CA2070816A1 - Close vascularization implant material - Google Patents

Close vascularization implant material

Info

Publication number
CA2070816A1
CA2070816A1 CA002070816A CA2070816A CA2070816A1 CA 2070816 A1 CA2070816 A1 CA 2070816A1 CA 002070816 A CA002070816 A CA 002070816A CA 2070816 A CA2070816 A CA 2070816A CA 2070816 A1 CA2070816 A1 CA 2070816A1
Authority
CA
Canada
Prior art keywords
pore size
host
membrane
membrane pore
vascular structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002070816A
Other languages
French (fr)
Inventor
James H. Brauker
Robert C. Johnson
Laura A. Martinson
Ronald S. Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter International Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2070816A1 publication Critical patent/CA2070816A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/022Artificial gland structures using bioreactors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/005Ingredients of undetermined constitution or reaction products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/413Monitoring transplanted tissue or organ, e.g. for possible rejection reactions after a transplant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/92Method or apparatus for preparing or treating prosthetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/924Material characteristic
    • Y10S623/925Natural

Abstract

A device for implantation in a host having a material at an interface between the host and the device, said material having a conformation which results in growth of vascular structures by the host close to the interface.

Description

207~816 W o 92/07s2s i ~ - PCTtUS91/07486 CLOSE VASCULARIZATION IMPLANT MATERIAL

Backqround of the Invention The present invention relates to material implanted in a host. More particularly, the present invention relates to material that promotes the formation of vascular structures at the interface between at least a portion of the implanted material and the host.
For a variety of applications, ranging from research to therapeutic, it may be desirable to implant an article or device within soft tissue. Such implants can include indwelling catheters, indwelling sensors, and devices for holding tissue that are implanted in vivo.
If the implanted device is utilized to hold tissue, in a variety of such applications it is necessary to isolate the implanted tissue from the immure response of the host (immunoisolation). For example, this is critical when the implanted tissues are xenografts, i.e., graft cells from donors of another species, or allografts, i.e., cells from the same species but having a different genetic make-up. A failure to properly isolate such tissue will result in an invasion from host cells or host immunogenic factors rejecting the implant cells. In certain other applications, such as autografts, i.e., cells previously isolated from the tissue of the patient to be implanted, it is necessary to isolate the implanted tissues from the host, not because the cells would be rejected, but because the cells may contain retroviral vectors which otherwise might present a risk to the patient. Accordingly, it may be necessary for such cells to be encloced within a structure that prevents the passage of cells therethrough.

. . , . : . :, ., .. , . .. . . , . ~ . . -.. . - . . . .

; ~ ~: : . , : . .
.. . . - , . . . .

w o 92/07525 2 ~ 7 0 8 1 6 PCT~US91/07486 ~

In certain other tmplant applications it may be desirable to provide a zone or structure that is selectively impermeable for molecular diffusion as ;n certain forms of cellular implants that could be rejected by humoral factors, or non-permeable for non-transport functions, such as providing a surface for transcutaneous catheters.
When biomaterials are implanted, the host inflammatory cells (macrophages, gtant cells, and fibroblasts) produce an inflammatory response called a foreign body response. This response invariably results in a zone of nonvascular tissue that surrounds the implanted material. The foreign body response is the body's attempt to remove or isolate the foreign entity (Anderson, J. M., "Inflammatory Response to Impants", ~rans. Am.
Soc. Artif. Inter~. Ograns, Vol. XXXIV:101-107 (1988)).
During the foreign body response, macrophages from the hDst attempt to ingest the foreign ~ody. In some cases, the macrophages coalesce to form multinuecleated giant cells. The implant may lead to the formation of fibroblast layers of increased thickness and density as the host attempts to isolate the foreign body. This creates a fibrous capsule of cells and collagen.
Referring to Figure 1, a micrograph (1(a)) and a drawing (1(b)) are provided to illustrate a classical tissue response to an implanted foreign body. Figure 1 represents a typical histological section taken through a tissue block removed a~ter approximately three weeks from a dorsal subcutaneous implant in a Sprague-Dawley rat. As illustrated, the implant 10 is surrounded by a foreign body capsule 12 that forms adjacent to the implant.
The foreign body capsule 12 typically consists of three-layers.
As illustrated, the first layer 13 of the foreign body capsule 12 includes macrophages 14 and foreign body giant cells 16 at an interface 18 between the implant 10 and the tissue. This first layer 13, consisting of the macrophages 14, is generally approximately 5 to about 15 microns thick.

,: . ,. , . . :: - . -- .
, .', . , ' ~ . :' , . : .
. . ~ :, - . . -:

207081 ~
WO 92~07525 PCI/US91/07486 The next, or second layer 15, of the foreign body capsule 12 includes fibroblasts ~0. The fibroblasts 20 are oriented parallel to the surface of the implant 10 and embedded in a collagenous matrix including collagen fibers that are also oriented parallel with the surface of the implant. The second layer 15 consisting of the fibroblasts 20 and collagen fibers is generally approximately 30 to about 200 microns thick. The first and second layers 13 and 15 of the foreign body capsule 12 are usually completely avascular throughout.
At the outlying areas of the foreign body capsule 12, a few vascular structures 24 begin to appear in the outer regions of the fibroblast second zone 15. At a third layer 17, lying approximately 30 to about 200 microns away from the surface of the implant 10 is loose connective tissue that is highly vascular.
This layer 17 is amorphous and widely varies in thickness depending on the tissue location and time after the implant.
As ;llustrated in Figure 1, the classical foreign body response results in the implant 10 being surrounded by a foreign body capsule 12 that does not include vascular structures near the surface of the implant.
Although the foreign body capsule generated from the foreign body response is desirable, or at least not detrimental, for certain types of implants, such as, for example, silicon breast implants and collagen implants, the foreign body capsule prevents certain applications and treatments utilizing such implants. For example, indwelling sensors for applications such as glucose analysis in diabetics, become occluded after only a few days due to the foreign body capsule. Indeed, the foreign body capsule becomes so thick that it inhibits the diffusion of glucose to the membrane surface preventing the sensor from functioning.
Likewise, when pancreatic islets are implanted within a semipermeable me~brane for treatment of diabetes, they usually die within a ~ew days or weeks. ~he loss of function of the . ~ , . . . . . . . . . . .................................. .

.- . . . . . . .
.

. .

~o~ o ~ ~ b WO 92/07525 - P~/US~1/07486 pancreatic islets is attributed to the poor diffusion of nutrients to the islets due to the thickness of the foreign bcdy capsule.
Likewise, other tissues that are implanted within the host do not remain viable due to the foreign body capsule that effectively prevents the transport of nutrients from the capillaries to cells enclosed within the implanted membrane.
Scharp, in a comprehensive review of the literature about immunoisolation ( n Isolation and Transplantation of Islet Tissue"
(1984) World J. Surgery 8:143-151) cited 18 papers on islet immunoisolation. In every case, the islets failed to function for more than a few weeks, or in 4 studies, several months. ln every case but one, the failure was attributed to fibroblastic overgrowth of the membrane and chamber. The authors state that, "If...a ~membrane] can be constructed to resist host fibrotic response, then the extravascular diffusion chamber approach may be useful clinically." They further state that the "primary disadvantages [of d;ffusion chambers] relate to the host fibroblastic response to the device." This belief is echoed in U.S. Patent No. 4,298,002 which states, "the device...remains effective for limited periods of time because the body encapsulates the device with fibrous material blocking the passage of insulin, nutrients, and/or waste products."
More recent papers continue to state that device failure is caused by the foreign body capsule diminution of diffusion. For example, Christenson, Abeischer, McMillan, and Galletti, in rTissue Reaction to Intraperitoneal Polymer Implants: Species difference and effects of corticoid and doxorubicin" ((1989) J. of Biomed. Mat. Res. 23:705-718) stated, "reduction of the tissue reaction around an implant is important in improving the long-term viability of the encapsulated endocrine tissue and is imperative for any clinical application of this technique for implanting endocrine tissue."

. . .

~; W O 92/07~25 2 ~ 7 ~ 8 1 ~ PCT/US91/07486 Poor viability of tissues has prsmpted the design sf modalities for periodic replacement of implanted islets through percutaneous catheters (e.g. U.S. Patent No. 4,378,016) to solve the shortcoming of previous designs, i.e., the deterioration of implanted tissues because of overgrowth by a fibrous capsule.
Additionally, indwelling catheters that have a variety of applications, typically have a high drop-out rate because the site of the catheter entry becomes infected. It is generally believed that this infection is caused by poor adhesion of the tissues to the catheter surface and poor vascularization of the region around the catheter because of the thick foreign body capsule that forms. Implants have been proposed having surfaces designed to increase the adhesion or anchorage of the implant in the host tissue (e.g. EurDpean Patent Application No. 03~9575 of von Recum and Campbell). This patent lpplication describes materials with surface topography designed to provide "improved soft tissue implant having a~ surface texture that optimizes anchorage of the implant to the tissue without causing inflammatory tissue at the implantation site."
In attempting to provide needed nutrients to cells and tissues located within implanted devices and/or allowing agents generated by the tissues to enter the host, an almost contradictory concern must be dealt with. For devices that include xenografts or allografts, these tissues must be isolated from the immune system of the host. Therefore, although it may be desirable to somehow connect the vascular system of the host to these tissues to provide nutrients and allow a transfer of biological agents to the host, a contrary concern is to prevent an immune response from the host to the tissues. Likewise, with respect to sensors and catheters, although it may be desirable to create vasculari2ation with respect to these devices, vascularization into an interior of such devices w;ll prevent the devices from functioning satisfactorily.

. . - .. , . - :
. .: . . . , .. .

.~. .. ... - . .:. . .

W o 92/07s25 2 ~ ~ ~ 8 l`G PCT/US91/07486 ~ .

SummarY of the Invention This present invention provides an implant material that results in close vascularization by the host at the interface between the material and the host into which the material is imp1anted.
The uses of the material of the present invention include: as a coating for indwelling catheters; means ~or transport of phys;ological factors to indwelling sensors; means for transport of drugs from a chamber or catheter to the tissues of the host;
and means for encapsulation of grafted cells for treatment of cell and molecular deficiency diseases (immunoisolation).
In an embodiment, the present invention provides an asymmetric material having a first zone that induces close vascularization at the material host interface and a second adjacent zone that prevents passage of cells through the zone. The vascularizing zone allows the material to be vascularized whlle the second zone maintains immunoisolation of the interior of an implanted device incorporating the invention on its exterior. The material may consist of a bilayer of zones as described or it may be a gradient of zones. The gradient consists of an outer zone with a conformation that results in close vascularization. The structure of the material becomes gradually tighter until the material is impermeable to cells.
In another embodiment, the second adjacent zone is molecular permeable for selective diffusion. In yet another embodiment the second zone is non-permeable for use in non-transport functions in devices such as indwelling catheters.
To these ends, the present invention provides an implant having a three dimensional conformation or architectural structure at the host interface which allows invasion of the material by mononuclear cells, but prevents the invasion by connective tissue which leads to foreign body capsule formation within the structure.
Applicants do not fully understand how the close vascularization of the present invention occurs. The data .~ , , , . - .-. --; , , , ~

~`~.W O 92t~7525 2 0 7 ~ 8 1 6 PC~/US91/07486 presented in the tables and figures which follow are consistant with the theory that close vascularization occurs if the three dimensional conformation of material interfacing the host is such that it elicits certain host inflammatory cell behavior.
Applicants have observed by light and electron microscopy that close vascularization occurs if in the initial period of implantation, at least some macrophages entering the material are not activated. Activated macrophage are characterized by cell flattening. Applicants observe close vascularization in regions of an implant where the macrophgages that have entered the cavities of the material retain a rounded appearance when viewed through light microscopy ( ~ 400xJ. See Figure 2a. At 3000 (TEM) the rounded macrophage is observed to have substantially conformed to the contours of the material. Although there is a correlation with macrophtge shape, it is not clear that macrophages control the obser~ed response. However, it is clear that invasion of the structure by host cells is required Although the bulk of the cells appear to be macrophages, it is possible that other inflammatory cells control the response, therefore we w;ll refer to the invading cells as "inflammatory ce11s," which include but are not limited to macrophages.
On the other hand foreign body capsule formation occurs when, in the initial period of implantation, inflammatory cells in contact with the implant material flatten against those portions of the material which present an area amenable to such flattening behavior by an inflammatory cell (Figure 6).
In an embodiment, the material that results in formation of close vascular structures is a polymer membrane having an average nominal pore size of approximately 0.6 to about 20 ~um, using conventional methods for determination of pore size in the trade.
Preferably, at least approximately 50% of the pores of the membrane have an average size of approximately 0.6 to about 20~um.

.... ... .. .. . .. .. ..
. - .
. . .

. .

WO 92/07~i25 ~ PCl`/US91/07486 The structural elements which provide the three dimensional conformation may include fibers, strands, globules, cones or rods of amorphous or uniform geometry which are smooth or rough. These elements, hereafter referred to as "strands," have in general one dimension larger than the other two and the smaller dimensions do not exceed five microns.
In an embodiment, the material consists of strands that define "apertures" formed by a frame of the interconnected strands. The apertures have an average size of no more than about 20 ~m in any but the longest dimension. The apertures of the material form a framework of interconnected apertures, defining "cavities~ that are no greater than an average of about 20 ~m in any but the longest dimension. In an embodiment the material has at least some apertures having a sufficient size to allow at least some vascular structures to be created within the cavities. At least some of these apertures, while allowing vascular structures to form within thè cav;ties, prevent connective tissue from forming therein because of size restrictions.
In an embodiment, an asymmetric material is provided having a gradient or layer of varying porosity. At least some of the apertures at the surface of the material that contacts the host tissue, allow inflammatory cells to enter the cavities. But, due to size restrictions, the apertures do not allow the inflammatory cells to transverse the material to the interior of the implant.
In an embodiment of the present invention, an immunoisolation container is provided that includes a first membrane having cavities and situated proximal to the host tissue. At least some of the apertures of the first membrane have a sufficient size to allow inflammatory cells to enter the cavities and cause at least some vascular structures to contact the membrane. The container includes a second porous membrane, the apertures of the second membrane being sufficiently small to prevent immune cells and/or immunogenic factors from entering an interior of the container.
The second membrane is situated proximal to graft tissues.

WO 92/075~ PCI'/US91/07486 2Q7~81~ ~

In an embodiment, an indwelling catheter is provided by the present invention including a porous membrane and a catheter body, the porous membrane surrounding at least a portion of the catheter body. At ~east some apertures of the porous membrane have a sufficient size to allow inflammatory cells to enter the cavities and cause at least some vascular structures to form that contact the porous membrane.
In an embodiment, the present invention provides an indwelling sensor. The indwelling sensor comprising a sensor for monitoring a condition or agent in the body and a porous membrane that surrounds at least a pDrtion of the sensor body. At least some of the apertures of the membrane have a sufficient size to allow inflammatory cells to enter the cavities and cause at least some vascular structures to form that contact the porous membrane.
The present invention also provides a method for the vascularization of a surface of an implanted device. The method comprjses the steps of allowing inflammatory cells to enter a ~irst layer of a rembrane structure and cause vascular structures to form that contact a surface of the first layer of the membrane and preventing the inflammatory cells from entering a second layer of the membrane structure. This embodiment would be applicable in, for example. a breast prothesis.
Additional features and advantages of the present invention are described in, and will be apparent from, the detailed description of the presently preferred embodiments and from the drawings.

Brief Descriotion of the Drawinqs Figure l(a) ;s a micrograph that illustrates a classical foreign body response to an implanted device.
Figure l(b) is a drawing illustrating a classical foreign body response to an implanted device.
Figure 2(a) is a micrograph of an embodiment of the present invention.

.
2 ~ 7 ~ 8 ~ 6 PCI`/US91/07486 ~

F;gure 2(b) is a cross-sectional view of an embodiment of the present invention with vascular structures growing at the host-material interface.
Figure 3 illustrates a cross-sectional view of 2 foreign body capsule in a pore of a membrane.
Figures 4(a) and (b) are scanning electron m k rographs of, respectively, a mixed ester of cellulose membrane with a 5 ~m pore size and a teflon ~embrane with 3 ~m pore size.
Figures 5(a) and (b) are scanning electron micrographs of, respectively, a teflon membrane with a 5 ~m pore size and a polycarbonate with 12 pm pore size.
Figure 6 illustrates a light micrograph showing the teflon membrane of Figure 5(a) implanted for 3 weeks in a subcutaneous dorsal pocket in a rat.
I5 Figure 7 illustrates a cross-sectional view of a b11aminar membrane containing islets, the membrane having an outer layer that is vascularized and an inner layer that prevents immune rejection.
Figure 8 illustrates a cross-sectional view of a further embodiment of the present invention.
Figure 9 illustrates an indwelling catheter incorporating the present invention.
Figure 10 illustrates an indwelling sensor incorporating the present invention.
Detailed Description of the Presentlv Preferred Embodiments The present invention provides a material for inducing close vascularization at the interface between the material and host into which the material is implanted such that a standard foreign , . . - . : -, - ~

. , . ~ .. ..

I~W092/07525 2 ~7 0 81 h PCI`/US91/07486 i body capsule consisting of flattened macrophages, foreign body giant cells, and fibroblasts does not intervene between the vascular structures and the material. ~he material can be utilized for various applications including the creation of a container for implanting tissues to be isolated from the immune system of a host, for surrounding a portion of a catheter, or surrounding a portion of an indwelling sensor device.
Pursuant to the present invention, the material utilized results in the growth of vascular structures close to or immediately adjacent to the material. As used herein, close vascular structures or vascular structures that contact, are those capillaries whose surface lies within about one cell layer of the surface of the material. When implants including the materials of the present invention are implanted within a host a foreign body-like capsule still forms in response to the implantation.
However, its structure is greatly altered due to the host response to the material. In contrast to a standard foreign bDdy response, a vascular bed forms at the host-material interface.
Referring now to Figure 2, an embodiment of the present invention is illustrated. In this embodiment, a polymer membrane 30 at least partially surrounds an implant and includes three dimensional cavities 32. At least some of the cavities 32 of the membrane 3Q have a sufficient size and structure to allow inflammatory cells 34 to completely enter therein through the apertures that define the cavities, and are defined by frames composed of strands that are less than five microns in all but the longest dimension. When the inflammatory cells 34 enter the cavities 32, growth of vascular structures 36 occurs within about one cell layer from the interface 3~ of the membrane 30 and host.
Although not required, vascular structures may be formed within the irregularities 32 of the membrane. Accordingly, although a foreign body-like capsuie of fibroblasts still forms that surrounds the membrane 30, the entire foreign body-like capsule, . . ~;, . -- .
- . ..

w o 92/07525 2 ~ PCT/~S~1/07486 including fibroblast layers, is well vascularized. The formation of close vascular structures is dependent on entry of the inflammatory cells into the cavities of the membrane so that the cells are surrounded by the strands that define the apertures and cav;ties. The topographic features at the implant surface do not effect the morphology of the inflammatory cells. Indeed, inflammatory cells at the implant surface often mainta;n a flat morphology.
In selecting the size and shape of the strands and cavities 32 for the material 30 of the present invention, it must first be appreciated that not all of the cavities must have a sufficient size to allow inflammatory cells 34 to enter therein. What is required is that a sufficient number of cavities 32 have a size that allows a sufficient number of inflammatory cells 34 to enter therein. Nor is it necessary that all of the strands be less than five microns in all but the longest dimension. Some strands may be longer, as long as a sufficient number of the strands are within the prescribed size limits.The presence of a sufficient number of strands and cavities of the prescribed size creates a sufficient number of vascular structures at the host-material interface. These vascular structures will provide sufficient nutrients tD an immunoisolated container and/or allow components and agents produced by cells within the interior of the chamber to enter the host.
AlthDugh at least some of the cavities 32 must have a sufficient size and shape to allow inflammatory cells 34 to enter therein, it is also important that extens;ve ingrowth of vascular -~
and connective tissues within the cavities 32 does not occur. As illustrated in Figùre 3, in the case where the apertures and cavities are too large, an extensive growth of vascular tissue 36 and connective tissue 39 occurs within a large cavity 32a; this causes the vascular tissue to be isolated within the large cavity. The isolation of the vascular tissue 3~ within the large ,.
.. : ~ . . , - . , , .. .~ . . :
: . , ."., , ~

2Q70~1~
W o 92/0752~ PCT/US91/074X6 cavity 32a by fibroblasts and connective tissues 39 is similar tD
the standard foreign body response previously discussed. By selecting cavities 32 of appropriate size, one can prevent the formation of fibroblasts and connective tissue 39 therein.
It has been found that a porous polymer membrane having an average nominal pore size of approximately 0.6 to about 20 microns and average strand sizes of less than about five microns in all but the longest dimension, functions satisfactorily in creating a vascular bed at the tissue-membrane interface. It should be I0 noted, that the term "nominal pore size" is derived from methods of analysis common to the membrane trade, such as the ability of the membrane to filter particles of a particular size, or the resistance of the membrane to the flow of fluids. Because of the amorphous, random and irregular nature of most of these commercially available membranes, the "pore" size designation does not actually indicate the size or shape of the apertures and cavities, which in reality have a high degree of variability. The cavities are not really "pores" in that they typically are not uniform regular holes or channels through the material. Instead, these commercial membranes can be composed of, for example, extruded filaments which act as sieves as shown, for example, in Figure 4b. Accordingly, as used herein the term "pore size" is a manufacturer's convention used to identify a particular membrane of a particular commercial source which has a certain bubble point. As used herein, the term "pore" does not describe the size of the cavities of the material used in the instant invention.
The bubble point measurement is described in Pharmaceutical .
~echnology May 1983 pp. 36 to 42.
As previously noted, it is not critical that all of the apertures 32 (Fig. 2) of the material 30 allow inflammatory cells 34 to penetrate the material or, conversely prevent connective tissues from forming within the cavities. What is required is that a sufficient number of the cavities 32 have a size that -. .. ~ . . , . . ~
. . -.

w O 92/07525 2 0 7 0 8 1 ~ PCI`/US91/07486 ~ I

allows inflammatory cells 34 to enter therein and yet prevent connective tissue from forming therein. In the materials tested by Applicants the desired result is obtained where the strands that define the apertures of the cavities have a size of less than S about five microns in all but the longest d;mension. It has been determined that a commercially available membrane having at least approximately 50/0 of its cavities with an average nominal size of approximately 0.~ to about 20 microns and strands having an average si~e of less than about five microns in all but the longest dimension w;ll function satisfactor;ly in creat;ng vascular structures close to the membrane.
By way of example, and not limitation, the following experiments were performed on commercially available membranes to determine wh;ch membranes result in the close vascularization of the present ;nvention.
Numerous commercially available membranes with varying nom;nal pore sizes were implanted in subcutaneous pockets on the backs of adult male Sprague Dawley rats for three weeks, and examined histologically. The results, shown in Tables 1-3, were that all membranes w;th apert~res too small or having strands too closely associated to allow penetration of macrophages (Table 1) had standard foreign body capsules (i.e., similar to that illustrated in Figure 1), whereas many membranes with apertures large enough to allow macrophages to penetrate (Table 2) had close vascular structures (i.e., similar to that illustrated in Figure 2J.

.. . . , . -.. . . ...

., : . . . - ~ . .. .

20708~ ' ~" - W0 92~07525 PCI ~US91/07486 TABLE I
MEMBRANES THAT ARE NOT INVADED BY CELLS AND
DO NOT HAVE CLOSE VASCULAR STRUCTURES
Nominal Company Membrane Pore Size Mil~ipore Mixed Esters Cellulose 0.
M1llipore Mixed Esters Cellulose 0.22 S Millipore Mixed Esters Cellulose 0.45 Celenase polypropylene 0.05 Celenase polypropylene 0.07 Gore PTFE/Polyester 0.02 Gore PTFE/Polyester 0.2 Akzo polypropylene 0.01-0.29 Akzo polypropylene O.U2-U.58 Ak20 polyethylene 0.1 Akzo polyethylene 0.08 Akzo polyethylene 0.6 Supor polysulfone 0.1 Amicon YC, YM, PM, XM 10-300 kD
Omega polyethersulfone 1UO-300kD
Millipore Durapore~ 0.22 Millipore Immobilon-n~ 0.22 Gelman Versapore~ 0.22 Gelman Supor~ 0.22 Gelman Supor~ 0.8 Gelman Polysulfone HT-200 0.22 Gelman Polysulfone HT-200 0.6 Gelman Polyester 0.22 Gelman Polysulfone/polyester 0.8 Sartorius Cellulose Acetate 0.22 Sartorius Cellulose Acetate 0.22 Sartorius Cellulose Acetate 0.45 Sartorius Cellulose Acetate 0.65 Sartorius Cellulose Nitrate 0.22 Sartorius Reinforced Cell. Acet. 0.22 Nucleopore Polyester U.8 .

. .

WO 92/07525 PCl/US91/07486 TABLE I (Continued) MEMBRANES THAT ARE NOT INYADED ~Y CELLS AND
DO NOT HAVE CLOSE VASCULAQ STRUCTURES
Nominal Company Membrane Pore Size Pall Uncharged Nylon 0.22 AMF Cumo Charged Nylon - 0.22 Micron Separation Nylon 66 0.22 Inc.
Micro Filtration Cellulose Acetate U.22 Sys .
Micro Filtration Cellulose Acetate 0.22 Sys.
Akzo Polypropylene-HF 0.2-U.

. : : : : . ' - :
.. ,.... ..... , ;

20~0816 .
~:. WO 92/07525 PCI/US91/07486 , ., MEMBRANES THAT ARE INVADED BY CELLS
AND HAVE CLOSE VASCULAK STRUCTURES

Nominal Company Membrane Pore Size Millipore Mixed Esters Cellulose 1.2 Millipore Mixed Esters Cellulose ~.0 Sartorius Cellulose Acetate U.
Sartorius . Cellulose Acetate 1.2 Sartorius .Cellulose Acetate 3.U
Sartorius Cel1ulose Acetate ~.0 Sartorius Cellulose Acetate 8.0 Gore PTFE/Polyester 1.0 Gore PTFE/Polypropylene 3.U
~ore PTFE/Polyester 3.U
~elman Versapore~ U.
Gelman Versapore0 1.2 Gelman Versaporew 3.U
~elman Versapore~ 5.

~ji . . - , ~ -'. ' ~ : . . ~ . ~ -: :~ . : . : , , ~ , , , - . ' , . .

~ . . . . . . .

W o 92/07s25 2 ~ 6 Pcr/US91/0~486 TAB'E 3 MEMBRANES THAT ARE INVADED BY CELLS
BUT DO NOT HAVE CLOSE YAS~ULAR STRUCTURES

Nominal Com~anY Membrane Pore Size Tetco ~ Polyester 3 Tetco Polyester 5 Tetco Polyester 8 Tetco Nylon 1D
Tetco NylDn 10 Tetco . Nylon lU
Millipore PTFE 5 Millipore PTFE 1D
Nucleopore Polycar~onate Nucleopore Polycarbonate 3 Nucleopore Polycarbonate 8 Nucleopore Polycarbonate 12 2~

,, . , .. , . . , . -. . ~- .

" , . . .. , ,-, . .. ; . ~.

., , `,WO 92/07~25 2 ~ 7 ~ PCI`/US91/07486 For example, membranes created from mixed esters of cellulose and haviny nominal pore sizes of O.I, 0.22, an~ 0.45 microns dia not induce close vascular structures when subcutaneously implanted into rats. ~owever, mixed esters of cellulose membranes with nominal pore sizes of 1.2 and 8 microns did induce close vascular structures. Similarly, cellulose acetate membranes having a nominal pore size of 0.2, 0.45, and 0.65 microns and teflon membranes having a nominal pore size of 0.02 and 0.2 microns did not induce close vascular structures. But, cellulose acetate I~ membranes having a nominal pore size of 0.8, 1.2, 3, 5, and 8 microns, and teflon membranes having a nominal pore size of I.0 and 3.U m;crons dla induce close vascular structures, In membranes wherein close vascular structures were seen, the membrane was penetrated by inflammatory cells from the host. It is believed that the formation of close vascular structures is related to cellular invasion. However, numerous membranes that did allow penetration of inflammatory cel1s did not have close vascu1ar structures (Table 3), inaicating that invasion by inflammatory cells was perhaps related, but, not necessarily sufficient for the production of close vascular structures.
Scanning Electron Microscope ~SEM) analysis of the membranes revealed three dimenisional structual or architectural properties that distinguish membranes that do have close vascular structures (positive response) from those that do not (negative response).
Membranes with a positive response had high porosities and were composed of strands (fibers, filaments, microglobules, cone-like or rod-like structures with a small diameter (< 5 microns)). For example, Millipore brana mixe~ esters ot cellulose membranes With nominal pore size of 5 ~m are composed of irregular, amorphous globular structures and stran~s with diameters from about I to ~m, and irregular cavities from 0.5 to 5 microns in diameter, and naviny a percent porosity of 7~ (Figure 4a). ~ore~ teflon membranes with a nominal pore size of 3 ~m are composed of strands with diameters of less than about I micron that interconnect with :. , , - . . . . . . . .

WO 92t07525 . - P~/US91/07486 ~
207~8~ ~

teflon clusters less than about 3 microns in diameter (Figure 4b) The cavities are very elongated be;ng generally about 1 to 2 microns wide by 10 to 15 jum long. After implantation, both of these membranes were invaded by inflammatory cells which had a round morphology under the light microscope (see invading cells in Figure 2), and both consistently had close vascular structures.
In contrast, membranes with a negative response had apertures and cavities defined by strands with a relatively high surface area, large enDugh for inflammatory cells to use as a substrate to flatten against. For example, Millipore brand teflon membranes with a nominal pore size of 5 microns (Figure 5a) are composed of globular or plate-like structures about 5 to 10 microns in diameter, and have irregular amorphous cavities about 5 to 10 microns in diameter. Nuclepore brand membranes with a nominal pore size of 12 microns (Figure 5b), have uniform circular holes that are 9 microns in diameter that are scattered within a membrane sheet, with from S to 25 microns between the edges of the holes. After implantation, both of these membranes were invaded by cells but the cells maintained a flattened morphology (see invading cells in Figure 6J.
Thus, the three dimensional conformation or architecture of the structures that delimit the cavities and irregularities have a strong influence on the biological response.
Applicants have further determined that materials with a positive response had structural features that caused penetrating cells to assume a round morphology. Whereas materials with a negative response had structual features that caused penetrating cells to assume a relatively flattened morphology.
Membranes with a negative response have a standard foreign body capsule after implantation, and were invaded by inflammatory cells that assumed an elongated, highly flattened morphology (Figure 6). Figure 6 is a light micrograph illustrating a teflon membrane (the same membrane illustrated in Figure 5a) implanted for 3 weeks .. .. ..
. - - . . -. : ~ ,. ... .. . :. . . ..
. . . . .
- -, : ,, ~ ", - ,,, "
- ..
. . ~ . . - : - ~

~ w o s2/~7s25 2 ~ 7 0 8 1 6 P ~ /US91/07J86 in a subcutaneous dorsal pocket in a rat. Note the extensive cytoplasm of the cells invading the polytetrafluoroethylene ("PTFE") membrane shown in Figure 6. The cells appear to have flattened against the plate-l;ke PTFE structure and have the appearance of cells of a standard foreign body response (Figure 1) in contrast to the rounded cells invading the membrane in Figure 2.
This is consistent with the observation of rounded monDnuclear cells invading an implant during the early, acute phase of a foreign body response, followed by flattened cells on the surface of implants in the later, chronic standard foreign body response to implants with a smooth surface (e.g., Figure 1). The flattening of the ~acrophages and foreign body giant cells against the surface walls off the implant, is followed by a quiescent, chronic response characterized by a lack of new invading mononuclear cells and a lack of new vascular growth in the periphery of the foreign body. Macrophages and foreign body giant cells from the initial host reaction to the implant remain, but are generally flattened against the foreign material. This is a long-term response that results in a permanent walling off of implants that are non-digestible by the macrophage. The maintenance of a long-term foreign body response is characterized by inflammatory cells which spread upon and cover the foreign material. Applicants have discovered that this response appears to require a surface-like area capable of acting as a substrate for flattening and spreading of the cells.
When the implanted material has an architecture of strands that have a diameter (< S pm) too small or configuration too irregular to allow a surface for flattening of cells, as do the membranes that give a positive vascular response (Figure 2 and Table 2), the efforts of the inflammatory cells to cover and wall off the material are thwarted, and the cells do not obtain a flattened morphology. Instead, they remain rounded and Applicants hypothesize that the inflaMmatory cells induce the formation of ... . -, - .
.. . . . , . , -- -. ................... ., ~. - . . -. . . .. . .

- . ~ ....... .

WO 92/07525 PCI'/US91/07486 2~8~

close vascular structures at the material-host interface. The implanted material is never completely walled off, and therefore a chronic response is never obtained.
Flattening and activation of inflammatory cells (which leads to S foreign body capsule formation) is o~served where the implant material provides a structure onto which the inflammatory cells can flatten and spread. An inflammatory cell does not require a smooth area ~or flattening. For example, an area composed of closely adjacent pillars of equal height and diameter might be recognized by the inflammatory cell as essentially "smooth" and the cells would then spread on the surface.
Applicants further hypothesize that if the inflammatory cell nucleus cannot enter a cavity or irregularity then the cell will "see" the material as flat and will flatten onto the material at 1~ that location. Conversely, cells in contact with a cavity or irregularity from more than one direction or plane w;ll not "see"
a flat area and will retain a rounded conformation or even conform to the shape of the cavity or irregularity. Accordingly, material having a surface-like area greater than about 5 microns would not be likely to result in close vascularization. For example, the material shown in Figure 5a which gave a negative response has many cavities and irregularities which are smaller than about 6 umt but it also has leafy-appearing somewhat flat structures onto whlch macrophage may flatten. Accordingly, in the present invention material must be selected so that it has sufficient irregularities and cavities to prevent substantial numbers of inflammatory cells from flattening. The rounded cell may con~orm to the cavities and irregularities but will not flatten.
Formation of some flattened cells, especially at the "surface" of the implant is often seen and is within the scope of the invention provided that there are not so many flattened cells that the material is walled off by nonvascularized fibroblasts.

- - : .
: . . . .

2~70~ ~

Macrophage behavior is not yet fully understood. It is believed that macrophages are activated when tney become flat.
Upon activation they are believed to secret factors which signal fibroblasts to form and proliferate. Accordingly, Applicants hypothesize that by utilizing a material whose three dimensional cavities and irregularities prevent the macrophage from 'i flattening, this invention will avoid macrophage activation and consequent formation ot the typical foreign body capsule. ~n the other hand, it may be that rounded macrophages are secreting factors that eitner stimulate neovascularization directly or interupt an existing supression of new vascularization.
The host inflammatory cell response described above for the various materials is generally observed for up to about 12 weeks following implantation. Thereafter, in both the standard foreign body capsule response and in the use of the instant invention, the inflammatory cells gradually diminish leaving either a stable foreign body capsule or, in the instant invention, a stable vascularized bed. The Applicants have observed a stable vascular bed for 1.5 years in subcutaneous implants of 3 ~um Gore~ teflon in rats.
When the material utilized has the three dimensional architecture set forth above, a vascularized membrane is achieved. To this ena, the endothelial cells that make up the capillary walls are immediately adjacent to or very close to the material-host interface. Tnere are no, or few, intervening macrophages or fibroblasts. Accordingly, molecules coming through the material wil1 be at the surface of an endothelial cell for transportation into the capillaries. For example, molecules secreted by pancreatic islet cells on one side of the material 3~ will be available for uptake by capillaries on the other side of the material. Likewise, molecules such as glucose coming from the capillary, will be sensed by islet cells contained within an :, .
", ', ~ ' ' ,',, . :

w o 92/07525 PCTtUS91/07486 implanted chamber made of the ~aterial. ~he res1stance to diffusion of such molecules will be related to the distance necessary to traverse the material.
Applicants tests of commercially available membranes (Tables I
- 3) indicate that c70se vascular structures will likely result with a material having an average nominal pore size in the range of approximately 0.6 to about 20 microns and being composed of strands, fibers, cones, rods, or microglobules with a diameter no greater than approximately 5 microns.
I0 Additional tests have shown that when the average aperture size is greater than approximately 40 microns, although vascular structures grow into the cavities of the membranes the capillaries are not in contact wi~h or adjacent to the material but rather typically li~ at scme distance from the material due to a halo of macrophages and fibroblasts in a connective tissue matrix that surrounds the capillaries as illustrated in Figure 3. Thus, as in the case of a foreign body capsule on the surface of a membrane, the capillaries are separated from the polymer surface by several layers of cells producing the same kind of diffusive resistance encountered in a classical foreign body response.
In contrast to the present invention, in a typical implant, the implant is encapsulated by the foreign body capsule and is typically at the edges of a large cellular avascular space, see Figure I.
The close vascularization of the present invention improves on previous biopolymer implants because the vascular bed is formed immediately adjacent to the material-host interface. As set forth in more detail below, this method of vascularization has a variety of applications. For example, the material can be used in conjuncti~n with an indwellinq sensor, an indwelling catheter, and for an immunoisolation container.

. ... ... . ..

WO 92/07525 2 ~ 7 ~ ~ ~ 6 PCr~US91/û7486 Referring now to Figure 7, an immunoisolation membrane 42 is illustrated. As illustrated, the membrane 42 is selected SuCh that it allows macrophages 34 to enter at least some of the cavities 44 of the membrane causing vascular structures 46 to be formed at the host-membrane interface 47. Again, it should be noted that although some vascular structures can be formed within the cavities 44 of the membrane 42, this is not critical to the success of the material or the creation of a vascular bed.
As illustrated, the membrane 42 surrounds at least a portion of a second membrane or layer 50 that defines an immunoisolated interior 52. This interior 52 can include tissue 54 that must be protected from contact by host cells that would reject the implanted cells. For example, allografts or xenografts or in the case of isografts, such as autologous implants of genetically engineered cells, the membrane would need only to prevent passage of cells to prevent movement of the genetically engineered cells, which often contain retroviral vectors, out of the membrane enclosures and into the host tissues. This isolation of graft tissues from host tissue represents a significant advance over previous methods used for autologous transplantation of genetically engineered cells, becaùse it prevents the genetically engineered cells from potentially invading host tissues in an unregulated manner and causing tumors in the host via the retroviral vector.
On the other hand, it is desirable that the second membrane 50 allow for the diffusion of components generated by the tissues 54, for example, insulin from pancreatic islets. Likewise, it is desirable that the second membrane 50 allow nutrients from the host to enter the interior 52 of the implant and nourish the tissue 54. To this end, the second membrane 50 preferably includes pores 56 that allow glucose or other components to diffuse into the first membrane 42 but prevents macrophages 34 and/or humoral factors from entering the second membrane.

~,. . ~ . .
..
. -.. .
;, . . - ~ ~
. .

W092/0752~ 20~0~16- PCr/US91/07486 ~

Although the device 711ustrated in Figure 7 includes two membrane layers, it should be noted that other constructions can be utilized. For example, referring to Figure 8, the device includes a single membrane ~I that includes cavities 62 having a gradient of stze. ~he larger outer cavities 62 allow macrophages to enter at least an outer portion 64 of the cavity 62, causing vascularization at the host-membrane interface 65. However, the smaller inner cavities 66 prevent macrophages from entering an inner portion of the ~embrane and thereby isolating an tnterior 68 defined by the membrane.
Referring now to Figure 9, an indwelling catheter 70 including an embodiment of the material 72 of the present inventton is illustrated. Such a catheter 70 can be, for example, a catheter for continu~us ambulatory peritoneal dialy~is.
As illustrated, the material 72 covers the wall 74 of the càtheter 70 and allows the creation of a vascular bed around the catheter 70. The wall 74 of the catheter 70 is preferably impenetrable to both cells and molecules.
In typical catheter designs, a thick foreign body of nonvascularized collagenous material is produced around the catheter that acts as a conduit for bacteria. In the present invention, vascularization around the catheter prevents tunnel site infections because necrosis of the tissue is prevented and the vascular bed bathes the area with the entire repertoire of blood borne immune cells. In another embodiment, a flange on a catheter would be covered with a vascularizing material, or would be made entirely from the material.
Referring now to Figure 10, a sensor 80 including an embodiment of the mater~al 82 of the present invention is illustrated. Such a sensor 80 can include, for example, a glucose sensor for monitoring glucose levels in diabetics. As illustrated, the material 82 covers a body 84 which contains an electrode 85 of the sensor 80 and causes a vascular bed 86 to be created around the . ~ , . . . . . ............................ . .. . . .

,. ' . ~ ' ' , , ' :
, ' . . ', , . . ' ~ ' ~ ~ .

.. W O 92/07525 2 ~ 7 ~ PC~r/US91/07486 sensor 80. ~he creation of the vascular bed circumvents the problem of foreign body occlusion typically encountered with indwelling sensors.
The vascular response is believed to be unrelated to the composition of the material. This is illustrated by the above examples wherein similar responses of the tissue were found with respect to hydrophilic (cellulose) and hydrophobic (teflon) materials. ~herefore, the inventors believe that the material can be constructed from a variety of polymers including, ;nter alia, polyethylene, polypropylene, teflon, celtulose acetate, cellulose nitrate, polycarbonate, polyester, nylon, polyester, polysulfone, mixed esters of cellulose polyvinylidene difluoride, silicone, and polyacrylonitrile. Known biocompatible medical implants are composed of ceramics and metals. Assuming these materials could be manipulated to provide the three dimensional structures described herein, they would also be useful in the present invention.
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present invention and without diminishing its attendant advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

.
. . . .
~ . . . . . .

, - . . .

~ ' ~ '' ' ' . ~ .
. . . . . .

Claims (37)

1. A device for implantation in a host having a material at an interface between the host and the device, said material having a conformation which results in growth of vascular structures by the host close to the interface.
2. The device of Claim 1 where said host forms a standard three layer foreign body response and where said conformation results in the formation of vascular structures in the first and second layers of the host foreign body response adjacent to the material.
3. The device of Claim 1 where the conformation of the material is determined by interconnected strands forming frames having two dimensional apertures and said frames forming interconnected three dimensional cavities, where (a) said strands are three dimensional having one dimension larger than the other two and for the majority of said strands neither of the smaller dimensions exceeds about 5 microns, and (b) where said apertures have average dimensions no smaller than about 0.6 microns and no larger than about 20 microns.
4. The device of Claim l where the material is conformed so that at least some host inflammatory cells that contact the material do not flatten.
5. The device of Claim 4 where the conformation of the material includes three dimensional cavities and irregularities so that host inflammatory cells in contact with the cavities and irregularities can conform to and enter the cavities and irregularities, and do not flatten.
6. The device of Claim 1 where vascular structures grow to within about one cell layer of the material.
7. The device of Claim 1 where the vascular structures grow close enough to the material to permit diffusion of molecules from the vascular structures to the interface.
8. The device of Claim 1 where (a) the device forms a chamber adapted to contain living cells, and (b) where the vascular structures grow close enough to the material to permit diffusion of molecules from the vascular structures into the chamber, and (c) where said diffusion is rapid enough to sustain said living cells.
9. The device of Claim 1 where the material is selected from the group consisting of:
1) Millipore? Mixed Esters Cellulose, membrane pore size 1.2;
2) Millipore? Mixed Esters Cellulose, membrane pore size 8.0;
3) Satorious?, Cellulose Acetate, membrane pore size 0.8;
4) Satorious?, Cellulose Acetate, membrane pore size 1.2;
5) Satorious?, Cellulose Acetate, membrane pore size 3.0;
6) Satorious?, Cellulose Acetate, membrane pore size 5.0;
7) Satorious?, Cellulose Acetate, membrane pore size 8.0;
8) Gore?, PTFE/Polyester, membrane pore size 1.0;
9) Gore?, PTFE/Polyester, membrane pore size 3.0;
10) Gore?, PTFE/Polyester, membrane pore size 5.0;
11) Gore?, PTFE/Polyester, membrane pore size 10-15;
12) Gore?, PTFE/Polypropylene, membrane pore size 3.0;
13) Gelman?, Versapore?, membrane pore size 0.8;
14) Gelman?, Versapore?, membrane pore size 1.2;
15) Gelman?, Versapore?, membrane pore size 3.0; and 16) Gelman?, Versapore?, membrane pore size 5.0;
10. The device of Claim 1 where the material is impermeable to immunogenic factors.
11. A device for implantation in a host having a first material at an interface between the host and the device, said first material having a conformation which results in growth of vascular structures by the host close to the interface, the device further having a second material underlying the first material, the second material being impermeable to immunogenic factors.
12. The device of Claim 11 defining a chamber whose interior is adapted to hold living cells, the first and second materials being permeable to nutrients present in the vascular structures.
13. The device of Claim 1 where the device is an indwelling catheter.
14. The device of Claim 1 where the device is an indwelling sensor and where the material is permeable to an analyte in the host detectable by the sensor.
15. The device of Claim 1 where the device is a breast prosthesis.
16. An implanted device and the localized host response to the implanted device comprising:
(a) the device of Claim 1 implanted; and (b) host vascular structures within about one cell layer of the device.
17. A method comprising:
(a) implanting a device having a material at an interface between the host and the device; and (b) said material having a conformation which results in growth of vascular structures by the host close to the interface.
18. The method of Claim 17 where said host forms a standard three layer foreign body response and where said conformation results in the formation of vascular structures in the first and second layers of the host foreign body response adjacent to the material.
19. The method of Claim 17 where the conformation of the material is determined by interconnected strands forming frames having two dimensional apertures and said frames forming interconnected three dimensional cavities, where (a) said strands are three dimensional having one dimension larger than the other two and for the majority of said strands neither of the smaller dimensions exceeds about 5 microns, and (b) where said apertures have average dimensions no smaller than about 0.6 microns and no larger than about 20 microns.
20. The method of Claim 17 where the material is conformed so that at least some host inflammatory cells that contact the material do not flatten.
21. The method of Claim 20 where the conformation of the material includes three dimensional cavities and irregularities so that at least some host inflammatory cells in contact with the cavities and irregularities can conform to and enter the cavities and irregularities, and do not flatten.
22. The method of Claim 17 where vascular structures grow to within about one cell layer of the material.
23. The method of Claim 17 where the vascular structures grow close enough to the material to permit diffusion of molecules from the vascular structures to the interface.
24. The method of Claim 17 where (a) the device forms a chamber adapted to contain living cells, and (b) where the vascular structures grow close enough to the material to permit diffusion of molecules from the vascular structures into the chamber, and (c) where said diffusion is rapid enough to sustain said living cells.
25. The method of Claim 17 where the material is selected from the group consisting of:
1) Millipore? Mixed Esters Cellulose, membrane pore size 1.2;
2) Millipore? Mixed Esters Cellulose, membrane pore size 8.0;
3) Satorious?, Cellulose Acetate, membrane pore size 0.8;
4) Satorious?, Cellulose Acetate, membrane pore size 1.2;
5) Satorious?, Cellulose Acetate, membrane pore size 3.0;
6) Satorious?, Cellulose Acetate, membrane pore size 5.0;
7) Satorious?, Cellulose Acetate, membrane pore size 8.0;
8) Gore?, PTFE/Polyester, membrane pore size 1.0;
9) Gore?, PTFE/Polyester, membrane pore size 3.0;
10) Gore?, PTFE/Polyester, membrane pore size 5.0;
11) Gore?, PTFE/Polyester, membrane pore size 10-15;
12) Gore?, PTFE/Polypropylene, membrane pore size 3.0;
13) Gelman?, Versapore?, membrane pore size 0.8;
14) Gelman?, Versapore?, membrane pore size 1.2;
15) Gelman?, Versapore?, membrane pore size 3.0; and 16) Gelman?, Versapore?, membrane pore size 5.0;
26. The method of Claim 17 where the material is impermeable to immunogenic factors.
27. A method comprising implanting in a host:
(a) a device having a first material at an interface between the host and the device, (b) said first material having a conformation which induces growth of vascular structures by the host close to the interface, (c) the device further having a second material underlying the first material; and (d) the second material being impermeable to immunogenic factors.
28. The method of Claim 27 where the device is a chamber whose interior is adapted to hold living cells, the first and second materials being permeable to nutrients present in the vascular structures.
29. The method of Claim 17 where the device is an indwelling catheter.
30. The method of Claim 17 where the device is an indwelling sensor and where the material is permeable to an analyte in the host detectable by the sensor.
31. The method of Claim 17 where the device is a breast prosthesis.
32. An immunoisolation container comprising:
(a) a first membrane having pores, at least some of the pores having a sufficient size and structure to allow macrophages to enter the pores and cause at least some vascular structures to contact the membrane; and (b) a second porous membrane, the pores of the second membrane being sufficiently small to prevent macrophages from entering an interior of the container.
33. The container of Claim 32 wherein the first membrane has a nominal pore size of approximately 0.6 microns to about 20 microns.
34. The container of Claim 32 wherein at least some of the pores of the first membrane have a sufficient size to allow at least some vascular structures to be created within the pores.
35. The container of Claim 32 wherein the first membrane includes at least approximately 50 percent of the pores having a size of approximately 0.6 microns to about 20 microns.
36. The container of Claim 32 wherein a majority of structures that delimit the pores of the first membrane have a diameter of less than approximately 5 microns.
37. The container of Claim 32 wherein the second membrane includes pores that are sufficiently small to prevent any cells from entering or leaving the interior of the container.
CA002070816A 1990-10-31 1991-10-10 Close vascularization implant material Abandoned CA2070816A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60679190A 1990-10-31 1990-10-31
US07/606,791 1990-10-31
US73540191A 1991-07-24 1991-07-24
US07/735,401 1991-07-24

Publications (1)

Publication Number Publication Date
CA2070816A1 true CA2070816A1 (en) 1992-05-01

Family

ID=27085331

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002070816A Abandoned CA2070816A1 (en) 1990-10-31 1991-10-10 Close vascularization implant material

Country Status (20)

Country Link
US (5) US5782912A (en)
EP (1) EP0507933B1 (en)
JP (1) JP3508023B2 (en)
KR (1) KR0169495B1 (en)
CN (1) CN1063046A (en)
AT (1) ATE138256T1 (en)
AU (1) AU645155B2 (en)
BR (1) BR9106205A (en)
CA (1) CA2070816A1 (en)
DE (1) DE69119748T2 (en)
DK (1) DK0507933T3 (en)
ES (1) ES2090364T3 (en)
FI (1) FI923023A0 (en)
GR (1) GR3020673T3 (en)
IE (1) IE75706B1 (en)
IL (1) IL99732A (en)
MX (1) MX9101734A (en)
NO (1) NO300993B1 (en)
TW (1) TW393322B (en)
WO (1) WO1992007525A1 (en)

Families Citing this family (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545223A (en) * 1990-10-31 1996-08-13 Baxter International, Inc. Ported tissue implant systems and methods of using same
US5800829A (en) * 1991-04-25 1998-09-01 Brown University Research Foundation Methods for coextruding immunoisolatory implantable vehicles with a biocompatible jacket and a biocompatible matrix core
AU666118B2 (en) * 1991-04-25 1996-02-01 Brown University Research Foundation Implantable biocompatible immunoisolatory vehicle for delivery of selected therapeutic products
US5387237A (en) * 1992-07-30 1995-02-07 The University Of Toledo Bioartificial pancreas
EP0938893B1 (en) * 1993-08-10 2004-08-25 W.L. Gore & Associates, Inc. Cell encapsulating device
US5540718A (en) * 1993-09-20 1996-07-30 Bartlett; Edwin C. Apparatus and method for anchoring sutures
EP0670738A1 (en) * 1993-09-24 1995-09-13 Baxter International Inc. Methods for enhancing vascularization of implant devices
US5716404A (en) * 1994-12-16 1998-02-10 Massachusetts Institute Of Technology Breast tissue engineering
US5855610A (en) 1995-05-19 1999-01-05 Children's Medical Center Corporation Engineering of strong, pliable tissues
US6060640A (en) * 1995-05-19 2000-05-09 Baxter International Inc. Multiple-layer, formed-in-place immunoisolation membrane structures for implantation of cells in host tissue
US5681740A (en) * 1995-06-05 1997-10-28 Cytotherapeutics, Inc. Apparatus and method for storage and transporation of bioartificial organs
US6149688A (en) * 1995-06-07 2000-11-21 Surgical Dynamics, Inc. Artificial bone graft implant
AU6251196A (en) 1995-06-07 1996-12-30 Gore Hybrid Technologies, Inc. An implantable containment apparatus for a therapeutical dev ice and method for loading and reloading the device therein
US5837234A (en) * 1995-06-07 1998-11-17 Cytotherapeutics, Inc. Bioartificial organ containing cells encapsulated in a permselective polyether suflfone membrane
WO1997010807A1 (en) * 1995-09-22 1997-03-27 Gore Hybrid Technologies, Inc. Improved cell encapsulation device
SE9700384D0 (en) * 1997-02-04 1997-02-04 Biacore Ab Analytical method and apparatus
US7657297B2 (en) 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US7899511B2 (en) 2004-07-13 2011-03-01 Dexcom, Inc. Low oxygen in vivo analyte sensor
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US20050033132A1 (en) * 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
US6741877B1 (en) 1997-03-04 2004-05-25 Dexcom, Inc. Device and method for determining analyte levels
US6001067A (en) * 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US9155496B2 (en) 1997-03-04 2015-10-13 Dexcom, Inc. Low oxygen in vivo analyte sensor
US6558321B1 (en) 1997-03-04 2003-05-06 Dexcom, Inc. Systems and methods for remote monitoring and modulation of medical devices
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US6042543A (en) * 1997-03-11 2000-03-28 Regents Of The University Of Minnesota Test device and method for quantitative measurement of an analyte in a liquid
ES2238759T3 (en) * 1997-06-05 2005-09-01 Adiana, Inc. APPARATUS FOR THE OCLUSION OF THE UTERINE TRUMPS.
DE19728489A1 (en) * 1997-07-03 1999-01-07 Huels Chemische Werke Ag Medical device for improving the skin fixation of indwelling catheters and other transcutaneous implants with a reduced risk of infection
US6117166A (en) * 1997-10-27 2000-09-12 Winston; Thomas R. Apparatus and methods for grafting blood vessel tissue
US6197324B1 (en) 1997-12-18 2001-03-06 C. R. Bard, Inc. System and methods for local delivery of an agent
US6251418B1 (en) * 1997-12-18 2001-06-26 C.R. Bard, Inc. Systems and methods for local delivery of an agent
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US6626823B1 (en) * 1998-08-21 2003-09-30 The University Of Queeland Of St. Lucia Implant material
US20040126404A1 (en) * 1998-08-21 2004-07-01 University Of Queensland Of St. Lucia Implant material
US6689121B1 (en) 1998-09-24 2004-02-10 C. R. Bard, Inc. Systems and methods for treating ischemia
US6248112B1 (en) 1998-09-30 2001-06-19 C. R. Bard, Inc. Implant delivery system
US6458092B1 (en) 1998-09-30 2002-10-01 C. R. Bard, Inc. Vascular inducing implants
US6432126B1 (en) 1998-09-30 2002-08-13 C.R. Bard, Inc. Flexible vascular inducing implants
BE1012536A3 (en) * 1998-11-04 2000-12-05 Baxter Int Element with a layer fibrin its preparation and use.
US6692520B1 (en) 1998-12-15 2004-02-17 C. R. Bard, Inc. Systems and methods for imbedded intramuscular implants
US6102946A (en) * 1998-12-23 2000-08-15 Anamed, Inc. Corneal implant and method of manufacture
US6626941B2 (en) 1998-12-23 2003-09-30 Anamed, Inc. Corneal implant and method of manufacture
US6361560B1 (en) 1998-12-23 2002-03-26 Anamed, Inc. Corneal implant and method of manufacture
US6517571B1 (en) 1999-01-22 2003-02-11 Gore Enterprise Holdings, Inc. Vascular graft with improved flow surfaces
US6309384B1 (en) 1999-02-01 2001-10-30 Adiana, Inc. Method and apparatus for tubal occlusion
US8702727B1 (en) 1999-02-01 2014-04-22 Hologic, Inc. Delivery catheter with implant ejection mechanism
US6365385B1 (en) 1999-03-22 2002-04-02 Duke University Methods of culturing and encapsulating pancreatic islet cells
US6303355B1 (en) 1999-03-22 2001-10-16 Duke University Method of culturing, cryopreserving and encapsulating pancreatic islet cells
US6986784B1 (en) 1999-05-14 2006-01-17 C. R. Bard, Inc. Implant anchor systems
US20010046488A1 (en) * 1999-06-29 2001-11-29 Herman H. Vandenburgh Compositions and methods for delivery of an organized tissue to an organism
US6368274B1 (en) * 1999-07-01 2002-04-09 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US7247138B2 (en) 1999-07-01 2007-07-24 Medtronic Minimed, Inc. Reusable analyte sensor site and method of using the same
US6342294B1 (en) * 1999-08-12 2002-01-29 Bruce G. Ruefer Composite PTFE article and method of manufacture
US7947069B2 (en) * 1999-11-24 2011-05-24 University Of Washington Medical devices comprising small fiber biomaterials, and methods of use
US6479066B1 (en) 1999-12-16 2002-11-12 Rst Implanted Cell Technology, Llc Device having a microporous membrane lined deformable wall for implanting cell cultures
US6459917B1 (en) * 2000-05-22 2002-10-01 Ashok Gowda Apparatus for access to interstitial fluid, blood, or blood plasma components
US7204847B1 (en) 2000-07-28 2007-04-17 C. R. Bard, Inc. Implant anchor systems
CA2421948C (en) 2000-09-12 2009-12-22 Anamed, Inc. System for packaging and handling an implant and method of use
US8668735B2 (en) 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
US20060078847A1 (en) * 2000-09-29 2006-04-13 Kwan Norman H Dental implant system and additional methods of attachment
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
AU2002306436A1 (en) * 2001-02-12 2002-10-15 Asm America, Inc. Improved process for deposition of semiconductor films
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6702857B2 (en) * 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US8465466B2 (en) * 2001-10-23 2013-06-18 Medtronic Minimed, Inc Method and system for non-vascular sensor implantation
US7613491B2 (en) 2002-05-22 2009-11-03 Dexcom, Inc. Silicone based membranes for use in implantable glucose sensors
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8364229B2 (en) 2003-07-25 2013-01-29 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US7226978B2 (en) 2002-05-22 2007-06-05 Dexcom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
US20060258761A1 (en) * 2002-05-22 2006-11-16 Robert Boock Silicone based membranes for use in implantable glucose sensors
US6780182B2 (en) * 2002-05-23 2004-08-24 Adiana, Inc. Catheter placement detection system and operator interface
US20040014704A1 (en) * 2002-07-18 2004-01-22 Gonzalo Hortelano Oral administration of therapeutic agent coupled to transporting agent induces tolerance
US20040016013A1 (en) * 2002-07-18 2004-01-22 Gonzalo Hortelano Transgenic animals produced using oral administration of a genetic agent coupled to a transporting agent
US20040014698A1 (en) * 2002-07-18 2004-01-22 Gonzalo Hortelano Oral administration of therapeutic agent coupled to transporting agent
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
US7875293B2 (en) * 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
US9763609B2 (en) 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
US8282549B2 (en) 2003-12-09 2012-10-09 Dexcom, Inc. Signal processing for continuous analyte sensor
US7761130B2 (en) 2003-07-25 2010-07-20 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
WO2005011520A2 (en) 2003-07-25 2005-02-10 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US7074307B2 (en) 2003-07-25 2006-07-11 Dexcom, Inc. Electrode systems for electrochemical sensors
WO2005012871A2 (en) * 2003-07-25 2005-02-10 Dexcom, Inc. Increasing bias for oxygen production in an electrode system
US8676287B2 (en) 2003-08-01 2014-03-18 Dexcom, Inc. System and methods for processing analyte sensor data
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US7494465B2 (en) * 2004-07-13 2009-02-24 Dexcom, Inc. Transcutaneous analyte sensor
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US7778680B2 (en) 2003-08-01 2010-08-17 Dexcom, Inc. System and methods for processing analyte sensor data
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
US8233959B2 (en) 2003-08-22 2012-07-31 Dexcom, Inc. Systems and methods for processing analyte sensor data
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US7433727B2 (en) * 2003-09-24 2008-10-07 Legacy Good Samaritan Hospital And Medical Center Implantable biosensor
SE526959C2 (en) * 2003-10-02 2005-11-29 Tikomed Ab Bioartificial implant comprising a semipermeable barrier and a method for reducing the risk of connective tissue formation in the implant after implantation by providing the barrier with a permeable coating of bioactive metal
US20050090607A1 (en) * 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
WO2005051170A2 (en) 2003-11-19 2005-06-09 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
EP2256493B1 (en) 2003-12-05 2014-02-26 DexCom, Inc. Calibration techniques for a continuous analyte sensor
US7637868B2 (en) * 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
US20050182451A1 (en) * 2004-01-12 2005-08-18 Adam Griffin Implantable device with improved radio frequency capabilities
US20050208032A1 (en) * 2004-01-16 2005-09-22 Gonzalo Hortelano Oral administration of therapeutic agent coupled to transporting agent
US7364592B2 (en) 2004-02-12 2008-04-29 Dexcom, Inc. Biointerface membrane with macro-and micro-architecture
WO2009048462A1 (en) 2007-10-09 2009-04-16 Dexcom, Inc. Integrated insulin delivery system with continuous glucose sensor
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8057541B2 (en) 2006-02-24 2011-11-15 Revision Optics, Inc. Method of using small diameter intracorneal inlays to treat visual impairment
US10835371B2 (en) 2004-04-30 2020-11-17 Rvo 2.0, Inc. Small diameter corneal inlay methods
US7776086B2 (en) 2004-04-30 2010-08-17 Revision Optics, Inc. Aspherical corneal implant
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8170803B2 (en) 2004-07-13 2012-05-01 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
US20070045902A1 (en) 2004-07-13 2007-03-01 Brauker James H Analyte sensor
US8886272B2 (en) 2004-07-13 2014-11-11 Dexcom, Inc. Analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US7966969B2 (en) * 2004-09-22 2011-06-28 Asm International N.V. Deposition of TiN films in a batch reactor
US20060178697A1 (en) 2005-02-04 2006-08-10 Carr-Brendel Victoria E Vaso-occlusive devices including non-biodegradable biomaterials
US7629267B2 (en) * 2005-03-07 2009-12-08 Asm International N.V. High stress nitride film and method for formation thereof
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
US7718518B2 (en) * 2005-12-16 2010-05-18 Asm International N.V. Low temperature doped silicon layer formation
US9757061B2 (en) 2006-01-17 2017-09-12 Dexcom, Inc. Low oxygen in vivo analyte sensor
US10555805B2 (en) 2006-02-24 2020-02-11 Rvo 2.0, Inc. Anterior corneal shapes and methods of providing the shapes
WO2007120381A2 (en) 2006-04-14 2007-10-25 Dexcom, Inc. Analyte sensor
ES2669370T3 (en) * 2006-06-02 2018-05-25 Eidgenössische Technische Hochschule Zürich Porous membrane comprising a biocompatible block copolymer
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US7691757B2 (en) 2006-06-22 2010-04-06 Asm International N.V. Deposition of complex nitride films
US20110054391A1 (en) * 2006-07-28 2011-03-03 Ward W Kenneth Analyte sensing and response system
KR100770440B1 (en) * 2006-08-29 2007-10-26 삼성전기주식회사 Nitride semiconductor light emitting device
US20090036840A1 (en) * 2006-11-22 2009-02-05 Cytyc Corporation Atraumatic ball tip and side wall opening
US20100121446A1 (en) * 2007-02-19 2010-05-13 Ticapex Ab Implant assembly
US9271828B2 (en) 2007-03-28 2016-03-01 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US9549848B2 (en) 2007-03-28 2017-01-24 Revision Optics, Inc. Corneal implant inserters and methods of use
US8162953B2 (en) 2007-03-28 2012-04-24 Revision Optics, Inc. Insertion system for corneal implants
US7629256B2 (en) * 2007-05-14 2009-12-08 Asm International N.V. In situ silicon and titanium nitride deposition
US20200037875A1 (en) 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
AU2008262018A1 (en) 2007-06-08 2008-12-18 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
US20090125023A1 (en) * 2007-11-13 2009-05-14 Cytyc Corporation Electrosurgical Instrument
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
EP2252196A4 (en) 2008-02-21 2013-05-15 Dexcom Inc Systems and methods for processing, transmitting and displaying sensor data
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US20090247855A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
EP2106784B1 (en) * 2008-04-03 2015-04-22 Rohm and Haas Company Hair styling composition
US9539143B2 (en) 2008-04-04 2017-01-10 Revision Optics, Inc. Methods of correcting vision
JP2011516180A (en) 2008-04-04 2011-05-26 レヴィジオン・オプティックス・インコーポレーテッド Corneal inlay design and method for correcting vision
WO2010033724A2 (en) 2008-09-19 2010-03-25 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
CA3229301A1 (en) 2008-11-14 2010-05-20 Viacyte, Inc. Encapsulation of pancreatic cells derived from human pluripotent stem cells
US7833906B2 (en) 2008-12-11 2010-11-16 Asm International N.V. Titanium silicon nitride deposition
TW201034641A (en) * 2009-02-28 2010-10-01 Charles Knezevich Apparatus, system, and method for creating immunologically enhanced spaces in-vivo
US8231619B2 (en) 2010-01-22 2012-07-31 Cytyc Corporation Sterilization device and method
US8550086B2 (en) 2010-05-04 2013-10-08 Hologic, Inc. Radiopaque implant
US8636711B2 (en) 2010-06-14 2014-01-28 Legacy Emanuel Hospital & Health Center Stabilized glucagon solutions and uses therefor
US8469948B2 (en) 2010-08-23 2013-06-25 Revision Optics, Inc. Methods and devices for forming corneal channels
DK3575796T3 (en) 2011-04-15 2021-01-18 Dexcom Inc ADVANCED ANALYZE SENSOR CALIBRATION AND ERROR DETECTION
US10561351B2 (en) 2011-07-26 2020-02-18 Glysens Incorporated Tissue implantable sensor with hermetically sealed housing
US9381112B1 (en) 2011-10-06 2016-07-05 William Eric Sponsell Bleb drainage device, ophthalmological product and methods
KR101762932B1 (en) 2011-10-21 2017-08-04 리비젼 옵틱스, 인크. Corneal implant storage and delivery devices
US8632489B1 (en) 2011-12-22 2014-01-21 A. Mateen Ahmed Implantable medical assembly and methods
US8790400B2 (en) 2012-06-13 2014-07-29 Elwha Llc Breast implant with covering and analyte sensors responsive to external power source
US9144488B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with analyte sensors responsive to external power source
US9211185B2 (en) 2012-06-13 2015-12-15 Elwha Llc Breast implant with analyte sensors and internal power source
US9144489B2 (en) 2012-06-13 2015-09-29 Elwha Llc Breast implant with covering, analyte sensors and internal power source
US8808373B2 (en) 2012-06-13 2014-08-19 Elwha Llc Breast implant with regionalized analyte sensors responsive to external power source
US8795359B2 (en) 2012-06-13 2014-08-05 Elwha Llc Breast implant with regionalized analyte sensors and internal power source
US10660550B2 (en) 2015-12-29 2020-05-26 Glysens Incorporated Implantable sensor apparatus and methods
US10561353B2 (en) 2016-06-01 2020-02-18 Glysens Incorporated Biocompatible implantable sensor apparatus and methods
EP3398559A1 (en) 2013-03-07 2018-11-07 ViaCyte, Inc. 3-dimensional large capacity cell encapsulation device assembly
USD720469S1 (en) 2013-03-07 2014-12-30 Viacyte, Inc. Cell encapsulation device
WO2014173441A1 (en) 2013-04-24 2014-10-30 Nestec S.A. Encapsulation device
RU2525737C1 (en) * 2013-05-22 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Method of manufacturing intraosseous dental implant
RU2526252C1 (en) * 2013-05-30 2014-08-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Method of manufacturing intraosseous implants with multi-layered coating
BR112016006378A2 (en) 2013-09-24 2017-08-01 Giner Inc gas treatment system for a cell implant
WO2015177821A1 (en) * 2014-05-23 2015-11-26 4I S.R.L. Closed circuit sterile device and method of collection, transport and processing in total sterile chain
WO2016144404A1 (en) 2015-03-12 2016-09-15 Revision Optics, Inc. Methods of correcting vision
USD856517S1 (en) 2016-06-03 2019-08-13 Musculoskeletal Transplant Foundation Asymmetric tissue graft
US10945831B2 (en) 2016-06-03 2021-03-16 Musculoskeletal Transplant Foundation Asymmetric tissue graft
US10638962B2 (en) * 2016-06-29 2020-05-05 Glysens Incorporated Bio-adaptable implantable sensor apparatus and methods
CN110139605A (en) * 2016-11-03 2019-08-16 代表亚利桑那大学的亚利桑那董事会 For improving the method, system and implantable device of blood glucose-control
KR20220149620A (en) 2016-11-03 2022-11-08 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 Stacked tissue encapsulation device systems with or without oxygen delivery
CN110121312A (en) * 2016-11-03 2019-08-13 代表亚利桑那大学的亚利桑那董事会 With or without the system of the containment device with oxygen sensor of external source oxygen conveying
KR102460378B1 (en) 2016-11-03 2022-10-27 아리조나 보드 오브 리전츠 온 비해프 오브 더 유니버시티 오브 아리조나 Methods and systems for real-time evaluation of cells before and after transplantation in encapsulation devices
CA3042495A1 (en) 2016-11-10 2018-05-17 Viacyte, Inc. Pdx1 pancreatic endoderm cells in cell delivery devices and methods thereof
JP6818042B2 (en) 2016-11-11 2021-01-20 富士フイルム株式会社 Immune isolation membranes, transplant chambers, and transplant devices
WO2018088451A1 (en) 2016-11-11 2018-05-17 富士フイルム株式会社 Immunoisolation membrane, transplantation chamber, and transplantation device
CA3043468C (en) 2016-11-15 2021-06-22 Giner Life Sciences, Inc. Percutaneous gas diffusion device suitable for use with a subcutaneous implant
WO2019004378A1 (en) * 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber and transplant device
CN110831637B (en) 2017-06-29 2022-03-18 富士胶片株式会社 Transplantation chamber and transplantation device
WO2019004381A1 (en) * 2017-06-29 2019-01-03 富士フイルム株式会社 Transplant chamber, method for producing transplant chamber, transplant device and method for fusing porous membrane
US10638979B2 (en) 2017-07-10 2020-05-05 Glysens Incorporated Analyte sensor data evaluation and error reduction apparatus and methods
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
CN111032099B (en) * 2017-08-30 2022-08-30 富士胶片株式会社 Cell transplantation device and method for manufacturing same
JP6854904B2 (en) 2017-08-30 2021-04-07 富士フイルム株式会社 Angiogenic agents and their manufacturing methods
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors
CN209606445U (en) 2017-10-24 2019-11-08 德克斯康公司 Pre-connection analyte sensor
US11278668B2 (en) 2017-12-22 2022-03-22 Glysens Incorporated Analyte sensor and medicant delivery data evaluation and error reduction apparatus and methods
US11255839B2 (en) 2018-01-04 2022-02-22 Glysens Incorporated Apparatus and methods for analyte sensor mismatch correction
USD895812S1 (en) 2018-09-07 2020-09-08 Musculoskeletal Transplant Foundation Soft tissue repair graft
US10813743B2 (en) 2018-09-07 2020-10-27 Musculoskeletal Transplant Foundation Soft tissue repair grafts and processes for preparing and using same
WO2020264394A1 (en) * 2019-06-27 2020-12-30 W.L. Gore & Associates, Inc. Biointerfaces for growing seaweed
WO2020264391A1 (en) * 2019-06-27 2020-12-30 W.L. Gore & Associates, Inc. Cultivation systems for seaweeds
WO2022197982A1 (en) 2021-03-19 2022-09-22 Dexcom, Inc. Drug releasing membrane for analyte sensor
JP2024514514A (en) 2021-04-02 2024-04-02 デックスコム・インコーポレーテッド Personalized modeling of blood glucose concentration influenced by personalized sensor characteristics and personalized physiological characteristics
WO2023043908A1 (en) 2021-09-15 2023-03-23 Dexcom, Inc. Bioactive releasing membrane for analyte sensor
WO2023164171A2 (en) 2022-02-25 2023-08-31 Viacyte, Inc. Multilayer implantable cell encapsulation devices and methods thereof
WO2023177862A1 (en) 2022-03-18 2023-09-21 Dexcom, Inc. Continuous analyte monitoring sensor systems
WO2023177896A1 (en) 2022-03-18 2023-09-21 Dexcom, Inc. Continuous multi-analyte sensor systems
WO2024050126A2 (en) 2022-09-02 2024-03-07 Dexcom, Inc. Continuous analyte sensor devices and methods

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3093831A (en) * 1959-10-22 1963-06-18 Jordan Gerhard Paul Wilhelm Artificial gland
US3313289A (en) * 1964-06-23 1967-04-11 Frank A Kapral Implant chamber
US3400016A (en) * 1965-11-15 1968-09-03 Rca Corp Method of coating superconducting niobium tin with lattice defects
US3967618A (en) * 1969-04-01 1976-07-06 Alza Corporation Drug delivery device
US3646616A (en) * 1969-07-23 1972-03-07 Jesse G Keshin Prosthesis for implanting around a body duct such as the urethra and method of treating urinary incontinence
US4069307A (en) * 1970-10-01 1978-01-17 Alza Corporation Drug-delivery device comprising certain polymeric materials for controlled release of drug
US3699956A (en) * 1970-10-01 1972-10-24 Tecna Corp Percutaneous lead device
US4011861A (en) * 1974-04-03 1977-03-15 Case Western Reserve University Implantable electric terminal for organic tissue
US3993072A (en) * 1974-08-28 1976-11-23 Alza Corporation Microporous drug delivery device
US3967818A (en) * 1974-12-16 1976-07-06 Xerox Corporation Duplicating system
US4374669A (en) * 1975-05-09 1983-02-22 Mac Gregor David C Cardiovascular prosthetic devices and implants with porous systems
US4180560A (en) * 1976-10-26 1979-12-25 Syntex Corporation Inert core implant pellet
JPS5413694A (en) * 1977-07-01 1979-02-01 Sumitomo Electric Industries Composite blood vessel prosthesis and method of producing same
US4192308A (en) * 1977-10-25 1980-03-11 Alza Corporation Device using prestretched polymer for dispensing medication
JPS6037734B2 (en) * 1978-10-12 1985-08-28 住友電気工業株式会社 Tubular organ prosthesis material and its manufacturing method
JPS6037735B2 (en) * 1978-10-18 1985-08-28 住友電気工業株式会社 Artificial blood vessel
US4207390A (en) * 1978-11-02 1980-06-10 Gould Inc. One piece battery side terminal connector
US4217664A (en) * 1979-02-02 1980-08-19 Faso Joseph M Prosthesis and method for creating a stoma
US4229836A (en) * 1979-03-07 1980-10-28 William Stinger Face shield/helmet airflow noise reducer
US4352883A (en) * 1979-03-28 1982-10-05 Damon Corporation Encapsulation of biological material
US4391909A (en) * 1979-03-28 1983-07-05 Damon Corporation Microcapsules containing viable tissue cells
US4266999A (en) * 1979-07-30 1981-05-12 Calspan Corporation Catheter for long-term emplacement
US4298002A (en) * 1979-09-10 1981-11-03 National Patent Development Corporation Porous hydrophilic materials, chambers therefrom, and devices comprising such chambers and biologically active tissue and methods of preparation
US4309996A (en) * 1980-04-28 1982-01-12 Alza Corporation System with microporous releasing diffusor
US4309776A (en) * 1980-05-13 1982-01-12 Ramon Berguer Intravascular implantation device and method of using the same
US4368737A (en) * 1980-07-07 1983-01-18 Purdue Research Foundation Implantable catheter
US4576608A (en) * 1980-11-06 1986-03-18 Homsy Charles A Porous body-implantable polytetrafluoroethylene
US4353888A (en) * 1980-12-23 1982-10-12 Sefton Michael V Encapsulation of live animal cells
JPS57126631A (en) * 1981-01-30 1982-08-06 Junkosha Co Ltd Raised continuous porous fluororesin material and its manufacture
US4557724A (en) * 1981-02-17 1985-12-10 University Of Utah Research Foundation Apparatus and methods for minimizing cellular adhesion on peritoneal injection catheters
US4553272A (en) * 1981-02-26 1985-11-19 University Of Pittsburgh Regeneration of living tissues by growth of isolated cells in porous implant and product thereof
US4810868A (en) * 1985-08-06 1989-03-07 Drexler Technology Corporation Frasable optical wallet-size data card
JPS57144756A (en) * 1981-03-04 1982-09-07 Koken Kk Impermeable laminated film
US4378016A (en) * 1981-07-15 1983-03-29 Biotek, Inc. Artificial endocrine gland containing hormone-producing cells
US4542539A (en) * 1982-03-12 1985-09-24 Artech Corp. Surgical implant having a graded porous coating
US4475916A (en) * 1982-03-18 1984-10-09 Merck & Co., Inc. Osmotic drug delivery system
WO1983003536A1 (en) * 1982-04-19 1983-10-27 Massachusetts Inst Technology A multilayer bioreplaceable blood vessel prosthesis
FR2531333B1 (en) * 1982-08-09 1986-04-04 Centre Nat Rech Scient BIO-ARTIFICIAL PANCREAS WITH ULTRAFILTRATION
US4505277A (en) * 1982-08-11 1985-03-19 The United States Of America As Represented By The Secretary Of Agriculture Implantation device for use in vivo stimulation and collection of monocytes from peritoneum of vertebrate
WO1984001287A1 (en) * 1982-09-29 1984-04-12 Theodore E Spielberg Encapsulated genetically programmed living organisms producing therapeutic substances
US4487768A (en) * 1982-12-22 1984-12-11 Fujisawa Pharmaceutical Co., Ltd. Cephem compounds
JPS59160506A (en) * 1983-02-28 1984-09-11 Kuraray Co Ltd Composite hollow yarn separating membrane and its production
CA1196862A (en) * 1983-06-01 1985-11-19 Anthony M.F. Sun Microencapsulation of living tissue and cells
EP0127989A3 (en) * 1983-06-01 1986-03-26 Connaught Laboratories Limited Microencapsulation of living tissue and cells
US4689293A (en) * 1983-06-06 1987-08-25 Connaught Laboratories Limited Microencapsulation of living tissue and cells
US4806355A (en) * 1983-06-06 1989-02-21 Connaught Laboratories Limited Microencapsulation of living tissue and cells
US4803168A (en) * 1983-09-01 1989-02-07 Damon Biotech, Inc. Microencapsulation with polymers
US4670286A (en) * 1983-09-20 1987-06-02 Allied Corporation Method of forming prosthetic devices
EP0147939A2 (en) * 1983-11-15 1985-07-10 JOHNSON &amp; JOHNSON Implantable module for gylcemia regulation
US4553262A (en) * 1983-11-25 1985-11-12 Motorola, Inc. Communications system enabling radio link access for non-trunked radio units to a multifrequency trunked two-way communications systems
US4620286A (en) * 1984-01-16 1986-10-28 Itt Corporation Probabilistic learning element
US4601893A (en) * 1984-02-08 1986-07-22 Pfizer Inc. Laminate device for controlled and prolonged release of substances to an ambient environment and method of use
US4508113A (en) * 1984-03-09 1985-04-02 Chicopee Microfine fiber laminate
US4684524A (en) * 1984-03-19 1987-08-04 Alza Corporation Rate controlled dispenser for administering beneficial agent
US4657544A (en) * 1984-04-18 1987-04-14 Cordis Corporation Cardiovascular graft and method of forming same
US4686098A (en) * 1984-05-14 1987-08-11 Merck & Co., Inc. Encapsulated mouse cells transformed with avian retrovirus-bovine growth hormone DNA, and a method of administering BGH in vivo
JPS61353A (en) * 1984-06-13 1986-01-06 テルモ株式会社 Drug administration apparatus
US4687481A (en) * 1984-10-01 1987-08-18 Biotek, Inc. Transdermal drug delivery system
US4597765A (en) * 1984-12-27 1986-07-01 American Medical Systems, Inc. Method and apparatus for packaging a fluid containing prosthesis
GB8500121D0 (en) * 1985-01-03 1985-02-13 Connaught Lab Microencapsulation of living cells
US4685447A (en) * 1985-03-25 1987-08-11 Pmt Corporation Tissue expander system
US4624847A (en) * 1985-04-22 1986-11-25 Alza Corporation Drug delivery device for programmed delivery of beneficial drug
US4712553A (en) * 1985-05-30 1987-12-15 Cordis Corporation Sutures having a porous surface
US4725273A (en) * 1985-08-23 1988-02-16 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Artificial vessel having excellent patency
AU589438B2 (en) * 1985-08-26 1989-10-12 Hana Biologics, Inc. Transplantable artificial tissue and process
JPS62152470A (en) * 1985-12-24 1987-07-07 住友電気工業株式会社 Tubular organ prosthetic material
CA1292597C (en) * 1985-12-24 1991-12-03 Koichi Okita Tubular prothesis having a composite structure
US4743252A (en) * 1986-01-13 1988-05-10 Corvita Corporation Composite grafts
US4699141A (en) * 1986-01-16 1987-10-13 Rhode Island Hospital Neovascularization
US4723947A (en) * 1986-04-09 1988-02-09 Pacesetter Infusion, Ltd. Insulin compatible infusion set
US4871366A (en) * 1986-05-27 1989-10-03 Clemson University Soft tissue implants for promoting tissue adhesion to same
CH670759A5 (en) * 1986-06-02 1989-07-14 Sulzer Ag
JPS6346171A (en) * 1986-06-06 1988-02-27 旭光学工業株式会社 Support of medical device stayed in living body
EP0259536A3 (en) * 1986-09-11 1989-01-25 BAXTER INTERNATIONAL INC. (a Delaware corporation) Biological implant with textured surface
US5002572A (en) * 1986-09-11 1991-03-26 Picha George J Biological implant with textured surface
CA1340581C (en) * 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
SE461499B (en) * 1986-11-21 1990-02-26 Nobelpharma Ab BENINVAEXTKAMMARE
CN87105999A (en) * 1987-01-06 1988-07-20 希巴-盖吉股份公司 The purging method of the photographic silver dye bleach materials of exposure
NL8700113A (en) * 1987-01-19 1988-08-16 Groningen Science Park INK, SUITABLE FOR TREATMENT BY RECONSTRUCTIVE SURGERY, WITH TISSUE-SPECIFIC POROSITY, AND METHOD FOR MANUFACTURING THE ENTAGMENT.
IT1202558B (en) * 1987-02-17 1989-02-09 Alberto Arpesani INTERNAL PROSTHESIS FOR THE REPLACEMENT OF A PART OF THE HUMAN BODY PARTICULARLY IN THE VASCULAR OPERATIONS
US4877029A (en) * 1987-03-30 1989-10-31 Brown University Research Foundation Semipermeable nerve guidance channels
US4816339A (en) * 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4826480A (en) * 1987-04-29 1989-05-02 Pacesetter Infusion, Ltd. Omentum diffusion catheter
US5026365A (en) * 1987-04-29 1991-06-25 The University Of Massachusetts Method and apparatus for therapeutically treating immunological disorders and disease states
US4871542A (en) * 1987-04-30 1989-10-03 Ferring Service Center, N.V. Method and apparatus useful for delivering medicinal compositions into the bladder and urinary tract
US4795459A (en) * 1987-05-18 1989-01-03 Rhode Island Hospital Implantable prosthetic device with lectin linked endothelial cells
US4911717A (en) * 1987-06-18 1990-03-27 Gaskill Iii Harold V Intravasular artificial organ
US4878913A (en) * 1987-09-04 1989-11-07 Pfizer Hospital Products Group, Inc. Devices for neural signal transmission
EP0332682B1 (en) * 1987-09-17 1994-08-03 Telectronics Pty. Limited Neutralized perfluoro-3,6-dioxa-4-methyl-7-octene sulphonyl fluoride copolymer surface for attachment and growth of animal cells
US5035891A (en) * 1987-10-05 1991-07-30 Syntex (U.S.A.) Inc. Controlled release subcutaneous implant
DE3735137A1 (en) * 1987-10-16 1989-05-03 Siemens Ag ARRANGEMENT FOR DISPENSING MEDICINES IN AN IMPLANTABLE MEDICAL DEVICE
US4827934A (en) * 1987-10-27 1989-05-09 Siemens-Pacesetter, Inc. Sensing margin detectors for implantable electromedical devices
US4892538A (en) * 1987-11-17 1990-01-09 Brown University Research Foundation In vivo delivery of neurotransmitters by implanted, encapsulated cells
US5182111A (en) * 1987-11-17 1993-01-26 Boston University Research Foundation In vivo delivery of active factors by co-cultured cell implants
WO1989007944A1 (en) * 1988-02-24 1989-09-08 American National Red Cross Device for site directed neovascularization and method for same
US4855141A (en) * 1988-03-25 1989-08-08 Alza Corporation Device comprising means for protecting and dispensing fluid sensitive medicament
US4950483A (en) * 1988-06-30 1990-08-21 Collagen Corporation Collagen wound healing matrices and process for their production
WO1990000888A1 (en) * 1988-07-28 1990-02-08 The Cooper Companies, Inc. Implants with a cover which resists formation of firm spherical encapsulation
US5011472A (en) * 1988-09-06 1991-04-30 Brown University Research Foundation Implantable delivery system for biological factors
US5219361A (en) * 1988-09-16 1993-06-15 Clemson University Soft tissue implant with micron-scale surface texture to optimize anchorage
CA1323959C (en) * 1988-09-16 1993-11-09 Andreas F. Von Recum Soft tissue implant with micron-scale surface texture to optimize anchorage
US4878895A (en) * 1988-09-26 1989-11-07 The United States Of America As Represented By The Secretary Of Agriculture In-vivo stimulation, collection, and modification of peritoneal macrophage
DE8813531U1 (en) * 1988-10-18 1989-03-23 Medior S.A., Neuchatel, Ch
JPH02255139A (en) * 1989-02-28 1990-10-15 David C Macgregor Device for orthopedic operation
US5017490A (en) * 1989-03-10 1991-05-21 Baxter International Inc. Method for in vitro reproduction and growth of cells in culture medium
WO1991000119A1 (en) * 1989-06-30 1991-01-10 Baxter International Inc. Implantable device
IT1230047B (en) * 1989-07-04 1991-09-27 Giovanni Brotzu VASCULAR PROSTHESIS CONTAINING IN THE WALL INGLOBAN MICROCAPS HORMONE-PRODUCING CELLS.
US4990138A (en) * 1989-07-18 1991-02-05 Baxter International Inc. Catheter apparatus, and compositions useful for producing same
US5015476A (en) * 1989-08-11 1991-05-14 Paravax, Inc. Immunization implant and method
US4937196A (en) * 1989-08-18 1990-06-26 Brunswick Corporation Membrane bioreactor system
US5002661A (en) * 1989-08-25 1991-03-26 W. R. Grace & Co.-Conn. Artificial pancreatic perfusion device
US5112614A (en) * 1989-09-14 1992-05-12 Alza Corporation Implantable delivery dispenser
US5024670A (en) * 1989-10-02 1991-06-18 Depuy, Division Of Boehringer Mannheim Corporation Polymeric bearing component
US5100392A (en) * 1989-12-08 1992-03-31 Biosynthesis, Inc. Implantable device for administration of drugs or other liquid solutions
US5156623A (en) * 1990-04-16 1992-10-20 Olympus Optical Co., Ltd. Sustained release material and method of manufacturing the same
WO1991019783A1 (en) * 1990-06-15 1991-12-26 E.I. Du Pont De Nemours And Company Elastomeric polymer surfaces that support mammalian cells and processes for the preparation thereof
US5201728A (en) * 1991-05-03 1993-04-13 Giampapa Vincent C Subcutaneous implantable multiple-agent delivery system
US5213574A (en) * 1991-09-06 1993-05-25 Device Labs, Inc. Composite implantable biocompatible vascular access port device
US5262055A (en) * 1992-10-19 1993-11-16 The University Of Utah Implantable and refillable biohybrid artificial pancreas

Also Published As

Publication number Publication date
ES2090364T3 (en) 1996-10-16
EP0507933A1 (en) 1992-10-14
BR9106205A (en) 1993-03-30
IE913802A1 (en) 1992-05-22
ATE138256T1 (en) 1996-06-15
IL99732A (en) 1996-03-31
TW393322B (en) 2000-06-11
JP3508023B2 (en) 2004-03-22
JPH05504704A (en) 1993-07-22
NO300993B1 (en) 1997-09-01
WO1992007525A1 (en) 1992-05-14
FI923023A (en) 1992-06-29
AU8951491A (en) 1992-05-26
US5800529A (en) 1998-09-01
KR0169495B1 (en) 1999-01-15
DE69119748D1 (en) 1996-06-27
DK0507933T3 (en) 1996-06-17
NO922566L (en) 1992-06-29
US5741330A (en) 1998-04-21
US5782912A (en) 1998-07-21
GR3020673T3 (en) 1996-10-31
KR920702974A (en) 1992-12-17
CN1063046A (en) 1992-07-29
FI923023A0 (en) 1992-06-29
AU645155B2 (en) 1994-01-06
MX9101734A (en) 1992-06-05
US5882354A (en) 1999-03-16
US5964804A (en) 1999-10-12
DE69119748T2 (en) 1996-12-05
NO922566D0 (en) 1992-06-29
EP0507933B1 (en) 1996-05-22
IL99732A0 (en) 1992-08-18
IE75706B1 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
US5800529A (en) Close vascularization implant material
Colton Implantable biohybrid artificial organs
US5713888A (en) Tissue implant systems
EP0633755B1 (en) Systems for cells implants
CA2234233C (en) Retrievable bioartificial implants
US5545223A (en) Ported tissue implant systems and methods of using same
EP0676935B1 (en) Angiogenic tissue implant systems
US5344454A (en) Closed porous chambers for implanting tissue in a host
JPH10503965A (en) Implantable containment device for a therapeutic device and method for loading and reloading the device therein
WO1996032076A1 (en) Tissue implant systems
Gentile et al. Polymer science for macroencapsulation of cells for central nervous system transplantation
EP0688196B1 (en) Ported tissue implant systems
EP0830106B1 (en) Tissue loading system for implantable biological devices

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued