric tumor-derived cell lines, gastric and colon adenocarcinomas, and mammary gland adenocarcinomas. Semba et al., Proc. Natl. Acad. Sci USA, 82:6497-6501 (1985); Yokota et al., Oncogene, 2:283-287 (1988); Zhou et al., Cancer Res., 47:6123-6125 (1987); King et al., Science, 229:974-976 (1985); Kraus et al., EMBO J., 6:605-610 (1987); van de Vijver et al., Mol. Cell. Biol., 7:2019-2023 (1987); Yamamoto et al., Nature, 319:230-234 (1986). Gene transfer experiments have shown that WO 90/14357 ~ ~ _ PGT/US90/02697 overexpression of HER2 will transform NIH 3T3 cells and also cause an increase in resistance to the toxic macrophage cytokine tumor necrosis factor. Hudziak et al., "Amplified Expression of the HER2/ERBB2 Oncogene Induces Resistance to Tumor Necrosis Factor Alpha in NIH 3T3 Cells", Proc. Natl. Acad. Sci. USA 85, 5102-5106 (1988).
Because amplification of the HER2 gene results in greatly increased numbers of the p185"ERZ protein residing on the surfaces of affected cells, there may be an interrelationship between increased amounts of p185"ERz extracellular domain on the surfaces of affected cells and the resistance of these cells to treatment. It would therefore be highly desirable to be able to manipulate the p185"ERZ extracellular domain in order to investigate several possibilities for the treatment of conditions associated with amplification of the HER2 gene. These therapeutic modes relate not: only to the extracellular domain, but also to the putativE: ligand, which it should be possible to isolate and characterize using the purified p185"ERz extracellular domain.
SUMMARY OF THE INVENTION
The present invention is accordingly directed to an extracellular portion of the HER2 molecule containing at least 9 amino acids, and/or containing an immune epitope, which is essaentially free of transmembrane and intracellular ;portions of the HER2 molecule. The extracellular portion may be substantially pure, or at least about 99~~ pure, and may extend to the entire a extracellular portion of the HER2 molecule. Moreover, the extracellular portion may be antigenic in animals, and may be conjugated with a peptide having immunogenic properties; this peptide may contain an immune epitope.
In another embodiment, the present invention is directed to isolated DNA encoding the extracellular portion of the HER2 molecule. This isolated DNA terminates upstream of the DNA portion encoding the transmembrane domain of the HER2 molecule. The termination may occur at least 1 base pair upstream of the portion encoding the transmembrane domain of the HER2 molecule, and preferably occurs about 24 base pairs upstream of this portion.
The isolated DNA of the present invention encodes a sequence of at least 9 amino acids of the extracellular portion, and none of the transmembrane or intracellular portions of the HER2 molecule.
In a further embodiment, the present invention contemplates an expression vector, such as a plasmid or virus, containing the isolated DNA as described above, as well as a cell containing the expression vector. This cell may be eukaryotic or prokaryotic.
The present invention also extends to a process for producing an extracellular portion of the HER2 molecule, which includes the steps of ligating the isolated DNA as described above into an expression vector capable of expressing the isolated DNA in a suitable host;
transforming the host with the expression vector;

~~
culturing the host under conditions suitable for expression of the isolated DNA and production of the extracellular portion; and isolating the extracellular portion from the host. The host cell may be a prokaryote, such as a bacterium, or a eukaryote.
In a yet further embodiment, the present invention extends to a vaccine comprising the extracellular portion of the HER2 molecule, which may be combined with suitable adjuvants.
BRIEF DESCRIPTION OF FIGURES
Fig 1. HER2 expression vector and full-length and mutant HER2 proteins. -The HER2 expression vector contained eukaryotic transcriptional units for the mouse dihydro-folate reductase (DHFR) cDNA and the bacterial neomycin phosphotransferase (neo) gene, both under SV40 early promoter control. Transcription of the full-length HER2 cDNA was also driven by the early SV40 promoter. The full-length HER2 protein contains an extracellular domain with two cysteine-rich clusters (hatched rectangle), separated by the transmembrane-spanning region (filled rectangle) from the intracellular tyrosine kinase domain (open rectangle) . The mutant protein p185"EazerM has a deletion of 28 amino acids, including the transmembrane-spanning region. The truncated p185"Ea2xco protein contains all N-terminal sequences up to 8 amino acids before the ransmembrane-spanning region.
Fig. 2. ~nplification of HER2 and 'HER2ATM genes.
Cell lines transfected with plasmids expressing wild type r t Y V / VI P W . n .. . . ~ _. _ .. ,_ .._ ~. ~55.441 .
.-6-or the dTM mutant HER2 cDNAs were amplified to resistance to 400 nM methotrexate. Cultures were metabolically labeled with [35S)-methionine and proteins i~~o-precipitated with the G-H2CT17 antibody. Lane 1:
CVN-transfected NIH 3T3 vector control line. Lanes 2 and 3: Parental and amplified~HER2-3 line. Lanes 4, 5, and 6, 7: Parent and amplified lines derived from two independent clones, A1 and X32, of the DTM mutant. The arrows indicate the positions expected for proteins of apparent molecular mass of 175 and 185 kDa.
Fig. 3~ Autophosphorylation of p185"ER2 and p185HEROTM
proteins. Triton X-100* lysates of control, HER2-34o0. and ATM-expressing cell lines were prepared and immuno-precipitated with the G-H2CT17 antibody. The immune complexes were incubated in 50 u1 of HNTG, 5 mM MnCl2 with 3 uCi ~~r-32P) fir 20 min, electrophoresed on a 7.5%
polyacrylamide gel, and labeled bands visualized by autoradiography. Lane 1: CVN vector control. Lane 2:
HER2-34op ae~lls expressing full-length HER2. Lanes 3 and 4:
Two independent lines expressing p185"E~'t". The arrows indicate the positions expected for proteins of apparent molecular mass of 66.2, 97, 175, and 185 KDa.
Fig 4. Secretion assay of dTM mutants. Cell lines CVN, HE'R2-300, ~~-Ahoo, and ATM-82,~0o were labeled with [35S ) methionine overnight. Triton X-100 cell extracts were prepared and the labeling medium collected: Cells and cell-conditioned media were immunoprecipitated with G-H2CT17 antibody and analyzed on 7.5% SDS-PAGE gels.
*Trade-mark WO 90/14357 °~.°T/US90/02697 Lanes 1-4 are immunoprecipitations of cell extracts from the various lines, and lanes 5-8 are immunoprecipitations from the corresponding cell-conditioned media. Lanes 1 and 5: CVN vector control. Lanes 2 and 6: HER2-34oo cell lines expressing full.-length p185"E"z. Lanes 3, 4 and 7, 8: ~TM-Al4oo and ATM-B24oo cell lines expressing mutant p185"ERZerH
The arrows indicate the positions expected for proteins of apparent molecular mass of 175 and 185 KDa.
Fig 5 . Secretion of p185"ER2xcn from 3T3 and CHO cells .
NIH 3T3 and C:HO cell lines expressing full-length and truncated p185"~ERZ and vector controls were labeled with [355-methionine: overnight. Cell extracts and cell-conditioned media were immunoprecipitated with anti-HER2 monoclonal antibody 3E8 and analyzed on 7.5~
SDS-PAGE gels. Lanes :1 and 2: NIH 3T3 control cell line, extract and conditioned medium. Lanes 3 and 4: NIH 3T3 line A1 expressing p185"ER2xco' cells and medium. Lanes 5 and 6: NIH 3T3 lir,:e 340o expressing full-length p185"ERZ, cells and conditioned medium. Lanes 7 and 8: CHO control line, cell extract anal conditioned medium. Lanes 9 and 10: CHO
line 2, expressing p185"ER2xc~~ cells and conditioned medium.
Lanes 11 and 1:z : CHO line HER25oo, expressing full-length p185"ER2, cells a.nd conditioned medium. The arrows indicate the molecular mass of the indicated protein bands.
Fig 6. Increase in expression of p185"Eazxc~ with amplification. The CHO-derived cell line HER2XCD-2 was selected for growth in 500 nM and then 3000 nM
methotrexate. The parent line, the two amplified ~J
__ derivatives, and control vector-transfected cells were labeled with [35S)-methionine. Cell extracts and cell-conditioned media were immunoprecipitated with the anti-HER2 monoclonal antibody 3E8 and analyzed on a 7.5%
SDS-PAGE gel. Lanes 1 and 2: CVN cell extract and conditioned medium. Lanes 3 and 4: HER2XCD-2, unamplified cells and conditioned medium. Lanes 5 and 6: HER2XCD-2 amplified to resistance to 500 nM methotrexate, cells and conditioned medium. Lanes 7 and 8: HER2XCD-2 amplified to resistance to 3000 nM methotrexate, cells and conditioned medium. For comparative purposes, one-fifth as much sample of the 3000 nm line was loaded compared to the control, 0 nM, and 500 nM lines. The band intensities were quantitated with an LKB2202 laser densitometer. The arrows show the positions of proteins of apparent molecular mass of 88 and 103 KDa.
Fig 7. Biosynthesis of p185HER2xc~. The CHO line HER2XCD23ooo was labeled with [35S)-methionine and cell extracts, and cell-conditioned media prepared. Lanes 1 and 2: Cell extract and cell-conditioned medium. Lanes 3 and 4: The same conditioned medium incubated or mock-incubated with endo H. Lanes 5 and 6: Cell extract and conditioned medium from cells treated with tunicamycin. The arrows show the positions expected for proteins of apparent molecular mass of 73, 88, and 103 KDa.
Fig 8. Morphology of NIH 3T3 cells transfected with HER2 and HER2~TM expression constructs. A and D: Parental and amplified cells from NIH 3T3 cells transfected with 5. 4 ~ ~ PCT/US90/02697 -g-vector alone. B and E: NIH 3T3 cells expressing p185"EezeTM
(line Ai), parent and amplified derivative selected for resistance to 400 nM methotrexate. C and F: NIH 3T3 cells expressing wild type p185"ERZ (line 3), parent and amplified derivative selected for resistance to 400 nM methotrexate.
Fig 9. Cell surface and cytoplasmic immuno fluorescence staining of control, HER2, and HER2~TM lines.
The top photos are intact cells labeled with anti-HER2 monoclonal antibody. The bottom photos are the same cell lines treated with 0.15% Triton X-100 detergent before addition of antibody. A and D: Control NIH 3T3 cells transfected with vector only. B and E: Cell line HER2 ATM-Al4oo. expressing p185HER2~TM. C and F: Cell line HER2-34oo express ing p185"ERZ.
Fig 10. Fluorescence-activated cell sorter histograms of control, HER2 and HER2~TM cells binding anti-p185"ERz monoclonal antibody 4D5. Binding by the control antibody, 368, directed against human tissue plasminogen activator, light, broken line. Binding by the anti-HER2 antibody 4D5, dark unbroken Aine. , Panel A: Control NIH 3T3 cells transfected with vector only. PanelB: Cell line HER2-34o0~
expressing p185"ER2. panel C: Cell line HER2 ~TMAl4oo expressing p185°'r".
Fig 11. Biosynthesis of p185"Eaz and p185"ER2erM proteins.
Cell lines HER2-34oo and HER2~TM-Al4oo were labeled with ~35S~-methionine and p185"Ea2 and p185"Ea2eTM proteins collected by immunoprecipitation and analyzed on a 7.5% SDS-PAGE gel.
Lane l: Vector control. Lane 2: Untreated p185"Ea2srM. Lanes 3 and.4:,.Aliquots of the same cell extract treated or mock-treated with ~ endo H. Lane 5: ~ Nonglycosylated p185"Ee2 from cells treated with tunicamycin. Lane 6' Untreated p185"Ea2_ Lanes 7 and 8: Aliquots of the same cell extract treated or mock-treated with endo H. Lane 9:
Nonglycosylated p185"~'T.~ from cells treated with . tunicamycin. The arrows show the positions of proteins of apparent molecular weight of 175 and 185 kDa.
Fig. 12. Purification of the HER2 extracellular domain. Purified HER2 extracellular domain samples were analysed using Pha.stSystem* SDS-Gel electrophoresis and silver stained protocols as recommended by Pharmacia. SDS
polyacrylamide gel (10-15% gradient) electrophoretic analysis was performed according to Pharmacia protocol File No. 110. Silver staining was performed according to Pharmacia protocol File No. 210. Lane 1 contains molecular weight markers (f3RL). Lane 2: Chinese Hamster Ovary Cell 15 X concentrate (1 microliter). Lanes 3 and 4:
immunoaffinity purified HER2 extracellular domain (1.6 micrograms and 0.16 microgram, respectively). Lanes 5 and 6: immunoaffinity purified HER2 extracellular domain after DEAF chromatography (0.25 micrograms and 0.083 micrograms, respectively). Lanes 7 and 8: HER2 extracellular domain after formulation in PBS (0.32 micrograms and 0.082 micrograms, respectively).. _ Fig: 13. The predicted amino acid sequence of the HER2 extracellular domain, with the corresponding nucleic acid~sequence. T:he,boxed .sequences show potential T-cell *Trade-mark ' v -il~_ epitopes, using the algorithm developed by Margolit et al. , J. Immunol. 138:2213-2229(4) (1987).
DETAILED DESCRIPTION
It was initially hypothesized that removal of the transmembrane s~aanning sequence would yield a protein which would be secreted from the cell. As previously indicated, the transmembrane spanning sequence is principally composed of hydrophobic amino acids, which effectively anchor the protein in the cell membrane. Removal of this sequence would therefore: be expected to permit passage of the protein through the membrane.
A first construct was accordingly prepared which deleted exactly in-frame the 22 amino acid transmembrane spanning sequence of HER2, and 3 amino acids on either side (Figure 1). The construct was prepared as follows:
The central EcoRi fragment containing the trans-membrane spanning segment was cloned into the EcoRi site of the bacteriophac~e vector M13 mpl8 (Yanisch-Perron et al., Gene, 33:103-115) (1985). The noncoding strand was used as template for o:Ligonucleotide-directed mutagenesis. The construct deleted the transmembrane spanning sequence, and an additional 3 amino acids before and after.
Residues E~51-678 were deleted by priming double stranded DNA synthesis with a 30 base pair oligonucleotide of sequence 5° CAG AGA GCC AGC CCT CAG CAG AAG ATC CGG 3°.
The double stranded DNA was transformed into SR101 cells and mutants identified by hybridization to the same oligonucleotide 5° end labeled by polynucleotide kinase and [y 3zP] ATP (~mersham, 5000 Ci/mmol). An EcoRl fragment containing the deletion was recombined into a plasmid expressing the HER2 cDNA, replacing the wild type sequence.
When expressed in NIH 3T3 cells, this mutant, designated HER2'T", produced a polypeptide, designated p185"ER2eTM1 of apparent molecular weight 175 kD (Figure 2, lanes 5 and 7). Production took place at levels comparable to wild type p185"ERZ amplified to the same level of resistance to methotrexate (Figure 2, lane 3). The mutant proteins also retained an active tyrosine kinase activity.
In the presence of [y 3zP]-ATP, the mutant proteins (Figure 3, lanes 3 and 4) were autophosphorylated to the same extent as unaltered p185"ER (Figure 3, lane 2). Figure 3 also shows autophosphorylated p185"ERZsTM-related proteins of lower molecular weight than the complete protein. These smaller proteins may represent degradation products and, since they are not observed with p185"ER2, could imply a difference in intracellular processing of the mutant form.
To determine whether the form lacking the trans membrane sequence was secreted, cells were metabolically labeled with 35S-methionine. The culture conditions used herein were as follows: cells were cultured in a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's nutrient mixture F-12 supplemented with glutamine (2 mM), penicillin (100 units/ml), streptomycin (100 ug/ml), and 10% serum. NIH 3T3-derived cell lines were cultured with calf serum (Hyclone). Chinese Hamster Ovary cells deficient in dihydrofolate reductase (CHO-DHFR) were 13~~~
cultured in fetal bovine serum (Gibco) supplemented with glycine (0.13 mM), hypoxanthine (0.11 mM), and thymidine (0.02 mM). (For selection of the transfected plasmid DHFR
gene or to amplify introduced plasmids by methotrexate selection, the glycine, hypoxanthine, and thymidine were omitted and extensively dialyzed serum substituted for fetal bovine serum.
Both cells and cell-conditioned medium were assayed for p185"ERZo Figure 4 demonstrates that all p185"Eez remained cell associated. (lanes 2, 3, 4), and neither the wild type protein nor the mutant form was secreted (lanes 6, 7, 8).
Thus, contrary to expectations, deletion of the transmembrane spanning sequence was not sufficient to yield a secreted form of p185"Ea2.
The discov~_ry that p185HER2°T" is not secreted suggested that perhaps there are sequences distal to the transmembrane apanning region that prevent passage of p185"ER2 through the plasma membrane. A second mutant was accordingly made that contained a UAA stop codon 8 amino acids before the beginning of the proposed transmembrane spanning sequence (Figure 1).
The second construct truncated p185"ER2 g amino acids before the start of the transmembrane spanning region at residue 645 by addition of a polypeptide chain-terminating TAA codon. The oligonucleotide 5' AAG GGC TGC CCC GCC GAG
TAA TGA TCA CA.G AGA GCC AGC CCT 3' was used to prime synthesis of double-stranded DNA from the same template used to construct the ATM mutant. Mutant plaques were identified by hybridization to the 5' end-labeled oligonucleotide, and confirmed by checking for the presence of a Bcl 1 site also introduced directly after the ochre codon. The chain-terminated mutant, designated HER2xco, was then recombined into the HER2 cDNA expression plasmid. The structure of the plasmid and the 2 mutant HER2 derivatives is shown in Figure 1.
Secretion of the resulting form of p185"ER2, designated p185"ERZxc°, was assayed by first metabolically labeling the cells with 35S-methionine, followed by immunoprecipitation of p185"ERZ-related proteins from both the cells and cell-conditioned media. In the immunoprecipitation procedure (Hudziak et al., Proc. Natl. Acad. Sci. USA, 84:7159-7163 (1987)), cells were harvested by trypsinization, counted electronically with a Coulter counter, and plated at least 6 hrs. before labeling. The plating medium was removed, cells washed with PBS, and the cells re-fed with methionine-free Dulbecco's modified minimal medium. [35S]-methionine (Amersham, 800 Ci/mmol, 29.6 TBq/mmol) was added at 100 uCi/6 cm plate in a volume of 3 ml. Cells were lysed at 4°C with 0.4 ml of HNEG lysis buffer per 6 cm plate. After 10 min, 0.8 ml of lysis dilution buffer (HNEG buffer with 1% bovine serum albumin, 0.1% Triton X-100 detergent) was added to each plate and the extracts were clarified by microcentrifugation for 5 min. Medium to be assayed for secretion of p185"ERZ related proteins was collected and clarified by micro-centrifugation .

Antibodies were added to cell extracts or conditioned medium and alloyed to bind at 4°C for 2-4 h. The polyclonal antibody, G-H2C'.r17(0), recognizing the carboxy-terminal 17 amino acids of p185"ER2~ was used for characterization of cell lines exp~~essing the transmembrane-deleted form of p185"Ea2e The monoclonal antibody 3E8, recognizing an epitope on the extracellular domain (Hudziak et al., Mol.
Cell. Bio., 9:1165-1172 (1989)), was used at 8 ug/reaction to immunoprecip~itate the truncated form. Seven ug of rabbit anti-mouse IgG was added to immunoprecipitations using this monoclonal to improve its binding to protein A-sepharose. Immune complexes were collected by absorption to protein A-se;pharose beads and washed (Hudziak et al., Proc. Natl. Acad. Sci. USA, 85:5102-5106 (1988); Hudziak et al., Proc. Nat7.. Acad. Sci. USA, 84:7159-7163 (1987)).
Proteins were separated on 7.5~ sodium dodecyl sulphate-polyacrylamide gels (SDS-PAGE) and analyzed by autoradiography.
This revealed a form of p185"ER2xc~ of M,. 88, 000 kD that is associated with the cells (Figure 5, lanes 3 and 9);
however, the cell-conditioned media from both the NIH 3T3 cells and Chinese hamster ovary-derived lines also contains larger amounts of a protein of M,. 103,000, which is immunoprecipitated by anti-HER2 monoclonal antibody (Figure 5, lanes 4 and 10). Full length p185"ER2 was also expressed in both NIH 3T3 and CHO cells (Figure 5), lanes 5 and 11.
There is no secrsaion of native p185"Ea2 from either of these cell types (Figu:re 5, lanes 6 and 12).

The larger size of the observed proteins in the cells and cell-conditioned medium (88,000 and 103,000, respectively) compared to the size predicted by the amino acid sequence (71,644) suggested that the truncated form was being glycosylated.
This was confirmed by treating the cells with the antibiotic tunicamycin, which prevents N-linked glycosylation. Treatment with tunicamycin resulted in the appearance of a cell-associated protein of M,. 73,000, which is close to that predicted by the amino acid sequence (Figure 7, lane 5). It also almost completely inhibited secretion of p185Heazxco into the medium (Figure 7, lane 6) .
Cell-conditioned medium from tunicamycin treated cells contains only small amounts of the mature 103,000 form, and none of the smaller forms (lane 6). This further suggests that secretion of p185"Eazxco is coupled to glycosylation.
The extent of glycosylation of the secreted form was investigated with the enzyme endoglycanase H (endo H, Boehringer Manheim). This enzyme will hydrolyze asparagine-linked oligosaccharides of the high mannose type. High mannose oligosaccharides are biosynthetic intermediates in the glycosylation process. Final maturation of the carbohydrate side chains involves trimming off some mannose and addition of other sugars such as fucose. Such mature oligosaccharide side chains are resistant to endo H.
To determine if secreted p185"Ea2xco is resistant to this enzyme, cell conditioned medium labeled with 35S-methionine was immunoprec;ipitated. The immuno-precipitates were collected onto protein A sepharose beads and incubated with endo H. Neither mock incubated (lane 3) nor endo H-treated p185"ERZxco ( lama 4 ) showed any decrease in mobility associated with hydrolysis of the glycosyl side chains, demonstrating that the glycosylation is complete.
Without bs:ing bound by any particular theory, these results taken together suggest that the cell-associated form of p185"Ea2xco is an intermediate, and that fully mature glycosylated p185"ER2 extracellular domain is being synthesized anct secreted. The lack of secretion of the p185"ER2eTM protein could be hypothesized to result from the presence of processing information in the transmembrane spanning sequence which is necessary for Golgi transport and targeting of the plasma membrane; however, from these studies it appears instead that transport of tyrosine kinase receptor (or receptor-like) extracellular domain to the cell surface is coupled to proper glycosylation.
Therefore, insertion of the UAA stop codon 8 amino acids before th.e beginning of the proposed transmembrane spanning sequence yields a fully mature glycosylated p185"ER2 extracellular domain which is freely secreted by the cell.
Having succeeded in producing a secreted form of p185"ER2, the next stage involved investigating whether the amount of secreted protein could be increased by gene amplification. Using the CHO-derived cell line, it was found that the amount of extracellular domain could be increased by methotrexate selection. The amount of secreted product increased 29-fold in cells selected for resistance to 500 nm methotrexate, and a further 4.4-fold by selection for resistance to 3000 nm methotrexate (Fig.
6) .
Thus, a total increase of 128-fold in secreted p185"Eezxcn was obtained when this cell line was amplified to resistance to 3000 nm methotrexate, making the production of relatively large quantities of p185"ERZxco possible.
To determine whether overexpression of p185"ERZsTM
results in cell transformation, DNA was introduced in mammalian cells by the CaHP04 coprecipitation method (Graham et al., Viroloav, 52:456-467 (1973)). Five ug of plasmid DNA was added to half-confluent plates of cells (6.0 cm) in 1 ml for 4-6 h. The DNA was removed and the cells shocked with 20~ (vol/vol) glycerol. After 2 days for phenotypic expression the selective agent geneticin was added at 400 ug/ml. Clones were picked using glass cloning cylinders with petroleum jelly for the bottom seal. The introduced plasmids were amplified by the methotrexate selection procedure (Kaufman et al., J. Mol. Biol., 159:601-621 (1982) ) .
When the ATM mutant was expressed in NIH 3T3 cells, primary unamplified colonies after selection had the normal flat nontransformed phenotype (Figure 8, compare photo B
with vector control alone, photo A). After the expression level was increased by methotrexate selection, the cells took on the refractile, spindle-shaped appearance of transformed cells and also grew piled up in irregular clumps (photo E). This observation is similar to our earlier findings with the unaltered HER2 cDNA (photos C and F, parent and amplified derivatives respectively), and suggests that nigh levels of expression of the mutant 4TM
protein were a7_so transforming.
The morphological changes seen at equivalent levels of amplification (400 nm methotrexate) are not as marked for the mutant, implying that the transforming potential of this form of p185eeRZ may be less. At higher levels of resistance to m,ethotrexate, the OTM cells become even more transformed in appearance.
The plasmid was also negative in a focus-forming assay whereas the wild type HER2 plasmid was positive, further indicating than the transforming potential Of p185"Ee2erM
protein is lower. Cells expressing high levels also displayed another property of the transformed phenotype, growth in soft agar. Colony formation in soft agar was determined by harvesting each line to be assayed with trypsin, counting the cells (Coulter counter), and plating 80,000 Cells per 6-cm dish. The toti layer rnnc;~+-oa "
ml of 0.25% agar (Difco, "purified") older a bottom layer of 5 ml of 0.5% ag<~r. Colonies were counted after 3-4 weeks.
Cells from 2 independent clones plated in soft agar gave rise to soft agar colonies with an efficiency comparable to cells expressing the wild type HER2 gene:

~'...

Table I
Soft Acrar Colony Formation Cell Line # of Soft Acrar Colonies CVN4oo 0 HER2-3o 5 +/- 1 HER2-34o0 208 +/- 27 OTM-Alo 0 ATM-Al4op 205 +/- 62 ~TM-B2p 0 ATM-B24oo 205 +/- 13 Two control lines were used; NIH 3T3 cells transfected with a plasmid expressing only the neo and DHFR genes, and the same line amplified to resistance to 400 nM
methotrexate. The number of soft agar colonies. arising was determined for both parental and amplified lines of clones expressing either p185"ERZ or p185"ER2eTM proteins. Each cell line was plated in triplicate and the value averaged.
Therefore, according to the present invention it has been determined that removal of only the transmembrane spanning sequence does not lead to secretion of p185"ERZ, unless the entire tyrosine kinase domain is also deleted.
Removal of this domain results in proper glycosylation and secretion of the extracellular domain.
In order to obtain purified HER2 extracellular domain working material, Chinese Hamster Ovary Cell Harvest Fluid (CFF) containing recombinant HER2 ECD may be first concentrated by ultrafiltration, and then purified by immunoaffinity chromatography using a HER2 specific MAb coupled to CNBr activated Sepharose; other suitable immobilization supports may be used. Concentrated CCF is applied to the affinity column after filtration through a 0.2 micron Millipor* filter. Purification: cycles are performed as necessary until the desired amount of CCF is processed.
During each cycle of purification; the concentrated CCF is applied. and the affinity column is washed to baseline with 0.5 M Tris buffer containing 0.15 M.NaCl at 30 a pH of approximately 7.5 (TB). HER2 extracellular domain is then eluted from the column with 0.1 M sodium citrate buffer containing 0.5 M NaCl at a pH of approximately 3.5.
The affinity column eluant fractions containing HER2 ECD
are pooled and neutralized. The immunoaffinity column is reequilibrated between each purification cycle with TB.
In a ~secorid.~step, the affinity column eluant is buffer exchanged into 25 ml of Tris buffer, at a pH of approximately 7.0 (TB2). The HER2 extracellular domain is then applied to a DEAF Sepharose Fast Flow* column, and washed with TB2. The HER2 ECD is removed from the column by step or gradient salt elution in TB2 (containing up to 200 mM NaCl).
After DEAF chromatography, purified HER2 ECD fractions are pooled, exchanged into phosphate-buffered saline, and stored at 2-8° C. The resulting material is substantially pure, i.e., about 99% pure (see Fig. 12).
By means of the present invention it is accordingly possible to produce a secreted; glycosylated p185Nexz *Trade-mark ., extracellular domain. This opens several possibilities for further research, as well as a broad range of potential therapeutic applications.
As previously stated, the HER2 gene is of particular interest because its amplification has been correlated with certain types of cancer. In a survey of 189 primary mammary gland adenocarcinomas, it was found that 30%
contained amplifications of the HER2 gene. Slamon et al., "Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the HER-2/neu Oncogene," Science 235, 177-182 (1987). Amplification was correlated with a negative prognosis and high probability of relapse.
This suggests that of the 120, 000 women diagnosed with breast cancer each year, 36,000 will have HER2 amplification. Approximately half of these women, or about 15,000, may be expected to exhibit greater than 5-fold amplification, corresponding to nearly half of the 40,000 breast cancer-related deaths each year.
It has been demonstrated that a monoclonal antibody directed against the p185~ER2 extracellular domain specifically inlhibits growth of breast tumor-derived cell lines overexpressing the HER2 gene product; prevents HER2 transformed NIH 3T3 cells from forming colonies in soft agar; and reduces the resistance to the cytotoxic effect of tumor necrosis factor alpha which accompanies HER2 overexpression. Hudziak et al., "p1858eR2 Monoclonal Antibody has Antiproliferative Effects In Vitro and Sensitizes Human Breast Tumor Cells to Tumor Necrosis i 1 f 'V JVI ~~JW ~ . ~. ~ . .,..... ...
,~ -23-Factor", Mol. Cell. Biol. 9:1165-1172 (1989). See also, Drebin et al., "Inhibition of Tumor Growth by a Monoclonal Antibody Reactive with an Oncogene-Encoded Tumor Antigen", Proc. Natls Acad.'Sci. USA 83, 9129-9133 (1986 (gin vivo treatment with anti-p185 monoclonal antibody asserted to inhibit tumorigenic growth of neu-transformed NIH 3T3 cells implanted in mice).
This effect presents the possibility that conditions characterized by amplification of the HER2 gene may be subject to treatment via Active Specific Immunotherapy.
This therapeutic modality contemplates provoking an immune response in a patient by vaccination with an immunogenic form of the extracellular domain. The extracellular domain (or a derivative thereof, as discussed below) may be combined with a local adjuvant which is safe and effective in humans, such .as alum, Bacillus calmette-Guerin (BCG), adjuvants derived from BCG cell walls, Detox* (Ribi-immunochem), Synt:ex-1*, or Corynebacterium partum.
Alternatively, systemic adjuvants, such as Interferon gamma, Interleukin 1,. Interleukin 2, orrInterleukin 6 may be suitable. An appropriate dose and schedule would be selected to maximize humoral and cell-mediated response.
It may also be possible to enhance an immune response by targeting the immunogen to the immune system, which could lead to more efficient capture of the antigen by antigen presenting cells, or by directing the immunogen so that it is presented by MHC Class 1 molecules, since these usually induce a T-cell response.
~'"'*Trade-mark. -In addition to Active Specific Immunotherapy, it should,be possilble to use the purified extracellular domain to isolate and characterize the putative ligand. The HER2 ligand may be used in turn to deliver toxin to tumor cells which are overexpressing HER2; such as by molecular fusion of the ligand with toxin, or by chemical cross-linking.
Alternatively, patients overexpressing HER2 may be vaccinated with HER2 ligand conjugated to, or in combination with; a suitable adjuvant.
A patient overexpressing HER2 will also presumably be overexpressing the HER2 ligand. The ligand-HER2 binding interaction, which is likely to contribute to tumor growth, may be inhibited by blocking free ligand in the patient's serum. This blocking can be accomplished by treating the patient with the HER2 extracellular domain, which will proceed to bind free HER2 ligand, thereby preventing the ligand from binding to the HER2 receptor site.
Rather than using the HER2 extracellular domain er se, it may be mare desirable to use a derivative which has an increased af:finity,for the ligand, and/or which has an increased half-life in vivo. Cross-linking on cells is known to improve binding affinity, suggesting that artificial cross.-linking can be used to improve the binding ability of the HER2 extracellular domain. The half-life of the extracellular domain in serum can be improved by, for example, fusing the extracellular domain with other molecules present in the serum which are known to have a WO 90/14357 ~GT/US90/02697 ....~~,, 5~1 long half-life, such as the Fc-portion of an immunoglobin molecule.
The present invention has of necessity been discussed herein by reference to certain specific methods and materials. It is to be understood that the discussion of these specific methods and materials in no way constitutes any limitation on the scope of the present invention, which extends to any and all alternative materials and methods suitable for accomplishing the ends of the present invention.

Claims (39)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A composition comprising an extracellular portion of the HER2 molecule comprising at least 9 amino acids and/or an immune epitope, essentially free of transmembrane and intracellular portions of said HER2 molecule, and in substantially pure form, for use in Active Specific Immunotherapy.
2. A composition according to claim 1, wherein the extracellular portion of the HER2 molecule has a purity of at least about 99%.
3. A composition according to claim 1 or claim 2, comprising the entire extracellular portion of the HER2 molecule.
4. A composition according to any one of claims 1 to 3, wherein the extracellular portion of the HER2 molecule is conjugated with a peptide having immunogenic properties.
5. A composition according to claim 4, wherein said peptide comprises an immune epitope.
6. A composition according to any one of claims 1 to 5 further comprising an adjuvant.
7. A composition according to claim 6 wherein the adjuvant comprises any of alum, Bacillus calmette-Guerin (BCG), a BCG cell wall derivative, Detox, Corynebacterium parvum, interferon gamma, interleukin 1, interleukin 2, Syntex-and interleukin 6.
8. Use of an extracellular portion of the HER2 molecule comprising at least 9 amino acids and/or an immune epitope, essentially free of transmembrane and intraocular portions of said HER2 molecule, in the manufacture of a composition for treatment of a patient by Active Specific Immunotherapy.
9. Use according to claim 8, wherein the composition comprises the entire extracellular portion of the HER2 molecule.
10. Use according to claim 8 or claim 9 wherein the extracellular portion of the HER2 molecule is conjugated with a peptide having immunogenic properties.
11. Use according to claim 10 wherein said peptide comprises an immune epitope.
12. Use according to any one of claims 8 to 11, wherein the composition comprises an adjuvant.
13. Use according to claim 12, wherein the adjuvant comprises any of alum, Bacillus calmette-Guerin (BCG), a BCG cell wall derivative, Detox, Corynebacterium parvum, interferon gamma, interleukin 1; interleukin 2, Syntex-1 and interleukin 6.
14. Use of an effective amount of an extracellular portion of the human HER2 receptor to treat a patient via Active Specific Immunotherapy to provoke a cell-mediated immune response to the HER2 receptor in the said patient.
15. Use according to claim 14 wherein the patient has, or is at risk of acquiring, cancer.
16. Use according to claim 15 wherein cells from a tissue of a patient have increased numbers of the HER2 receptor residing on the surfaces thereof, relative to normal cells of the same tissue type.
17. Use according to claim 16 wherein the tissue is a mammary gland tissue.
18. Use according to claim 17 wherein the patient is a woman.
19. Use according to claim 16 wherein the tissue is salivary gland tissue.
20. Use according to claim 16 wherein the tissue is gastric tissue.
21. Use according to claim 16 the tissue is colon tissue.
22. Use according to claim 14 which further comprises the use of an adjuvant.
23. Use according to claim 22 wherein the adjuvant is selected from the group consisting of alum, Bacillus calmette-Guerin (BCG), a BCG cell wall derivative, Detox, Corynebacterium parvum, interferon gamma, interleukin 1, interleukin 2 and interleukin 6.
24. Use according to claim 14 which elicits both a humoral and cell-mediated response in the patient.
25. Use according to claim 14 wherein the extracellular portion is fused to a heterologous molecule.
26. Use according to claim 25 wherein the heterologous molecule comprises the Fc-portion of an immunoglobulin molecule.
27. Use of an effective amount of an extracellular portion of the human HER2 receptor to provoke a humoral and cell-mediated immune response to the HER2 receptor in a patient.
28. Use according to claim 27 wherein the patient has, or is at risk of acquiring, cancer.
29. Use according to claim 27 wherein cells from a tissue of the patient have increased numbers of the HER2 receptor residing on the surfaces thereof, relative to normal cells of the same tissue.
30. Use according to claim 29 wherein the tissue is mammary gland tissue.
31. Use according to claim 29 wherein the tissue is salivary gland tissue.
32. Use according to claim 29 wherein the tissue is gastric tissue.
33. Use according to claim 29 wherein the tissue is colon tissue.
34. Use according to claim 27 which further comprises the use of an adjuvant.
35. Use according to claim 27 wherein the extracellular portion is fused to a heterologous molecule.
36. Use according to claim 27 which induces a T-cell response to the HER2 receptor.
37. Use according to claim 14 which induces a T-cell response to the HER2 receptor.
38. Use of an effective amount of an isolated extracellular portion of the human HER2 receptor to treat a human patient by Active Specific Immunotherapy to provoke a cell-mediated immune response to the HER2 receptor in the said patient.
39. Use of an effective amount of an isolated extracellular portion of the human HER2 receptor to provoke a humoral and cell-mediated immune response to the HER2 receptor in a human patient.
CA002055441A 1989-05-19 1990-05-18 Her2 extracellular domain Expired - Fee Related CA2055441C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US35431989A 1989-05-19 1989-05-19
US354,319 1989-05-19
PCT/US1990/002697 WO1990014357A1 (en) 1989-05-19 1990-05-18 Her2 extracellular domain

Publications (2)

Publication Number Publication Date
CA2055441A1 CA2055441A1 (en) 1990-11-20
CA2055441C true CA2055441C (en) 2003-01-07

Family

ID=23392786

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002055441A Expired - Fee Related CA2055441C (en) 1989-05-19 1990-05-18 Her2 extracellular domain

Country Status (8)

Country Link
US (2) US6015567A (en)
EP (1) EP0474727B1 (en)
AT (1) ATE155813T1 (en)
CA (1) CA2055441C (en)
DE (1) DE69031120T2 (en)
DK (1) DK0474727T3 (en)
ES (1) ES2106033T3 (en)
WO (1) WO1990014357A1 (en)

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861511B1 (en) * 1986-06-04 2005-03-01 Bayer Corporation Detection and quantification of neu related proteins in the biological fluids of humans
WO1989006692A1 (en) * 1988-01-12 1989-07-27 Genentech, Inc. Method of treating tumor cells by inhibiting growth factor receptor function
EP0444181B2 (en) * 1989-08-04 2010-11-24 Bayer Schering Pharma Aktiengesellschaft C-erbb-2 external domain: gp75
US7282345B1 (en) 1989-08-04 2007-10-16 Schering Ag C-erbB-2 external domain: GP75
ATE180276T1 (en) * 1990-01-26 1999-06-15 Washington Res Found IMMUNOREACTIVITY TOWARDS EXPRESSED ACTIVATED ONCOGENES FOR THE DIAGNOSIS AND TREATMENT OF MALIGNANT TUMORS
EP0444961A1 (en) * 1990-03-02 1991-09-04 Bristol-Myers Squibb Company Her3: A novel EGF receptor homolog
US5578482A (en) * 1990-05-25 1996-11-26 Georgetown University Ligand growth factors that bind to the erbB-2 receptor protein and induce cellular responses
US5571894A (en) * 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
AU662311B2 (en) * 1991-02-05 1995-08-31 Novartis Ag Recombinant antibodies specific for a growth factor receptor
US7115554B1 (en) 1993-05-06 2006-10-03 Acorda Therapeutics, Inc. Methods of increasing myotube formation or survival or muscle cell mitogenesis differentiation or survival using neuregulin GGF III
US7094749B1 (en) 1991-04-10 2006-08-22 Acorda Therapeutics, Inc. Glial mitogenic factors, their preparation and use
US7319019B1 (en) 1991-04-10 2008-01-15 Acorda Therapeutics, Inc. Glial mitogenic factors lacking an N-terminal signal sequence
US7285531B1 (en) 1991-04-10 2007-10-23 Acorda Therapeutics, Inc. Method for prophylaxis or treatment of a nervous system, pathophysiological condition involving a glial growth factor sensitive cell by administration of a glial growth factor
US7135456B1 (en) 1991-04-10 2006-11-14 Acorda Therapeutics, Inc. Glial mitogenic factors, their preparation and use
US5530109A (en) * 1991-04-10 1996-06-25 Ludwig Institute For Cancer Research DNA encoding glial mitogenic factors
US5939531A (en) * 1991-07-15 1999-08-17 Novartis Corp. Recombinant antibodies specific for a growth factor receptor
DE4129533A1 (en) * 1991-09-05 1993-03-11 Max Planck Gesellschaft MUTTED GROWTH FACTOR RECEPTOR AS A MEDICINAL PRODUCT AND ITS USE FOR TREATING CANCER
EP0615453B1 (en) * 1991-11-29 1997-05-14 Chiron Viagene, Inc. Anti-cancer immunotherapeutic vector constructs
US7037888B1 (en) 1992-04-03 2006-05-02 Acorda Therapeutics, Inc. Methods for treating muscle diseases and disorders
GB9217316D0 (en) * 1992-08-14 1992-09-30 Ludwig Inst Cancer Res Schwann cell mitogenic factor,its preparation and use
CA2103323A1 (en) * 1992-11-24 1994-05-25 Gregory D. Plowman Her4 human receptor tyrosine kinase
US5801005A (en) * 1993-03-17 1998-09-01 University Of Washington Immune reactivity to HER-2/neu protein for diagnosis of malignancies in which the HER-2/neu oncogene is associated
US5869445A (en) * 1993-03-17 1999-02-09 University Of Washington Methods for eliciting or enhancing reactivity to HER-2/neu protein
US6953573B1 (en) 1993-03-17 2005-10-11 University Of Washington Compounds for eliciting or enhancing immune reactivity to HER-2/neu protein for prevention or treatment of malignancies in which the HER-2/neu oncogene is associated
US7794729B2 (en) 1994-11-08 2010-09-14 The Trustees Of The University Of Pennsylvania Methods and compositions for immunotherapy of cancer
US8114414B2 (en) * 1994-11-08 2012-02-14 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical cancer
US7820180B2 (en) * 2004-09-24 2010-10-26 The Trustees Of The University Of Pennsylvania Listeria-based and LLO-based vaccines
US8791237B2 (en) 1994-11-08 2014-07-29 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of non-hodgkins lymphoma
US8956621B2 (en) 1994-11-08 2015-02-17 The Trustees Of The University Of Pennsylvania Compositions and methods for treatment of cervical dysplasia
US20070264279A1 (en) * 1994-11-08 2007-11-15 Claudia Gravekamp Compositions and methods comprising a MAGE-b antigen
US6514942B1 (en) * 1995-03-14 2003-02-04 The Board Of Regents, The University Of Texas System Methods and compositions for stimulating T-lymphocytes
IT1276662B1 (en) * 1995-04-04 1997-11-03 Uni Degli Studi Camerino POLYNUCLEOTIDIC VACCINES
US6465623B2 (en) 1995-05-02 2002-10-15 Garvan Institute Of Medical Research GDU, a novel signalling protein
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US6685940B2 (en) * 1995-07-27 2004-02-03 Genentech, Inc. Protein formulation
US6656481B1 (en) 1996-09-06 2003-12-02 Mitsubishi Chemical Corporation Vaccinal preparations
US7371376B1 (en) * 1996-10-18 2008-05-13 Genentech, Inc. Anti-ErbB2 antibodies
US6884435B1 (en) * 1997-01-30 2005-04-26 Chiron Corporation Microparticles with adsorbent surfaces, methods of making same, and uses thereof
US20040202680A1 (en) * 1997-01-30 2004-10-14 O'hagan Derek Microparticles with adsorbent surfaces, methods of making same, and uses thereof
CA2279204C (en) * 1997-01-30 2005-11-15 Chiron Corporation Use of microparticles with adsorbed antigen to stimulate immune responses
ZA9811162B (en) * 1997-12-12 2000-06-07 Genentech Inc Treatment with anti-ERBB2 antibodies.
US20010023241A1 (en) * 1998-02-04 2001-09-20 Sliwkowski Mark X. Use of heregulin as a growth factor
US6541214B1 (en) * 1998-11-13 2003-04-01 Oregon Heath Science University N-terminally truncated HER-2/neu protein as a cancer prognostic indicator
US7396810B1 (en) * 2000-08-14 2008-07-08 Oregon Health Sciences University Compositions and methods for treating cancer by modulating HER-2 and EGF receptors
US7393823B1 (en) 1999-01-20 2008-07-01 Oregon Health And Science University HER-2 binding antagonists
US7625859B1 (en) * 2000-02-16 2009-12-01 Oregon Health & Science University HER-2 binding antagonists
CZ20012587A3 (en) * 1999-01-29 2002-05-15 Corixa Corporation Isolated protein, nucleic acid, virus vector, pharmaceutical preparation, isolated population of T cells, method of reinforcing immune response, method of removing tumor cells, method of stimulating and/or propagating T cells and process for preparing a fusion protein
US7198920B1 (en) * 1999-01-29 2007-04-03 Corika Corporation HER-2/neu fusion proteins
AU5003200A (en) 1999-05-14 2000-12-05 United States Of America As Represented By The Department Of Veterans Affairs, The Isolation and characterization of epidermal growth factor related protein
US7049410B2 (en) * 1999-05-14 2006-05-23 Majumdar Adhip P N Antibodies to a novel EGF-receptor related protein (ERRP)
US7041292B1 (en) 1999-06-25 2006-05-09 Genentech, Inc. Treating prostate cancer with anti-ErbB2 antibodies
US6949245B1 (en) * 1999-06-25 2005-09-27 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US20040013667A1 (en) * 1999-06-25 2004-01-22 Genentech, Inc. Treatment with anti-ErbB2 antibodies
DK1189634T3 (en) * 1999-06-25 2007-06-25 Genentech Inc Treatment of prostate cancer with anti-ErbB2 antibodies
US20030086924A1 (en) * 1999-06-25 2003-05-08 Genentech, Inc. Treatment with anti-ErbB2 antibodies
AU784045B2 (en) 1999-06-25 2006-01-19 Genentech Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
EP1246597B1 (en) * 1999-08-03 2015-01-14 The Ohio State University Polypeptides and polynucleotides for enhancing immune reactivity to her-2 protein
KR20110008112A (en) 1999-08-27 2011-01-25 제넨테크, 인크. Dosages for treatment with anti-erbb2 antibodies
AU7743100A (en) * 1999-09-30 2001-04-30 Corixa Corporation Stress protein compositions and methods for prevention and treatment of cancer and infectious disease
US20020039583A1 (en) * 1999-09-30 2002-04-04 Subjeck John R. Stress protein compositions and methods for prevention and treatment of cancer and infectious disease
US7378096B2 (en) 1999-09-30 2008-05-27 Health Research, Inc. Stress protein compositions and methods for prevention and treatment of cancer and infectious disease
JP2003523207A (en) 2000-01-25 2003-08-05 ジェネンテック・インコーポレーテッド LIV-1-related proteins, polynucleotides encoding them, and their use in treating cancer
EP1261371A4 (en) * 2000-02-25 2005-04-13 Univ California Membrane estrogen receptor-directed therapy in breast cancer
US9012141B2 (en) * 2000-03-27 2015-04-21 Advaxis, Inc. Compositions and methods comprising KLK3 of FOLH1 antigen
EP1303299B1 (en) * 2000-03-29 2010-07-28 The Trustees of The University of Pennsylvania Use of prokaryotic pest-like peptides for enhancing immunogenicity of antigens
JP2003531588A (en) 2000-04-11 2003-10-28 ジェネンテック・インコーポレーテッド Multivalent antibodies and their uses
WO2001083781A2 (en) * 2000-04-28 2001-11-08 Millennium Pharmaceuticals, Inc. 14094, a novel human trypsin family member and uses thereof
DK1282443T3 (en) 2000-05-19 2010-01-04 Genentech Inc Gene detection assay to improve the likelihood of an effective response to an ErbB antagonist cancer therapy
US7229623B1 (en) 2000-08-03 2007-06-12 Corixa Corporation Her-2/neu fusion proteins
EP1236740B1 (en) * 2001-02-28 2012-07-18 Bio Life Science Forschungs- und Entwicklungsges.m.b.H. Vaccine against HER-2/neu oncogene-associated cancers
US7700344B2 (en) * 2001-03-26 2010-04-20 The Trustees Of The University Of Pennsylvania Compositions and methods for enhancing the immunogenicity of antigens
US8771702B2 (en) 2001-03-26 2014-07-08 The Trustees Of The University Of Pennsylvania Non-hemolytic LLO fusion proteins and methods of utilizing same
JP4398644B2 (en) * 2001-04-06 2010-01-13 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルベニア ErbB interfacial peptide mimics and methods of use thereof
EP1399183B1 (en) 2001-05-31 2010-06-30 Novartis Vaccines and Diagnostics, Inc. Chimeric alphavirus replicon particles
US7951061B2 (en) * 2001-07-25 2011-05-31 Allan Foreman Devices for targeted delivery of thermotherapy, and methods related thereto
US7074175B2 (en) 2001-07-25 2006-07-11 Erik Schroeder Handy Thermotherapy via targeted delivery of nanoscale magnetic particles
US7731648B2 (en) * 2001-07-25 2010-06-08 Aduro Biotech Magnetic nanoscale particle compositions, and therapeutic methods related thereto
US6997863B2 (en) * 2001-07-25 2006-02-14 Triton Biosystems, Inc. Thermotherapy via targeted delivery of nanoscale magnetic particles
AU2002365258A1 (en) * 2001-10-12 2003-09-02 University Of Vermont And State Agricultural College Binding peptides specific for the extracellular domain of erbb2 and uses therefor
AU2003233662B2 (en) 2002-05-23 2010-04-01 Trustees Of The University Of Pennsylvania Fas peptide mimetics and uses thereof
EP1572972A4 (en) * 2002-11-21 2007-11-21 Genentech Inc Therapy of non-malignant diseases or disorders with anti-erbb2 antibodies
US20040156846A1 (en) * 2003-02-06 2004-08-12 Triton Biosystems, Inc. Therapy via targeted delivery of nanoscale particles using L6 antibodies
EP2248899B8 (en) * 2003-03-19 2015-07-15 Biogen MA Inc. NOGO receptor binding protein
JP2007525187A (en) * 2003-05-16 2007-09-06 レセプター・バイオロジクス・インコーポレイテッド Intron fusion proteins and methods for identifying and using the same
JP2008506366A (en) * 2004-05-14 2008-03-06 レセプター バイオロジックス インコーポレイテッド Cell surface receptor isoforms and methods for their identification and use
NZ582684A (en) 2004-06-18 2011-05-27 Ambrx Inc Use of an antibody or binding fragment thereof comprising a non naturally encoded amino acid coupled to a linker
JP2008504292A (en) 2004-06-24 2008-02-14 ノバルティス ヴァクシンズ アンド ダイアグノスティクス, インコーポレイテッド Immune enhancement compounds
AU2005258335B2 (en) 2004-06-24 2011-03-17 Biogen Ma Inc. Treatment of conditions involving demyelination
CA2571710A1 (en) 2004-06-24 2006-11-02 Nicholas Valiante Small molecule immunopotentiators and assays for their detection
CA2583230A1 (en) * 2004-10-05 2006-04-20 Oregon Health And Science University Compositions and methods for treating disease
JO3000B1 (en) 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
RU2438705C2 (en) 2005-01-21 2012-01-10 Дженентек, Инк. Introduction of fixed doses of her-antibodies
US20060177448A1 (en) * 2005-02-09 2006-08-10 Genentech, Inc. Inhibiting HER2 shedding with matrix metalloprotease antagonists
NZ590431A (en) 2005-02-23 2012-08-31 Genentech Inc Extending time to disease progression or survival in cancer patients using a HER dimerization inhibitor
WO2006096861A2 (en) * 2005-03-08 2006-09-14 Genentech, Inc. METHODS FOR IDENTIFYING TUMORS RESPONSIVE TO TREATMENT WITH HER DIMERIZATION INHIBITORS (HDIs)
JP2006316040A (en) 2005-05-13 2006-11-24 Genentech Inc Herceptin(r) adjuvant treatment
US20090170769A1 (en) * 2005-05-13 2009-07-02 Pei Jin Cell surface receptor isoforms and methods of identifying and using the same
CA2612394C (en) 2005-06-15 2017-02-21 The Ohio State University Research Foundation Her-2 peptides
MX2008000253A (en) 2005-07-08 2008-04-02 Biogen Idec Inc Sp35 antibodies and uses thereof.
PE20070207A1 (en) * 2005-07-22 2007-03-09 Genentech Inc COMBINED TREATMENT OF TUMORS THAT EXPRESS HER
WO2007047749A1 (en) 2005-10-18 2007-04-26 Novartis Vaccines And Diagnostics Inc. Mucosal and systemic immunizations with alphavirus replicon particles
WO2007064882A2 (en) 2005-12-02 2007-06-07 Biogen Idec Ma Inc. Treatment of conditions involving demyelination
EP2010537B1 (en) 2006-03-23 2011-12-28 Novartis AG Imidazoquinoxaline compounds as immunomodulators
WO2007109812A2 (en) * 2006-03-23 2007-09-27 Novartis Ag Immunopotentiating compounds
US20100010217A1 (en) * 2006-03-23 2010-01-14 Valiante Nicholas M Methods for the preparation of imidazole-containing compounds
US8268326B2 (en) * 2006-08-15 2012-09-18 The Trustees Of The University Of Pennsylvania Compositions comprising HMW-MAA and fragments thereof, and methods of use thereof
PT2977456T (en) * 2006-08-15 2018-02-05 Univ Pennsylvania Compositions comprising hmw-maa and fragments thereof for treating cancer
US8129184B2 (en) * 2006-09-26 2012-03-06 Cedars-Sinai Medical Center Cancer stem cell antigen vaccines and methods
US8871211B2 (en) * 2006-09-28 2014-10-28 Cedars-Sinai Medical Center Cancer vaccines and vaccination methods
US8128926B2 (en) 2007-01-09 2012-03-06 Biogen Idec Ma Inc. Sp35 antibodies and uses thereof
NZ578824A (en) 2007-03-02 2012-03-30 Genentech Inc Predicting response to a her dimerisation inhibitor based on low her3 expression
KR102079921B1 (en) 2007-06-01 2020-02-21 더 헨리 엠. 잭슨 파운데이션 포 더 어드벤스먼트 오브 밀리터리 메디신, 인코포레이티드 Vaccine for the prevention of breast cancer relapse
US9551033B2 (en) 2007-06-08 2017-01-24 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
DK2171090T3 (en) * 2007-06-08 2013-06-10 Genentech Inc Gene expression markers for tumor resistance to HER2 inhibitor therapy
EP2170384B1 (en) 2007-07-02 2016-04-13 Etubics Corporation Methods and compositions for producing an adenovirus vector for use with multiple vaccinations
TWI472339B (en) 2008-01-30 2015-02-11 Genentech Inc Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
US9017660B2 (en) 2009-11-11 2015-04-28 Advaxis, Inc. Compositions and methods for prevention of escape mutation in the treatment of Her2/neu over-expressing tumors
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
EP2853269B1 (en) 2008-05-19 2019-05-01 Advaxis, Inc. Dual delivery system for heterologous antigens comprising a recombinant Listeria strain attenuated by mutation of dal/dat and deletion of ActA comprising a nucleic acid molecule encoding an listeriolysin O - prostate specific anigen fusion protein
BRPI0812682A2 (en) 2008-06-16 2010-06-22 Genentech Inc metastatic breast cancer treatment
DK2982695T3 (en) 2008-07-09 2019-05-13 Biogen Ma Inc COMPOSITIONS CONCERNING ANTIBODIES AGAINST LINGO OR FRAGMENTS THEREOF
DK2328923T3 (en) * 2008-09-02 2016-03-21 Cedars Sinai Medical Center CD133 epitopes
US20100234283A1 (en) 2009-02-04 2010-09-16 The Ohio State University Research Foundation Immunogenic epitopes, peptidomimetics, and anti-peptide antibodies, and methods of their use
JP5539411B2 (en) 2009-03-04 2014-07-02 ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア Compositions containing angiogenic factors and methods of use thereof
PE20120539A1 (en) 2009-03-20 2012-05-12 Genentech Inc ANTI-HER BIESPECIFIC ANTIBODIES
SG10201507044PA (en) 2009-05-29 2015-10-29 Hoffmann La Roche Modulators for her2 signaling in her2 expressing patients with gastric cancer
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers
ES2519348T3 (en) 2010-02-18 2014-11-06 Genentech, Inc. Neurregulin antagonists and their use in cancer treatment
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
WO2011149564A1 (en) 2010-05-28 2011-12-01 Tetris Online, Inc. Interactive hybrid asynchronous computer game infrastructure
US8895017B2 (en) 2010-06-07 2014-11-25 Pfizer Inc. HER-2 peptides and vaccines
US9226958B2 (en) 2010-10-01 2016-01-05 University Of Georgia Research Foundation, Inc. Use of Listeria vaccine vectors to reverse vaccine unresponsiveness in parasitically infected individuals
WO2012069466A1 (en) 2010-11-24 2012-05-31 Novartis Ag Multispecific molecules
SG191153A1 (en) 2010-12-23 2013-07-31 Hoffmann La Roche Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
WO2012125551A1 (en) 2011-03-11 2012-09-20 Advaxis Listeria-based adjuvants
MX2014001766A (en) 2011-08-17 2014-05-01 Genentech Inc Neuregulin antibodies and uses thereof.
WO2013036201A1 (en) 2011-09-06 2013-03-14 Agency For Science, Technology And Research Polypeptide vaccine
CN109908341B (en) 2011-10-14 2023-06-27 霍夫曼-拉罗奇有限公司 Use of the HER2 dimerization inhibitor pertuzumab and articles of manufacture comprising the HER2 dimerization inhibitor pertuzumab
US9327023B2 (en) 2011-10-25 2016-05-03 The Regents Of The University Of Michigan HER2 targeting agent treatment in non-HER2-amplified cancers having HER2 expressing cancer stem cells
MX2014006529A (en) 2011-11-30 2014-11-25 Genentech Inc Erbb3 mutations in cancer.
EP2788500A1 (en) 2011-12-09 2014-10-15 F.Hoffmann-La Roche Ag Identification of non-responders to her2 inhibitors
SG11201405605VA (en) 2012-03-12 2014-10-30 Advaxis Inc SUPPRESSOR CELL FUNCTION INHIBITION FOLLOWING <i>LISTERIA</i> VACCINE TREATMENT
AU2013240261A1 (en) 2012-03-27 2014-09-18 Genentech, Inc. Diagnosis and treatments relating to HER3 inhibitors
JP2015518829A (en) 2012-05-14 2015-07-06 バイオジェン・エムエイ・インコーポレイテッドBiogen MA Inc. LINGO-2 antagonist for treatment of conditions involving motor neurons
US9605276B2 (en) 2012-08-24 2017-03-28 Etubics Corporation Replication defective adenovirus vector in vaccination
KR102291355B1 (en) 2012-11-30 2021-08-19 에프. 호프만-라 로슈 아게 Identification of patients in need of pd-l1 inhibitor cotherapy
US20140234351A1 (en) 2013-02-14 2014-08-21 Immunocellular Therapeutics, Ltd. Cancer vaccines and vaccination methods
EP2777711A1 (en) * 2013-03-11 2014-09-17 Icon Genetics GmbH Her2/Neu cancer vaccine
SG10201706045RA (en) 2013-04-16 2017-08-30 Genentech Inc Pertuzumab variants and evaluation thereof
LT3604333T (en) 2014-03-11 2021-06-10 Molecular Templates, Inc. Proteins comprising amino-terminal proximal shiga toxin a subunit effector regions and cell-targeting immunoglobulin-type binding regions capable of specifically binding cd38
JP6935195B2 (en) 2014-03-11 2021-09-15 モレキュラー テンプレーツ, インク.Molecular Templates, Inc. Protein containing binding region, effector region of Shiga toxin A subunit, and carboxy-terminal endoplasmic reticulum localization signal motif
WO2015164665A1 (en) 2014-04-25 2015-10-29 Genentech, Inc. Methods of treating early breast cancer with trastuzumab-mcc-dm1 and pertuzumab
MX2017009038A (en) 2015-01-08 2017-10-25 Biogen Ma Inc Lingo-1 antagonists and uses for treatment of demyelinating disorders.
PL3303373T3 (en) 2015-05-30 2020-09-21 Molecular Templates, Inc. De-immunized, shiga toxin a subunit scaffolds and cell-targeting molecules comprising the same
US11406715B2 (en) 2015-05-30 2022-08-09 Genentech, Inc. Methods of treating HER2-positive metastatic breast cancer
KR20180030085A (en) 2015-07-26 2018-03-21 몰레큘러 템플레이츠, 인코퍼레이션. Cell-targeting molecule comprising a cytotoxin A subunit agonist and a CD8 + T-cell epitope
WO2017087280A1 (en) 2015-11-16 2017-05-26 Genentech, Inc. Methods of treating her2-positive cancer
US20190151346A1 (en) 2016-05-10 2019-05-23 INSERM (Institute National de la Santé et de la Recherche Médicale) Combinations therapies for the treatment of cancer
EP3534948A1 (en) 2016-11-04 2019-09-11 Genentech, Inc. Treatment of her2-positive breast cancer
EP3562844A1 (en) 2016-12-28 2019-11-06 Genentech, Inc. Treatment of advanced her2 expressing cancer
CN115089704A (en) 2017-01-17 2022-09-23 基因泰克公司 Subcutaneous HER2 antibody formulation
AU2018213194B2 (en) 2017-01-25 2023-01-12 Molecular Templates, Inc. Cell-targeting molecules comprising de-immunized, Shiga toxin A Subunit effectors and CD8+ T-cell epitopes
HRP20240069T1 (en) 2017-03-02 2024-03-29 Genentech, Inc. Adjuvant treatment of her2-positive breast cancer
TW201902509A (en) 2017-04-24 2019-01-16 美商建南德克公司 ERBB2/HER2 mutation
KR20200143634A (en) 2018-04-17 2020-12-24 몰레큘러 템플레이츠, 인코퍼레이션. HER2-targeting molecule comprising deimmunized Shiga Toxin A subunit scaffold

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4935341A (en) * 1986-06-04 1990-06-19 Whitehead Institute For Biomedical Research Detection of point mutations in neu genes
US4761371A (en) * 1985-02-12 1988-08-02 Genentech, Inc. Insulin receptor
US4877611A (en) * 1986-04-15 1989-10-31 Ribi Immunochem Research Inc. Vaccine containing tumor antigens and adjuvants
US5030576A (en) * 1986-04-30 1991-07-09 Genentech, Inc. Receptors for efficient determination of ligands and their antagonists or agonists
US5401638A (en) * 1986-06-04 1995-03-28 Oncogene Science, Inc. Detection and quantification of neu related proteins in the biological fluids of humans
US5126433A (en) 1986-08-21 1992-06-30 The Trustees Of Columbia University In The City Of New York Soluble forms of the t cell surface protein cd4
US4968603A (en) * 1986-12-31 1990-11-06 The Regents Of The University Of California Determination of status in neoplastic disease
US4963354A (en) 1987-01-21 1990-10-16 Genentech, Inc. Use of tumor necrosis factor (TNF) as an adjuvant
WO1989001973A2 (en) 1987-09-02 1989-03-09 Applied Biotechnology, Inc. Recombinant pox virus for immunization against tumor-associated antigens
US5081228A (en) * 1988-02-25 1992-01-14 Immunex Corporation Interleukin-1 receptors
WO1989006692A1 (en) * 1988-01-12 1989-07-27 Genentech, Inc. Method of treating tumor cells by inhibiting growth factor receptor function
DE68924979T2 (en) * 1988-04-18 1996-10-24 Oncogene Science Inc DETECTION OF THE EXPRESSION OF NEW GENES AND PRODUCTS.
EP0444181B2 (en) 1989-08-04 2010-11-24 Bayer Schering Pharma Aktiengesellschaft C-erbb-2 external domain: gp75
US5183884A (en) * 1989-12-01 1993-02-02 United States Of America Dna segment encoding a gene for a receptor related to the epidermal growth factor receptor

Also Published As

Publication number Publication date
DE69031120T2 (en) 1998-01-15
EP0474727A1 (en) 1992-03-18
US6015567A (en) 2000-01-18
US6333169B1 (en) 2001-12-25
EP0474727B1 (en) 1997-07-23
ATE155813T1 (en) 1997-08-15
DE69031120D1 (en) 1997-09-04
DK0474727T3 (en) 1998-01-12
WO1990014357A1 (en) 1990-11-29
ES2106033T3 (en) 1997-11-01
EP0474727A4 (en) 1992-08-26
CA2055441A1 (en) 1990-11-20

Similar Documents

Publication Publication Date Title
CA2055441C (en) Her2 extracellular domain
ES2314999T3 (en) MOTHER CELL FACTOR.
US5262177A (en) Recombinant viruses encoding the human melanoma-associated antigen
JP3195958B2 (en) Pharmaceutical composition for treating or preventing malignant tumor
JP2541761B2 (en) Murrell tube inhibitor substance-like polypeptide and method for producing the same
CA2404945C (en) Taci as an anti-tumor agent
JP2007297398A (en) Reagent and method for targeting mutant epidermal growth factor receptor
IE883523L (en) Interleukin-1 Receptors
AU2001253920A1 (en) Use of taci as an anti-tumor agent
JPH01502669A (en) Purified platelet-derived growth factor and its purification method
JP2000516101A (en) Variants of LAG-3 protein, its expression and use
NO302824B1 (en) Isolated DNA sequence encoding interleukin-7, expression vector containing the sequence, method of producing interleukin-7, and antibody to the protein
JPS63301798A (en) Colony stimulating factor derivative
EP0598792A1 (en) Osteoclast growth regulatory factor
US20040013674A1 (en) Taci as an anti-tumor agent
AT500650B1 (en) IMMUNOGENIC RECOMBINANT ANTIBODY
EP1335024A1 (en) Antibody inhibiting vplf activity
AU7792691A (en) Synthetic poly-ig receptor, receptor-antibody complexes, production and use thereof
FI94836C (en) A method for producing an antigenic cognate peptide or protein of the melanoma-associated p97 antigen, and recombinant viruses, recombinant vectors and host cells useful therein
EP0341304A1 (en) Improved ricin molecules and ricin toxin conjugates
JPH05504134A (en) Novel proteins with Oncostatin M activity and methods for their preparation
KR20110121208A (en) A composition comprising dendritic cells for the treatment of renal cell carcinoma
WO2005039618A1 (en) p185neu-ENCODING DNA AND THERAPEUTICAL USES THEREOF
KR20220058527A (en) Stabilized chimeric synthetic protein and its therapeutic use
EP1746106A2 (en) Use of TACI as an anti-tumor agent

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed