CA2071174C - Starch/polymer mixture, process for the preparation thereof, and products obtainable therefrom - Google Patents

Starch/polymer mixture, process for the preparation thereof, and products obtainable therefrom Download PDF

Info

Publication number
CA2071174C
CA2071174C CA002071174A CA2071174A CA2071174C CA 2071174 C CA2071174 C CA 2071174C CA 002071174 A CA002071174 A CA 002071174A CA 2071174 A CA2071174 A CA 2071174A CA 2071174 C CA2071174 C CA 2071174C
Authority
CA
Canada
Prior art keywords
starch
parts
mixtures
group
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002071174A
Other languages
French (fr)
Other versions
CA2071174A1 (en
Inventor
Friedrich Severin Buehler
Eduard Schmid
Hans-Joachim Schultze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uhde Inventa Fischer AG
Original Assignee
EMS Inventa AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EMS Inventa AG filed Critical EMS Inventa AG
Publication of CA2071174A1 publication Critical patent/CA2071174A1/en
Application granted granted Critical
Publication of CA2071174C publication Critical patent/CA2071174C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/04Starch derivatives, e.g. crosslinked derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/04Starch derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Abstract

A biodegradable, single-phase starch/polymer mixture comprising (a) 10 to 99 parts by weight of a starch molding composition comprising (i) 95 to 45 parts by weight of at least one chemically modified starch, (ii) 0.1 to 5 parts by weight of urea, urea derivatives, or mixtures thereof, (iii) 4.9 to 50 parts of at least one plasticizer, the parts of (i), (ii), and (iii) adding up to 100, and (b) 90 to 1 parts by weight of at least one linear polymer other than ethylene copolymers, the parts of components (a) and (b) adding up to 100.

Description

Starch/Polymer Mixture, Process for the Preparation Thereof, and Products Obtainable Therefrom The invention relates to a biodegradable and single-phase starch/polymer mixture comprising a selected linear polymer and a starch molding composition. Preferably, it is prepared from chemically modified starch, plasticizer, emulsifier, and urea or derivatives thereof. A process for the preparation of this single-phase starch/polymer mixture is also disclosed.
Still further, the invention is directed to thermoplastically molded parts, in particular films, produced form the mixture by injection molding, extrusion, coextrusion, blow molding, injection stamping, and thermoforming, and the like.
BACKGROUND OF THE INVENTION
Since starch is a vegetable carbohydrate, efforts are being made to use it as a "natural plastic" in a wide variety of areas using existing methods of processing plastics. Due to their granular structure, however, natural starches must first be broken down or destructurized, before they become thermoplastically processable. Although they are biodegradable and have then the characteristics of thermoplastic plastics, the starches do not have their desired good properties. In order to JJ : vs 1 2071.174 achieve these properties, thermoplastic starch compositions of this type must be further improved. However, this frequently causes them to lose their full biodegradability.
EP 344 118 A2 relates to a polymer blend material comprising a melt of at least one water-containing destructurized hydrophilic polymer and at least one synthetic, essentially water-insoluble thermoplastic polymer. Examples are blends based on gelatin and cellulose derivatives, and polyethylene, polystyrene, to polyvinyl ether, polyoxymethylene, and ethylene-acrylic acid copolymers which show an improvement in dimensional stability resulting from the addition of the water-insoluble polymer. However, the reference made therein to a possible biodegradability, namely the loss of this additional stability after several days, is instead something of a disadvantage for products molded from the blends, without actually saying anything regarding biodegradability itself.
EP-A 327 505 A2 describes a melt-mixed polymer blend material comprising destructurized, - but chemically unmodified - starch and at least one water-insoluble, synthetic thermoplastic polymer.
In the same way, EP-A 409 789 A2, EP-A 409 788 A2, EP
A 409 783 A2, EP-A 409 782 A2, EP-A 409 781 A2, EP-A 408 503 A2, EP-A 408 502 A2, EP-A 408 501 A2, EP-A 407 350 A2, EP-A 404 728 A2, EP-A 404 723 A2, and EP-A 404 727 A2 disclose polymer blend compositions comprising destructurized, but chemically unmodified, starch and a 2~'~1~'~4 .-functionalized polymer. Each of these compositions may additionally contain a water-insoluble, thermoplastic polymer. The functionalized polymer then acts as a compatibility enhancer between the chemically unmodified starch and the additional third thermoplastic polymer.
SUMMARY OF THE PRESENT INVENTION
The object of the present invention is to provide a biodegradable, single-phase (compatible) starch/polymer l0 mixture for thermoplastic processing which contains no polymeric compatibility promoters, and a process for the preparation of this mixture. The mixture should also have a long shelf life in granular form; i.e., it should be resistant to moisture, and suitable for the production of thermoplastically molded parts, in particular highly extensible, weldable films which are resistant to cold water. Such mixtures should have a particular application in the production of coextrusion films with further polymers the without addition of a primer.
Surprisingly, it has been found that a single-phase starch/polymer mixture for thermoplastic processing can be prepared without polymeric compatibility promoters if (1) the starch employed is chemically modified and contains certain additives, and (2) the polymer employed is a linear polymer preferably having a melting or softening point of 50° to 160°C. All parts and percentages referred to in the specification and claims are by weight.
..

DETAILED DESCRIPTION OF THE INVENTION
'fhe biodegradable, single-phase starch/polymer mixture according to the invention comprises (a) from 10 to 99 parts of a starch molding composition comprising (i) 95 to 45 parts of a chemically modified starch, and (ii) 5 to 55 parts of plasticizers and/or destructurizing agents, the parts of l0 (i) and (ii) adding up to 100; and (b) 90 to 1 parts of at least one linear polymer, the parts of components (a) and (b) adding up to 100. Up to 20 parts of customary additives may also be included.
The chemically modified starch to be employed according to the invention should have a natural water content of from 5% to 16%.
The preferred chemically modified starch according to the invention is prepared by a special process described in copending Cdn. Appln. No. 2,070,041. In this process, 95 to 53.2 parts of chemically modified starch are destructurized with 4.8 to 39.8 parts of at least one plasticizer, 0.1 to 5 parts of urea and/or urea derivatives, and 0.1 to 2 parts of at least one emulsifier at elevated temperatures and pressures in an extruder. The mixture is extruded as a melt.
The preferred chemically modif ied starch has a natural water content of 5% to 16%, preferably 6% to 12%, most 20'71174 preferably from 6 to 8%. In general, the final water content of the starch/polymer mixture is 2% to 8%, preferably 2% to 5%. The preferred starch has been modified by reaction of its OH groups with alkylene oxides or other substances which form ethers, esters, urethanes, carbamates, and/or isocyanates. Particular preference is given to hydroxy alkyl having 2 to 6 carbon atoms, acetyl, and carbamate starches or mixtures thereof.
The degree of substitution of the desirable chemically modified starch is 0.01 to 0.2, and the amylose content is 20% to 100%, preferably 50% to 100%, especially 65% to 100%.
The plasticizers of (a)(ii) are organic compounds containing at least one hydroxyl group, preferably a polyol. Particularly preferable are glycerol, sorbitol, mannitol, D-glucose, ethylene glycol, polyethylene glycol, propylene glycol, and mixtures thereof. They are usefully employed in amounts of 4.8 to 39.8 parts, preferably 9.8 to 39.8 parts, most preferably 15 to 30 parts. The urea and/or urea derivatives of (a)(ii) are advantageously added in amounts of 0.1 to 5 parts, preferably from 0.1 to 2 parts, most preferably about 2 parts.
The emulsifier desirably has a hydrophilic-lipophilic balance value (HLB) of 0 to 20, preferably 10 to 20; and is employed in amounts of 0.1 to 2 parts, preferably 0.1 to 2 parts, especially about 0.2 parts, per 100 parts of component (a). Suitable emulsifiers are metal stearates, glycerol monostearates, polyoxyethylene (20) sorbitan monolaurate,polyoxyethylene monopalmitate,polyoxyethylene (40) stearate, polyoxyethylene (100) stearate, and mixtures thereof.
In a preferred embodiment, component (a) comprises 70 parts of hydroxyethyl- and/or hydroxypropylstarch, having a degree of substitution of 0.06 and an amylose content of 50%, 15 parts of glycerol, 12.8 parts of sorbitol, 2 parts of urea, and 0.2 parts of magnesium stearate.
Component (b) is at least one linear polymer having a l0 melting or softening point of 50° to 160°C, preferably 60°
to 150°C. Particularly suitable are polyamides and/or polyesters. From the polyamide class, preference is given to homopolyamides and/or copolyamides made from ~-aminocaproic acid, w-aminoenanthic acid, w-aminocaprylic acid, w-aminopelargonic acid, ~-aminocapric acid, w-aminoundecanoic acid, ~-aminolauric acid, caprolactam, lactam-7, lactam-8, lactam-9, lactam-10, lactam-11, and/or laurolactam. Particularly preferred are those polyamides made from caprolactam, laurolactam, w-aminolauric acid, and/or W-aminocaproic acid.
Suitable polyamides can also be made, for example, from dimethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, polyetherdiamine, and mixtures thereof, on the one hand; and oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, nonanedicarboxylic acid, decanedicarboxylic acid, undecanedioic acid, dodecanedioic acid, dimerised fatty acids, and mixtures thereof, on the other hand. Of particular value are hexamethylenediamine, polyetherdiamine, adipic acid, dimerised fatty acids, and mixtures thereof.
From the class of the polyesters, preference is given to homopolyesters and/or copolyesters made from c~-hydroxyacetic acid, ca-hydroxypropionic acid, c~-hydroxybutyric acid, w-hydroxyvaleric acid, W-l0 hydroxycaproic acid, W-hydroxyenanthic acid, W-hydroxycaprylic acid, c~-hydroxypelargonic acid, W-hydroxycapric acid, c~-hydroxyundecanoic acid, w-hydroxylauric acid, caprolactone, lactone-7, lactone-8, lactone-9, lactone-10, lactone-11, and/or laurolactone.
Also useful for this purpose are ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, an aliphatic diol mixture having 2 to 18 carbon atoms, on the one hand; and oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, 2~ azelaic acid, sebacic acid, nonanedicarboxylic acid, decanedicarboxylic acid, undecanedioic acid, dodecanedioic acid, terephthalic acid, isophthalic acid, anhydrides and/or chlorides of the foregoing, and/or esters thereof.
Particularly preferred as sources of polyesters are aliphatic diol mixtures having 2 to 18 carbon atoms, hydroxycaproic acid, butane-1,4-diol, adipic acid, terephthalic acid, isophthalic acid, and mixtures thereof.
Homopolyesters and/or copolyesters made from aliphatic 20'1174 dicarboxylic acids having 2 to 12 carbon atoms and aliphatic diols having 2 to 6 carbon atoms are especially suitable. In practice, the above-mentioned copolyamides and copolyesters or mixtures thereof have proven particularly successful as component (b), it being possible to replace some or all of these by the above-mentioned homopolymers.
Customary additives are optical brighteners, stabilizers, antioxidants, flameproofing agents, dyes, l0 fillers, and processing aids; one or more of these can additionally be employed in amounts of from 0 to 20 parts per 100 parts of the starch/polymer mixture.
In a preferred embodiment, the inventive mixture contains 50 to 95 parts of component (a) and 50 to 5 parts of component (b). Most preferably, 70 to 80 parts of component (a) and 30 to 20 parts of component (b) are used.
The process for the preparation of the single-phase starch/polymer mixture according to the invention comprises jointly melting components (a) and (b) in a ratio of from 10:90 to 99:1 in an extruder, or in an injection-molding machine at temperatures at least 10°C below thA
decomposition point of the starch and a maximum of 30°C, preferably 20°C, above the melting or softening point of the polymer. By adjusting the processing temperature, an optimum ratio between the viscosity of the polymer and the viscosity of the starch (the latter can be modified only slightly by temperature variations) can be determined by means of simple preliminary experiments, it being possible to homogeneously mix the melts by applying strong shear forces to the components. The customary additives may either be metered in during the preparation of the starch/polymer mixture or, preferably, are previously added to components (a) and/or (b).
The starch/polymer mixture according to the invention can be used for the production of thermoplastically molded parts, it being preferred first to produce a granulate which is then employed for the production of moldings.
These can be formed, for example, by injection molding, blow molding, extrusion, coextrusion, injection stamping, or thermoforming. Particular preference is given here to the production of films by monoextrusion or coextrusion;
these films may be formed as flat or blown films.
Advantages of the starch/polymer mixture according to the invention are:
1. Single-phase without addition of a polymeric compatibility promoter/compatibilizer.
2. Surprising biodegradability of the polymer 2o component.
3. Good tear strength and elongation at break.
4. Ability to be converted to storage-stable granulate due to the low tendency to absorb moisture.
5. Simple processing without any tendency toward blocking and without any tack problems to produce films.
In the production of coextruded films from the inventive single-phase starch/polymer mixture and further polymers, the latter should have a melting or softening point of 50° to 180°C. Polymers which are suitable for this purpose are copolyamides, copolyesters, and/or polyolefins.
Preference is given here to polyolefins selected from polyethylene, polypropylene, polybutylene, and their derivatives. Particular preference is given to polyethylene and/or its derivatives.
In a specific embodiment, the single-phase starch/polymer mixture forms the middle layer, and the further polymers) form the inner and outer layers of the coextruded film. If the film has more than three layers, the layers thus alternate, the outer layer being selected on the basis of the desired application for the film. All films can be produced in a thickness of from 20 to 500 ~,m, preferably from 50 to 100 ~,m.
Advantages of the films according to the invention are:
1. Good adhesion of the coextruded film layers without addition of a primer 2. The film layer made from the starch/polymer mixture has, in the dry state, a barrier action against 02, N2, and C02 3. Biodegradability of the monofilms 4. Improved moisture resistance 5. Low-temperature stretchability of the monofilms 6. High extensibility of the monofilms, in some cases greater than 400%

JJ : vs 10 20'1174 ~....
7. Welding possible using conventional heat-sealing equipment, fully transparent seal welds being obtained for monofilms.
8. Antistatic behavior of monofilms 9. Printing of monofilms with water-soluble inks l0. Paper-like hand of the monofilms in the highly stretched state 11. Smooth surfaces of the monofilms.
The monofilms are suitable, for example, for the 1o production of carrier bags, refuse sacks, agricultural sheeting, diaper outer films, and biodegradable sheeting and film of all types. In addition, all films can be subjected to a thermoplastic forming process, such as deep drawing (thermoforming).
Table 1 shows the parameters for the preparation of single-phase starch/polymer mixtures and Table 2 shows the properties thereof. Table 3 shows the extrusion parameters and the properties of the monofilms and coextruded films.
Fig. 1 shows the Differential Scanning Calorimetry (DSC) curves for the starch/polymer mixtures of Examples 2 to 5. These show that only one melting point exists in each case, which proves that the starch/polymer mixtures according to the invention have a single phase.
The following examples illustrate the invention but do not limit it.
Example 1 Preparation of the biodegradable starch molding comn~osition Component (a) A starch molding composition is prepared by the process described in copending Canadian Application No. 2,070,041 from 70 parts of hydroxypropyl maize starch (having a degree of substitution of 0.06 and an amylose content of 50%), 15 parts of glycerol, 12.8 parts of sorbitol, 2 parts of urea, and 0.2 parts of magnesium stearate. The composition is subsequently granulated.
Examples 2 to 19 Preparation of the biodegradable, single-phase starch to molding mixture The starch granulate of Example 1 is mixed with granulate of the linear polymer of component (b) and the *
mixture is metered into the metering zone of a ZSK-30 twin screw extruder (Werner & Pfleiderer) having 6 heating zones. The rotational speed and throughput are 100 rpm and 8-10 kg/h, respectively. The polymer type, polymer melting point, proportion by weight of the polymer, extrusion temperatures, and granulate properties are shown in Table 1. The material properties of the resultant single-phase starch/polymer mixtures are shown in Table 2.
The final water contents of the single-phase starch/polymer mixtures are determined by the method of Karl Fischer in accordance with DIN 53 714, and the melting point is determined by DSC in the dry state at a heating rate of 20°C/min in a Du Pont thermal analyzer type 1091B.
The melt viscosity is measured by the melt flow index method at 160°C and a load of 236.4 N. The mechanical properties are determined on injection-molded test bars in *Trade-mark 12 accordance with DIN 53 457 (modulus of elasticity in tension) and DIN 53 455 (tear strength and elongation at break).
In experiments to determine the biodegradability it was observed, surprisingly, that the single phase starch/polymer-mixture according to the invention and the blown films produced therefrom have a more rapid oxygen consumption than the pure polymer (component (b) of the starch-polymer-mixture). It is well known that linear polyesters or polyamides are predestined for biological decomposition as, structurally, they are closely related to peptides. The actual resistance is caused by their unfavorable wetability with water in which the decomposition bacteria are contained. A possible explanation for this surprising effect is that the starch component greatly increases the otherwise low wetability of the polymer with water and in addition synergistic effects occur.
Comparative Examples 7 and 9 to 12 show that, if the three temperature conditions, namely (1) the melting point of the polymer of between 50° to 160°C, (2) the processing temperature of a maximum of 30°C above the melting point of the polymer, and (3) the processing temperature at least 10°C below the decomposition point of the starch, are not observed, a brown coloration results. The decomposition point of the preferred modified starch is 190°C.
Examples 20 to 22 Production of coextruded films JJ:in 13 '' 2 0 7 1 1 ~ 4 A three-extruder coextrusion unit according to the prior art is used to produce three-layer blown films from the granulated single-phase starch/polymer mixture and Lucalen*(BASF). Extruder 1 produces the Lucalen inner layer, extruder 2 produces the middle layer of the single-phase starch/polymer mixture, and extruder 3 produces the Lucalen outer layer. The extrusion parameters and the properties of the films are shown in Table 3. Although no primer is added, the individual film layers adhere to one another very well.
Examples 23 to 27 Production of monofilms On the same extrusion unit as in Examples 20 to 22, but with only one extruder, blown films are produced from the granulated single-phase starch/polymer mixture. The extrusion parameters and the properties of the films are shown in Table 3.
The commercial products used in the Examples are:
Lucalen A-2920 M- an ethylene copolymer from BASF having a melting point of 97°C
*
Grilon CF 62 BSE- a copolyamide based on the monomers PA 6 and PA 6.9 from EMS-Chemie having a melting point of 136°C
Grilon CR 9- a copolyamide based on the monomers PA 6 and PA 12 from EMS-Chemie having a melting point of 200°C
Grilon CA 6E- a copolyamide based on the monomers PA 6 and *Trade-mark 14 '"' 207117 PA 12 from EMS-Chemie having a melting point of 130°C
*
Grilamid ELY 60- a copolyamide from EMS-Chemie based on lactam-12, polyetherdiamine, and dimerized fatty acid, and having a melting point of 160°C
Griltex * 6- a copolyester from EMS-Chemie based on terephthalic acid, isophthalic acid, and butanediol, and having a melting point of 128°C
Griltex 8- a copolyester from EMS-Chemie based on terephthalic acid, isophthalic acid, and butanediol, and having a melting point of 115°C
Griltex 9- a copolyester from EMS-Chemie based on terephthalic acid, isophthalic acid, and an aliphatic diol mixture, and having a melting point of 118°C.
*Trade-mark ~ T

r~ 'u o .~

G ~

N ..-~ :n yr cn v> cn N vc cn v1 cn cn cn cn N O 41 Q1 O ~ 41 Q1 d Ci N Q~ N N

U <n T T >, T G T T >> T T T >, ~ T

G G G
G

O o O
o ..a .,~
,~, ..a a a a S-r a cn N N
p a 1~ sa >.~ S

p .-~ .-a .--~
r~

V O O O
O

V V V
U

G o 'D b b b ? i T7 b b .c 7. b 00000 ~O ,.fl,.Op..p000 c0 n0 oD O

oA n0 ef1 bD oD oD
o0 t~D o D

?i T ~ TJ O O O >> T
O T

f.i f-i O O sa ?i S-a S-a 1J S-r 1a la ?-i S-r v a~ a~ sa a a a n~ v m v o a v > > > > .O v~ cn > > >
> ap v~ cn *

N ~.

y f~ M rl U1 O, O ~ r-1 r~
f~ u'7 v1 O, O

E ~D ~O ~ M ~D f~ 00 V1 v>
H ~ v1 ~D ~ f~ h v>

. N r-1 .-1 r-J r1 r-~
r-1 rl ,-~ r-I r--I r-~
r-i U O O O O O O O O O O O O
O O

~n V v> vi u> yn r~ r~ v, ~n H v> u> r~ r~ cr>
a .- N .-1 r-I .-1 .-1 r--I
.-I .-1 rl rl .--a rl r-1 U cn uy W
n O O O O O O O O
O

N E-~ -1 ~ V'1 V1 M M M
~ U1 tn r C'J r-1 .-a r-! r-1 r-1 r-~ rl .-1 .-I ri r-1 e-1 O O
lw fl u1 cr1 O O O O O O
~1 v1 C?

JJ ., ~Y ~Y ~T M ~Y' ~!1 m M M M
E-, '.. ~T ~Y W l1 ~

f r N .-a .-i .-1 -c .-c .-c .-~ r~ -c .-c .-a W .
.

~ _ U 'n 'n 'n O O O O O O O O
~ ~ O -H ~ ~ , ''~' r~ r~ ~> mn * ~ w r~
~
~
~

- - N rl rl .-1 ,-1 r-1 r . r-1 r-I r-1 -r .-~ r -i U O O O O O O O
O ~ O O O O O
O

H ~~ ~ ~ ~ ~, ~mn ~n cmn ~ cn ~
~

,- N rl .-1 .-1 .-I .-r .- rl r-~ ,-a -a ,-c .
-~

U

E-' v O O O o o O O o O
O o O O O

o >, a s.~ v~
a O O ~

p. N oD

%; o N .~

0 0 0 0 0 0 0 0 o 0 v, W 3 u1 ~Y M ~l Vl M
N r-1 n -1 r tn UW
!a n V

~D uD ~D
~D v0 O O O O O m O

M M M M v> m Q ~ M O M v0 ~O N .--1 vD ~D -1 P. y r-1 r-1 N .-1 r~ r-1 .
r-1 r-1 r-1 rl -1 rl -1 i r V
r ~
r .r. (=
c w w w w a~
w N N N ~ ~ 0 0 0 ~ 0 a~ W m x7 a7 ~ ~n W
w W o of N N N N W
N

~D ~D vD O, '-1 n-1 ~O v0 ~D .-7 ,-~

V
Cs. C~, W W W QI
Ci. w fs. W ,~

~O cp in U U U U ~ U .d .d O, Q.
U .b .b E;
CL G G G ~ ,.-i '.-rX :~S a cU
G "-a '.-a Y

O G G N

n ~r v ~ ~ N N a i ~
O ~ ~ r ~~

Q r , ra ra ~ s-W
r , rr .-~ a -c -a r . , ~ .,a "1 r p~
tip ' ..~ ..-i "-a ..a ,.-a r ..a ..-c r ,..~ .
a .
~
-a .,- O.
, 1a ?a Sa 1-i la fa , N
Sr to V to : .

~ l.i Sa ,G E'-' U U U U C9 U C7 U ?, U U

V a f--~

v II
1, N N

P. N c1 E -~. a E

* H V

W N M vY tW r ~ * O .-~ f~ 00 O N O~

E-~ a, .-~ ra .-~ * k . ra ,--~ .--a _ *

7 G a N G

N o a N N N N (n N

o a~ a~ a~
a~ a~ a~

D JJ 71 7, ,~1 ,~ ~1 71 T

N

a M

G 'b O O O O O
~ ~

.a ,-..~.-a .-a .--i ~. .-a .-a .-a O

--~ a . . . N

a X X X X X
N

3 G (q (p N (C
N .-~

E E E E E

O (o a (~

(0 v ~.

c0 1, w G .o ~.

p ~ ~ ~-J .y ~ ~o c'1 n O

r-I U M O N ~D 1~1 W of Q, T vY N n tn ,f1 (n Un ~N

G

:-N ~J (n .-1 V1 O O O (n ~ ~O ~Y

(d S-J . . , ~ p .-a r_ ~p O
(u a.J ~ p ~. (n Z

E-~ N r--1 N w-1 r-1 r-1 ('1 N M n .-1 N

w y~ O

O W

al U W
~

.rl N ~Y ..-1 r~ 4J

V7 OJ ~ Q~ CO ~ V1 V
TJ (~ 1 N

(t fW r1 Qv ~p N ('1 U
~ r'1 O, ~

O r-r N ~ O ro (n ~n G
z r J r-1 n z b H

p a .~ U

W

v7 .-~ .-J

o (n 3 ~' G

.,., U O, r~ o~ o~ N
-p O O ~D

. (n ~ O O ~ n r~ U G
n rt1 O ~
' ' P. N oyr, .n r-I r.J C ~O O
O

W Y v0 00 y J rl .~I
T~ N N tf1 G
N ,~ C 'b U ..Y' G m N G. U n n .-a ~ U N (', r1 ~

a ' O .-i ,--~ . . ~ '~ G m ~ .

E ~'' ~ .-w .--a ~ ~ ~ G U '.a ,-r r-~
~

" ~ ~. z .~ o :, V

_ ~O i~ C7 V

o~ m G Ca U
o .C v a .,~rJ

CL ~ ~ ~, N U

. .n N 3 ' o ?, a~

3 V J-~ U ,-JV

G ~ '.-1v U

, m r.

.n ~ ~ N co n ~ r, ~ o o w a ~ ~

JJ a, v o 'v ~
y ~ ~ N .-J ~ ~ ~ cn fa .-J ~

3 ~ ' cn o '. G J G U

r-~U
N ~ ~n U L ~ (S) '-J G ~ r-~,b a1 b -~ N a) O G

~s' n co -__-_-_._..__NN_ ~_.~._~o, "' N ,n ~._-._._ _- ~-'-'~
~_.._ 20 ~1.~ 74 ~

~

G -!
.~

Nr-!.c !J ..-! ~ ~ M M M
v.. O O O

W p O O cv ~Y CV
~T

U U ~

N N ~ N ~
~d ~w o o 0 0 w w w w a .
.

y Q c .-i U
..-!

n G ~ C
C

a C C G ?
~

:! a ~ ~ N
~

y. ~
!

p.. r--1 N N N QS N

N N

N
' cn ~

G. Q b b b b 4-!

3 3 o O N

v N o ~ ~ bD M GO ~N
oD

" \ \
N ' G w ' D b ~ ~ 'T7 Lf ~

o O o i ! sy O
S- y-N

? 7 7 > on P. c~. C1, CL A.
P. p. p.

~ G C C G C
G

J c ~ N N N td N
O

U ~ ~ a c a a a a a a a \\ \ \\ \\ \

b b b b b b ~ b N .1~ .a .~ . . n n. i! y, y ~ .~ .
!~ , C C C C C C ~ ' C

a a tJ a a a a a N

G

U ~

'~ E O O O O O O O O

yn co m Ln In O
Ln ~ a a ..~ .-!

r. r U O O O 1' u1 ~ ~ ,n 7 7 'D ~T ~.Y M M V1 ~ M

H ~ .-i .-! .--1 ~ ~ .-1 G
.--! ~

W n w r~ G G C N

cn N v N a c ' ~ .-~ r! x o -1 N N ~ c0 N N .-!

~! ~ U U U n O .O
~

~! w ~ ~ ~ ~ U

r- ~ N G

t: N .G N
, ; N ~ a E

CV N ~ G
:~

a a . ~ w w N

S.-i O P.
LJ E

O a .,~ M S-! N
~

V) c~~ ~ cV M vY vY Lf1 O p !J N G
w CV n!W

O 1J cI1 N
r!

.. N G rtJ

a . ,...-! r-1 rl V7 E 1 N
~

'b 7-~ ~ Lb ~ Ya N ,C
'v o a , U a U N a a cn ' a f ~ C ~ , b ' ' 1~ w ~ a a y ~

. r a . ~ y~ N
.

x x n. w 'u ._..

.O iG M O y !1 r-1 v0 I~
cV

LL7 CV cV CV CV cV N
CV N V

Claims (27)

1. A biodegradable, single-phase starch/polymer mixture comprising (a) 10 to 99 parts by weight of a starch molding composition comprising (i) 95 to 45 parts by weight of at least one chemically modified starch, (ii) 0.1 to 5 parts by weight of urea, urea derivatives, or mixtures thereof, (iii) 4.8 to 50 parts of at least one plasticizer, the parts of (i), (ii), and (iii) adding up to 100, and (b) 90 to 1 parts by weight of at least one linear polymer other than ethylene copolymers, the parts of components (a) and (b) adding up to 100.
2. The starch/polymer mixture of claim 1 wherein there are up to 20 parts by weight of additives present.
3. The starch/polymer mixture of claim 2 wherein said additives are selected from the group consisting of optical brighteners, stabilisers, antioxidants, dyes, fillers, flameproofing agents, processing aids, and mixtures thereof.
4. The starch/polymer mixture of claim 1 wherein (a) further includes 0.1 to 2.0 parts by weight of at least one emulsifier.
5. The starch/polymer mixture of claim 1 wherein (a) comprises:
(i) 95 to 53.2 parts by weight of at least one chemically modified starch, (ii) 4.8 to 39.8 parts by weight of at least one plasticizer, (iii) 0.1 to 5 parts by weight of urea, urea derivatives, or mixtures thereof, and (iv) 0.1 to 2 parts by weight of at least one emulsifier, the parts of (i), (ii), (iii), and (iv) adding up to 100.
6. The starch/polymer mixture of claim 5 wherein (a) contains urea, urea derivatives, and mixtures thereof, in an amount of 0.1 to 2 parts by weight.
7. The starch/polymer mixture of claim 1 wherein said chemically modified starch has a natural water content of 5% to 16%.
8. The starch/polymer mixture of claim 1 wherein said chemically modified starch has been modified by reaction of its OH groups with at least one compound selected from the group consisting of alkylene oxides and other substances which form ethers, esters, urethanes, carbamates or isocyanates and mixtures thereof.
9. The starch/polymer mixture of claim 8 wherein said chemically modified starch contains 20%-100% amylose.
10. The starch/polymer mixture of claim 1 wherein said chemically modified starch is a hydroxy-alkyl, acetyl, carbamate starch, or mixtures thereof, said alkyl having 2 to 6 carbon atoms.
11. The starch/polymer mixture of claim 1 wherein said chemically modified starch has a degree of substitution of 0.01 to 0.2.
12. The starch/polymer mixture of claim 1 wherein said plasticizer is an organic compound containing at least one hydroxyl group.
13. The starch/polymer mixture of claim 12 wherein said organic compound is selected from the group consisting of sorbitol, mannitol, D-glucose, glycerol, ethylene glycol, polyethylene glycol, propylene glycol, and mixtures thereof.
14. The starch/polymer mixture of claim 5 wherein said emulsifier has an HLB value of 0 to 20.
15. The starch/polymer mixture of claim 14 wherein said emulsifier is selected from the group consisting of metal stearates, glycerol monostearates, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monopalmitate, polyoxyethylene (40) stearate, polyoxyethylene (100) stearate, and mixtures thereof.
16. The starch/polymer mixture of claim 1 wherein (b) has a melting or softening point of 50° to 160° C.
17. The mixture of claim 16 wherein said linear polymer is selected from the group consisting of homopolyamides, copolymides, and mixtures thereof, said homopolyamides being made from a compound selected from the group consisting of .omega.-aminocarboxylic acid and lactams having 6 to 12 carbon atoms;

said copolyamides being made from .omega.-aminocarboxylic acids, lactams having 6 to 12 carbon atoms, and mixtures thereof.
18. The mixture of claim 16 wherein said linear polymer is selected from the group consisting of homopolyamides, copolyamides, and mixtures thereof, said homopolyamides being made from aliphatic diamines having 2 to 6 carbon atoms or polyetherdiamines reacted with linear dicarboxylic acids having 2 to 12 carbon atoms or dimerized fatty acids;
said copolyamides being reaction products of compounds selected from the group consisting of aliphatic diamines having 2 to 6 carbon atoms, polyetherdiamines, and mixtures thereof with compounds selected from the group consisting of linear dicarboxylic acids having 2 to 12 carbon atoms, dimerized fatty acids, and mixtures thereof.
19. The mixture of claim 16 wherein said linear polymer is selected from the group consisting of homopolyesters, copolyesters, and mixtures thereof, said homopolyesters being made from a compound selected from the group consisting of .omega.-hydroxycarboxylic acids having 2 to 12 carbon atoms and lactones having 6 to 12 carbon atoms;
said copolyester being a reaction product of compounds selected from the group consisting of .omega.-hydroxycarboxylic acids having 2 to 12 carbon atoms, lactones having 6 to 12 carbon atoms, and mixtures thereof.
20. The mixture of claim 15 wherein said linear polymer is selected from the group consisting of homopolyesters, copolyesters, and mixtures thereof, said homopolyesters being made from a first alcohol and a first acid, said first alcohol being selected from the group consisting of aliphatic diols having 2 to 6 carbon atoms, said first acid being selected from the group consisting of linear dicarboxylic acids having 2 to 12 carbon atoms, terephthalic acid, and isophthalic acid;
said copolyesters being made from second alcohols and second acids, said second alcohols being selected from the group consisting of aliphatic diols having 2 to 6 diols, an aliphatic diol mixture having 2 to 18 carbon atoms, and mixtures thereof, said second acid being selected from the group consisting of linear dicarboxylic acids having 2 to 12 carbon atoms, terephthalic acid, isophthalic acid, and mixtures thereof.
21. A process for the preparation of the starch/polymer mixture of claim 1 wherein (a) and (b) are premixed in a ratio of from 10:90 to 99:1, (a) and (b) being homogeneously mixed in a melt at temperatures of at least 10° C. below the decomposition point of said starch and a maximum of 30° C. above the melting or softening point of the said linear polymer, and said mixture is extruded or coextruded.
22. Thermoplastically molded parts produced from the starch/polymer mixture of claim 1 by injection molding, extrusion, coextrusion, blow molding, thermoforming, or injection stamping.
23. The molded parts of claim 22 which are films comprising 50 to 95 parts of (a) and 50 to 5 parts of (b).
24. The molded parts of claim 22 which are coextruded films comprising at least one further polymer having a melting or softening point of 50° to 180° C.
25. The molded parts of claim 24 wherein said further polymer is selected from the group consisting of copolyamides, copolyesters, polyolefins, and mixtures thereof.
26. The molded parts of claim 25 wherein said polyolefin are selected from the group consisting of polyethylene/polypropylene, polybutylene, and derivatives and mixtures thereof.
27. The molded parts of claim 24 wherein said coextruded films comprise a middle layer of said starch/polymer mixture, and an upper layer and a lower layer of said further polymer.
CA002071174A 1991-06-17 1992-06-12 Starch/polymer mixture, process for the preparation thereof, and products obtainable therefrom Expired - Fee Related CA2071174C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4119915 1991-06-17
DE4119915A DE4119915C2 (en) 1991-06-17 1991-06-17 Starch-polymer blend, process for its preparation and its use

Publications (2)

Publication Number Publication Date
CA2071174A1 CA2071174A1 (en) 1992-12-18
CA2071174C true CA2071174C (en) 2001-03-27

Family

ID=6434117

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002071174A Expired - Fee Related CA2071174C (en) 1991-06-17 1992-06-12 Starch/polymer mixture, process for the preparation thereof, and products obtainable therefrom

Country Status (6)

Country Link
US (1) US5346936A (en)
EP (1) EP0519367B1 (en)
JP (1) JP2548488B2 (en)
AU (1) AU643144B2 (en)
CA (1) CA2071174C (en)
DE (2) DE4119915C2 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133335C2 (en) * 1991-10-08 1995-11-02 Inventa Ag Starch mixture, process for its preparation and use thereof
DE69323320T2 (en) * 1992-10-07 1999-09-02 Nat Starch Chem Invest MIXTURES OF STARCHESTERS AND LINEAR POLYESTERS
BR9405651A (en) * 1993-01-08 1995-11-14 Novon International Inc Mixing composition of biodegradable thermoplastic polymers; process of preparing it; formed article; film and fiber
US5462983A (en) * 1993-07-27 1995-10-31 Evercorn, Inc. Biodegradable moldable products and films comprising blends of starch esters and polyesters
EP0638609B1 (en) * 1993-08-04 2001-03-21 Buna Sow Leuna Olefinverbund GmbH Biodegradable thermoformable materials made of starch esters
DE4335983A1 (en) * 1993-10-21 1995-04-27 Inventa Ag Process for increasing the transparency of mouldings or films made from thermoplastic starch or thermoplastic starch-polymer blend
DE4429269A1 (en) * 1994-08-18 1996-02-22 K & S Bio Pack Entwicklung Process for the production of articles from thermoplastic amylose, molding compound for carrying out the process and molded part
DE4443539A1 (en) * 1994-12-07 1996-06-13 Buna Sow Leuna Olefinverb Gmbh Biodegradable thermoplastic materials for packaging cigarettes etc.
DE19519495A1 (en) * 1995-05-27 1996-11-28 Reynolds Tobacco Gmbh Biodegradable thermoplastic materials for packaging cigarettes etc.
DE19512252C2 (en) * 1995-03-31 2000-05-31 Fraunhofer Ges Forschung Process for the production of films from starch and films produced by this process
AU708631B2 (en) * 1995-07-12 1999-08-05 Valtion Teknillinen Tutkimuskeskus Thermoplasticized starch component and process for the preparation thereof
US5852078A (en) * 1996-02-28 1998-12-22 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable polyester compositions with natural polymers and articles thereof
US6025417A (en) * 1996-02-28 2000-02-15 Biotechnology Research & Development Corp. Biodegradable polyester compositions with natural polymers and articles thereof
US5861216A (en) * 1996-06-28 1999-01-19 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable polyester and natural polymer laminates
US5821286A (en) * 1996-05-24 1998-10-13 The United States Of America As Represented By The Secretary Of The Agriculture Biodegradable polyester and natural polymer compositions and films therefrom
US5665786A (en) * 1996-05-24 1997-09-09 Bradley University Biodegradable polyester and natural polymer compositions and expanded articles therefrom
US6893527B1 (en) 1996-06-28 2005-05-17 William M. Doane Biodegradable polyester and natural polymer laminates
JP3797763B2 (en) * 1997-09-08 2006-07-19 富士通テン株式会社 Flux composition
CA2314482C (en) 1998-01-08 2013-08-20 H.B. Fuller Licensing & Financing, Inc. Thermoplastic compositions comprising crystalline water soluble polymers and amorphous water sensitive polymers
NZ503231A (en) 1999-03-08 2001-09-28 Humatro Corp Absorbent, flexible structure comprising pseudo-thermoplastic starch fibers, plasticizer (such as sorbitol, PVA)
KR20010002036A (en) * 1999-06-10 2001-01-05 김미라 Degradable film containg hydroxypropylated potato starches and process for preparation thereof
US6811740B2 (en) 2000-11-27 2004-11-02 The Procter & Gamble Company Process for making non-thermoplastic starch fibers
US20030203196A1 (en) * 2000-11-27 2003-10-30 Trokhan Paul Dennis Flexible structure comprising starch filaments
US7029620B2 (en) 2000-11-27 2006-04-18 The Procter & Gamble Company Electro-spinning process for making starch filaments for flexible structure
US7276201B2 (en) * 2001-09-06 2007-10-02 The Procter & Gamble Company Process for making non-thermoplastic starch fibers
US6723160B2 (en) * 2002-02-01 2004-04-20 The Procter & Gamble Company Non-thermoplastic starch fibers and starch composition for making same
EP1382642A1 (en) * 2002-07-15 2004-01-21 Rockwool International A/S Formaldehyde-free aqueous binder composition for mineral fibers
US7947766B2 (en) 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
JP4549072B2 (en) * 2004-01-30 2010-09-22 三菱エンジニアリングプラスチックス株式会社 Aliphatic polyamide resin heat shrinkable film
WO2005087857A1 (en) * 2004-03-10 2005-09-22 Agri Future Joetsu Co., Ltd. Starch-blended resin composition, molding thereof and process for producing the same
US6955850B1 (en) 2004-04-29 2005-10-18 The Procter & Gamble Company Polymeric structures and method for making same
US6977116B2 (en) 2004-04-29 2005-12-20 The Procter & Gamble Company Polymeric structures and method for making same
GB0410388D0 (en) * 2004-05-11 2004-06-16 Adept Polymers Ltd An extrusion process
US7553919B2 (en) * 2005-05-06 2009-06-30 Board Of Trustees Of Michigan State University Starch-vegetable oil graft copolymers and their biofiber composites, and a process for their manufacture
JP4553875B2 (en) * 2006-07-03 2010-09-29 昭和高分子株式会社 Biodegradable resin composition and biodegradable film
US8592641B2 (en) 2006-12-15 2013-11-26 Kimberly-Clark Worldwide, Inc. Water-sensitive biodegradable film
WO2008105662A1 (en) 2007-03-01 2008-09-04 Bioneedle Technologies Group B.V. Biodegradable material based on opened starch
FR2916203B1 (en) * 2007-05-14 2012-07-20 Arkema COEXTRUSION BINDERS BASED ON RENEWABLE / BIODEGRADABLE
US8329977B2 (en) 2007-08-22 2012-12-11 Kimberly-Clark Worldwide, Inc. Biodegradable water-sensitive films
JP5595387B2 (en) * 2008-06-18 2014-09-24 ビーエーエスエフ ソシエタス・ヨーロピア Glyoxal and methylglyoxal as additives in polymer blends
US8016980B2 (en) * 2008-11-25 2011-09-13 Dixie Consumer Products Llc Paper products
CN102458803B (en) * 2009-06-25 2015-12-09 白奥菲派创新私人有限公司 Wood substitutes
FR2957928B1 (en) * 2010-03-25 2013-07-05 Roquette Freres PLANT BASED COMPOSITIONS AND PROCESS FOR PREPARING SUCH COMPOSITIONS
JP2013523634A (en) * 2010-03-26 2013-06-17 ダウ グローバル テクノロジーズ エルエルシー Melt extrusion film
DE102010021453A1 (en) * 2010-05-25 2011-12-01 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Foil assembly with increased temperature resistance
US8907155B2 (en) 2010-11-19 2014-12-09 Kimberly-Clark Worldwide, Inc. Biodegradable and flushable multi-layered film
FR2969627B1 (en) * 2010-12-27 2014-10-17 Arkema France COMPOSITIONS BASED ON AMIDE COPOLYETHER BLOCK, COPOLYETHER BLOCK ESTERS, FUNCTIONALIZED POLYOLEFINS AND STARCH FOR BREATHABLE FILM APPLICATIONS
US9327438B2 (en) 2011-12-20 2016-05-03 Kimberly-Clark Worldwide, Inc. Method for forming a thermoplastic composition that contains a plasticized starch polymer
US9718258B2 (en) 2011-12-20 2017-08-01 Kimberly-Clark Worldwide, Inc. Multi-layered film containing a biopolymer
JP7246691B2 (en) * 2018-12-14 2023-03-28 株式会社コバヤシ resin composition
WO2022153201A1 (en) * 2021-01-14 2022-07-21 Phitons Bioengineering Private Limited A process for preparing a modified starch composition

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125495A (en) * 1974-11-25 1978-11-14 Coloroll Limited Synthetic/resin based compositions
IN160476B (en) * 1983-02-18 1987-07-11 Warner Lambert Co
BG46154A3 (en) * 1983-02-18 1989-10-16 Warner Lambert Co Method for preparing of capsules
US4673438A (en) * 1984-02-13 1987-06-16 Warner-Lambert Company Polymer composition for injection molding
FR2610635B1 (en) * 1987-02-10 1989-06-23 Extrusion Calandrage Ste Fse POLYURETHANE COMPOSITIONS FOR CALENDERING BIODEGRADABLE MATERIALS
GB8712009D0 (en) * 1987-05-21 1987-06-24 Folk Drive Eng Ltd Degradable plastics
GB2214918B (en) * 1988-02-03 1992-10-07 Warner Lambert Co Polymeric materials made from starch and at least one synthetic thermoplastic polymeric material
DE59010132D1 (en) * 1989-04-29 1996-03-28 Inventa Ag STARCH DERIVATIVES AND THEIR USE FOR THE PRODUCTION OF BIODEGRADABLE PLASTICS
AU627589B2 (en) * 1989-06-01 1992-08-27 Penford Australia Limited Starch films based on high amylose starch
NO903089L (en) * 1989-07-18 1991-01-21 Warner Lambert Co POLYMER BASIC MIXTURES WITH STRUCTURALLY CHANGED STARCH.
JPH0725941B2 (en) * 1989-07-18 1995-03-22 ワーナー・ランバート・カンパニー Polymer-based blend composition containing modified starch
IT1232909B (en) * 1989-08-07 1992-03-05 Butterfly Srl POLYMERIC COMPOSITION FOR THE PRODUCTION OF BIODEGRADABLE PLASTIC ITEMS INCLUDING DESTRUCTURED STARCH AND ETHYLENE COPOLYMER
NL8902321A (en) * 1989-09-15 1991-04-02 Cargill Bv MATERIAL CONTAINING A POLYMER OF UNSATURATED HYDROCARBON AND A STARCH DERIVATIVE.
NL9001212A (en) * 1990-05-28 1991-12-16 Cargill Bv MATERIAL CONTAINING A POLYMER OF UNSATURATED HYDROCARBON AND A STARCH DERIVATIVE.
US5108807A (en) * 1990-03-14 1992-04-28 First Brands Corporation Degradable multilayer thermoplastic articles
NL9001826A (en) * 1990-08-15 1992-03-02 Cargill Bv MATERIAL CONTAINING A POLYMER OF UNSATURATED HYDROCARBON, A C1-4 ALKYL OR HYDROXYALKYL ETHER OF STARCH AND A VINYL OR ACRYLIC POLYMER AS COMPATIBLE AGENT.
US5094054A (en) * 1990-09-11 1992-03-10 Arends William R Method and apparatus for venting building structures
JPH04248851A (en) * 1991-01-25 1992-09-04 Jsp Corp Biodegradable composition and sheet
DE4122212C2 (en) * 1991-07-04 1994-06-16 Inventa Ag Thermoplastically processable mass of starch and acrylate copolymers

Also Published As

Publication number Publication date
US5346936A (en) 1994-09-13
DE4119915C2 (en) 1994-07-21
DE4119915A1 (en) 1992-12-24
AU643144B2 (en) 1993-11-04
JPH05239265A (en) 1993-09-17
CA2071174A1 (en) 1992-12-18
AU1825492A (en) 1993-01-21
JP2548488B2 (en) 1996-10-30
EP0519367B1 (en) 1998-09-02
DE59209479D1 (en) 1998-10-08
EP0519367A1 (en) 1992-12-23

Similar Documents

Publication Publication Date Title
CA2071174C (en) Starch/polymer mixture, process for the preparation thereof, and products obtainable therefrom
US5436078A (en) Starch mixture and process for the production thereof
US6096809A (en) Biologically degradable polymer mixture
KR100893840B1 (en) Ternary mixtures of biodegradable polyesters and products manufactured from them
CA2905208C (en) Water-soluble polymer and polymer internal lubricant
KR20180044715A (en) Biodegradable resin composition and biodegradable articles prepared therefrom
AU699231B2 (en) Thermoplastic polymer blends
KR20180032896A (en) Biodegradable resin composition and biodegradable articles prepared therefrom
JP2000273207A (en) Polylactic acid-based film and its production
CN113956630A (en) Completely biodegradable film and preparation method thereof
US8742029B2 (en) Copolyester blends with improved melt strength
US20130131224A1 (en) Biodegradable composition having high mechanical characteristics
JP2001064379A (en) Production of compatible aliphatic polyester and its composition
JP3203233B2 (en) Biodegradable resin composition and single-layer molded article
JP2005139395A (en) Mulching film
JPH11279393A (en) Biodegradable tape, packaging and packing tape, and self-adhesive tape
JP2012031329A (en) Biodegradable resin composition and molded article obtained by molding the composition
JP7383264B2 (en) Resin composition and molded product thereof
JP2019172756A (en) Method for manufacturing polyester-based resin composition and polyester-based resin composition and molded article
JP2005008673A (en) Resin composition
KR20050034915A (en) Low temperature injection moldable water-resistant biodegradable plastic compositions and process of producing thereof
PL207301B1 (en) Method for the manufacture of biodegradable polymer material
SK501342014U1 (en) Biologically degradable polymeric composition with improved qualities

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed