CA2071853A1 - Method and apparatus for re-profiling the cornea - Google Patents

Method and apparatus for re-profiling the cornea

Info

Publication number
CA2071853A1
CA2071853A1 CA002071853A CA2071853A CA2071853A1 CA 2071853 A1 CA2071853 A1 CA 2071853A1 CA 002071853 A CA002071853 A CA 002071853A CA 2071853 A CA2071853 A CA 2071853A CA 2071853 A1 CA2071853 A1 CA 2071853A1
Authority
CA
Canada
Prior art keywords
cornea
tool
eye
holding
profiling tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002071853A
Other languages
French (fr)
Inventor
Lauren G. Kilmer
Alvin E. Reynolds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Premier Laser Systems Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2071853A1 publication Critical patent/CA2071853A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/013Instruments for compensation of ocular refraction ; Instruments for use in cornea removal, for reshaping or performing incisions in the cornea

Abstract

Refractive error of the cornea is corrected by a scraping procedure using apparatus that is vacuum affixed to the eye (56, 54) and surrounding the cornea and a scraping tool (80) in which the tool is micro-adjustable relative to the cornea.

Description

W O 91/08711 2 ~ 3 PCT/US90/07406 ~ethod and Apparatus for Re-Profiling the Cornea -BAC~CGROUND OF THE INVENTION
This invention relates to a method and apparatus ~or adjusting the shape of components of thle eye and more particularly to making fixed changes in thP corneal curvature.
Deviations from the normal shape of the corneal surface produce errors of refraction in the visual process. The eye in a state of rest, without accommodation, focuses the image of distant objects exactly on the retina. Such an eye enjoys distinct vision for distant objects without effort. Any variation from this standard constitutes ametropia, a condition in which the eye at rest is unable to focus the image of a distant object on the retina. Hyperopia is an error of refraction in which, with the eye at rest, parallel rays from distant objects are brought to focus behind the retina. Divergent rays from near objects are focused still further back. In one aspect of hyperopia, the corneal surface is flattened which decreases the angle of refraction of rays as they pass through the refractive surfaces of the cornea, causing a co~vergence or focus of the rays at a point behind the retina. The retina is comprised partially of nerve fibers which are an expansion o~ the optic nerve. Wa~es of ligh~
falling on the retina are converted into nerve impulses and carried by the optic nerve to the brain to produce the .~ .

.. . , : : :
: ~: , . .

W O 91/08711 ~r ~ )3 P ~ /~'S90/07406 sensation of light. To focus parallel rays on the ~et'na, the hyperopic eye must either accommodate, i.e., inc~ease the convexity of its lens, or a convex lens of sufficient strength to focus rays on the retina must be placed before the eye.
Myopia is that refractive condition in which, with accommodation completely relaxed, parallel rays are brought to focus in front o~ the retina. One condition which commonly causes myopia is when the corneal curvature is steepened, thus the refraction of rays is greater as they pass through the refractive surfaces of the cornea, and the over refracted rays converge or focus in front of the retina in the vitreous of the eye. When the rays reach the retina ~hey become divergent, ~orming a circle of diffusion and consequently a blurred image. A concave lens is used to correct the focus o~ the eye for myopia.
The normal treatment of these classic forms o~ refractive error of the eye is with the use of eyeglasses or contact lenses, both of which have well-known disadvantagesi to the user. Recent research has been directed to operative techniques to change the refractive condition o~ the eye.
Such techniques are generally referred to as "keratorefractive techniques". Two such techniques are more particularly called keratophakia and keratomileusis. Keralomileusis involves the regrinding of a corneal lamella into a meniscus or hyperopic ~ , , .: .
. .

~ J~
WO91/08711 PCT/US~/07406 lens to correct myopia or hyperopia. A corneal optical lathe has been especially developed for this procedure and is also used in the keratophakia proc~dure, when a homograft ground into a convex lens is placed interlamellarly to correct aphakic hypermetropia. The homograft ~issue (corneal lamella) is frozen with carbon dioxide. The homograft is cut as a contact lens would be, i.e., to the optical power required to effect the desired optical correction of the cornea. In keratomileusis, the anterior corneal lamella is shaped by the lathe and in keratophobia, it is the corneal stroma of a donor eye that is shaped by the lathe. These techniques have a broad application in the correction of high hyperopic and myopic errors. These procedures require radial cutting of the :
cornea about the periphery of the graft which weakens the cornea so that pressure from fluids below the incisions pushes up under the cuts and flattens the curvature of the cornea.
This flattening of the cornea results in refractive errors to the eye not compensated ~or by the graft. Suturing in these operations also causes radi~l asymmetry of the cornea which consequently promotes astigmatic error in this regard.
Sutures also cause scarring of the corneal tlssue, which scar tissue loses its transparency. Surgical correction of astiymatism is accomplishe~ by asymme~rically altering the corneal curvatureS. The effect of a peripheral distorting ~ ' .

. . .

WO91/08711 ~ 3 PCT/US90/07406 force may be easily visualized ~y lmagining an inflated balloon with a spherical surface being compressed between the palms of the hands. Because the volume of air in the balloon is constant, the surface area remains constant. The previously spherical anterior sur~ace is distorted meridianally as a result of compressing the diameter between the hands so that the curvature changes without changing the circumference of the surfacP. The meridian passing over the balloon between the extended fingers steepens, while the uncompressed meridian at right angles thereto flattens as its diameter lengthens in proportion to the shortening of the compressed diameter. This demonstrates the effect ~hat may result from slight variations in the symmetrical patterns or intentional asymmetrical patterns attempted to be accomplished during surgical procedures and attendance suturing. It is thus seen that present procedures in keratore~ractive techniques are best limited to situations where other more standard'corrective practices are found in effective. It is readily seen that the limiting factors in such surgical techniques is the gross complexity involved not anly with multiple incisions in oorneal tissue for affecting the procedures but also co~plex suturing patterns, resulting in gross restructuring of the eye. The eye is thus faced with a difficult job of adjusting ~o this trauma.

'.'., ' .
2~7 ~ ~, PCT/US90/074~6 Over the past few years developments have been made in the use of lasers as a means to reshape the cornea in an attempt to get rid of refractive errors. In these processes, pulsed lasers remove tissue ~rom the cornea, the most common type being an Exemer laser. The fundamental effect of such a laser on tissue is a photochemical one, the breaking of molecular bonds with so much energy that the tissue fragments fly fro the sur~ace at supersonic speeds, leaving behind a discreet space. The process has b~en designated as ablative photodecomposition or photoablation.
The use of Exemer lasers require delivery of the beam to the eye in a controlled manner requiring that the homogenous beam be appropriately managed and focused because the optical elements must withstand the high energy photons, and because the beam must be shaped to a non-uniform configuration to create the new non-uniform optical surface of the cornea.
Such delivery system contains multiple components including lenses to expand or focus the beam, mirrors to direct the beam, modulators to homogeni~e the beam, masks to shape the beam, and detectors to measure the intensity and configuration of the beam. Current models range from a simple collection of lenses and masks to complex robots with components that control not only the laser parameters but also the optical and mechanical components. Because the process is dealing with ' : :
- .

: - :
, , W~91/08711 ~ PCT/US90/07406 6 :

submicron (less than .00001 of a meter) accuracy, grea.
demands are placed upon such systems for stability, even thought he interaction of the laser and t:issue lasts only microseconds.
Using the system requires exquisite technical and biological control to modulate corneal wound healing.
, , ' ':
:

' ''.. '."':' ~' '' ;`' ' .' i ' .
: . ' .~ '~' ''.
~. ...

WO91/08711 ~ ~q ~ PCT/US90/07406 SUMMARY OF THE INVENTIOM
It is therefore an object of the present invention tc provide a new and improved keratorefractive technique involving method and apparatus for changing the shape of the optical zone of the cornea to correct refractive errors of hyperopia ~far-sightedness), myopia (near-sightedness), an~
astigmatism, whereby a minimum disturbance is imposed on the eye system and the simplicity of the technique virtually eliminates the chance of error or further complicationc resulting from gross disturbances of the eye system.
With this and other objects in view, the present invention contemplates a method and apparatus for sculpting or scarifying the cornea for the purposes of correcting refractive error.
Another object of the invention is to provide mechanical apparatus capable of easily being used by a surgeon for sculpting or scarifying the cornea in order to correct for hyperopia, myopia, and astigmatism which includes means to provide consistency in depth and con~iguration of the surface.
Specifically, the method ~bjects of this invention involve the surgical reprofiling of the corneal portion o~ the eye to change the corneal radius and thus correct refractive errors. The steps include creating a placido ring keratograp~
o~ a simulated cornea having the correct refractive qualities.
~ ~ .
' ' ~:'.. '' ,' :; ':, .

~ :

WO91/08711 2~ 3r3 ~ P~T/US90/07~06 Next, an actual keratograph of said cornea is created. The two kerotographs are compared to determine the amount OL
refractive error, i.e., whether lt would be hyperopia, myopia, or astigmatism. A profiling tool is constructed that includes a plurality of incising blades of shape sufficient to sculpt the cornea and thus change its corneal radius to that o:E the simulated cornea. The profiling tool is then positioned within a holding sleeve that is contiguously positioned upon said eye such that the incising blades will contact the cornea. The profiling tool is then rotated or cscillated until the corneal radius has been corrected to that of the simulated cornea. The profiling tool includes means for making precise axial depth changes as needed during the operational procedures.
The apparatus used to achieve the objects of this invention specifically includes a circular positioning ring having a resilient vacuum rin~ means on its bottom side for temporary attachment.to the sclexa portion of an eye which surrounds the cornea that is to be reprofiled A plurality of positioning pins exist on the top side o the positioning ring and A vacuum means is provided ~or communication with the vacuum ring. A cylindrical holding sleeve includes means at the bottom of the holding sleeve to interconnect with the pins : of the circular positioning ring.... Fine Screw threads of a ' ': ';

W091/08~11 2~7 1,?~`; ' PCT/US90/07406 given pitch, preferably about 40 threads per inch, are forme~
on the exterior portion of the holding sleeve. Threadably conne~cted thereto is a guide sleeve having screw threads of the same pitch which are formed interiorly thereof for rotatable attachment with the holding sleeve. A profiling tool is adapted to be rotatably and axially received wit~i~
the positioning ring, the holding sleeve, and the yuide sleeve. A collar means existing on the profiling tool allows it to be rotatably supported upon the guide sleeve. A
plurality of scarifying blades at the bottom of the profili~g tool are designed to be of a shape sufficient to sculpt or form the desired corrective curvature in the corneal porticn.
Another object of the invention is to provide a means to incise, sculpt, and scarify the outer anterior surface of a cornea to raprofile same to correct for refractive error, and to do so with a minimum or no in~lammation and with regrowth of the epithelium layer o~ the cornea in a minimum amount cf time.
Another object is to achieve a reprofiled cornea, as set forth in the previous object, that will permit regrowth of the epithelium layer ~rom unshaped areas of the cornea, witbout returning to the original curvature.

-., , , : : . . .:, , . ,, :: : , : : .

WO91/08711 ~ ;J PCT/US90/07406 - , BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic illustration of a horizontal section of the eye.
Figure 2 is a schematic illustration of a hyperopic eye showing adjustment of the cornea to shorten the radius of cur~ature.
Figure 3 is a schematic illustration of a myopic eye system showing adjustment of the cornea to increase its radius and thus flatten the corneal slope.
Figure 4 is a detailed schematic illustration of a horizontal section of the frontal portion of an eye showing the various layers of the cornea.
Figure 5 is an exploded view showing the basic components of the apparatus of this invention.
Figure 6 is a bottom end elevational view of the profiling tool taken along the line 6-6 of Figure 5.
Figure 7 is a top elevational view of the positioning -ring of the invention.
Figure 8 is a partial sectional view of an alternate profiling tool.
Figure 9 is a side elevational view of an alternate scarifying tool.
Figure lO is a front sectional view taken along the line 1~-10 of Figure ~. ;
:
" .,;
:

' WO91/08711 f~ PCT/US90/07~6 2~ls3~J.~.3 Figure 11 is an assembly view of the apparatus of the invention with an electrical indicating means.
Figure 12 is a partial sectional vie~ of an alternate embodiment.
Figure 13 is an end elevationalal view taken along line 13-13 o~ Figure 12.
Figure 14 is an enlarged partial sectional view of the positioning ring on an eye.
~' '.

WO91/08711 ~ 7 ~ PCT/US90/07406 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Before explaining the present invention in detail, i. is to be understood that the invention is not limited in its application to the details of the construction and arrangement of parts illustrated in the accompanying drawings. The invention is capable of other embodiments and of being practiced or carried out in a variety of waysO It is to be understood that the phraseology and terminology employed herein is for the purpose of description and not of limitation.
Referring first to Figure 1 of the drawings, a horizontal section of the eye shows the globe of the eye resembling a sphere with an anterior bulged spherical portion 12 representing the cornea. Thus the eye is actually comprised of two somewhat modified spheres placed one in front of the other. The anterior of these two segments is the smaller more curved cornea.
The globe of the eye consists of three concentric coverings enclosing the various transparent media through which the light must pass before reaching the sensitive retina. The outermost covering is a fibrous protective portion, the posterior five-sixths of which is white and opaque and called the sclera 13, and sometimes referred to as the white of the eye where visible to the front. The anterior WO91/08711 ,~ 7 _~ k ~ PCT/US90/07406 one-sixth of this outer layer is the transparent cornea 12.
A middle covering is mainly vascular and nu~ritive in function and is comprised of the choroid 14, ciliary body 15 and iris 17. The choroid generally functions to maintain the retina. The ciliary muscle is involved in suspending the lens and accommodation of the lens. The iris is the most anterior portion of the middle covering of the eye and is arran~ed in a frontal plane. It is a thin circular disc corresponding to the diaphragm of a camera, and is perforated near its center by a circular aperture called the pupil l9. The size of the pupil varies to regulate the amount of light which reaches the retina. It contracts also to accommodation, which serves to sharpen the focus by diminishing spherical aberration. The iris divides the space betwe~en the cornea 12 and the lens 21 into an anterior chamber 22 and posterior chamber 23. The innermost portion of covering is the retina 18, consisting of nerve elements which form the true receptive portion for visual impressions.
The retina is a part of the brain arising as an outgrowth from the ~ore-brain, with the optic nerve 24 serving as a fibre tract connecting the retina part of the brain with the fore-brain. A layer of rods and cones, lying just beneath a pigmented epithelium on the anterior wall of the retina, serve as visual cells or photoreceptors which transform physical :
'' ~

energy (light) into nerve impulses.
The vitreous 26 is a transparent gelatinous mass ~hich fills the posterior four-fifths of the globe. At its sides it supports the ciliary body 16 and th~ retina 18. A frontal saucer~shaped depression houses the lens 21.
The lens 2l of the eye is a transparent bi-convex body of crystalline appearance placed bet~een the iris 17 and vitreous 26. Its axial diameter varies markedly with accommodation. A ciliary zonule 27, consisting of transparent fibers passing between the ciliary body 16 and lens 21 serves to hold the lens in position and enable the ciliary muscle to , act on ito . .
Referring again to the cornea 12, this outer~ost fibrous transparent coating resembles a watch glass. Its curvature 5 i5 somewhat greater than the rest of the globe and is ideally spherical in nature. However, often it is more curved in one meridian than another giving rise to astigmatism. A central third of the cornea is called the optical 20ne with a slight flattening taking place outwardly thereof as the cornea thickens towards it periphery. Most of the re raction of the eye takes place on the surface of the cornea.
Referring next to Figure 2 of the drawings, the globe of an eye is shown having a cornea 12 with a normal curvature represented by the solid line 39. If parallel rays of light '' " ~ : : .

WOg~ 71~ PCT/US90/07406 41 pass through the corneal surface 39 of Figure 2, they are refracted by the corneal surfaces to converge eventually near the retina 18 of the eye. The diagram of Figure 2 discounts, for the purposes of this discussion, the refractive effect of the lens or other portions of the eye. The eye depicted in Figure 2 is hyperopic and thus the rays of light 41 are refracted to converge at point ~2 behind the retina. If a peripheral band of pressure is applied inwardly at the chord 43 of the cornea, the walls of the cornea are caused to steepen. This is because the volume of fluids within the anterior chamber 22 remains constant, thus the anterior portion of the cornea, including the optical zone ~inner third o~ the cornea) steepens in slope to form a curvature (shown in exaggeration) following the dotted line 44. The rays of light 41 are then refracted from the steeper surface 44 at a greater angle to direct the refracted rays into focus at shorter distance, such as directly on the retina 18.
Figure 3 shows a similar eye system to that of Figure 2 except that the so-called normal corneal curvature of Figure
3 causes the light rays 41 to refract into focus at a point 46 in the ~itreous which is short of the retinal surface 18.
This is typical of a myopic eye. If chord 43 of the cornea is expanded uniformly outw~rdly as shown by the arrows, the walls of the cornea are flattened. Light rays 41 refracted : ' . ,, , ,.,:

W091/08711 PCT/~iS90/07406 ,~J ~ 6 by the now flattened corneal surface will be refracted at a smaller angle and thus converge at a more clistant point such as directly on the retina 18.
Referring now to Figure 4, a more detailed drawing of the S anterior portion of the globe shows the var.ious layers of the cornea comprising an epithelium 31. Epithelial cells on the surface thereo~ function to maintain transparency of the cornea. These epithelial cells are rich in glycogen, enzymes and acetylcholine and their activity regulates the corneal corpuscles and controls the transport of water and electrolytes through the lamellae of the stroma 32 of the cornea.
An anterior limiting lamina 33, referred to as Bowman's membrane, is positioned between the epithelium 31 and the subs~antia propria or stroma 32 of the cornea. The stroma is comprised of lamella having bands of fibrils parallel to each other and crossing the whole of the cornea. While most of the fibrous bands are parallel to the surface, some are oblique, especially anteriorly. The fibrous bands within alternate lamella are at a near right angle to bands in the adjacent lamella. A posterior limiting lamina 34 is referred to as Descemet's membrane. It is a strong membrane sharply defined from the stroma and resistant to pathological processes of the coFnea- ' ~,, . ' ~ ~.

.

. . . . . ... . ..
. . .. , . , . .. . . :
, : . . , ., . ~ .: . :
. .: -. . . - .

WO91/08711 ~ PCT/~S90/07406 The endothelium 36 is the most posterior laye- of the cornea and consists of a single layer of cells. The lim~us 37 is the transition zone between the conjunctiva 38 and sclera 13 on the one hand and the cornea 12 on the other.
Referring now to Figure 5 wherein thle assembly of the basic parts of the apparatus are shown in an exploded view.
These parts comprises a cylindrical positionlng ring 50 having a resilient vacuum ring 52 extending from the botto~ side of the positioning ring for contact with the eye of the patient I0 being treated. A vacuum hose 54 provides communication from the inside of the resilient ring 52 and a vacuum pump source means 56 as a means to retain the assembled parts upon the eye for surgical procedures herein described and to remove scarified portion of the cornea. A plurality of positioning pins 58 are pro~ided on the top side of the positioning ring to receive the cylindrical holding sleeve 60, the pins being adapted to be re~eived through openings 62 in the flange portion 64. A visual inspection opening 66 is provided for use by the surgeon. The exterior of the cylindrical holding sleeve 60 includes a plurality of screw threads 68 along its length, the threads being a very fine pitch thread, e.g., of a pitch equal to 40 threads per inch. ~n indicia or marker 70 is provided in the body of the cylindrical holding sleeve so as to provide a visual measuring point for the surgeon . ;~ ;:
.:
:: :
~ ~ : '" ~., ' WO91/08711 PCr/US90/07406 ,~i3 : .

relative to the rotatable position of a micrometer-like guide s~eeve 72 which includes interior threads to match threads 6~
of the cylindrical holding sleeve. The gui~e sleeve includes an outer knob portion 74 and indicia generally designated by the numeral 76, e.g. millimeter or micrometer like markings on the lower portion of the guide sleeve. 'rhe interior 78 of the cylindrical holding sleeve is adapted to rotatably receive a profiling tool 80. The profiling tool includes a collar 82 whioh is adapted to rest upon the top surface 83 of the guide sleeve 72 for movement upwardly or downwaxdly therewith. The top end of the profiling tool can include a knurled portion 84 for rotation and/or oscillation by the surgeon. At the bottom of the profiling tool are a plurality of scarifying surgically sharp Xnife-edge blades 86 and 88 which are retained within the body of the profiling to~l 80 by pins 87, 89 and 91. The blades 86 and 88 are retained transverse to the longitudinal axis of the profiling tool 80. The blades 86 and 88 as used in the invention are of surgical steel.
The profiling tool 80 of Figure 5 is adapted to provide a scarifying or sculpting operation upon the cornea over the top center thereof for myopia refractive error, i.e., near-sightedness, which will effectively lengthen the corneal radius of curvature as shown in Figure 3.
To correct for hyperopia (far-sightedness), the profiling "

WO91/087]] ~ ~7 ~ PCT/~90/07406 tool as shown in Figure 8 is utilized, the tool having a shank 90 of similar design to tool 80 shown in Figure 5, except that the bottom end of the tool includes a plurality of surgical steel knife-edge blades 92, 94 and 96 which are positioned transverse to the axis of the tool at an angle of approximately 30 with respect to the horizontal axis (or 60 to the vertical axis). The blades are adapted to contact the outer anterior portion of the cornea in order to shorten the effective radius thereof, that is, the blades will be adapted to contact and scarify the corneal area A as shown in Figure 2 whereas the profiling tool 80 of Figure 5 will be adapted to sculpt or scarify the area B of Figure 3. ; -.

`,~'. ., '', WO9l/0871] PCT/US90/07406 r3 2 0 OPERATION
The operation of the apparatus and ~ethods of surgery are accomplished by first taking optical measurements of the eye as to what shape the cornea should have in order for that eye to operate in an optically correct manner~ i.e., correct refractive errors. Typically, a kerotograph photographic image using a placido-ring target is used. The photograph is of reflected light from the placido rings upon a standard spherical surface of the same size as the cornea in question, creating an image in the same manner as a topographic contour map. Subsequently, the topographic survey of the eye to be corrected is made for comparison purposes and to provide the surgeon with the necessary dioptic information for correcting the refractive errors. once this occurs, then the operation will proceed by placing the positioning ring 50 over the eye as shown in Figure 14. The size of this ring may vary for di~ferent operations but is preferably of size wherein the resilient vacuum ring 52 will rest upon the sclera portion of thP eye concentric about the cornea. Once the circular positioning ring 50 is in place, the cylindrical holding sleeve 60 is then positioned thereupon by the engage~ent of openings 62 with positioning pins 58. The profiling tool 80 is then inserted within the cylindrical holding sleeve 60 to a posltion where the bottom of the knife-edge blades 86 and :

, .. ., ~ , . . ~ . , W O 91/08711 PCT/~lS90/07406 88 will lnitlally contact the cornea. ~y rGtating the guide sleeves 72 in incremental amounts as dictated by the caliper or measuring scales 70 and 76, the surgeon can continue ~o increase the depth of the sculpting operation. The scarifying or sculpting of the cornea occurs by hand rotation or reciprocation of the profiling tool 80 although other mechanical or motor operated means are within the scope of this invention.
In myopic conditions, the profiling tool 80 of Figure ~
is utiliæed. During the operation, the knife-edge blades press upon the corneal surface which becomes depressecl and thus gives a larger contact surface with the blades resulting in a larger diameter of sculptured surface. The scari~ying !i or sculpting action is accentuated in proportion to the pr~ssure between the cornea and the blade. The resulting i-effect is a langthening of the refractive radius in that portion of the cornea under the blade. When the tool is removed, the cornea returns to its normal contour except that the radius over the top center thereof is now longer than it was initially. As a result, refractive light through the cornea now focuses upon the retina. The scari~ying action occurs by the surgeon in incremental movement by rotating or reciprocating the guide sleeve 72 relative to cylindrical ~holding sleeve 60 utilizing the incremental ~easuring indicia : `'. ':" .
': ' '.
''' '' ""

: .,, ,' ' WO91/08711 2 ~ PCT/US90/07406 76 relative to a pointer or other indicia 70. Typically, the guide sleeve is graduated into 25 or 50 micrometer divisions to provide one hundredth millimeter adjustments ~or each marked division of rotation. Through use, the surgeon begins to decide the amount of downward movement: needed ~o achieve the required changes in the cornea by the rotation and/or oscillation of the knives. The rotation for a period of a few seconds will result in removal of small amounts of corneal material from the cornea. The tool can be removed and/or kerotographic photographs taken to determine if the refractive error has been corrected. Since the apparatus and the surgical methods deal with vexy small increments of movement in the corneal reprofiling process, it is essential that the first contact setting be precise and accurate. Many times this can be done by visual means by the surgeon and in other instances electrical detecti~g means can be provided between the cornea and the tool blade to provide an exact setting of the tool which permits repeatable amounts of corneal removal.
The profiling.tool of Figures 9 and lO represent a modified form comprising a body 90 with an indented handle 92 and a knurled fingar knob 94. In this embodiment an internal sleeve clamp is comprised of scissor elements 96 and 98 which are pivoted at pir 10D. The outer ends of the elements are ' , ' " .

WO91/08711 ~ ~ 7 "~ ~ ~3 PCT/~'S90/0~406 grooved at 99 and l0l to provide a gripping ac~ion against the internal diameter of the tool guide or holding sleeve 60.
spring 102 normally biases the blade handles 104 and lO~
outward. Pinching the handles 104 and l0l5 inward retracts respective elements 96 and 98 so as to be able to be inserte~
into the cylindrical holding sleeve 60~ Release of th~
handles causes the elements 96 and 98 to frictionally en~ge with the internal periphery of sleeve 60. ~!-Figure ll provides an electrical indication means for the surgeon to determine the initial contact of the tool blades.
A first contact electrode ll0 is removably connected with ~he conductive tool 90. A second electrode is grounded to the patient at 112. The leads are connected to a low voltage power source 114 including an indicator lamp 116. Once the blade touches the cornea, the light will go on which provides the initial contact polnt from which downward movement measurements begin. Typically a predetermined amount o~
corneaI material is set into the tool by rotating the guide tool 72 downwardly. The rotation or oscillation of ~he profiling tool 80 then begins to change the contour of the cornea. Measurements are then taken to determine if more corneal material removal is necessary. If so, a new depth is set, and the process is repeated. The profiling tool i~
designed to be removed and replaced without cha~ging the depth ; ' ' : . .

~'091/08711 PCT/~S90/~740~
2 ~ ~ L ~ t ~4 setting of the sleeve 72. Typically the amoun~ cf de~th removal is about two thousandths of an inch (.002"). Many times it is necesary to operate in several cycles with measurements being taken after each cycle. A nomo~ram useà
with a computer generatDd set of curves of the cornea before and after each contouring procedure permits the surgeon tO
constantly monitor the amount of removal of the epithelium layer and/or in some cases portions of Bowman's layer. It has been found that the epithelium will return over the surface of the contoured portion in a period of 2~ to ~8 hours.
owever, there will be~ no xegrowth of the Bowman's laywer which will cause the changed radius to remain. The epithelium will return and regrow to its same thickness and clarity but with a changed radius.

':

' ' ~:
' .

' , WO91/08711 25 ~7-g~ PCT/~IS9o/b7406 : -TEST EXAMPLES
A series of tests have been made upon rabbit eyes and have resulted in uniform repeatable changes in corneal shape.
In these experiments the apparatus of Figure 5 and the profiling tool of Figure 8 were utilized. The rabbits were anesthetized and the pro~edure aibove desc~ibed was performed to the cornea of the animals. The following chart describes the results of the corneal changes in terms of the amount or pre and post corneal curvature change relative to the depth of the cutter setting:

RADIUS MM
CORNEA NO. PRE-CURVE POST-CURVE; BLADE-DEPTH
l 7.05 7.70 .002"
2 7.40 7.90 .002"
3 8.00 8.70 .002"
4 8.00 8.60 .00l"
7.22 7.70 .00l"
~ 7.l0 7.60 .00l"

Figures 12 and 13 represent a modified form of profiling tool blade design, shown here for correcting hyperopia, but the same concept is applicable to myopia correcting tools.
The body 120 includes a plura1ity of radially intersecting '; '~
,.
~ ' , ` . ' :. :

WO91/08711 ~ ~ 7 ~ PCT/US90/07406 blades 122. The extreme tip 124 of the sharpened end of each blade is bent at an angle prererably of 120. The bend of the edge of the blades are in alternate directions as shown by the arrows in Figure 13.
Figure 14 is an enlarged view of the positioning ring 52 as positioned on an eye forming a small vacuum pocket for maintaining the ring on the eye during surgery.

. ' . "

Claims (20)

WHAT IS CLAIMED IS:
1. A method of surgical reprofiling a cornea comprising the step of incising the anterior of said cornea to create a desired optically corrective curvature.
2. The method of claim 1 wherein said incising occurs by sculpturing.
3. The method of claim 1 wherein said incising occurs by scarifying.
4. A method of surgically reprofiling the corneal portion of an eye to change the corneal radius and thus correct refractive errors, comprising the steps of:
creating a first keratograph of a simulated cornea having correct refractive qualities, creating a second keratograph of said actual cornea, comparing said first keratograph with said second keratograph to determine an amount of refractive error, preparing a profiling tool to include at least one incising blade of shape to incise said actual cornea sufficient to change its corneal radius to that of said simulated cornea, positioning said profiling tool within a holding sleeve contiguous to said eye such that said incising blade will contact said cornea, rotating or oscillating said profiling tool; and indexing the axial movement of said profiling tool until said corneal radius has been corrected to that of said simulated cornea.
5. Apparatus for surgically reprofiling the corneal portion of an eye to a desired corneal radius and thus correct refractive errors, comprising a profiling tool, said tool having a plurality of incising blades of shape to incise said cornea to said desired corneal radius, means to rotatably or oscillatably retain said profiling tool relative to said cornea.
6. Apparatus of claim 5 including indexing means to provide indication of the axial location of said profiling tool relative to said cornea.
7. Apparatus for surgically reprofiling the corneal portion of an eye of a human to change the corneal radius and thus correct refractive errors, comprising a cylindrical positioning ring having resilient vacuum ring means on its bottom side for temporary attachment to a sclera portion of said eye and surrounding said cornea to be reprofiled, positioning pins at a top side of said positioning ring, and vacuum means communicating with said vacuum ring means: .
a holding sleeve, means at a bottom of said holding sleeve to interconnect with said positioning pins, screw threads of a given pitch formed on an exterior portion of said holding sleeve, a guide sleeve having screw threads of said given pitch formed interiorly thereof for rotatable attachment with said holding sleeve;
a profiling tool, said profiling tool adopted to be rotatably and axially received within said positioning ring, said holding sleeve and said guide sleeve, a collar means on said profiling tool to rotatably support said profiling tool upon said guide sleeve, a plurality of incisor blades at the bottom of said profiling tool of shape to sculpt the desired corrective curvature in said corneal portion.
8. Apparatus of Claim 7 wherein said incisor blades are such to effectively increase the corneal radius.
9. Apparatus of Claim 8 wherein said incisor blade comprises a plurality of radial blades, the bottom sharpened ends of which are transverse to the axis of said profiling tool.
10. Apparatus of Claim 7 wherein said incisor blades are such to effectively decrease the corneal radius.
11. Apparatus of Claim 10 wherein said incisor blades comprise a plurality of radial blades, the bottom sharpened ends of which are concave relative to the axis of said profiling tool.
12. Apparatus of Claim 7 wherein said holding sleeve is substantially transparent.
13. Apparatus of claim 7 wherein said pitch of said screw threads is between 35 to 50 threads per inch.
14. Apparatus of claim 13 wherein said pitch of said screw threads is 40 threads per inch.
15. Apparatus of claim 14 wherein said holding sleeve and said guide sleeve includes micrometer indexing means for measuring the axial movement of said profiling tool.
16. Apparatus of claim 7 including a first electrical contact connected to said profiling tool, a second electrical contact connected to said human, and an electrical power circuit means connecting said first and second contacts with a visual and/or audible indicator means.
17. Apparatus of claim 7 wherein said profiling tool includes frictional means releasably engageable with the inner periphery of said holding sleeve.
18. Apparatus for surgically reprofiling the corneal portion of an eye to correct refractive error, comprising a positioning ring having means to be temporarily attached to and surround the eye relative to the cornea to be reprofiled;
a holding sleeve having means at its bottom to be retained by the positioning ring, a guide sleeve rotatably connected to the holding sleeve;
a contouring tool adapted to be received within the holding sleeve and supported by the guide sleeve, the contouring tool comprised of means, at its bottom end, to incise a portion of the cornea necessary to correct said refractive error.
19. An implement for surgically reprofiling the anterior surface of the cornea of an eye comprising:
a tool comprising a spindle having at one end thereof, constituting its inner end, scraper blade means projecting endwise therefrom and extending outwardly from the spindle axis for scraping off portions of the anterior surface of the cornea by rotation or oscillation of the tool with the edge of the blade means in scraping engagement with said anterior surface, means for holding the spindle for rotation on its axis and for axial movement with the spindle extending at its said inner end out of said holding means, means for mounting said holding means on the cornea of an eye in fixed relation to the eye with the blade means at the inner end of the spindle in position for scraping engagement with the anterior surface of the cornea to scrape said surface in a circular pattern, and means for gauging the extension of the inner end of the spindle from the holding means to gauge the penetration of the edge of the blade means into the cornea for said scraping, said gauging means being adjustable to vary the extension of the inner end of the spindle from the holding means.
20. An implement for surgically reshaping the anterior surface of the cornea of an eye comprising:
an axial tool having at one end thereof, constituting its inner end, blade means projecting endwise therefrom and extending outwardly from the axis of the tool for correcting refractive error on the anterior surface of the cornea by rotation or oscillation of the tool with the edge of the blade means in engagement with said anterior surface, means for holding the tool for rotation on its axis and for controllable axial movement, with the tool extending, at its said inner end, out of said holding means, means for mounting said holding means on the cornea of an eye in fixed relation to the eye with the blade means at the inner end of the tool in position for engagement with the anterior surface of the cornea, and means for gauging and adjusting the axial extension of the inner end of the tool from the holding means to gauge the locus of the edge of the blade means relative to said anterior surface of said cornea.
CA002071853A 1989-12-14 1990-12-12 Method and apparatus for re-profiling the cornea Abandoned CA2071853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/450,672 US5063942A (en) 1989-12-14 1989-12-14 Method for surgically re-profiling the cornea
US450,672 1989-12-14

Publications (1)

Publication Number Publication Date
CA2071853A1 true CA2071853A1 (en) 1991-06-15

Family

ID=23789051

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002071853A Abandoned CA2071853A1 (en) 1989-12-14 1990-12-12 Method and apparatus for re-profiling the cornea

Country Status (17)

Country Link
US (2) US5063942A (en)
EP (1) EP0600859B1 (en)
JP (1) JPH05503025A (en)
KR (1) KR0156727B1 (en)
CN (1) CN1040502C (en)
AT (1) ATE180657T1 (en)
AU (1) AU646657B2 (en)
BR (1) BR9007915A (en)
CA (1) CA2071853A1 (en)
DE (1) DE69033145T2 (en)
FI (1) FI922703A0 (en)
HU (1) HUT64461A (en)
MX (1) MX167844B (en)
NO (1) NO922314L (en)
RU (1) RU2094032C1 (en)
WO (1) WO1991008711A1 (en)
ZA (1) ZA9010063B (en)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5318044A (en) * 1989-12-14 1994-06-07 Corneal Contouring, Inc. Method and apparatus for re-profiling the cornea to correct for hyperopia
US5591185A (en) * 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5269795A (en) * 1991-07-03 1993-12-14 Arnott Eric J Trephine device for removing anterior epithelial cells from corneal surfaces
AU721544B2 (en) * 1992-04-10 2000-07-06 Keravision, Inc. Corneal vacuum centering guide and dissector
JP3415838B2 (en) 1992-04-10 2003-06-09 ケラビジョン,インコーポレイテッド Vacuum centering guide and dissection device for cornea
US6450641B2 (en) 1992-06-02 2002-09-17 Lasersight Technologies, Inc. Method of corneal analysis using a checkered placido apparatus
USRE37504E1 (en) 1992-12-03 2002-01-08 Lasersight Technologies, Inc. Ophthalmic surgery method using non-contact scanning laser
US6716210B2 (en) 1992-12-03 2004-04-06 Lasersight Technologies, Inc. Refractive surgical laser apparatus and method
ATE168260T1 (en) * 1993-05-07 1998-08-15 Grieshaber & Co Ag EYE SURGICAL DEVICE FOR Crushing and removing the lens nucleus from the eye of a living creature
US5699810A (en) * 1994-11-10 1997-12-23 Pallikaris; Ioannis G. Procedure for removal of soft eye tissue
US6175754B1 (en) 1995-06-07 2001-01-16 Keravision, Inc. Method and apparatus for measuring corneal incisions
US6551307B2 (en) 2001-03-23 2003-04-22 Gholam A. Peyman Vision correction using intrastromal pocket and flap
US5964748A (en) 1995-10-20 1999-10-12 Peyman; Gholam A. Intrastromal corneal modification
US5722971A (en) * 1995-10-20 1998-03-03 Peyman; Gholam A. Intrastromal corneal modification
US6989008B2 (en) 2001-03-23 2006-01-24 Minu Llc Adjustable ablatable inlay
US6221067B1 (en) 1995-10-20 2001-04-24 Gholam A. Peyman Corneal modification via implantation
US6203538B1 (en) 1995-11-03 2001-03-20 Gholam A. Peyman Intrastromal corneal modification
US6051009A (en) 1996-02-07 2000-04-18 Hellenkamp; Johann F. Automatic surgical device for cutting a cornea and a cutting blade assembly and control assembly
US20070244496A1 (en) * 1996-02-07 2007-10-18 Hellenkamp Johann F Automatic surgical device and control assembly for cutting a cornea
US7166117B2 (en) * 1996-02-07 2007-01-23 Hellenkamp Johann F Automatic surgical device and control assembly for cutting a cornea
US6007553A (en) 1996-02-07 1999-12-28 Hellenkamp; Johann F. Automatic surgical device control assembly for cutting a cornea
US5624456A (en) 1996-02-07 1997-04-29 Hellenkamp; Johann F. Automatic surgical device for cutting a cornea
US5997529A (en) * 1996-10-28 1999-12-07 Lasersight Technologies, Inc. Compound astigmatic myopia or hyperopia correction by laser ablation
US5792160A (en) * 1997-01-21 1998-08-11 Weiss; Richard A. Epithelial remover tool
US6210169B1 (en) 1997-01-31 2001-04-03 Lasersight Technologies, Inc. Device and method for simulating ophthalmic surgery
US6030398A (en) * 1997-05-30 2000-02-29 Summit Technology, Inc. Surgical microtomes
US6143010A (en) * 1997-07-18 2000-11-07 Kera Vision Inc. Corneal vacuum centering device
FR2767054B1 (en) * 1997-08-05 1999-09-10 Khalil Hanna SURGICAL APPARATUS FOR MAKING A LAMELLAR CUT OF THE CORNEA
ES2136559B1 (en) * 1997-09-04 2000-07-01 Medina Puerta Antonio DEVICE TO MODIFY THE SHAPE OF THE CORNEA.
US5964776A (en) * 1997-09-24 1999-10-12 Peyman; Gholam A. Internal keratome apparatus and method for using the same to form a pocket/flap between layers of a live cornea
US6007202A (en) 1997-10-23 1999-12-28 Lasersight Technologies, Inc. Eye illumination system and method
US6610075B1 (en) * 1997-10-24 2003-08-26 Becton, Dickenson And Company Keratome with suspended stabilized blade, improved suction ring with applanator and guided engagement with keratome cutter head, automated translation of the cutter head, and blade insertion tool
US6132424A (en) * 1998-03-13 2000-10-17 Lasersight Technologies Inc. Smooth and uniform laser ablation apparatus and method
US5947943A (en) * 1998-02-02 1999-09-07 Lee; Frances Meiling Diaper visual indicator
US6409718B1 (en) 1998-02-03 2002-06-25 Lasersight Technologies, Inc. Device and method for correcting astigmatism by laser ablation
US6626924B1 (en) 1998-06-01 2003-09-30 Peter J. Klopotek Surgical microtomes
US6083236A (en) * 1998-08-12 2000-07-04 Feingold; Vladimir Keratome method and apparatus
US6599305B1 (en) 1998-08-12 2003-07-29 Vladimir Feingold Intracorneal lens placement method and apparatus
WO2000052516A2 (en) 1999-03-01 2000-09-08 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US6497701B2 (en) 1999-04-30 2002-12-24 Visx, Incorporated Method and system for ablating surfaces with partially overlapping craters having consistent curvature
US6544286B1 (en) * 2000-07-18 2003-04-08 Tissue Engineering Refraction, Inc. Pre-fabricated corneal tissue lens method of corneal overlay to correct vision
US7497866B2 (en) * 2000-07-18 2009-03-03 Tissue Engineering Refraction Inc. Methods for producing epithelial flaps on the cornea and for placement of ocular devices and lenses beneath an epithelial flap or membrane, epithelial delaminating devices, and structures of epithelium and ocular devices and lenses
US6613061B1 (en) * 2000-09-08 2003-09-02 Randall J. Olson Device for transplanting a cornea on a patient's eye
EP1326506B1 (en) 2000-09-12 2016-04-27 Revision Optics, Inc. System for packaging and handling an implant
US8668735B2 (en) 2000-09-12 2014-03-11 Revision Optics, Inc. Corneal implant storage and delivery devices
JP3628250B2 (en) * 2000-11-17 2005-03-09 株式会社東芝 Registration / authentication method used in a wireless communication system
US20050182488A1 (en) * 2001-04-27 2005-08-18 Peyman Gholam A. Implant and method for altering the refractive properties of the eye
US20050182489A1 (en) * 2001-04-27 2005-08-18 Peyman Gholam A. Intraocular lens adapted for adjustment via laser after implantation
US20050222679A1 (en) * 2001-04-27 2005-10-06 Peyman Gholam A Bifocal implant and method for altering the refractive properties of the eye
US20070265650A1 (en) * 2001-07-23 2007-11-15 Ioannis Pallikaris Device for separating the epithelial layer from the surface of the cornea of an eye
EP1408901A1 (en) * 2001-07-23 2004-04-21 FOS Holding S.A. Device for separating the epithelium layer from the surface of the cornea of an eye
US7156859B2 (en) * 2001-07-23 2007-01-02 Fos Holding S.A. Device for separating the epithelium layer from the surface of the cornea of an eye
US6818004B2 (en) 2001-10-24 2004-11-16 Cesar C. Carriazo Aspherical positioning ring
US6786926B2 (en) 2001-11-09 2004-09-07 Minu, L.L.C. Method and apparatus for alignment of intracorneal inlay
US7138346B2 (en) * 2001-12-20 2006-11-21 Atlas Roofing Corporation Method and composition for coating mat and articles produced therewith
US7645490B2 (en) * 2001-12-20 2010-01-12 Atlas Roofing Corporation Method and composition for coating mat and articles produced therewith
US20040002722A1 (en) * 2002-03-07 2004-01-01 Slade Stephen G. Ultrasonic microkeratome
CA2498717A1 (en) * 2002-09-13 2004-03-25 Ocular Sciences, Inc. Devices and methods for improving vision
AU2003293808A1 (en) * 2002-12-10 2004-06-30 Sightrate B.V. Disposable separator for separating the epithelium layer from the cornea of an eye
US20040260321A1 (en) * 2002-12-19 2004-12-23 Ming-Kok Tai Apparatus and method for separating the epithelium layer from the cornea of an eye without corneal pre-applanation
CA2521738C (en) 2003-04-07 2010-09-14 Bausch & Lomb Incorporated Bar-link drive system for a microkeratome
US20050046794A1 (en) 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
JP2007503225A (en) * 2003-08-21 2007-02-22 レビジョン オプティクス, インコーポレイテッド Method for keratofacia surgery
EP1689335A1 (en) * 2003-09-05 2006-08-16 Sightrate B.V. Device for separation of corneal epithelium
EP1677716A1 (en) * 2003-09-22 2006-07-12 Tissue Engineering Refraction, Inc. Corneal retention device or corneal stabilizing tool
US10835371B2 (en) 2004-04-30 2020-11-17 Rvo 2.0, Inc. Small diameter corneal inlay methods
US8900296B2 (en) 2007-04-20 2014-12-02 Revision Optics, Inc. Corneal inlay design and methods of correcting vision
US7776086B2 (en) 2004-04-30 2010-08-17 Revision Optics, Inc. Aspherical corneal implant
US8057541B2 (en) 2006-02-24 2011-11-15 Revision Optics, Inc. Method of using small diameter intracorneal inlays to treat visual impairment
US7744614B2 (en) * 2005-06-15 2010-06-29 Krishna Imports, Incorporated Corneal excision or scoring device
US10555805B2 (en) 2006-02-24 2020-02-11 Rvo 2.0, Inc. Anterior corneal shapes and methods of providing the shapes
US8162953B2 (en) 2007-03-28 2012-04-24 Revision Optics, Inc. Insertion system for corneal implants
US9549848B2 (en) 2007-03-28 2017-01-24 Revision Optics, Inc. Corneal implant inserters and methods of use
US9271828B2 (en) 2007-03-28 2016-03-01 Revision Optics, Inc. Corneal implant retaining devices and methods of use
US8202272B2 (en) 2007-07-19 2012-06-19 Avedro, Inc. Eye therapy system
US8992516B2 (en) * 2007-07-19 2015-03-31 Avedro, Inc. Eye therapy system
US8469952B2 (en) * 2008-01-23 2013-06-25 Avedro, Inc. System and method for positioning an eye therapy device
US20090187173A1 (en) * 2008-01-23 2009-07-23 David Muller System and method for reshaping an eye feature
US8409189B2 (en) * 2008-01-23 2013-04-02 Avedro, Inc. System and method for reshaping an eye feature
US9539143B2 (en) 2008-04-04 2017-01-10 Revision Optics, Inc. Methods of correcting vision
JP2012508087A (en) * 2008-11-11 2012-04-05 アヴェドロ・インコーポレーテッド Eye treatment system
WO2010115121A1 (en) * 2009-04-02 2010-10-07 Avedro, Inc. Eye therapy system
WO2010115109A1 (en) * 2009-04-02 2010-10-07 Avedro, Inc. Eye therapy system
JP2012522602A (en) * 2009-04-02 2012-09-27 アヴェドロ・インコーポレーテッド Eye treatment system
DE102010044764B4 (en) * 2010-01-27 2022-08-04 Geuder Aktiengesellschaft Device for applying a mark to the human eye
US9408746B2 (en) 2010-03-31 2016-08-09 Ocuject, Llc Device and method for intraocular drug delivery
US8469948B2 (en) 2010-08-23 2013-06-25 Revision Optics, Inc. Methods and devices for forming corneal channels
AU2012325705B2 (en) 2011-10-21 2017-07-20 Revision Optics, Inc. Corneal implant storage and delivery devices
EP2785296B1 (en) 2011-12-02 2018-06-20 AcuFocus, Inc. Ocular mask having selective spectral transmission
US9421129B2 (en) 2012-04-02 2016-08-23 Ocuject, Llc Intraocular delivery devices and methods therefor
US9504603B2 (en) 2012-04-02 2016-11-29 Ocuject, Llc Intraocular delivery devices and methods therefor
RU2536047C2 (en) * 2012-10-24 2014-12-20 Александр Николаевич Епихин Method for intraoperative correction of corneal shape in cataract extraction using small and very small incision technique and implantation of intraocular lens through self-sealing tunnel incision
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
RU2531471C1 (en) * 2013-07-04 2014-10-20 федеральное государственное бюджетное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Instrument for graduated scarification of corneal epithelium
US10064642B2 (en) 2015-03-04 2018-09-04 Covidien Lp Surgical instrument for dissecting tissue
AU2015385773A1 (en) 2015-03-12 2017-10-05 Revision Optics, Inc. Methods of correcting vision
RU2602221C1 (en) * 2015-06-18 2016-11-10 федеральное государственное бюджетное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения Российской Федерации Method of treating keratoconus and tool for its implementation

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2249906A (en) * 1938-09-03 1941-07-22 Ramon Castroviejo Surgical device
US2480737A (en) * 1948-03-08 1949-08-30 Jayle Gaetan Jean-Edward Cutting instrument particularly useful in connection with corneal grafting
US3074407A (en) * 1956-09-17 1963-01-22 Marguerite Barr Moon Eye Res F Surgical devices for keratoplasty and methods thereof
BE630556A (en) * 1962-04-03
US3976077A (en) * 1975-02-03 1976-08-24 Kerfoot Jr Franklin W Eye surgery device
US4173980A (en) * 1977-02-25 1979-11-13 Curtin Brian J Corneal resurfacing apparatus and method
US4526171A (en) * 1980-01-15 1985-07-02 Schachar Ronald A Cornea incision device
US4619259A (en) * 1980-05-09 1986-10-28 Graybill Walter R Ophthalmic surgery tool
US4688570A (en) * 1981-03-09 1987-08-25 The Regents Of The University Of California Ophthalmologic surgical instrument
US4381007A (en) * 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
US4490022A (en) * 1982-01-04 1984-12-25 Reynolds Alvin E Apparatus for corneal corrective techniques
US4423728A (en) * 1982-02-26 1984-01-03 Lieberman David M Cam-guided trephine
US4417579A (en) * 1982-04-16 1983-11-29 Moskovsky Nauchno-Issledovatelsky Institut Mikrokhirurgii Glaza Device for marking out the cornea in ophthalmosurgical operations
SU1140779A1 (en) * 1982-07-28 1985-02-23 Московский научно-исследовательский институт микрохирургии глаза Apparatus for marking eye cornea
US4729372A (en) * 1983-11-17 1988-03-08 Lri L.P. Apparatus for performing ophthalmic laser surgery
US4718418A (en) * 1983-11-17 1988-01-12 Lri L.P. Apparatus for ophthalmological surgery
US4770172A (en) * 1983-11-17 1988-09-13 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US4665913A (en) * 1983-11-17 1987-05-19 Lri L.P. Method for ophthalmological surgery
DE3433581C2 (en) * 1984-09-13 1986-08-07 Fa. Carl Zeiss, 7920 Heidenheim Device for laminating, refractive corneal surgery
US4750491A (en) * 1984-11-08 1988-06-14 Allergan, Inc. Trephine and method
US4763651A (en) * 1984-11-08 1988-08-16 Allergan, Inc. Trephine and method
US4665914A (en) * 1985-12-27 1987-05-19 Emanuel Tanne Automatic corneal surgery system
FR2595243B3 (en) * 1986-03-06 1988-07-08 Khalil Hanna KNIFE FOR SURGERY OF THE ANTERIOR EYE SEGMENT
US4724522A (en) * 1986-05-27 1988-02-09 Belgorod Barry M Method and apparatus for modification of corneal refractive properties
US4739761A (en) * 1986-06-26 1988-04-26 Grandon Stanley C Cornea marker
US4838266A (en) * 1986-09-08 1989-06-13 Koziol Jeffrey E Lens shaping device using a laser attenuator
US4840175A (en) * 1986-12-24 1989-06-20 Peyman Gholam A Method for modifying corneal curvature
DE3707004A1 (en) * 1987-03-05 1988-09-15 Krumeich Joerg H CUTTER FOR CUTTING A CIRCULAR CORNEAL DISC
US4798204A (en) * 1987-05-13 1989-01-17 Lri L.P. Method of laser-sculpture of the optically used portion of the cornea
US4947871A (en) * 1987-08-10 1990-08-14 Grieshaber & Co. Ag Schaffhausen Process the surgical correction of ametropia of one or both eyes of living beings
US4834748A (en) * 1987-09-29 1989-05-30 Allergan, Inc. Method and apparatus for removing corneal tissue

Also Published As

Publication number Publication date
FI922703A0 (en) 1992-06-11
ATE180657T1 (en) 1999-06-15
NO922314D0 (en) 1992-06-12
AU7155691A (en) 1991-07-18
HU9201978D0 (en) 1992-09-28
KR0156727B1 (en) 1998-12-15
DE69033145D1 (en) 1999-07-08
WO1991008711A1 (en) 1991-06-27
US5395385A (en) 1995-03-07
KR920702972A (en) 1992-12-17
RU2094032C1 (en) 1997-10-27
NO922314L (en) 1992-08-10
US5063942A (en) 1991-11-12
EP0600859B1 (en) 1999-06-02
JPH05503025A (en) 1993-05-27
HUT64461A (en) 1994-01-28
MX167844B (en) 1993-04-15
EP0600859A1 (en) 1994-06-15
EP0600859A4 (en) 1993-05-05
ZA9010063B (en) 1991-11-27
DE69033145T2 (en) 1999-12-09
AU646657B2 (en) 1994-03-03
BR9007915A (en) 1992-11-24
CN1053181A (en) 1991-07-24
CN1040502C (en) 1998-11-04

Similar Documents

Publication Publication Date Title
US5395385A (en) Apparatus for surgically re-profiling the cornea
EP0680298B1 (en) Apparatus for re-profiling the cornea to correct for hyperopia
US5368604A (en) Method and apparatus for surgically profiling the cornea using vacuum
US5591185A (en) Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US4961744A (en) Holder for inserting corneal curvature adjustable ring
US5188125A (en) Method for corneal curvature adjustment
US5395356A (en) Correction of presbyopia by photorefractive keratectomy
US4721379A (en) Apparatus for analysis and correction of abnormal refractive errors of the eye
EP0083494B1 (en) Apparatus for corneal curvature adjustment
US5312424A (en) Conreal curvature adjustment ring
US5505722A (en) Corneal curvature adjusting ring
US6231582B1 (en) Corneal pocketing tool
US6051023A (en) Corneal curvature adjustment ring and apparatus for making a cornea
EP0551439B1 (en) Apparatus for surgically profiling the cornea using vacuum
EP0398874B1 (en) Corneal curvature adjustment ring
AU626529B2 (en) Holder for inserting corneal curvature adjustment ring

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued