CA2055846A1 - Irrigation/aspiration cannula - Google Patents

Irrigation/aspiration cannula

Info

Publication number
CA2055846A1
CA2055846A1 CA002055846A CA2055846A CA2055846A1 CA 2055846 A1 CA2055846 A1 CA 2055846A1 CA 002055846 A CA002055846 A CA 002055846A CA 2055846 A CA2055846 A CA 2055846A CA 2055846 A1 CA2055846 A1 CA 2055846A1
Authority
CA
Canada
Prior art keywords
valve
irrigation
aspiration cannula
tube
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002055846A
Other languages
French (fr)
Inventor
Stanley Howard Remiszewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CR Bard Inc
Original Assignee
Stanley Howard Remiszewski
C.R. Bard, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Howard Remiszewski, C.R. Bard, Inc. filed Critical Stanley Howard Remiszewski
Publication of CA2055846A1 publication Critical patent/CA2055846A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/77Suction-irrigation systems
    • A61M1/774Handpieces specially adapted for providing suction as well as irrigation, either simultaneously or independently
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/77Suction-irrigation systems
    • A61M1/772Suction-irrigation systems operating alternately
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87169Supply and exhaust
    • Y10T137/87233Biased exhaust valve
    • Y10T137/87241Biased closed

Abstract

Abstract of the Disclosure The invention provides an irrigation and aspiration device for use in laparascopic and other types of surgery.
When connected to existing irrigation and suction sources, the device provides fingertip control of the fluid connections between the sources and a tube. The device comprises a valve housing with two valve assemblies inside, mounted and con-figured to take advantage of the static pressure supplied by the sources for increasing seal integrity of the valves. The internal chambers of the valve housing are also configured such that when one valve is open, the pressure differential across the other valve is increased, further increasing its seal integrity.
(DRS#1)

Description

W~SB46 IRRIGATION/ASPIRATION CANNULA

BACKGROUND OF THE INVENTION
This invention relates to irrigation/aspiration equipment.
This invention is more particulary concerned with irrigation/aspiration equipment used in a hand-held manner in a surgical setting for delivering fluid to an internal body site and removing the fluid and other debris from the same site.
Suction-irrigation cannulas are common in various configurations. They are used during surgical procedures on relatively inaccessible areas of the body, such as the interior of the eye, or in connection with laparascopic surgery and diagnostic procedures. Some of these devices have complex valve arrangements for regulating the flow from existing ~ources, i.e., irrigation pumps and suction units.
Current irrigation/aspiration cannulas available are known to have valving problems. These cannulas have a tendency to leak across their valves from the constant pressure dif-2 2~Ss~46 ferential supplied by the irrigation/suction sources. The valves also occasionally stick in one position. These defi-ciencies are due to the valve designs, which rely on a precise mechanical interference, e.g., sliding trumpet valves or rotary S ball-style valves, that are adversely affected by the static pressure of the sources. These valve desiqns also crea~e complex fluid flow paths, compromising the transfer of fluids to and from the surgical area.
A typical example is shown in U.S. Patent No.
4,526,573, which discloses a device for controlling the delivery of irrigation or suction to a surgical site. This device includes a trumpet valve to selectively connect either the suction or irrigation line to an outlet port. Closing either line is accomplished by operating the trumpet valve so aq to position one of two resilient elastomeric flanges at either end of a waisted valve member to a position between the supply line port desired to be closed and the outlet port. In this configuration, static pressure in both the suction and irrigation supply lines tends to promote leakage across the elastomeric flange, and one could expect the problem to get worse over time as the flanges wear out.
U.S. Patent 4,668,215 discloses another valving system for an automatic irrigation and evacuation device for use in laparascopic procedures and general surgery. In this device, which makes use of ball-type valves, it is again seen that O-rings are used to provide sealing between the irrigation and suction supplies. A relief port is provided to minimize (but not eliminate) the pressure differential across the O-rings during operation, but again, it can be expected that operation of the valve mechanism degrades over time as the O-rings wear out.

SUMMARY OF THE INVENTION
In view of the difficulties faced with the presently available valve systems, it is an object of the invention to provide an improved irrigation/aspiration cannula, wherein valve wear caused by static pressure differentials is elimina-ted, and the differentials are used to advantaqe in the functioning of the valves. In fact, as the pressure differen-tial increases, within reasonable limits, the seal integrity of the valves increases.
It is a further object of the invention to make the cannula more resistant, by design, to fluctuations in manufac-turing tolerances, thus improving its economy.
It is a further object of the invention to make the cannula hand-held and easily finger-actuated to give superior tactile sensation and control during surgery.
It is a further object of the invention to make the cannula relatively inexpensive and compatible with standard surgical equipment.
It is a further object of the invention that the fluid flow path through the device has very shallow turns, improving 4 2055~A6 fluid flow quality.
In the invention, a valve body is constructed to have internal chambPrs and valve assemblies that allow selective fluid communication between a tube and two fluid sources, i.e., an irrigation pump and a vacuum pump. These valve assemblies are sealed by the hydrostatic pressure differentials, created by the fluid sources, across the valve assemblies.
The foregoin~ and other ob~ects and advantages of this invention will become apparent to those skilled in the art upon reading the detailed description of a preferred embodiment in conjunction with a review of the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an elevational view of the improved cannula, ~howing an operator's hand in position.
Fig. 2 is a sectional view of the improved cannula, showing the internal chambers and valve assemblies.
Fig. 3 is a sectional view of the improved cannula, showing a valve assembly in its closed position.

DETAILED DESCRIPTION
In the preferred embodiment, an irrigation/aspiration cannula 8 includes a valve body 10, constructed with a valve body cover 12. Together, the valve body 10 and the valve body cover 12 form one common inner chamber 14, an inlet chamber 16 and an outlet chamber 18. A tube 22 is connected to the inner chamber 14, through an aperture 20 in the valve body 10. The tube 22 has at least one inlet/outlet hole 24 at its distal end and an axial bore 26. Other configurations of the tube 22 are possible, including interchangeable tips at its distal end.
An irrigation adapter 30 is integrally molded to the valve body 10 and is connected to the inlet chamber 16 through an inlet aperture 28. The irrigation adapter 30 i5 adapted for connection to common surgical irrigation sources, such as those with a luer-type lock. Integrally molded to the valve body 10 is a suction adapter 34, which is connected to the outlet chamber 18 through an outlet aperture 32 and is adapted for connection to common surgical suction sources. In a non-preferred embodiment, the irrigation adapter 30 and suction adapter 34 may be separate units that are attached to the valve body 10.
Connecting inner chamber 14 and inlet chamber 16 is an inlet valve port 36, which can be covered and sealed by a seal button 38, made of a resilient substance, preferably a polymeric substance such as C-FLEX~ R70-050. Connecting the inner chamber 14 and the outlet chamber 18 i8 an outlet valve port 40, which can be covered and sealed by a seal button 42.
The two seal buttons 38 and 42 each have a narrowed midsection 44, allowing them to be connected to a pair of valve flappers 48 and 46, respectively. The valve flapper 46 is rotatably mounted on a lever shaft 50 so that the seal button 42 will completely cover and seal the outlet port 40, when the 6 ;t0~;5846 flapper 46 is in its closed position. The valve flapper 48 is mounted rotatably on a lever shaft 52 so that the seal button 38 will completely cover and seal the ~nlet port 36 when the flapper 48 is in its closed position.
An irrigation lever 54 is rotatably mounted on the outside of the valve body cover 12 by the lever shaft 52 and connected by the lever shaft 52 to the valve flapper 48. A
return spring 56 is mounted on the lever shaft 52 and anchored to the valve body cover 12 and the irrigation lever 54. An aspiration lever 58 is rotatably mounted on the outside of the valve body 10 by the lever shaft 50 and connected by the lever shaft 50 to the valve flapper 46. A return spring 60 is mounted on the lever shaft 50 and anchored to the valve body 10 and the aspiration lever 58.
An O-ring 62 i9 mounted in the sidewall of the valve body cover 12 and around the lever shaft 50 to maintain a seal while allowing the lever shaft 50 to rotate. An O-ring 64 is mounted in the sidewall of the valve body 10 and around the lever shaft 52.
At the beginning of operation of the device, both seal buttons 38 and 42 will cover and ~eal their respective ports 3G
and 40. Assuming both the external suction and irrigation puJnps are operational, pressure differentials will exist across the two ports 36 and 40. The pressure (atmospheric) in the inner chamber 14 will be higher than in the outlet chamber 18.
This higher pressure exerts a force on the seal button 42 in 2~55846 the direction of the outlet port 40, tightening the seal therein. Similarly, the pressure in the inlet chamber 16 will be higher than in inner chamber 14. This higher r,ressure will exert a force on the seal button 38 in the direction of inlet port 36, tightening the seal therein.
To transfer irrigation fluid to the tube 22 and the surgical site, the operator exerts finger pressure on the irrigation lever 54 and rotates it clockwise. This rotates the lever shaft 52, which rotates the valve flapper 48 and lifts the seal button 38 off the inlet port 36, allowing fluid to pass from the inlet chamber 16 into the inner chamber 14, then into the tube 22 and the surgical site. One result of this fluid transfer is to increase the static pressure in the inner chamber 14, increasing the force exerted on the seal button 42, further increasing the integrity of the seal over the outlet port 40. When a proper amount of irrigation fluid has been expelled through the tube 22, the operator releases finger pressure on the irrigation lever 54. The combined force of the return spring 56 and the continued pressure differential across the inlet port 36 will cause the seal button 38 to cover and seal the inlet port 36, automatically cutting off the fluid flow from the external irrigation pump to the tube 22.
To remove fluid by suction from the surglcal site through the tube 22, the operator exerts palm pressure on the aspiration lever 58 and rotates it counterclockwise. This rotates the lever shaft 50, which rotates the valve flapper ~6 and lifts the seal button 42 off the outlet port 40, allowing fluid to be drawn up from the surgical site into the tube 22, throuq!. t~e inner chamber 14, through the outlet chamber 18 and out the outlet aperture 32. One result of this fluid transfer is to decrease the static pressure in the inner chamber 14, increasing the force exerted on the seal button 38 and tighten-ing the seal over the inlet port 36. When a proper amount of fluid has been drawn up through the tube 22, the operator releases pressure on the aspiration lever 5B. The combined force of the return spring 60 and the continued pressure differential across the outlet port 40 will cause the seal button 42 to cover and seal the outlet port 40, automatically cutting off the fluid flow from the tube 22 to the external vacuum pump (not shown).
In the preferred embodiment, the valve body 10 and valve body cover 12 are sealed with epoxy, eliminating any leakage problems. Within the valve body 10, the inner chamber 14 and the inlet and outlet chambers 16 and 18 are designed for nearly straight-path fluid flow from the tube 22 to the suction and irrigation sources (not shown). This decreases fluid resistance and thus raises the quality and rate of the fluid flow. The tube 22 is preferably stainless steel and has an axial bore 26 and multiple outlet/inlet holes 24 at its distal end. However, tubes of various designs or suited for various 5 purposes utilizing irrigation and suction are also appropriate.
The valve flappers 46 and 48 use a "floating" seal, wherein the seal buttons 38 and 42 have a radius significantly larger than the valve ports 36 and 40, allowing for some shifting during operation and greater tolerances dur~ na manufacture, without compromising seal integrity.
While the embodiment of the invention shown and described is fully capable of achieving the results desired, it is to be understood that this embodiment has been ~hown and described for purposes of illustration only and not for purposes of limitation.

Claims (13)

1. An irrigation/aspiration cannula, which comprises:

a tube;

a valve housing connected to the tube, said housing having a fluid inlet aperture adapted to be connected to a pressurized fluid source and a fluid outlet aperture adapted to be connected to a vacuum source, said housing allowing fluid communication between the tube, the fluid inlet aperture and the fluid outlet aperture;

a plurality of valve assemblies for selectively connecting only one of the apertures to the tube at any given moment, mounted and located within the housing such that hydrostatic pressure differentials across the valve assemblies seal the valve assemblies when at least one of the apertures is connected to its respective source.
2. An irrigation/aspiration cannula as in claim 1, wherein each of the valve assemblies has an open position and a closed position, such that when one of the valve as-semblies is in the open position, the pressure differential across the other valve assembly increases, increasing the sealing performance of the other valve assembly.
3. An irrigation/aspiration cannula as in claim 1, wherein the valve housing has a common interior chamber, connected to the tube, the chamber also connected to the fluid source and the vacuum source through the valve assemblies.
4. An irrigation/aspiration cannula as in claim 3, wherein the interior chamber is constructed so that the flow path through the cannula has only obtuse angles.
5. An irrigation/aspiration cannula as in claim 1, wherein said valve housing further comprises a pair of in-tegrally molded connecting means for connecting the fluid inlet aperture and the fluid outlet aperture to the fluid source and the vacuum source, respectively.
6. An irrigation/aspiration cannula as in claim 1, wherein the tube has an axial bore and at least one outlet/in-let hole at its distal end for irrigation/aspiration of an area of tissue under surgery.
7. An irrigation/aspiration cannula as in claim 1, wherein the valve housing comprises a valve body and a valve body cover.
8. An irrigation/aspiration cannula as in claim 1, wherein there are two valve assemblies.
9. An irrigation/aspiration cannula as in claim 3, wherein the valve assemblies incorporate a floating seal-type valve.
10. An irrigation/aspiration cannula, as in claim 9, wherein each valve assembly comprises a resilient seal button retained by a valve flapper, the seal button positioned to cover and seal a port leading from one of the sources into the common interior chamber.
11. An irrigation/aspiration cannula as in claim 1, wherein each valve assembly is actuated by a lever on the outside of the housing.
12. An irrigation/aspiration cannula as in claim 11, wherein the levers are automatically returned to a starting position by springs, the levers also returning the valve assemblies to the closed position.
13. An irrigation/aspiration cannula, as in claim 12, wherein the levers are connected to the valve flappers by lever shafts that penetrate the valve housing wall.
CA002055846A 1990-12-21 1991-11-19 Irrigation/aspiration cannula Abandoned CA2055846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/632,163 US5224929A (en) 1990-12-21 1990-12-21 Irrigation/aspiration cannula and valve assembly
US632,163 1990-12-21

Publications (1)

Publication Number Publication Date
CA2055846A1 true CA2055846A1 (en) 1992-06-22

Family

ID=24534347

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002055846A Abandoned CA2055846A1 (en) 1990-12-21 1991-11-19 Irrigation/aspiration cannula

Country Status (5)

Country Link
US (1) US5224929A (en)
EP (1) EP0492162B1 (en)
JP (1) JPH0716293A (en)
CA (1) CA2055846A1 (en)
DE (2) DE492162T1 (en)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458581A (en) * 1992-06-08 1995-10-17 Hull; Michael C. Catheter crimping apparatus
TW259716B (en) * 1992-10-09 1995-10-11 Birtcher Med Syst
US6746419B1 (en) 1993-04-19 2004-06-08 Stryker Corporation Irrigation handpiece with built in pulsing pump
US5470305A (en) 1993-04-19 1995-11-28 Stryker Corporation Irrigation handpiece with built in pulsing pump
US6193672B1 (en) 1993-05-11 2001-02-27 Mectra Labs, Inc. Lavage
US6213970B1 (en) 1993-12-30 2001-04-10 Stryker Corporation Surgical suction irrigation
US5484402A (en) * 1993-12-30 1996-01-16 Stryker Corporation Surgical suction irrigator
US5722949A (en) * 1994-08-26 1998-03-03 Sanese Medical Corporation Fluid supply and suction apparatus and method
US5827218A (en) * 1996-04-18 1998-10-27 Stryker Corporation Surgical suction pool tip
US5807313A (en) * 1996-07-19 1998-09-15 C. R. Bard, Inc. Battery powered surgical irrigator
US5800408A (en) * 1996-11-08 1998-09-01 Micro Therapeutics, Inc. Infusion device for distributing infusate along an elongated infusion segment
US5921968A (en) * 1997-11-25 1999-07-13 Merit Medical Systems, Inc. Valve apparatus with adjustable quick-release mechanism
US6458109B1 (en) 1998-08-07 2002-10-01 Hill-Rom Services, Inc. Wound treatment apparatus
DE29901723U1 (en) 1999-02-02 2000-06-29 Synthes Ag Device for extracting bone chips
EP1148825B1 (en) 1999-02-03 2005-03-16 SYNTHES AG Chur Surgical reamer
US6254061B1 (en) 1999-04-30 2001-07-03 Scimed Life Systems, Inc. Medical suction valve
US6824533B2 (en) 2000-11-29 2004-11-30 Hill-Rom Services, Inc. Wound treatment apparatus
US6764462B2 (en) 2000-11-29 2004-07-20 Hill-Rom Services Inc. Wound treatment apparatus
JP4330753B2 (en) * 2000-03-03 2009-09-16 ジョンソン・エンド・ジョンソン株式会社 Suction device with perfusion function
JP2004509658A (en) 2000-05-22 2004-04-02 コフィー,アーサー,シー. Combination of small intestinal submucosa and vacuum bandage and its use
US6572590B1 (en) 2000-07-13 2003-06-03 Merit Medical Systems, Inc. Adjustable quick-release valve with toggle capability
US6652488B1 (en) 2000-09-11 2003-11-25 Stryker Corporation Surgical suction irrigator
US6855135B2 (en) 2000-11-29 2005-02-15 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US6685681B2 (en) 2000-11-29 2004-02-03 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US20040153111A1 (en) * 2001-04-27 2004-08-05 Yasuo Hosoada Medical rinsing and sucking device
US6989003B2 (en) * 2001-08-31 2006-01-24 Conmed Corporation Obturator and cannula for a trocar adapted for ease of insertion and removal
US7344519B2 (en) * 2001-08-31 2008-03-18 Conmed Corporation Trocar system
EP1450878A1 (en) 2001-10-11 2004-09-01 Hill-Rom Services, Inc. Waste container for negative pressure therapy
US6783533B2 (en) 2001-11-21 2004-08-31 Sythes Ag Chur Attachable/detachable reaming head for surgical reamer
EP1478313B2 (en) * 2001-12-26 2018-03-07 KCI Medical Resources Vented vacuum bandage
US7534927B2 (en) * 2001-12-26 2009-05-19 Hill-Rom Services, Inc. Vacuum bandage packing
WO2003057307A1 (en) * 2001-12-26 2003-07-17 Hill-Rom Services, Inc. Wound vacuum therapy dressing kit
US8168848B2 (en) 2002-04-10 2012-05-01 KCI Medical Resources, Inc. Access openings in vacuum bandage
US7896856B2 (en) 2002-08-21 2011-03-01 Robert Petrosenko Wound packing for preventing wound closure
US8626257B2 (en) 2003-08-01 2014-01-07 Dexcom, Inc. Analyte sensor
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US8615282B2 (en) 2004-07-13 2013-12-24 Dexcom, Inc. Analyte sensor
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8425417B2 (en) 2003-12-05 2013-04-23 Dexcom, Inc. Integrated device for continuous in vivo analyte detection and simultaneous control of an infusion device
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
US8364230B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8425416B2 (en) 2006-10-04 2013-04-23 Dexcom, Inc. Analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US7654956B2 (en) 2004-07-13 2010-02-02 Dexcom, Inc. Transcutaneous analyte sensor
WO2006127694A2 (en) 2004-07-13 2006-11-30 Dexcom, Inc. Analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US8915842B2 (en) * 2008-07-14 2014-12-23 Ethicon Endo-Surgery, Inc. Methods and devices for maintaining visibility and providing irrigation and/or suction during surgical procedures
US8562528B2 (en) 2006-10-04 2013-10-22 Dexcom, Inc. Analyte sensor
US8275438B2 (en) 2006-10-04 2012-09-25 Dexcom, Inc. Analyte sensor
US8449464B2 (en) 2006-10-04 2013-05-28 Dexcom, Inc. Analyte sensor
US8447376B2 (en) 2006-10-04 2013-05-21 Dexcom, Inc. Analyte sensor
US8298142B2 (en) 2006-10-04 2012-10-30 Dexcom, Inc. Analyte sensor
US8478377B2 (en) 2006-10-04 2013-07-02 Dexcom, Inc. Analyte sensor
US8206349B2 (en) 2007-03-01 2012-06-26 Medtronic Xomed, Inc. Systems and methods for biofilm removal, including a biofilm removal endoscope for use therewith
US20080167527A1 (en) * 2007-01-09 2008-07-10 Slenker Dale E Surgical systems and methods for biofilm removal, including a sheath for use therewith
US9326665B2 (en) 2007-01-09 2016-05-03 Medtronic Xomed, Inc. Surgical instrument, system, and method for biofilm removal
US20080306434A1 (en) 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US9452258B2 (en) 2007-10-09 2016-09-27 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US7938809B2 (en) * 2008-04-14 2011-05-10 Merit Medical Systems, Inc. Quick release hemostasis valve
US9827367B2 (en) 2008-04-29 2017-11-28 Medtronic Xomed, Inc. Surgical instrument, system, and method for frontal sinus irrigation
US8597228B2 (en) * 2009-03-09 2013-12-03 Thermedx, Llc Fluid deficit monitoring in a fluid management system
US9474848B2 (en) 2009-03-09 2016-10-25 Thermedx, Llc Fluid management system
US10130246B2 (en) 2009-06-18 2018-11-20 Endochoice, Inc. Systems and methods for regulating temperature and illumination intensity at the distal tip of an endoscope
US9474440B2 (en) 2009-06-18 2016-10-25 Endochoice, Inc. Endoscope tip position visual indicator and heat management system
US10524645B2 (en) 2009-06-18 2020-01-07 Endochoice, Inc. Method and system for eliminating image motion blur in a multiple viewing elements endoscope
US9358328B2 (en) 2009-12-15 2016-06-07 Prabhat K. Ahluwalia Suction device
US8801684B2 (en) * 2010-02-16 2014-08-12 Medela Holding Ag Coupling part of a drainage tube unit
JP2013536050A (en) 2010-08-25 2013-09-19 カモド,エルエルシー Hand-held cleaning and suction device
DE102010045680A1 (en) * 2010-09-17 2012-03-22 Karl Storz Gmbh & Co. Kg Medical instrument for sucking and rinsing
US9706908B2 (en) 2010-10-28 2017-07-18 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
US10663714B2 (en) 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
US10517464B2 (en) 2011-02-07 2019-12-31 Endochoice, Inc. Multi-element cover for a multi-camera endoscope
WO2012124653A1 (en) * 2011-03-17 2012-09-20 オリンパスメディカルシステムズ株式会社 Medical pump and medical treatment device
ES2847578T3 (en) 2011-04-15 2021-08-03 Dexcom Inc Advanced analyte sensor calibration and error detection
US9744276B2 (en) 2012-03-20 2017-08-29 Prabhat Kumar Ahluwalia Suction device
US8945093B2 (en) 2012-03-20 2015-02-03 Minimally Invasive Surgical Technologies, Inc. Suction device
US9320507B2 (en) 2012-03-26 2016-04-26 Covidien Lp Cannula valve assembly
TWI572382B (en) 2012-05-18 2017-03-01 鄭明輝 Fat injection device
US9332998B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
US9332999B2 (en) 2012-08-13 2016-05-10 Covidien Lp Apparatus and methods for clot disruption and evacuation
US9248228B2 (en) 2013-01-18 2016-02-02 Peter L. Bono Suction and irrigation apparatus with anti-clogging capability
US9360124B2 (en) * 2013-03-15 2016-06-07 Cook Medical Technologies Llc Bi-directional valve device for selective control of fluid flow through multiple converging paths
US10595714B2 (en) 2013-03-28 2020-03-24 Endochoice, Inc. Multi-jet controller for an endoscope
US9636003B2 (en) 2013-06-28 2017-05-02 Endochoice, Inc. Multi-jet distributor for an endoscope
WO2014182723A1 (en) 2013-05-07 2014-11-13 Endochoice, Inc. White balance enclosed for use with a multi-viewing elements endoscope
US9949623B2 (en) 2013-05-17 2018-04-24 Endochoice, Inc. Endoscope control unit with braking system
US10064541B2 (en) 2013-08-12 2018-09-04 Endochoice, Inc. Endoscope connector cover detection and warning system
US9943218B2 (en) 2013-10-01 2018-04-17 Endochoice, Inc. Endoscope having a supply cable attached thereto
US9968242B2 (en) 2013-12-18 2018-05-15 Endochoice, Inc. Suction control unit for an endoscope having two working channels
WO2015112747A2 (en) 2014-01-22 2015-07-30 Endochoice, Inc. Image capture and video processing systems and methods for multiple viewing element endoscopes
WO2015117104A1 (en) 2014-01-31 2015-08-06 Camodo, Llc Combination suction and irrigation tool
US11234581B2 (en) 2014-05-02 2022-02-01 Endochoice, Inc. Elevator for directing medical tool
US9770541B2 (en) 2014-05-15 2017-09-26 Thermedx, Llc Fluid management system with pass-through fluid volume measurement
CN111436896A (en) 2014-07-21 2020-07-24 恩多巧爱思股份有限公司 Multi-focus and multi-camera endoscope system
CN106687024B (en) 2014-08-29 2020-10-09 恩多巧爱思股份有限公司 System and method for varying the stiffness of an endoscope insertion tube
US20160135826A1 (en) * 2014-11-18 2016-05-19 David Michael Chadbourne Fluid supply and suction device
EP3235241B1 (en) 2014-12-18 2023-09-06 EndoChoice, Inc. System for processing video images generated by a multiple viewing elements endoscope
WO2016112034A2 (en) 2015-01-05 2016-07-14 Endochoice, Inc. Tubed manifold of a multiple viewing elements endoscope
US10376181B2 (en) 2015-02-17 2019-08-13 Endochoice, Inc. System for detecting the location of an endoscopic device during a medical procedure
US10078207B2 (en) 2015-03-18 2018-09-18 Endochoice, Inc. Systems and methods for image magnification using relative movement between an image sensor and a lens assembly
US10401611B2 (en) 2015-04-27 2019-09-03 Endochoice, Inc. Endoscope with integrated measurement of distance to objects of interest
US10516865B2 (en) 2015-05-17 2019-12-24 Endochoice, Inc. Endoscopic image enhancement using contrast limited adaptive histogram equalization (CLAHE) implemented in a processor
US20170119474A1 (en) 2015-10-28 2017-05-04 Endochoice, Inc. Device and Method for Tracking the Position of an Endoscope within a Patient's Body
EP3383244A4 (en) 2015-11-24 2019-07-17 Endochoice, Inc. Disposable air/water and suction valves for an endoscope
EP3419497B1 (en) 2016-02-24 2022-06-01 Endochoice, Inc. Circuit board assembly for a multiple viewing element endoscope using cmos sensors
US10292570B2 (en) 2016-03-14 2019-05-21 Endochoice, Inc. System and method for guiding and tracking a region of interest using an endoscope
CN109310408B (en) 2016-06-21 2021-11-23 安多卓思公司 Endoscope system with multiple connection interfaces for connection to different video data signal sources
CN110612139A (en) 2017-03-13 2019-12-24 波士顿科学有限公司 Hemostatic valve and methods for making and using a hemostatic valve
US10960501B2 (en) 2017-03-13 2021-03-30 Boston Scientific Limited Hemostasis valves and methods for making and using hemostasis valves
WO2018169683A1 (en) 2017-03-13 2018-09-20 Boston Scientific Scimed, Inc. Hemostasis valves and methods for making and using hemostasis valves
KR101823831B1 (en) * 2017-08-14 2018-01-31 이병갑 Surgical Handle For Operating Suction Button and Water Supplying Button Conveniently
WO2019055411A1 (en) 2017-09-12 2019-03-21 Boston Scientific Limited Hemostasis valves and methods for making and using hemostasis valves
CN111246797A (en) 2017-10-24 2020-06-05 德克斯康公司 Pre-attached analyte sensors
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
JP2023501444A (en) 2019-11-08 2023-01-18 サーメデックス エルエルシー Fluid management system and method
CN113633412B (en) * 2021-08-09 2022-12-27 南京医科大学附属口腔医院 Portable oral cavity flusher
CN115212374B (en) * 2022-01-20 2024-04-02 宁波恒达医疗器械有限公司 Self-pressurizing flushing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415466A (en) * 1943-03-06 1947-02-11 Curtis Automotive Devices Inc Selector valve
FR1403016A (en) * 1964-04-29 1965-06-18 Thermiguides Pneumatic valve with non-electric magnetic control, more particularly for textile machines
US3901629A (en) * 1972-10-18 1975-08-26 Andre Robert Chancholle Aspirator-ejector adapted to aspirate and to supply two fluids without mixing them
US4027697A (en) * 1975-11-19 1977-06-07 Bonney Roland W Rotary valve
US4067095A (en) * 1976-06-02 1978-01-10 The Singer Company Closing spring assembly for slam-shut valves
DE2950323C2 (en) * 1979-12-14 1986-03-27 Anton Dr. 4400 Muenster Haerle Suction instrument for medical purposes
DE3309916C2 (en) * 1982-03-29 1993-12-09 Smiths Industries Plc Suction and flushing device
US4534758A (en) * 1983-07-15 1985-08-13 Eli Lilly & Company Controlled release infusion system
US4781673A (en) * 1985-12-20 1988-11-01 Kabushiki Kaisha Nihon M.D.M. Brain ventricle shunt system with flow-rate switching mechanism
US4705073A (en) * 1986-04-23 1987-11-10 Advanced Medical Devices, Inc. Molded plastic gate valve and sealing means therefor
US5011472A (en) * 1988-09-06 1991-04-30 Brown University Research Foundation Implantable delivery system for biological factors
US4957483A (en) * 1988-10-21 1990-09-18 Den-Tal-Ez, Inc. Sterilizable syringe
US5034000A (en) * 1989-03-28 1991-07-23 Dexide, Incorporated Medical evacuation and irrigation device

Also Published As

Publication number Publication date
JPH0716293A (en) 1995-01-20
DE492162T1 (en) 1993-02-04
EP0492162B1 (en) 1995-08-30
DE69112585D1 (en) 1995-10-05
EP0492162A1 (en) 1992-07-01
US5224929A (en) 1993-07-06
DE69112585T2 (en) 1996-02-08

Similar Documents

Publication Publication Date Title
EP0492162B1 (en) Irrigation/aspiration cannula
EP0643570B1 (en) Tubing management system
US5288290A (en) Multi-ported valve assembly
US5925013A (en) Irrigation and evacuation cannula
US5303735A (en) Valve assembly
US5027791A (en) Air and water supply apparatus for endoscope
US4325362A (en) Endoscope
US4881523A (en) Endoscope
US7887510B2 (en) Suction control apparatus and methods for maintaining fluid flow without compromising sterile lines
US5269768A (en) Valved suction catheter
US5447494A (en) Composite irrigation and suction probe
CA2588691C (en) Surgical system having integral pneumatic manifolds
US5454784A (en) Control valve for a fluid set
US5322506A (en) Irrigation system with high flow bypass for use with endoscopic procedure
JPH08508658A (en) Irrigation control valve for endoscopic equipment
AU2007202257B2 (en) Surgical system having pneumatic manifolds with integral air cylinders
CA2514902A1 (en) Manifold system for a medical device
EP1234596A4 (en) Medical cock
US6117102A (en) Apparatus for flushing a vascular catheter
US20200205649A1 (en) Endoscope unblocking flush system
WO1993017733A1 (en) Composite irrigation and suction probe
JPS6060378A (en) Valve gear
EP0199876A2 (en) Valve system for medical and veterinary appliances
EP1305079A1 (en) Apparatus for flushing a vascular catheter
JPS62148635A (en) Fluid controller of endoscope

Legal Events

Date Code Title Description
FZDE Discontinued