CA2071936A1 - Boronated nucleosides - Google Patents

Boronated nucleosides

Info

Publication number
CA2071936A1
CA2071936A1 CA002071936A CA2071936A CA2071936A1 CA 2071936 A1 CA2071936 A1 CA 2071936A1 CA 002071936 A CA002071936 A CA 002071936A CA 2071936 A CA2071936 A CA 2071936A CA 2071936 A1 CA2071936 A1 CA 2071936A1
Authority
CA
Canada
Prior art keywords
boronated
nucleoside
cyanoborane
borane
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002071936A
Other languages
French (fr)
Inventor
Bernard F. Spielvogel
Anup Sood
Iris H. Hall
Barbara Ramsay Shaw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boron Biologicals Inc
University of North Carolina System
Duke University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2071936A1 publication Critical patent/CA2071936A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/02Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6
    • C07D473/18Heterocyclic compounds containing purine ring systems with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6 one oxygen and one nitrogen atom, e.g. guanine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/32Nitrogen atom
    • C07D473/34Nitrogen atom attached in position 6, e.g. adenine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H23/00Compounds containing boron, silicon, or a metal, e.g. chelates, vitamin B12

Abstract

A novel class of pharmaceutically active boronated nucleosides are provided. The nucleosides are boronated at a ring nitrogen of the purine or pyrimidine or analogues thereof. Also provided are phosphate esters of these nucleosides and oligomers thereof.
Methods of making and using the boronated nucleosides are also disclosed.

Description

~u . ~J.,i~

BORONATED NUCLEOSIDES

Field of the Invention This invention pertains to novel Boron containing compounds having pharmaceutical activity.
More specifically, compounds of the present invention include nucleoside analogues having antineoplastic activity. These compounds seemingly function as antimetabolites with additional utility in Boron Neutron Capture Therapy (BNCT).
Introduction Antimetabolites are a well known class of antineoplastic agents that function by interfering with -nucleic acid sythesis and consequently, replication within the target cells. Some of these compounds structurally mimic biosynthetic precursors of the naturally occurring nucleic acids, which are essential for replication and cell survival. By replacing these precursors, but without exhibiting the same biological effect, these compounds disrupt replication resulting in the demise of the the target cell.
Many antimetabolites have significant antiviral and antitumor activity and are incorporated in a variety of therapeutic regimens. But despite the therapeutic benefits of such compounds, their use is ~' , . ,...',,~,,, ' :' . ',','. -.
:: : . ' : , ' :.
~' :.. ' ' .' . . -2071 '~fi often acco~panied by deleterious side effects, e.g.
nausea, alopecia, and bone marrow depression.
Accordingly, a great deal of in~erest has focused on synthesizing new analogues with improved therapeutic indexes.
We have recently discovered that boron containing nucleotides may be one class of improved nucleic acid analogues. Some exemplary boronated nucleotides are described in copending, commonly owned U.S. patent application Serial No. of B.
Spielvogel, A. Sood, I. Ilall, and B. Ramsay-Shaw titled "Oligoribonucleoside and Oligodeoxyribonucleoside Boranophosphates~' and filed November 30, 1989, which is incorporated herein by reference. There we describe, lS for example, boronated oligonucleotides that contain a boron functionality attached to internucleotide phosphorus.
Boron containing compounds are also useful in an antineoplastic regimen known as Boron Neutron Capture Therapy (BNCT). Soloway, A.H., Prog~ess in :
Boron Chemistry; Steinberg, H., McCloskey, A. L., Eds.;
the Macmillan Company: New York, 1964; Vol. 1, Chapter 4, 203-234. BNCT requires two components (Boron-10 and low energy thermal neutrons) for a radiotoxic reaction.
The inherent advantage is that each component can be manipulated independently to produce the desired radiation effect. Boron-10 has a high cross section for thermal neutrons and after neutron capture, the particles generated, Li & ~, are relatively large by radiation standards and thus have a relatively short track in tissue, 10-14 microns. The Boron-10 is non-radioactive and for use in BNCT, its compounds do not have to be cytotoxic towards tumor cells. Thermal neutrons have such low energy that they cannot ionize tissue components per se. Upon neutron capture, however, the energy generated is sufficient to destroy the cell. The problem in making this procedure :. : :
. .

- - :. . ~ ., , , " , , ~

v clinically effective has stemmed not from the concept, per se, but from lack of knowledge in medicinal chemistry, nuclear engineering and physics, immunology, physiology and pharmacology. The present invention arose from our continued research on new boron-containing compounds having pharmaceutical activity.
8ummary of the Invention A first aspect of the present invention is a boronated nucleoside comprising a nucleoside which is lo N-boronated on the nucleoside base with a boron-containing substituent selected from the group consisting of -BH2CN, -~H3, and -BH2COOR, wherein R is Cl to C18 alkyl. Preferably, R is Cl to C9 alkyl, and most preferably R is Cl to C4 alkyl.
A second aspect of the present invention is a boronated nucleotide comprising a 5' phosphate ester of a boronated nucleoside as described above.
A third aspect of the present invention is a boronated oligonucleotide comprising a chain of natural or modified ribonucleotides or deoxyribonucleotides, at least one nucleotide of said oligonucleotide comprising a boronated nucleotide as described above.
Nucleosides of the present invention have phar~aceutical activity, including antihyperlipidemic, antiinflammatory, and antineoplastic activity.
Nucleotides of the present invention are useful as intermediates for making oligonucleotides of the present invention. Oligonucleotides of the present .
invention are useful as antisense agents and probes.
A method for synthesizing N-boronated nucleosides of the present invention from a substrate nucleoside, which substrate nucleoside is comprised of a ribose moiety covalently bound to a nitrogenous base, is also disclosed. The method comprises:
(a) protecting the hydroxy substituents of the ribose; then , :. ,. . - : .:
: ~

~n7~

(b) boronating the nitrogenous base; and then (c) deprotecting the hydroxy substituents.
Preferably, the nitrogenous base is boronated by 5 reacting the substrate nucleoside with either polymeric BH2CN or LX, wherein L is a Lewis base and X is a boron-containing substituent selected from the group consisting of -BH2CN, -BH" and -B)~2COOR, wherein R is as given above.
The term alkyl, as used herein, refers to linear or branched alkyl groups which may be saturated or unsaturated. Preferred alkyl groups are linear and saturated.
Detailed Description of the Invention We have successfully synthesized novel boronated nucleosides that have surprising antineoplastic, antiinflammatory and antihyperlipidemic properties. The present invention provides novel pharmaceutical agents, methods for their synthesis, methods for treating patients in need of such treatment, and pharmaceutical formulations comprising such agents.
The nucleosides of the present invention comprise nucleosides having a boron-containing substituent on the base. More specifically, the present invention provides N-boronated nucleosides wherein the boronated nitrogen is a ring nitrogen of the base covalently bonded to the boron of the boron-containing substituent. The base is a purine or a pyrimidine or an analog thereoE (as discussed in detail below). A preferred group of bases are those selected from the group consisting of adenine, cytosine, guanine, inosine, and the analogs thereof.
By nucleosides we mean a purine or pyrinidine base, and analogs thereof, linked to a pentose. The pentose is preferably D-ribose, 2'-deoxy-D-ribose or 2',3'-dideoxy-D-ribose. Thus the nucleosides of the . ' ' ' ' , . ' . . .

~ n ~
~ U . _ L~ J

present invention include both naturally occurrin~
nucleosides and analogs thereof.
In the case of a purine nucleoside, boronation occurs preferentially at either the Nl or N7 position depending upon the purine. For example, when the purine is adenine, boronation occurs at the Nl position. In the case of guanine, boronation occurs at the N7 position. It is contemplated that boronation at other nitrogens on the nitrogenous bases will yield lo additional useful agents.
The nucleoside base may generally be a natural base, such as adenine, thymine, cytosine, guanine, uracil, xanthine, or hypoxanthine, (the latter two being the natural degradation products) or an analog thereof as found in, for example, 4-acetylcytidine; 5-(carboxyhydroxyl- methyl)uridine; 2'-0-methylcytidine; 5-carboxymethyl- aminomethyl-2-thiouridine; 5-carboxymethylaminomethyl-uridine;
dihydrouridine; 2'-0-methylpseudo-uridine; beta,D-galactosylqueosine; 2'-0-methylguanosine; N6-isopentenyladenosine; l-methyladenosine; l-methyl-pseudo-uridine; l-methylguanosine; l-methylinosine;
2,2-dimethylguanosine; 2-methyladenosine; 2-methyl-guanosine; 3-methyl-cytidine; S-methylcytidine; N6-methyladenosine; 7-methyl-guanosine; 5-methylamino-methyluridine; 5-methoxyamino-methyl-2-thiouridine;
beta,D-mannosylqueosine; 5-methoxy-carbonylmethyl-uridine; 5-methoxyuridine; 2-methylthio-N6-isopentenyl-adenosine; N-((9-beta-D-ribofuranosyl-2-methylthio-purine-6-yl)carbamoyl)threonine; N-((9-beta-D-ribofuranosyl- purine-6-yl)N-methyl-carbamoyl)-threonine; uridine-5-oxyacetic acid methylester;
uridine-5-oxyacetic acid (v); pseudouridine; queosine;
2-thiocytidine; 5-methyl-2-thiouridine; 2-thiouridine;
4-thiouridine; 5-methyluridine; 2'-O-methyl-5-methyluridine; and 2'-O-methyluridine. Preferred analogs are the methylated analogs.

.
.~ .

~o J ~u~J

Exemplary boronated nucleosides of the present invention are:
(A) ~uanosine-N7-cyanoborane;
(B) inosine-N7-cyanoborane;
(C) adenosine-Nl-cyanoborane;
(D) cytidine-N3-cyanoborane;
(E) guanosine-N7-borane;
(F) inosine-N7-borane;
(G) adenosine-Nl-borane; .-:
(T~) cytidine-N3-borane;
(I) guanosine-N7-carbomethoxyborane;
(J) inosine-N7-carboethoxyborane;
(K) adenosine-Nl-carbopropoxyborane;
(L) cytidine-N3-carbobutoxyborane;
(M) 2'-deoxyguanosine-N7-cyanoborane;
(N) 2'-deoxyinosine-N7-cyanoborane;
(0) 2'-deoxyadenosine-Nl-cyanoborane;
(P) 2'-deoxycytidine-N3-cyanoborane;
(Q) 2'-deoxyguanosine-N7-borane;
(R) 2'-deoxyinosine-N7-borane;
(S) 2'-deoxyadenosine-Nl-borane;
~T) 2'-deoxycytidine-N3-borane;
(U) 2'-deoxyguanosine-N7-carbomethoxyborane;
(V) 2'-deoxyinosine-N7-carboethoxyborane;
(W) 2'-deoxyadenosine-N1-carbopropoxyborane;
(X) 2'-deoxycytidine-N3-carbobutoxyborane; ~ .
(Y) 2',3'-dideoxyguanosine-N7-cyanoborane;
(Z) 2',3'-dideoxyinosine-N7-cyanoborane;
(AA) 2',3'-dideoxyadenosine-Nl-cyanoborane;
(A3) 2',3'-dideoxycytidine-N3-cyanoborane;
(AC) 2',3'-dideoxyguanosine-N7-borane;
(AD) 2',3'-dideoxyinosine-N7-borane;
(AE) 2',3'-dideoxyadenosine-Nl-borane;
(AF) 2',3'-dideoxycytidine-N3-borane; -(AG) 2',3'-dideoxyguanosine-N7-carbomethoxyborane;

.
.:,. - - : . :
: , - ',: . .~ ~ ' - ' : , , ' ' :, . .

.

207~9~fi (AH) 2',3'-dideoxyinosine-N7-carboethoxyborane;
tAI) 2',3'-dideoxyadenosine-~11-carbopropoxyborane; and S tAJ) 2~3~-dideoxycytidine-N3 carbobutoxyborane.
Particularly preferred boronated nucleosides are: 2'-deoxyguanosine-N7-cyanoborane, 2'-deoxyinosine-N7-cyanoborane, 2'-deoxyadenosine-Nl-cyanoborane, and lo 2'-deoxycytidine-N3-cyanoborane.
The nucleosides of the present invention further comprise 5'-phosphate esters of the N-boronated nucleosides described herein, such phosphate esters are also known as nucleotides. Such nucleotides, particularly the monophosphates, are protected in conventional manner and used for the synthesis of oligonucleotides, as discussed below. Such phosphate esters include 5' mono-, di- and triphosphates, which may be protected as esters. Additionally, molecules and macromolecules comprising multimers of two or more nucleosides, which may be linked via a 3'-5' phosphate ester, e.g. oligonucleotides (the terms "oligonucleotides~ and "polynucleotides~ being used interchangeably herein), and comprising one or more N-boronated nucleosides are also the subject of the present invention. Accordingly, N-boronated nucleotides, oligonucleotides, and polynucleotides may be used as therapeutic agents and otherwise useful reagents, e.g. diagnostic reagents.
Oligonucleotides of the present invention can be synthesized in accordance with methods that are well known in the art. Such methods include the phosphite method and the phosphotriester method. 1 Chemistry of Nucleosides and Nucleotides, 294ff (L. Townsend ed.
1988). ~he length of the oligonucleotide is not :i critical, as modern synthetic techniques and splicing techniques have made synthetic oligonucleotides of :. . ' .,;, . : , , .

~ u J ~

considerable length feasible. Thus, the oligonucleotide may for example be 2 to 3 nucleotides long, 2 to 18 nucleotides long, 2 to 30 nucleotides long, 2 to 50 nucleotides long, or 50 or more S nucleotides long.
Oligonucleotides containing N-boronated bases may alternatively be prepared, with boronation occur~ng randomly, in essentially the same manner as the nucleoside, but with an oligonucleotide substituted for lo the nucleoside. For example, in such a reaction, the 3' terminus of the oligonucleotides may be immobilized to a solid support (e.g., controlled pore glass), the 5' terminus protected as the dimethyltrityl ether, and amino groups on bases protected with isobutyryl groups.
Oligonucleotides used for such a reaction preferably contain at least one base which is not thymidine or a thymidine analog, as these are less preferred bases for boronation.
Derivatives of the oligonucleotides and polynucleotides may additionally be formed by modifying the internucleotide phosphodiester linkage.
Internucleotide phosphodiester linkages in the chain are modified, for example, to the methylphosphonate, the phosphotriester, the phosphorothioate, the phosphorodithioate, and the phosphoramidate, all as is known in the art.
Additional synthetic analogues of the nucleosides, nucleotides, and oligonucleotides of the present invention may be formed by otherwise modifying the 3' or 5' end of the nucleoside, and any 2' hydroxyl groups. Groups that can be added to the 3' or 5' end vary widely, from relatively inert protecting groups to 1~^
reactive groups or groups with special properties to obtain desireable physical, chemical, or biochemical effects.
A wide variety of protecting groups can be substituted on the 2', 3', and 5' hydroxy groups, such .

!

207193~

as the triphenylmethyl (trityl) group and its derivatives on the 5' hydroxy group, and acetyl, ~enzo~l, or the 3'-O-succinyl group on the 3' hydroxy gro~p, as is known in the art. See 1 Chemistry of rJucleosides and Nucleotides, 287-92 (L. Townsend ed.
1988). In general, the 5' hydroxy group is protected with an acid labile group and the 3' hydroxy group is protected with an acyl group. Id. at 289 (When the 5' hydroxyl group is protected with an acid labile group lo such as mono- and dimethoxytrityl, the 3'-hydroxyl group of deoxynucleosides can be protected with acyl groups.). ~n general, a 2' hydroxy group is protected as a methyl ether, protected with a silyl group, or the 2' and 3' hydroxy groups may be protected together as an acetal.
Reactive groups or groups with special properties may also be attached at the 3' or 5' position. For example, analogs may be formed by joining an intercalating agent to oligonucleotides and polynucleotides in the manner described in U. S. Patent No. 4,835,263 to Nguyen et al. (the disclosure of this and all other patent references cited herein is incorporated herein by reference).
The present invention also provides methods for preparing the compounds of the present invention.
The boronation of a nucleoside is accomplished by first preparing a hydroxy- protected nucleoside. Protecting groups and methods for their use are well known in the art. See, Carey and Sundberg, Advanced Orqanic Chem i try. Part B, pp. 408-414 (1980). Preferred protecting groups are organosilanes, e.g., chlorotriisopropyl silane will form the triisopropyl silyl ether.
As an example, the nucleoside is 0-protected by forming a silyl ether by reaction with excess chlorotriisopropyl-silane at room temperature in the presence of imidazole. The exchange reaction is ' ' ' ' ' `' : .. , ::

effected by reacting the O-protected nucleoside with an organoborane. The organoborane is generally either polvmeric B~2C~ or a compound LX, wherein L is a Lewis base and X is a boron-containing su~stituent as given above. Suitable Lewis bases include amine, phosphine, sulfide, and ether (e.g., tetrahydrofuran). The strength and steric properties of the Lewis base should be chosen so as to provide a suitable leaving group.
Exemplary organoboranes include aniline-cyanoborane, 1~ triphenylphosphine-carboalkoxyboranes (wherein the alkoxy group alkyl is R as given above), dimethylsulfide-borane, and tetrahydrofuran-borane. A
preferred orqanoborane is triphenylphosphine-cyanoborane, in which case the resulting product is an O-protected ribonucleoside N-cyanoborane. The exchange reaction is effected by reaction in anhydrous tetrahydrofuran (THF) at reflux temperature using two ~ -equivalents of triphenylphosphine-cyanoborane. The reaction is at equilibrium in two to three hours.
The resulting O-protected N-boronated ribonucleoside is deprotected by appropriate methods -known in the art. For example, when protected by formation of a silyl ether, deprotection can be effected under hydrolytic or nucleophilic conditions.
In our preferred case the silyl ether is effectively removed under hydrolytic conditions in the presence of fluoride ion, e.g., tetra-n-butylammonium fluoride.
The compounds of the present invention have pharmaceutical activity and are useful in treating mammals (e.g., human, cat, dog, cow, horse, mouse) suffering from one or more of several maladies. These compounds show pharmaceutical activity in killing cancer cells in_vitro, and may be useful in combatting corresponding tumors in vivo. For example, the compounds of the present invention show cytotoxic activity against colorectal carcinoma, adenocarcinoma, osteosarcoma, breast carcinoma and glioma.

.. .
. .

Accordingly, the compounds of the present invention provide a method for treating a tumor bearing mammal comprising administering to said mammal a therapeutically effective amount of a boronated S nucleoside of the present invention. Furthermore, it is contemplated that the antineoplastic efficacy of these compounds can be improved or supplemented by the conjoint administration with other known antineoplastic agents, as, for example, in a combination chemotherapy lo regimen. Exemplary of such other known antineoplastic agents are: vinca alXaloids such as vincristine, vinblastine, and vindesine; epipodophyllotoxins such as etoposide and teniposide; anthracycline antibiotics such as daunorubicin, doxorubicin, mitoxantraone, and bisanthrene; actinomyGin D; and plicamycin.
In addition to the direct inhibition of tumor growth, the preferential localization of boron compounds in the neoplasm of tumor cells will allow the use of boron-10 neutron capture therapy (BNTC) for the ~ -destruction of tumor cells. Moreover, the dual effect of this therapeutic regimen may lower the therapeutically effective amounts of the pharmaceutically active agents, and thereby reduce the ~-deleterious side effects that often accompany the use of such agents. Thus, the present invention also provides methods for treating tumor-bearing mammals in which the mammal is administered a boronated nucleoside as described herein and then exposed to thermal neutron radiation. The thermal neutron radiation is administered in an amount and in a manner effective for 10B located in a tumor by virtue of the administration of the compound of the present invention to the subject to capture a neutron, decay, and release an alpha particle in cells of the tumor.
The compounds of the present invention also have pharmaceutical activity as antiinflammatory agents in mammals. The compounds of the present invention : .

~v ,i~

provide a method for treating a mammal suffering from inflammation comprising administering to said mammal a therapeutically ef~ective amount of an N-boronated nucleoside. The compounds o~ the present invention may provide additional utility when conjointly administered with other known antiinflammatory agents or pain killers or some such pharmaceutical. Exemplary of other known antiinflammatory agents are acetylsalicylic acid (asprin), salicylic acid, diflunisal, phenylbutazone, oxyphenbutazone, antipyrine, aminopyrine, dipyrone, apazone, acetaminophen, indomethacin, sulindac,meclofenamate, tolmetin, zomepirac, ibuprofen, and piroxicam.
The compounds of the present invention are useful as hypolipidemic agents. The compounds of the present invention provide a method for treating a mammal suffering from hyperlipidemia comprising administering to said mammal a therapeutically effective amount of an N-boronated nucleoside.
Additionally, the compounds of the present invention provide a method for treating a mammal suffering from hypercholesterolemia comprising administering to said mammal a therapeutically effective amount of an N- -boronated nucleoside. ~y administering these compounds to hyperlipidemic patients the total lipoprotein level may be reduced or the lipoprotein profile may be improved. Furthermore, these compounds may be con~ointly administered with other known hypolipedemic agents to enhance or supplement their efficacy.
Exemplary of such other ~nown hypolipidemic agents are nicotinic acid, clofibrate, gemfibrozil, probucol, cholestyramine, colestipol, compactin, mevinolin, choloxin, neomycin, and beta-sitosterol.
The compounds of the present invention may be administered in any of the variety of modes currently employed for analogous pharmaceutical agents, which modes are well known in the art. For example, these .

` ~

.

~ n ~

compounds may be administered systemically. Systemic administration includes parenteral administration and gastro-enteral administration.
When prepared in a pharmaceutical formulation for parenteral administration the compounds of the present invention should be prepared in a pharmaceutically acceptable carrier such as substantially non-pyrogenic, sterile, parenterally acceptable, aqueous solutions.
Alternatively, the compounds of the present invention may be formulated in pharmaceutical preparations for gastro-enteral administration. Such pharmaceutical preparations include tablets, capsules and suppositories. When formulated for administration according to any of the above methods the pharmaceutical preparations may further comprise buffers, binders, and other pharmaceutically acceptable excipients as are well known in the art.
A therapeutically effective amount of a boronated nucleoside is in the range of about 0.1-100 mg/kg/day. The preferred range is about 0.5-50 mg/kg/day. More preferred is an amount in the range of about 1-10 mg/kg/day. When administered conjointly with other pharmaceutically active agents even less of the boronated nucleoside may be therapeutically effective.
The oligonucleotides of the present invention may be used as probes in a variety of diagnostic techniques. One such diagnostic technique is Magnetic Resonance Imaging (MRI). MRI is a noninvasive technique used to detect the presence and location of tumors in a patient. For example, as contemplated in the present context, cancer cell specific boronated compounds are administered to a patient, whereupon they concentrate in cancerous tissue. The MRI instrument is capable of detecting and locating regions of abnormal concentrations of Boron. By indicating the regions .. . . . . ...
: . :.......... . ~
; . ~

2'~ n~
~J ~ ., V .J

havinq high relative concentrations of Boron, MRI
establ ishes the presence and location of tumors.
Another diagnostic application of the oligonucleotides of the present invention is their use as molecular probes. By incorporating N-boronated nucleosides, or their 5'-phosphate esters, into an oligonucleotide, either at an interior or terminal position, a detectable oligonucleotide probe is constructed that can be used to detect the presence of complementary sequences of DNA or RNA in a sample.
These probes can be used in any suitable environment, such as Southern blotting and Northern blotting, the details of which are known. See e.g., R. Old and S. Primrose, Principles of Gene Manipulation, 8-10 (3d Ed. 1985). When used as probes, the boron atom serves as a radiolabel, though it is not itself radioactive until exposed to thermal neutron radiation (low energy neutrons). When exposed to low energy neutrons, IB absorbs a neutron and forms IlB, which rapidly decays and releases an alpha particle, thus providing a detectable signal. The techniques involved in the generation of the alpha particle are known. See. e.~., A. Soloway, Borax Rev. 3, 7-9 (1988).
Oligonucleotides of the present invention which are capable of binding to polyribonucleic acid or polydeoxyribonucleic acid are useful as antisense agents in the same manner as conventional antisense agents. See gene~allv Antisense Molecular Biology and S-oligos, Syntkesis 1 (Oct. 1988) (published by Synthecell Corp., Rockville, MD); 2 Discoveries in Antisense Nucleic Acids (C. Brakel and R. Fraley eds.
1989). Antisense agents of the present invention may be used by contacting an antisense agent which is capable of selectively binding to a predetermined polydeoxyribonucleic acid sequence or polyribonucleic acid sequence to a cell containing such sequence (e.g., .
. . . . .
.: . . -; . , . .
: . . ., ~.: . ;
.. . : . ~ -. : .
' ::
:. , :.. :: . ...

9 0 / ~ 7 4 4 6 -15- lP ~ Us 0 6 JAN 1992 by adding the antisense agent to a culture medium containing the cell) so that the antisense agent is taken into the cell, binds to the predetermined sequence, and blocks transcription, translation, or S replication thereof. The requirements for selective binding of the antisense aqent are known te.g., a length of 17 bases for selective binding within the human genome).
The present invention is explained in greater detail in the following non-limiting examples.
~..
EZAMP~E I
A. 8vnthesist of 2'-Deox~ribonucleoside-N-Cvanoboranest 8c~eme 1 5 ~8 ~/~B ' H~/~B

Ph3F~H2a~\ / Bu,~F \ /
THF/Renux\J THF/RT \~/

R . Si(CH~CH3)2)3 8 . Gua (a), Ino (b), Ado (c). Cyt (d) or Thy (9) :~S ~ NII ~N~ </~IN~

~ ~ ~ .
Gua-Ino- Ad 9 C y t Cyanoborane adducts of 2'-deoxynucleosides, for example, 2'-deoxyguanosine-N7-cyanoborane t3a), 2'-deoxyinosine-N7-cyanoborane (3b), 2'-deoxyadenosine-Nl-cyanoborane (3c), and 2'-deoxycytidine-N3-cyanoborane (3d), were prepared by an exchange reaction of -- SUBSTITUTE- SHEET

. ;-. .` ~. -.

.

.. ..

2071 9~fi triphenylphosphine-cyanoborane (Ph,PB~{2CN) with 3', 5'-0-protected nucleosides. The 3'- and 5'-~ydroxy groups were protected as silyl ethers by reaction with excess chlorotriisopropylsilane at room temperature in DMF in the presence of imidazole. The exchange was carried out in anhydrous THF at reflux temperature using 2 equiv of Ph3PBH2CN. No increase in the amount of product could be observed (by TLC) after 2-3 hours.
The major products were purified by flash chromatography. Yields can be expected to be approximately 72% for the guanine derivative (2a), 59%
for the adenine derivative (2c), 46% for the cytosine derivative (2d), and 26% for the hypoxanthine derivative (2b). While the first three adducts were readily purified, 2b was obtained only in ca. 95%
purity (by IHNMR). We have as yet been unsuccessful in preparing the boron-substituted thymidine derivative from le by exchange reaction with Ph,PBH2CN.
Deprotection of boronated nucleosides 2a-d with tetra-n-butylammonium fluoride (Bu,NF) to give 3a-d was complete within 0.5 h. Purification was achieved by flash chromatography, followed by crystallization -from MeOH/Et20. Satisfactory (within plus or minus 0.25S) C, ~l, N analyses were obtained for the final compounds. The yields ranged from 44% for 3d to 55%
for 3b.
The site of boron coordination was determined by l5N NMR spectroscopy on a JEOL FX9OQ instrument. No peak was observed for the cooordinated nitrogen (in ~oth coupled and decoupled spectra) due to quadrupole broadening by boron. The absence of peaks for N7 of Gua* and Ino*, Nl of Ade*, and N3 of Cyt* established these to be the sites of ~H2CN coordination. When 15N
NMR spectra of 2a and 2d were obtained on a GE GN500 system, the above quadrupole effect was not observed.
In this case, upfield shifts of-56.6 ppm for N7 of Gua*
and 50.1 ppm for N3 of Cyt* confirmed the assignments.

: .
. ' ~ .

207193fi The shifts upon boronation are qualitatively similar to but lower than those observed upon protonation (ca.65-70 ppm). The coordination site in Gua~ and Ino~ is away from the sites required for Watson-Crick base ~-pairing and should not affect pairing to a large extent. Variable-temperature IH NMR studies on the Gua*-Cyt base pair indeed show the ~ bonding to be approximately as strong as in a normal Gua-Cyt base pair. The coordination at Nl in Ade* and N3 in Cyt~, -o however, should completely disrupt the base pairing, and if incorporated into DNA, these nucleosides may lead to inhibition of replication.
By HPLC, compounds 3a, 3b, and 3d in aqueous medium (0.01 M ~EAAc) are >94% stable over a period of 168 h. Compound 3b, however, is >50% decomposed during this period. The good stability of 3a, 3c, and 3d in aqueous medium makes these compounds suitable for pharmacological testing.

~. Experimental (1). ~, 5~-o-Biq ~triisopropy~silyl)-2~-deoxynucleosides- 2'-Deoxynucleoside [In the case of 2'-deoxycytidine, the hydrochloride was used with an additional equivalent of imidazole] (19.90 mmol) and excess imidazole (96.36 mmol) were taken in anhydrous dimethylformamide (55 ml) under inert atmosphere.
Chlorotriisopropylsilane (51.33 mmol) was added to this mixture and it was stirred at room temperature for 24 ' h. After dilution with diethylether (90 ml), it was washed with a saturated solution of sodium chloride (5 x 80 ml). The organic layer was filtered to remove any suspended solid, dried over anhydrous sodium sulfate and solvent was removed under reduced pressure to give crude product. Purification was achieved by flash chromatography on silica gel using a mixture of solvents (vide infra). The products were characterized :- . . . :

. ~
- , ;

~ n r~
~ . . ~J

by IH nmr, l3C nmr, ~5N nmr, infrared and FAB mass spectroscopic tecllniques.
(la). 3', 5'-0-Bis(triisopropylsilyl)-2'-deoxyguanosine: Purification solvent :
dichloromethane/acetone (6:4); yield = 88.6~; Mp =
decomp above 181-C.;
(lb). 3', 5'-0-Bis(triisopropylsilyl)-2'-deoxyinosine: Purification solvent:
dichloromethane/acetone (6:4); Rf = 0.33; yield =
72.7%; Mp = 158 - 160-C with prior shrinking between 63-sO-c.
(lc). 3', 5'-0-~is(triisoproylsilyl)-2'-deoxyadenosine: Purification solvent :
dichloromethane/acetone (8.5:1.5); Yield = 46.8~; Mp =
130.5 - 131.5-C.
(ld). 3', 5'-Bis-(triisopropylsilyl)-2'-deoxycytidine: Purification solvent :
dichloromethane/acetone (4:6); Rf = 0.33; yield =
83.7%; Mp = 102-C with prior shrinking and color change from white to transparent.
l2). 3'. 5 ~-o-~i9 (triisopropyl)-2'-deoxynucleo~ide- -cyanoborane adaucts: 3', 5'-0-Bis(triisopropylsilyl)-2'-dexoxynucleoside and triphenylphosphine-cyanoborane (2-fold) were taken in anhydrous THF under inert atmosphere and were heated at reflux. After ca 2-3 h, no further change in the ration of product to the starting material could be observed by tlc. The mixture was heated an additional hour, allowed to cool and the solvent was removed under reduced pressure.
The residue was taken in diethyl ether, filtered and the solid was repeatedly washed with diethyl ether.
The filtrate and the washings were concentrated and the crude product was purified by flash chromatography.
The products were characterized by 'H nmr, IlB nmr, ~'C
nmr, "N nmr, infrared and FAB mass spectroscopic techniques.

'- ' ' " ~'., ;'' -' , :' , .
.
, 2 ~ n ^ ,---19-- .
(2a). 3',5'-0-Bis(triisopropylsilyl)-2'-deoxyguanosine N7-cyanoborane: Purification solvent :
dichloromethane/ aceto~e (8:2); yield = 72.1%; Mp =
170-171-C.
(2b). 3', 5'-0-8is(triisopropylislyl)-2'-deoxyinosine-N7-cyanoborane: Purification solvent :
dichloromethane/ acetone (7.5:2.5); Rf = 0.43; yield =
26.2%; contains ca 5% impurity.
(2c). 3', 5'-0-Bis(triisopropylsilyl)-2'-lo deoxyadenosine-Nl-cyanoborane: Purification solvent :
hexane/ethyl acetate (6:4); yield = 58.6%; Mp = 132.5 -133.5, melts with decomposition.
(2d). 3', 5~-0-Bis(triisopropylsilyl)-2~-deoxycytidine-N3-cyanoborane, 2d : Purification solvent : dichloromethane/acetone (9.25:0.75); Rf = 0.40; yield = 45.9%; Mp = 164-165-C.
3. 2'-Deoxynucleoside-cyanoborane adducts:
To a solution of 3', 5'-0-bisttriisopropylsilyl)-2'-deoxynucleoside-cyanoborane adduct (ca 1 g.) in tetrahydrofuran was added tetrabutylammonium fluoride (2 equivalent of 1.1 M solution in tetrahydrofuran). ~-The mixture was stirred at room temperature. After complete reaction (ca 0.5 h), the solvent was removed under reduced pressure. The residual oil was taken in diethyl ether (2 x 50 ml), stirred for a minute, allowed to stand for 5 minutes and then the ether was decanted. The residue was partially purified by flash chromatography on silica gel using dichloromethane/ ;
methanol (8.5:1.5). Fractions containing the desired product were concentrated and the still impure product was finally purified by crystallization from methanol/Et20. The products were characterized by IH
nmr, IIB nmr, ~C nmr, infrared and FAB mass spectroscopic techniques and elemental analysis.
Yields of 45% and better are obtained.
(3a). 2'-Deoxyguanosine-N7-cyanoborane:
yield = 45.5%; Mp = decomp. above 198-C.

~ ~ . . . .

. ~

' :,' ' ':: - ; ' '; : , .

207193~

(3b). 2'-Deoxyinosine-N'-cyanoborane: yield =
54.7~; Mp = decomp. above 173-C.
(3c). 2'-Deoxyadenosine-N1-cyanoborane:
yield = 47.3~; Mp = decomp. a~ove 150-C.
(3d). 2' Deoxycytidine-N3-cyanoborane: yield = 44.3%; Mp = decomp. above 144-C.

EXAMPLE II

Cytotoxic Actlvitv In studies on the antitumor activity, these lo compounds, particularly 3c and 3d, showed potent activity in, among others, the T molt-3 and human colorectal adenocarcinoma screens. More specifically, the cytotoxic activity of the boron adducts of the present invention was tested on the following neoplastic cell lines:
1. L1210 lymphoid leukemia cells, R.
- Geran et al., Cancer Chemotherapy Reports 3, 7 (1972).(grown in RPMI + 15% FBS +
antibiotics).
2. Tmolts acute lymphoblastic T cell leukemia, S. Schreiber and N. Ikemoto, Tett.
Lett 29, 3211 (1988) (grown in RPMI - 1640 +
10% FBS).
3. Colon adenocarcinoma SW480 human colorectal carcinoma. A. Leibovitz et al., Cance~ Res. 36, 4562 (1976) (grown in LlS +
10% FBS).
4. Lung bronchogenic MB-9812, S.
Aronson et al., Expt. Cell Res. 61, 1 (1970) (grown in EMEM + 10% F8S + NEAA).
5. Human Osteosarcoma TE418. H. Smith et al., Int J._Cancer 17, 219 (1976) (grown in DMEM + 10% FBS).
6. KB epidermoid oral nesopharnyx. R.
Geran, su~ra; H. Eagle, Proc. Soc. Expt.

, ' 207193~

Biol~ 89, 362 (1955)(grown in EMEM + 5~ calf serum).
7. ~lela-S, A~CC-CCL 2.2, cervical carcinoma suspended, S. Schreiber and N.
I~emoto, su~ra; T. Puck et al., J. Exp. Med.
103, 273 (1956) (grown in Joklik + 5% FBS, Ham's Fl2 + 5~ FBS).
8. Breast carcinoma MDA MB157,W.
Nelson-~ees et al., Int J. Cancer 16, 74 (1975) (grown in EMEM + 10% FBS + NEAA).
9. ~uman glioma cell EH 118 MG
transformed stain of Rous sarcoma virus, J.
Lutton et al., J. Biol. Chem. 254, 11181 (lS79) (grown in DMEM-H + 10% FCS).
The cytotoxic screens were conducted ~-according to NIH protocols, see E. Huang et al., J.
Pharm. Sci. 61, 108 (1972), with 10' cells, growth medium, antibiotics and drugs from 0.5 to 100 ~g/ml final concentration. For the L1210, l~ela-S, amd Tmolt, (i.e. the suspended cells), the incubations were conducted in sterile test tubes in a final volume of 1 ml for 72 hr at 37 C in a CO2 incubator. The cells on -the third day were still in log growth phase. The number of cells/ml are determined using trypan blue exclusion and a hemocytometer. See. e.g., R. Geran, sup~. For solid tumors there is plated out in wells 1 x 10' cells with 1 ml of medium + antibiotics and the other components of growth. When the controls have converged (~95%) then the density of the cells is estimated and the ED,o values calculated. These structures are given in Table I below, and these data are given in Table II below.

. . .

TABLE I

8tructure of_Compounds Deox~ribose Nucleoside 8ase 3' 5' -I - 7 3b Ino OH OH H BH2CN
2b InoSi(CH(CH,)2)3 Si(CH(CH,)2), 1{ 8H2CN
3a Gua OH OH ~{ BH2CN
102a GuaSi(CH(CH3) 2) ~ Si (cH(CH3) 2) 3 H BH2CN
3c Ade OH OH BH2CN H
2c AdeSi(CH(CH3) 2) 3 Si(~(C}I,) 2) 3 BH2CN 1l N~
3d Cyt OH OH BH2CN --152d CytSi(CH(CH3)2)3 Si(CH(CH3)2)3 BH2CN __ 4. CytH Si(CH(CH3) 2 ) 3 BH2CN - -TABLE II

Cytotoxicity of Boron Adductq of ribonucleosides Adeno Lung Carci- Bron- Osteo noma cho- sar-C~d. L1210 P388 Tmolt SW480 KB qenic Hela-S coma Glioma 3b 4.00 7.21 1.73 3.86 3.45 4.93 2.41 7.28 8.49 2b 4.00 7.31 6.49 2.57 5.29 6.20 3.26 NA 6.21 3a 5.08 5.87 2a 6.05 5.13 2.26 2.67 2.67 4.05 2.83 7.20 7.61 3c 3.68 5.96 1.36 2.82 3.12 5.26 2.35 7.39 6.88 2c 6.86 7.46 1.88 2.87 5.79 5.58 3.42 NA 4.99 3d 2.61 3.17 1.13 2.96 5.46 3.73 3.37 4.63 4.39 --2d 4.78 7.26 3.36 2.73 5.72 6.60 2.94 NA 6.77 4. 2.92 -- 2.34 2.71 4.07 5.58 3.63 6.62 3.~3 2n7~ 9~

EXAMPLE IlI
AntihyperliDidemic Activitv Compounds to be tested were suspended in 1%
aqueous carboxymethylcellulose, homogenized and administered to male CF~ mice (25 g) intraperitoneally for 16d. On days 9 and 16, blood was obtained by tail vein bleeding, and the serum was separated by centrifugation for three minutes. The serum cholesterol levels were determined by a modification of the Liebermann-Burchard reaction in accordance with known techniques. See A. Ness, et al., Clin. Chim.
Acta 10, 229 (1964). Serum triglyceride levels were determined with a commercial kit, the Fisher llycel Triglyceride Test Kit, for a different group of animals bled on day 16. The results of these antihyperlipidemic screens, for a compound dose of 8 mg/kg, are shown in Table III below.

EXAMPLE IV
Anti-Inflammatory Activity CF, male mice (-25 g) were administered test drugs at 5-40 mg/kg in 0.05% Tween 80-H20 intraperitoneally 3 hours prior to and 30 minutes prior to the injection of 0.2 ml of 1% carraqeenan in 0.9%
saline into the plantar surface of the right hind foot.
Saline was injected into the left hind foot, which serves as a base line. After 3 hours, both feet were excised at the tibiotarsal (ankle) joint according to standard procedures. See C. Winter et al., Proc. Soc.
Expt. Biol Med. 544, 111 (1962); A. Roszkawski et al., J._Pharm. Exp. Ther. 179, 114 (1971). Control mice afforded a 78+3 mg increase in paw weiqht. Data on the percent inhibition of the inflammatory response for a dose of 8 mg/kg are reported in Table III below.

.
. . . .. ..
'' , : ' . - ~ ' , .~

. ' . ~ . , .
.~; :' ' TA~LE III

Antiinflammatory and }Iypolipidemic ~ctivities of ~oron-Containinq Nucleo~3ide~3 Antiinflammatory llvpolipidemic Cholesterol Triglyceride Activity at Inhibition at Inhibition at 8 mg/kg/day 8 mg/kg/day 8 mg/kg/day Compo~lnd ~ inhibition % inhibition % inhibitlon 3a 22 44 37 lo 3b 25 19 30 3c 22 44 37 3d 52 38 23 Standard 47 (phenyl- 13 (clofib- 2S
butazone) rate at 130 mg/
~g/day)n EXAMPLE V
A. Synthesis of oligomers ~cheme II
G' G^^
20DMT--o~o ¦ DMr~)~l~o I DI~T-O ~0 H\f~H m l ~ 201- Hr\~ H ~ nDu ~ NE' H I~ ir~3Sio H lPr]Sl IllU

G^^ G'' DI~T - C~ ~¦ C l P I O~le l N I r ~ 2 ~ ~¦ . -H\ j~/H l~\~H
HO HMcO - I ~ ~ 11 r 1 ~ lll 2C~
IcH3)2cllc~-C~N~ (Cll3) 2CIICN - l T ~

Step 1 Preparation of 5'-DMT-3'-TIPSI-N2-isobutyryl-2'-deoxyguanosine.

: . . . . . ~ - :

.' , 2~n ~
,, , ~ ~

Starting nucleoside I (930 my) and imidazole (1.188 g) were dissolved in 10 ml anhydrous DMF under Argon. To this was added chlorotriisopropylsilane (1.5 ml) and the mixture was stirred at room temperature.
TLC (C~Cl2/MeO~I 9:1) after 1 hour indicated very little reaction. The mixture was allowed to stir for 22 hours. TLC of the reaction mixture (CH2Clz:MeOH:
[:9.5:0.5]) showed only a trace amount of starting material left. The mixture was stirred for another 2 hours, diluted with Et20 (30 ml) and washed with saturated NaCl (4x20 ml). The Et20 layer was dried and the solvent was removed in vacuo. The residue was purified by flash chromatography using Cll2Cl2:MeOH
(9.6:0.4). Yield = 671 mg. II

Step 2: Preparation of 5'-DMT-3'-TIPSI-N2-isobutyryl-2'-deoxyguanosine-N3-cyanoborane.
A mixture of starting nucleoside II (0.455 g) and Ph3PBH2CN (1:2 ratio respectively) in anhydrous THF
(35 ml) under argon was heated at reflux for 3 hours.
The reaction mixture was cooled in ice and then the solvent was removed in vacuo. The residue was purified , by flash chromatography on silica gel using CH2Cl2:Acetone (9.5:0.5). Fractions 24-60 (=20 ml each) contained pure product and were combined. The solvent was removed under reduced pressure. Yield = 0.163 g.
III

Step 3: Preparation of 5'-DMT-N2-isobutyryl-2'-deoxyguanosine-N~-cyanoborane.
Startinq nucleoside III (0.163 g) was ,~
dissolved in THF. To this was added 1 equivalent of n8u~NF (l.lM solution in THF) and the mixture was stirred at room temperature. After 40 min. the reaction was checked by TLC (CH2Cl2:MeOH [91:9]), which indicated that only a small amount of starting material had reacted to give the product. After 2~ hours, TLC

, - , , , ~ , : :

- ~: .. ..
-' ~' ' . .' ' ~ .

~ V ~ 0 s~owed an increase in amount of product, but starting material was th more intense spot. After 4~ hours, TLC
was similar to that after 2~ hours so another 180 ~1 of nBu,NF was added and the mixture was stirred at r.t. for qO min. TLC of the reaction mixture indicated almost complete reaction. The solvent was removed from the reaction mixture under reduced pressure. The residue was purified by flash chromatography on silica using C~zCl2:MeOH (9.4:0.6). Yield = 110 mg. IV.

lo Step 4: Preparation of N2-isobutyryl-5'-DMT-N -cyanoborane-2'-deoxyguanosine-3'(methyldiisopropyl) phosphoramidite.
Starting nucleoside IV (110 mg) in a three neck r.b. flask was evacuated and then flushed with argon. Diisopropyl ethyl amine (iPr2NEt) followed ~y CH2Cl2 were added. After complete dissolution of nucleoside, diisopropylmethyl phosphonamidic chloride (47 ~1) was added dropwise. The mixture was stirred at r.t. After 25 min. a few drops of reaction mixture -~
were taken in a mixture of EtOAc/water. TLC of the -EtOAc solution was was developed in EtOAc:CH2Cl2:Et,N --(4.5:4.5:1). Only a trace amount of reaction had occurred so another 1 equiv. of phosphonoamidic chloride was added and the mixture was allowed to stir.
After 2~ hours, only a trace amount of reaction had occurred. After 4~ hours, another equivalent of amidic chloride was added. After 7 hours, = 0.1 ml of MeOH
was added and the solution was diluted with EtOAc: 7-8 ml. It was washed with = 10% Nal~CO~ (2 x 5 ml) and sat.
NaCl (2 x 5 ml). The organic layer was dried and solvent was removed under reduced pressure.
Purification was attempted by flash chromatography using CH2Cl2:MeOH (97:3). The major spots eluted with other impurities. The product was recolumned using CH2Cl2:EtOAc (8:2). It still did not come out as a single or even two spots (for two diasteromers), .

.
, : - , .. . .
: ' ` - .:
. .

~ ~ l l J ~ O

instead 3-~ more polar spots ~although in small amounts) were present. The "P nmr shows less than 5%
impurities and ~i~ nmr of this material shows no impurit~
other than solvents used for column. The product was further dried in vacuo. Yield 11.0 mg V.
The foregoing examples are illustrative of the present invention, and are not to be taken as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

: - .. . : , . .

- : , . . .
. . : . :

.
- : . , , ~-.. :
. .
.. : . . . . '~
,. . ~ .

Claims

That Which is Claimed is:

1. A boronated nucleoside comprising a nucleoside which is N-boronated on the nucleoside base with a boron-containing substituent selected from the group consisting of -BH2CN, -BH3, and -BH2COOR, wherein R is C1 to C18 alkyl.

2. A boronated nucleotide comprising a 5' phosphate ester of a nucleoside according to Claim 1.

3. A boronated oligonucleotide comprising a chain of natural or modified ribonucleotides or deoxyribonucleotides, at least one nucleotide of said oligonucleotide comprising a nucleotide according to Claim 2.

4. A boronated nucleoside according to Claim 1 wherein the boron-containing substituent is -BH2CN.

5. A boronated nucleoside according to Claim 1 wherein the base of said nucleoside is selected from the group consisting of adenine, cytosine, guanine, inosine, and analogs thereof.

6. A boronated nucleoside according to Claim 1 wherein all hydroxyl substituents on the ribose moiety are O-protected.

7. A boronated nucleoside according to Claim 1 wherein all hydroxyl substituents on the ribose moiety are O-protected as silyl ethers.

8. A boronated nucleoside according to Claim 1 wherein the 3' and 5' hydroxy substituents are O-protected as silyl ethers.

9. A boronated nucleoside according to Claim 1 wherein the 3' and 5' hydroxy substituents are O-protected as triisopropylsilyl ethers.

10. A boronated oligonucleotide according to Claim 3 comprising from 2 to 50 nucleotides.

11. A boronated oligonucleotide according to Claim 3 comprising from 2 to 30 nucleotides.

12. A boronated oligonucleotide according to Claim 3 comprising from 2 to 18 nucleotides.

13. A boronated nucleoside selected from the group consisting of 2'-deoxyguanosine-N7-cyanoborane, 2'-deoxyinosine-N7-cyanoborane, 2'-deoxyadenosine-N1-cyanoborane, 2'-deoxycytidine-N3-cyanoborane, and 2',3'-dideoxycytidine-N3-cyanoborane.

14. A method for synthesizing N-boronated nucleosides from a substrate nucleoside comprised of a ribose moiety covalently bound to a nitrogenous base, the method comprising:
(a) protecting the hydroxy substituents of the ribose; then (b) boronating the nitrogenous base; and then (c) deprotecting the hydroxy substituents.

19. A method for treating a tumor bearing mammal comprising administering to said mammal a therapeutically effective amount of a boronated nucleoside comprising a nucleoside which is N-boronated on the nucleoside base with a boron-containing substituent selected from the group consisting of -BH2CN, -BH3, and -BH2COOR, wherein R is C1 to C18 alkyl.

20. A method according to Claim 19, further comprising the step of concurrently administering a tumor-combatting amount of one or more other antineoplastic agent.

21. A method for treating a tumor bearing mammal comprising:
administering to said mammal a therapeutically effective amount of a boronated nucleoside comprising a nucleoside which is N-boronated on the nucleoside base with a boron-containing substituent selected from the group consisting of -BH2CN, -BH3, and -BH2COOR, wherein R is C1 to C18 alkyl; and exposing said mammal to thermal neutron radiation.

22. A method for treating a mammal suffering from inflammation comprising administering to said mammal a therapeutically effective amount of a boronated nucleoside comprising a nucleoside which is N-boronated on the nucleoside base with a boron-containing substituent selected from the group consisting of -BH2CN, -BH3, and -BH2COOR, wherein R is C1 to C18 alkyl.

23. A method according to Claim 22, further comprising the step of concurrently administering to said mammal an inflammation-combatting amount of one or more other antiinflammatory agent.

24. A method for treating a hyperlipidemic mammal comprising administering to said mammal a therapeutically effective amount of a boronated nucleoside comprising a nucleoside which is N-boronated on the nucleoside base with a boron-containing substituent selected from the group consisting of -BH2CN, -BH3, and -BH2COOR, wherein R is C1 to C18 alkyl.

25. A method according to Claim 24, further comprising the step of concurrently administering to said mammal a hyperlipidemia-combatting amount of one or more other antihperlipidemic agent.

26. A method according to Claim 19, 22, or 24 wherein the boronated nucleoside is selected from the group consisting of 2'-deoxyguanosine-N7-cyanoborane, 2'-deoxyinosine-N7-cyanoborane, 2'-deoxyadenosine-N1-cyanoborane, and 2'-deoxycytidine-N3-cyanoborane.

27. A pharmaceutical formulation comprising a therapeutically effective amount of a boronated nucleoside in a pharmaceutically acceptable carrier, said boronated nucleoside comprising a nucleoside which is N-boronated on the nucleoside base with a boron-containing substituent selected from the group consisting of -BH2CN, -BH3, and -BH2COOR, wherein R is C1 to C18 alkyl.

28. A pharmaceutical formulation according to Claim 27 wherein the boronated nucleoside is selected from one or more of the group consisting of 2'-deoxyguanosine-N7-cyanoborane, 2'-deoxyinosine-N7-cyanoborane, 2-deoxyadenosine-N1-cyanoborane, and 2'-deoxycytidine-N3-cyanoborane.

29. A method according to Claim 22, wherein the boronated nucleoside is selected from the group consisting of 2'-deoxyguanosine-N7-cyanoborane, 2'-deoxyinosine-N7-cyanoborane, 2'-deoxyadenosine-N1-cyanoborane, and 2'-deoxycytidine-N3-cyanoborane.

30. A boronated nucleoside according to claim 1 selected from the group consisting of:
guanosine-N7-cyanoborane:
inosine-N7-cyanoborane;
adenosine-N1-cyanoborane;
cytidine-N3-cyanoborane;
guanosine-N7-borane;
inosine-N7-borane;
adenosine-N1-borane;
cytidine-N3-borane;
guanosine-N7-carbomethoxyborane;
inosine-N7-carboethoxyborane;
adenosine-N1-carbopropoxyborane;
cytidine-N3-carbobutoxyborane;
2'-deoxyguanosine-N7-cyanoborane;
2'-deoxyinosine-N7-cyanoborane;
2'-deoxyadenosine-N1-cyanoborane;
2'-deoxycytidine-N3-cyanoborane;
2'-deoxyguanosine-N7-borane;
2'-deoxyinosine-N7-borane;
2'-deoxyadenosine-N1-borane;
2'-deoxycytidine-N3-borane;
2'-deoxyguanosine-N7-carbomethoxyborane;
2'-deoxyinosine-N7-carboethoxyborane;
2'-deoxyadenosine-N1-carbopropoxyborane;
2'-deoxycytidine-N3-carbobutoxyborane;
2',3'-dideoxyguanosine-N7-cyanoborane;
2',3'-dideoxyinosine-N7-cyanoborane;
2',3'-dideoxyadenosine-N1-cyanoborane;
2',3'-dideoxycytidine-N3-cyanoborane;
2',3'-dideoxyguanosine-N7-borane;
2',3'-dideoxyinosine-N7-borane;

2',3'-dideoxyadenosine-N1-borane;
2',3'-dideoxycytidine-N3-borane;
2',3'-dideoxyguanosine-N7-carbomethoxyborane;
2',3'-dideoxyinosine-N7-carboethoxyborane:
2',3'-dideoxyadenosine-N1-carbopropoxyborane; and 2',3'-dideoxycytidine-N3-carbobutoxyborane.

31. A boronated oligonucleotide comprising a chain of 2 to 50 ribonucleotides or deoxyribonucleotides, at least one nucleotide of said oligonucleotide comprising a nucleotide according to Claim 2.

32. A boronated oligonucleotide comprising a chain of 2 to 30 ribonucleotides or deoxyribonucleotides, at least one nucleotide of said oligonucleotide comprising a nucleotide according to Claim 2.

33. A boronated oligonucleotide comprising a chain of 2 to 18 ribonucleotides or deoxyribonucleotides, at least one nucleotide of said oligonucleotide comprising a nucleotide according to Claim 2.
CA002071936A 1989-12-20 1990-12-17 Boronated nucleosides Abandoned CA2071936A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US453,311 1989-12-20
US07/453,311 US5130302A (en) 1989-12-20 1989-12-20 Boronated nucleoside, nucleotide and oligonucleotide compounds, compositions and methods for using same

Publications (1)

Publication Number Publication Date
CA2071936A1 true CA2071936A1 (en) 1991-06-21

Family

ID=23800042

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002071936A Abandoned CA2071936A1 (en) 1989-12-20 1990-12-17 Boronated nucleosides

Country Status (8)

Country Link
US (1) US5130302A (en)
EP (1) EP0506892B1 (en)
JP (1) JPH05507265A (en)
AT (1) ATE159027T1 (en)
AU (1) AU634450B2 (en)
CA (1) CA2071936A1 (en)
DE (1) DE69031567D1 (en)
WO (1) WO1991009048A1 (en)

Families Citing this family (644)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177198A (en) * 1989-11-30 1993-01-05 University Of N.C. At Chapel Hill Process for preparing oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5362732A (en) * 1989-12-20 1994-11-08 University Of North Carolina At Chapel Hill Boronated compounds
US5260427A (en) * 1991-05-10 1993-11-09 Boron Biolgicals, Inc. Nucleosidylphosphite-borane compounds and method of making the same
US5545397A (en) * 1991-10-23 1996-08-13 Boron Biologicals, Inc. Contrast agents and compositions for radiological imaging, and radiological imaging method utilizing same
US5256394A (en) * 1991-10-23 1993-10-26 Boron Biologicals, Inc. Radiological imaging method, and contrast media reagents therefor
US6335434B1 (en) 1998-06-16 2002-01-01 Isis Pharmaceuticals, Inc., Nucleosidic and non-nucleosidic folate conjugates
US8153602B1 (en) 1991-11-19 2012-04-10 Isis Pharmaceuticals, Inc. Composition and methods for the pulmonary delivery of nucleic acids
US5405598A (en) * 1992-02-24 1995-04-11 Schinazi; Raymond F. Sensitizing agents for use in boron neutron capture therapy
US5466679A (en) * 1993-05-17 1995-11-14 The Ohio State University Research Foundation Carboranyl uridines and their use in boron neutron capture therapy
US5859231A (en) * 1993-09-03 1999-01-12 Duke University Synthesis of oligonucleotides with boranophosphonate linkages
WO1995006752A1 (en) * 1993-09-03 1995-03-09 Duke University A method of nucleic acid sequencing
DE69433036T2 (en) 1993-09-03 2004-05-27 Isis Pharmaceuticals, Inc., Carlsbad AMINODERIVATIZED NUCLEOSIDES AND OLIGONUCLEOSIDES
US6376178B1 (en) 1993-09-03 2002-04-23 Duke University Method of nucleic acid sequencing
US6180766B1 (en) * 1993-12-02 2001-01-30 Raymond F. Schinazi Nucleosides and oligonucleotides containing boron clusters
US5599796A (en) * 1993-12-02 1997-02-04 Emory University Treatment of urogenital cancer with boron neutron capture therapy
US5643893A (en) * 1994-06-22 1997-07-01 Macronex, Inc. N-substituted-(Dihydroxyboryl)alkyl purine, indole and pyrimidine derivatives, useful as inhibitors of inflammatory cytokines
US5550132A (en) * 1994-06-22 1996-08-27 University Of North Carolina Hydroxyalkylammonium-pyrimidines or purines and nucleoside derivatives, useful as inhibitors of inflammatory cytokines
US5595878A (en) * 1995-06-02 1997-01-21 Boron Biologicals, Inc. Detection of biopolymers and biooligomers with boron hydride labels
US6420549B1 (en) 1995-06-06 2002-07-16 Isis Pharmaceuticals, Inc. Oligonucleotide analogs having modified dimers
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
EP0932698A1 (en) * 1996-03-26 1999-08-04 Lynx Therapeutics, Inc. Oligonucleotide treatments and compositions for human melanoma
US5898031A (en) 1996-06-06 1999-04-27 Isis Pharmaceuticals, Inc. Oligoribonucleotides for cleaving RNA
US20030044941A1 (en) 1996-06-06 2003-03-06 Crooke Stanley T. Human RNase III and compositions and uses thereof
US9096636B2 (en) * 1996-06-06 2015-08-04 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US20040161777A1 (en) * 1996-06-06 2004-08-19 Baker Brenda F. Modified oligonucleotides for use in RNA interference
US20070275921A1 (en) * 1996-06-06 2007-11-29 Isis Pharmaceuticals, Inc. Oligomeric Compounds That Facilitate Risc Loading
US20040266706A1 (en) * 2002-11-05 2004-12-30 Muthiah Manoharan Cross-linked oligomeric compounds and their use in gene modulation
US7812149B2 (en) 1996-06-06 2010-10-12 Isis Pharmaceuticals, Inc. 2′-Fluoro substituted oligomeric compounds and compositions for use in gene modulations
US6111085A (en) * 1996-09-13 2000-08-29 Isis Pharmaceuticals, Inc. Carbamate-derivatized nucleosides and oligonucleosides
US6444659B1 (en) * 1996-11-28 2002-09-03 Cognis Deutschland Gmbh Use of mixtures of active substances, containing phytostenols and/or phytostenol esters and potentiators, for the production of hypocholesterolemic agents
AU731909B2 (en) 1997-07-01 2001-04-05 Isis Pharmaceuticals, Inc. Compositions and methods for the delivery of oligonucleotides via the alimentary canal
US7321828B2 (en) 1998-04-13 2008-01-22 Isis Pharmaceuticals, Inc. System of components for preparing oligonucleotides
AU745880B2 (en) 1998-05-21 2002-04-11 Isis Pharmaceuticals, Inc. Compositions and methods for non-parenteral delivery of oligonucleotides
JP2002515514A (en) 1998-05-21 2002-05-28 アイシス・ファーマシューティカルス・インコーポレーテッド Compositions and methods for local delivery of oligonucleotides
US6867294B1 (en) 1998-07-14 2005-03-15 Isis Pharmaceuticals, Inc. Gapped oligomers having site specific chiral phosphorothioate internucleoside linkages
US6225293B1 (en) 1998-09-02 2001-05-01 Isis Pharmaceuticals, Inc. Methods and compounds for tracking the biodistribution of macromolecule-carrier combinations
US6077709A (en) 1998-09-29 2000-06-20 Isis Pharmaceuticals Inc. Antisense modulation of Survivin expression
US6300320B1 (en) 1999-01-05 2001-10-09 Isis Pharmaceuticals, Inc. Modulation of c-jun using inhibitors of protein kinase C
US6127124A (en) * 1999-01-20 2000-10-03 Isis Pharmaceuticals, Inc. Fluorescence based nuclease assay
US7098192B2 (en) 1999-04-08 2006-08-29 Isis Pharmaceuticals, Inc. Antisense oligonucleotide modulation of STAT3 expression
CN1370170A (en) * 1999-05-25 2002-09-18 宾夕法尼亚州研究基金会 DNA methyltransferase inhibitors
EP1420021A1 (en) * 1999-05-25 2004-05-19 The Penn State Research Foundation DNA Methyltransferase inhibitors
US6656730B1 (en) 1999-06-15 2003-12-02 Isis Pharmaceuticals, Inc. Oligonucleotides conjugated to protein-binding drugs
US6147200A (en) * 1999-08-19 2000-11-14 Isis Pharmaceuticals, Inc. 2'-O-acetamido modified monomers and oligomers
US6261840B1 (en) 2000-01-18 2001-07-17 Isis Pharmaceuticals, Inc. Antisense modulation of PTP1B expression
US20020055479A1 (en) 2000-01-18 2002-05-09 Cowsert Lex M. Antisense modulation of PTP1B expression
JP2003530841A (en) * 2000-04-13 2003-10-21 トーマス エヌ. ワイト, Therapeutic compounds and methods
US6680172B1 (en) 2000-05-16 2004-01-20 Regents Of The University Of Michigan Treatments and markers for cancers of the central nervous system
US20060166227A1 (en) * 2000-06-20 2006-07-27 Stephen Kingsmore Protein expression profiling
US8568766B2 (en) 2000-08-24 2013-10-29 Gattadahalli M. Anantharamaiah Peptides and peptide mimetics to treat pathologies associated with eye disease
WO2002030465A2 (en) 2000-10-12 2002-04-18 University Of Rochester Compositions that inhibit proliferation of cancer cells
US7767802B2 (en) 2001-01-09 2010-08-03 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of anti-apoptotic genes
US6573051B2 (en) * 2001-03-09 2003-06-03 Molecular Staging, Inc. Open circle probes with intramolecular stem structures
ATE434936T1 (en) 2001-03-14 2009-07-15 Myriad Genetics Inc TSG101-GAG INTERACTION AND THEIR USE
US20070015144A9 (en) * 2001-05-25 2007-01-18 Genset, S.A. Human cDNAs and proteins and uses thereof
DK2000545T3 (en) 2001-06-20 2011-11-28 Genentech Inc Compositions and methods for diagnosis and treatment of lung tumor
US7803915B2 (en) 2001-06-20 2010-09-28 Genentech, Inc. Antibody compositions for the diagnosis and treatment of tumor
CA2451643C (en) 2001-06-21 2012-11-13 Isis Pharmaceuticals, Inc. Antisense modulation of superoxide dismutase 1, soluble expression
US7425545B2 (en) 2001-07-25 2008-09-16 Isis Pharmaceuticals, Inc. Modulation of C-reactive protein expression
US6964950B2 (en) 2001-07-25 2005-11-15 Isis Pharmaceuticals, Inc. Antisense modulation of C-reactive protein expression
US20030096772A1 (en) 2001-07-30 2003-05-22 Crooke Rosanne M. Antisense modulation of acyl CoA cholesterol acyltransferase-2 expression
US7407943B2 (en) 2001-08-01 2008-08-05 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein B expression
US7227014B2 (en) 2001-08-07 2007-06-05 Isis Pharmaceuticals, Inc. Antisense modulation of apolipoprotein (a) expression
EP2174953A1 (en) 2001-09-18 2010-04-14 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
EP1488233A4 (en) 2001-10-09 2006-06-21 Genentech Inc Novel acidic mammalian proteins and polynucleotides encoding the same
US6750019B2 (en) 2001-10-09 2004-06-15 Isis Pharmaceuticals, Inc. Antisense modulation of insulin-like growth factor binding protein 5 expression
NZ566396A (en) 2001-10-09 2009-07-31 Isis Pharmaceuticals Inc Antisense modulation of insulin-like growth factor binding protein 5 expressions
US20050227933A1 (en) * 2001-11-29 2005-10-13 Benkovic Stephen J Treatment of bacterial induced diseases using DNA methyl transferase inhibitors
US6965025B2 (en) 2001-12-10 2005-11-15 Isis Pharmaceuticals, Inc. Antisense modulation of connective tissue growth factor expression
US7255874B1 (en) 2001-12-21 2007-08-14 Closure Medical Corporation Biocompatible polymers and adhesives: compositions, methods of making and uses related thereto
AU2002367318B2 (en) 2002-01-02 2007-07-12 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
JP4138662B2 (en) * 2002-01-10 2008-08-27 ザ・ペンシルバニア・ステイト・リサーチ・フアウンデイシヨン Process for preparing alkyl diaryl borinates and complexed diaryl boronic acids.
US7553619B2 (en) 2002-02-08 2009-06-30 Qiagen Gmbh Detection method using dissociated rolling circle amplification
EP1485395A4 (en) * 2002-02-28 2011-04-13 Biota Scient Management Nucleotide mimics and their prodrugs
US20030180712A1 (en) 2002-03-20 2003-09-25 Biostratum Ab Inhibition of the beta3 subunit of L-type Ca2+ channels
US7169916B2 (en) * 2002-04-01 2007-01-30 Isis Pharmaceuticals, Inc. Chloral-free DCA in oligonucleotide synthesis
JP2005536190A (en) 2002-04-16 2005-12-02 ジェネンテック・インコーポレーテッド Compositions and methods for tumor diagnosis and treatment
WO2003097643A1 (en) * 2002-05-17 2003-11-27 Neurogen Corporation Substituted ring-fused imidazole derivates: gabaa receptor ligands
US7199107B2 (en) 2002-05-23 2007-04-03 Isis Pharmaceuticals, Inc. Antisense modulation of kinesin-like 1 expression
US20040092470A1 (en) * 2002-06-18 2004-05-13 Leonard Sherry A. Dry powder oligonucleotide formualtion, preparation and its uses
EP2116604A1 (en) 2002-08-05 2009-11-11 University of Rochester Protein transducing domain/deaminase chimeric proteins, related compounds, and uses thereof
US20050196382A1 (en) * 2002-09-13 2005-09-08 Replicor, Inc. Antiviral oligonucleotides targeting viral families
CN1694959B (en) * 2002-09-13 2013-09-18 雷普利瑟公司 Non-sequence complementary antiviral oligonucleotides
EP2322535A3 (en) 2002-09-20 2011-09-28 Yale University Riboswitches, methods for their use, and compositions for use with riboswitches
US7229976B2 (en) 2002-09-26 2007-06-12 Isis Pharmaceuticals, Inc. Modulation of forkhead box O1A expression
US9150606B2 (en) * 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2'-modified nucleosides for use in gene modulation
AU2003290598A1 (en) 2002-11-05 2004-06-03 Isis Pharmaceuticals, Inc. Modified oligonucleotides for use in rna interference
US9150605B2 (en) 2002-11-05 2015-10-06 Isis Pharmaceuticals, Inc. Compositions comprising alternating 2′-modified nucleosides for use in gene modulation
AU2003287505A1 (en) 2002-11-05 2004-06-03 Isis Pharmaceuticals, Inc. Chimeric oligomeric compounds and their use in gene modulation
US7696345B2 (en) 2002-11-05 2010-04-13 Isis Pharmaceuticals, Inc. Polycyclic sugar surrogate-containing oligomeric compounds and compositions for use in gene modulation
ES2420914T3 (en) 2002-11-13 2013-08-27 Genzyme Corporation Antisense modulation of apolipoprotein B expression
CA2505801A1 (en) 2002-11-13 2004-05-27 Rosanne Crooke Antisense modulation of apolipoprotein b expression
CA2506127C (en) 2002-11-15 2013-07-09 Morphotek, Inc. Methods of generating high-production of antibodies from hybridomas created by in vitro immunization
US8007804B2 (en) 2002-11-15 2011-08-30 Musc Foundation For Research Development Complement receptor 2 targeted complement modulators
EP2410332A1 (en) 2002-11-21 2012-01-25 The University Of Utah Method for identifying purinergic modulators of the olfactory system
US7144999B2 (en) 2002-11-23 2006-12-05 Isis Pharmaceuticals, Inc. Modulation of hypoxia-inducible factor 1 alpha expression
WO2004058987A2 (en) 2002-12-20 2004-07-15 Qiagen Gmbh Nucleic acid amplification
US9487823B2 (en) 2002-12-20 2016-11-08 Qiagen Gmbh Nucleic acid amplification
US6977153B2 (en) * 2002-12-31 2005-12-20 Qiagen Gmbh Rolling circle amplification of RNA
US7468356B2 (en) 2003-02-11 2008-12-23 Antisense Therapeutics Ltd. Modulation of insulin like growth factor I receptor expression
US7002006B2 (en) * 2003-02-12 2006-02-21 Isis Pharmaceuticals, Inc. Protection of nucleosides
US7803781B2 (en) 2003-02-28 2010-09-28 Isis Pharmaceuticals, Inc. Modulation of growth hormone receptor expression and insulin-like growth factor expression
ATE479752T1 (en) 2003-03-07 2010-09-15 Alnylam Pharmaceuticals Inc THERAPEUTIC COMPOSITIONS
US20040185559A1 (en) 2003-03-21 2004-09-23 Isis Pharmaceuticals Inc. Modulation of diacylglycerol acyltransferase 1 expression
US8043834B2 (en) 2003-03-31 2011-10-25 Qiagen Gmbh Universal reagents for rolling circle amplification and methods of use
WO2004091515A2 (en) 2003-04-09 2004-10-28 Alnylam Pharmaceuticals, Inc. iRNA CONJUGATES
US7598227B2 (en) 2003-04-16 2009-10-06 Isis Pharmaceuticals Inc. Modulation of apolipoprotein C-III expression
EP1625138A4 (en) 2003-04-17 2010-06-23 Alnylam Pharmaceuticals Inc Protected monomers
EP2660322A3 (en) 2003-04-17 2013-11-13 Alnylam Pharmaceuticals Inc. Modified iRNA agents
US7399853B2 (en) 2003-04-28 2008-07-15 Isis Pharmaceuticals Modulation of glucagon receptor expression
US7276599B2 (en) * 2003-06-02 2007-10-02 Isis Pharmaceuticals, Inc. Oligonucleotide synthesis with alternative solvents
WO2005002507A2 (en) 2003-06-03 2005-01-13 Isis Pharmaceuticals, Inc. Modulation of survivin expression
US7786290B2 (en) 2003-06-13 2010-08-31 Alnylam Pharmaceuticals, Inc. Double-stranded ribonucleic acid with increased effectiveness in an organism
CA2533701A1 (en) 2003-07-31 2005-02-17 Isis Pharmaceuticals, Inc. Oligomeric compounds and compositions for use in modulation of small non-coding rnas
US7825235B2 (en) 2003-08-18 2010-11-02 Isis Pharmaceuticals, Inc. Modulation of diacylglycerol acyltransferase 2 expression
PT1660057E (en) 2003-08-27 2012-08-02 Ophthotech Corp Combination therapy for the treatment of ocular neovascular disorders
US20050053981A1 (en) * 2003-09-09 2005-03-10 Swayze Eric E. Gapped oligomeric compounds having linked bicyclic sugar moieties at the termini
US20070123480A1 (en) * 2003-09-11 2007-05-31 Replicor Inc. Oligonucleotides targeting prion diseases
NZ545134A (en) 2003-09-18 2009-06-26 Lilly Co Eli Modulation of eIF4E expression
AU2004274021B2 (en) * 2003-09-18 2009-08-13 Isis Pharmaceuticals, Inc. 4'-thionucleosides and oligomeric compounds
EP1678194B1 (en) 2003-10-10 2013-06-26 Alchemia Oncology Pty Limited The modulation of hyaluronan synthesis and degradation in the treatment of disease
US20050191653A1 (en) 2003-11-03 2005-09-01 Freier Susan M. Modulation of SGLT2 expression
ES2493016T3 (en) 2003-11-17 2014-09-11 Genentech, Inc. Compositions comprising antibodies against CD79b conjugated to a growth inhibitory agent or a cytotoxic agent and methods for the treatment of tumors of hematopoietic origin
JP2007520222A (en) 2004-01-20 2007-07-26 アイシス ファーマシューティカルズ インコーポレイテッド Regulation of glucocorticoid receptor expression
US7468431B2 (en) 2004-01-22 2008-12-23 Isis Pharmaceuticals, Inc. Modulation of eIF4E-BP2 expression
US8569474B2 (en) 2004-03-09 2013-10-29 Isis Pharmaceuticals, Inc. Double stranded constructs comprising one or more short strands hybridized to a longer strand
US8790919B2 (en) 2004-03-15 2014-07-29 Isis Pharmaceuticals, Inc. Compositions and methods for optimizing cleavage of RNA by RNase H
US20050244869A1 (en) 2004-04-05 2005-11-03 Brown-Driver Vickie L Modulation of transthyretin expression
EP2540734B1 (en) 2004-04-05 2016-03-30 Alnylam Pharmaceuticals, Inc. Process and reagents for oligonucleotide synthesis and purification
US20050260755A1 (en) * 2004-04-06 2005-11-24 Isis Pharmaceuticals, Inc. Sequential delivery of oligomeric compounds
EP1750776A2 (en) 2004-04-30 2007-02-14 Alnylam Pharmaceuticals Inc. Oligonucleotides comprising a c5-modified pyrimidine
DK1773872T3 (en) 2004-05-21 2017-05-08 Uab Res Found VARIABLE Lymphocyte Receptors, Associated Polypeptides and Nucleic Acids, and Uses thereof
US8394947B2 (en) 2004-06-03 2013-03-12 Isis Pharmaceuticals, Inc. Positionally modified siRNA constructs
US20090048192A1 (en) * 2004-06-03 2009-02-19 Isis Pharmaceuticals, Inc. Double Strand Compositions Comprising Differentially Modified Strands for Use in Gene Modulation
JP5192234B2 (en) 2004-08-10 2013-05-08 アルナイラム ファーマシューティカルズ, インコーポレイテッド Chemically modified oligonucleotide
US7427675B2 (en) 2004-08-23 2008-09-23 Isis Pharmaceuticals, Inc. Compounds and methods for the characterization of oligonucleotides
US7884086B2 (en) 2004-09-08 2011-02-08 Isis Pharmaceuticals, Inc. Conjugates for use in hepatocyte free uptake assays
EP1799859B1 (en) 2004-09-17 2014-07-02 Isis Pharmaceuticals, Inc. Enhanced antisense oligonucleotides
WO2006032144A1 (en) * 2004-09-23 2006-03-30 Arc Pharmaceuticals, Inc. Pharmaceutical compositions and methods relating to inhibiting fibrous adhesions or inflammatory disease using fucans from various echinoderm sources
AU2006223498A1 (en) 2005-03-10 2006-09-21 Genentech, Inc. Methods and compositions for modulating vascular integrity
US7476733B2 (en) 2005-03-25 2009-01-13 The United States Of America As Represented By The Department Of Health And Human Services Development of a real-time PCR assay for detection of pneumococcal DNA and diagnosis of pneumococccal disease
EP1863908B1 (en) 2005-04-01 2010-11-17 Qiagen GmbH Reverse transcription and amplification of rna with simultaneous degradation of dna
JP5329949B2 (en) 2005-05-31 2013-10-30 エコーレ ポリテクニーク フェデラーレ デ ローザンヌ Triblock copolymers for cytoplasmic delivery of gene-based drugs
US8252756B2 (en) 2005-06-14 2012-08-28 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US20090270479A1 (en) * 2005-07-12 2009-10-29 Antonio Giordano Genetic and Epigenetic Alterations In the Diagnosis and Treatment of Cancer
EP1929012B1 (en) 2005-08-11 2010-10-06 Synthetic Genomics, Inc. Method for in vitro recombination
AU2006281569A1 (en) 2005-08-17 2007-02-22 Medexis S.A. Composition and method for determination of CK19 expression
WO2007027775A2 (en) 2005-08-29 2007-03-08 Isis Pharmaceuticals, Inc. Methods for use in modulating mir-122a
EP1762627A1 (en) 2005-09-09 2007-03-14 Qiagen GmbH Method for the activation of a nucleic acid for performing a polymerase reaction
EA200800868A1 (en) 2005-09-19 2008-10-30 ДЖОНСОН ЭНД ДЖОНСОН ФАРМАСЬЮТИКАЛ РИСЕРЧ ЭНД ДИВЕЛОПМЕНТ, Эл. Эл. Си. MODULATION OF THE GLUCOCORTICOID RECEPTOR EXPRESSION
EP2096170B1 (en) 2005-09-19 2011-08-10 Isis Pharmaceuticals, Inc. Modulation of glucagon receptor expression
EP2189522A1 (en) 2005-10-14 2010-05-26 MUSC Foundation For Research Development Targeting PAX2 for the induction of DEFB1-mediated tumor immunity and cancer therapy
US8080534B2 (en) 2005-10-14 2011-12-20 Phigenix, Inc Targeting PAX2 for the treatment of breast cancer
EP2325315B1 (en) 2005-10-28 2014-05-07 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of huntingtin gene
WO2007056331A2 (en) 2005-11-09 2007-05-18 Alnylam Pharmaceuticals, Inc. Compositions and methods for inhibiting expression of factor v leiden mutant gene
EP1966377A2 (en) 2005-11-21 2008-09-10 Isis Pharmaceuticals, Inc. Modulation of eif4e-bp2 expression
JP2009524411A (en) * 2005-12-21 2009-07-02 イェール ユニバーシティー Methods and compositions related to the regulation of riboswitches
US8288354B2 (en) 2005-12-28 2012-10-16 The Scripps Research Institute Natural antisense and non-coding RNA transcripts as drug targets
JP2009522281A (en) 2005-12-28 2009-06-11 トランスレーショナル セラピューティクス,インク. Treatment based on translational dysfunction
JP5213723B2 (en) 2006-01-27 2013-06-19 アイシス ファーマシューティカルズ, インコーポレーテッド Oligomer compounds and compositions for use in modulating microRNA
US7569686B1 (en) 2006-01-27 2009-08-04 Isis Pharmaceuticals, Inc. Compounds and methods for synthesis of bicyclic nucleic acid analogs
JP5342881B2 (en) 2006-01-27 2013-11-13 アイシス ファーマシューティカルズ, インコーポレーテッド 6-modified bicyclic nucleic acid analogues
WO2007125173A2 (en) 2006-05-03 2007-11-08 Baltic Technology Development, Ltd. Antisense agents combining strongly bound base - modified oligonucleotide and artificial nuclease
WO2007134014A2 (en) * 2006-05-05 2007-11-22 Isis Pharmaceuticals, Inc. Compounds and methods for modulating expression of gcgr
US7666854B2 (en) * 2006-05-11 2010-02-23 Isis Pharmaceuticals, Inc. Bis-modified bicyclic nucleic acid analogs
ES2389737T3 (en) * 2006-05-11 2012-10-31 Isis Pharmaceuticals, Inc. 5 'modified bicyclic nucleic acid analogs
WO2007137301A2 (en) * 2006-05-23 2007-11-29 Isis Pharmaceuticals, Inc. Modulation of chrebp expression
WO2008097328A2 (en) * 2006-06-23 2008-08-14 Northwestern University Asymmetric functionalized nanoparticles and methods of use
US8198253B2 (en) 2006-07-19 2012-06-12 Isis Pharmaceuticals, Inc. Compositions and their uses directed to HBXIP
EP2061799A4 (en) * 2006-09-11 2010-12-22 Univ Yale Methods and compositions for the use of lysine riboswitches
WO2008042156A1 (en) * 2006-09-28 2008-04-10 Northwestern University Maximizing oligonucleotide loading on gold nanoparticle
CA2665536C (en) 2006-10-05 2016-02-16 Massachusetts Institute Of Technology Multifunctional encoded particles for high-throughput analysis
EP2104516B1 (en) 2006-11-01 2015-01-07 University of Rochester Methods and compositions related to the structure and function of apobec3g
CA2672297A1 (en) 2006-12-11 2008-06-19 University Of Utah Research Foundation Compositions and methods for treating pathologic angiogenesis and vascular permeability
EP2913341A1 (en) 2006-12-22 2015-09-02 University of Utah Research Foundation Method of detecting ocular diseases and pathologic conditions and treatment of same
US20080293053A1 (en) * 2006-12-28 2008-11-27 The Regents Of The University Of Michigan shRNA Materials and Methods of Using Same for Inhibition of DKK-1
US20100093836A1 (en) 2007-01-29 2010-04-15 Isis Pharmaceuticals, Inc Compounds and methods for modulating protein expression
CA2691066C (en) 2007-02-09 2018-07-31 Northwestern University Particles for detecting intracellular targets
AU2008227458A1 (en) 2007-03-22 2008-09-25 Yale University Methods and compositions related to riboswitches that control alternative splicing
WO2008156987A2 (en) 2007-05-29 2008-12-24 Yale University Riboswitches and methods and compositions for use of and with riboswitches
US20100221821A1 (en) * 2007-05-29 2010-09-02 Yale University Methods and compositions related to riboswitches that control alternative splicing and rna processing
CA2688321A1 (en) 2007-05-30 2008-12-11 Isis Pharmaceuticals, Inc. N-substituted-aminomethylene bridged bicyclic nucleic acid analogs
EP2826863B1 (en) 2007-05-30 2017-08-23 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US7807372B2 (en) * 2007-06-04 2010-10-05 Northwestern University Screening sequence selectivity of oligonucleotide-binding molecules using nanoparticle based colorimetric assay
WO2008154401A2 (en) 2007-06-08 2008-12-18 Isis Pharmaceuticals, Inc. Carbocyclic bicyclic nucleic acid analogs
US8278283B2 (en) * 2007-07-05 2012-10-02 Isis Pharmaceuticals, Inc. 6-disubstituted or unsaturated bicyclic nucleic acid analogs
AU2008286771B2 (en) 2007-08-15 2013-08-15 Isis Pharmaceuticals, Inc. Tetrahydropyran nucleic acid analogs
WO2009032702A2 (en) 2007-08-28 2009-03-12 Uab Research Foundation Synthetic apolipoprotein e mimicking polypeptides and methods of use
WO2009032693A2 (en) 2007-08-28 2009-03-12 Uab Research Foundation Synthetic apolipoprotein e mimicking polypeptides and methods of use
US8445217B2 (en) 2007-09-20 2013-05-21 Vanderbilt University Free solution measurement of molecular interactions by backscattering interferometry
WO2009039442A1 (en) * 2007-09-21 2009-03-26 California Institute Of Technology Nfia in glial fate determination, glioma therapy and astrocytoma treatment
MX2010003465A (en) 2007-10-02 2010-07-05 Amgen Inc Increasing erythropoietin using nucleic acids hybridizable to micro-rna and precursors thereof.
USRE47320E1 (en) 2007-11-20 2019-03-26 Ionis Pharmaceuticals, Inc. Modulation of CD40 expression
CA2708173C (en) 2007-12-04 2016-02-02 Alnylam Pharmaceuticals, Inc. Targeting lipids
EP3100718B1 (en) 2008-01-02 2019-11-27 Arbutus Biopharma Corporation Improved compositions and methods for the delivery of nucleic acids
EP2265627A2 (en) * 2008-02-07 2010-12-29 Isis Pharmaceuticals, Inc. Bicyclic cyclohexitol nucleic acid analogs
WO2009117589A1 (en) * 2008-03-21 2009-09-24 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising tricyclic nucleosides and methods for their use
WO2009124295A2 (en) * 2008-04-04 2009-10-08 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleosides and having reduced toxicity
EP2285819B1 (en) * 2008-04-04 2013-10-16 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising neutrally linked terminal bicyclic nucleosides
CA2721183C (en) 2008-04-11 2019-07-16 Alnylam Pharmaceuticals, Inc. Site-specific delivery of nucleic acids by combining targeting ligands with endosomolytic components
MX2010011508A (en) 2008-04-18 2011-05-03 Baxter Int Microsphere-based composition for preventing and/or reversing new-onset autoimmune diabetes.
EP2280995A2 (en) * 2008-04-29 2011-02-09 Wyeth LLC Methods for treating inflammation
EP3081648A1 (en) 2008-08-25 2016-10-19 Excaliard Pharmaceuticals, Inc. Antisense oligonucleotides directed against connective tissue growth factor and uses thereof
WO2011028218A1 (en) 2009-09-02 2011-03-10 Alnylam Pharmaceuticals, Inc. Process for triphosphate oligonucleotide synthesis
EP2331690B1 (en) 2008-09-02 2016-01-13 Alnylam Pharmaceuticals Inc. Compositions and methods for inhibiting expression of mutant egfr gene
EP3587434A1 (en) 2008-09-23 2020-01-01 Alnylam Pharmaceuticals Inc. Chemical modifications of monomers and oligonucleotides with click components for conjugation with ligands
US8501805B2 (en) * 2008-09-24 2013-08-06 Isis Pharmaceuticals, Inc. Substituted alpha-L-bicyclic nucleosides
US8604192B2 (en) * 2008-09-24 2013-12-10 Isis Pharmaceuticals, Inc. Cyclohexenyl nucleic acids analogs
ES2475065T3 (en) 2008-10-09 2014-07-10 Tekmira Pharmaceuticals Corporation Enhanced amino acids and methods for nucleic acid administration
AU2009305636A1 (en) 2008-10-15 2010-04-22 Ionis Pharmaceuticals, Inc. Modulation of Factor 11 expression
AU2009308217B2 (en) 2008-10-24 2016-01-21 Ionis Pharmaceuticals, Inc. 5' and 2' bis-substituted nucleosides and oligomeric compounds prepared therefrom
WO2010048585A2 (en) 2008-10-24 2010-04-29 Isis Pharmaceuticals, Inc. Oligomeric compounds and methods
KR101967417B1 (en) 2008-11-10 2019-04-10 알닐람 파마슈티칼스 인코포레이티드 Novel lipids and compositions for the delivery of therapeutics
CA2744207C (en) 2008-11-24 2019-05-28 Northwestern University Polyvalent rna-nanoparticle compositions
EP2370451B1 (en) 2008-12-02 2016-11-16 Wave Life Sciences Japan, Inc. Method for the synthesis of phosphorus atom modified nucleic acids
CA2745811C (en) 2008-12-04 2021-07-13 Joseph Collard Treatment of tumor suppressor gene related diseases by inhibition of natural antisense transcript to the gene
KR101749352B1 (en) 2008-12-04 2017-06-20 큐알엔에이, 인크. Treatment of sirtuin 1(sirt1) related diseases by inhibition of natural antisense transcript to sirtuin 1
CN102317458B (en) 2008-12-04 2018-01-02 库尔纳公司 Pass through treatment of the suppression of erythropoietin(EPO) (EPO) natural antisense transcript to EPO relevant diseases
US20100233270A1 (en) 2009-01-08 2010-09-16 Northwestern University Delivery of Oligonucleotide-Functionalized Nanoparticles
KR101546673B1 (en) * 2009-01-15 2015-08-25 삼성전자주식회사 Toner for electrophotographic and process for preparing the same
CA2750820A1 (en) 2009-01-27 2010-08-05 Qiagen Gaithersburg Thermophilic helicase dependent amplification technology with endpoint homogenous fluorescent detection
AU2010208035B2 (en) 2009-01-29 2016-06-23 Arbutus Biopharma Corporation Improved lipid formulation for the delivery of nucleic acids
US8536320B2 (en) 2009-02-06 2013-09-17 Isis Pharmaceuticals, Inc. Tetrahydropyran nucleic acid analogs
WO2010091308A2 (en) 2009-02-06 2010-08-12 Isis Pharmaceuticals, Inc. Oligomeric compounds and methods
KR101805199B1 (en) 2009-02-12 2017-12-05 큐알엔에이, 인크. Treatment of glial cell derived neurotrophic factor (gdnf) related diseases by inhibition of natural antisense transcript to gdnf
EP3009150B1 (en) 2009-02-12 2019-11-13 CuRNA, Inc. Treatment of brain derived neurotrophic factor (bdnf) related diseases by inhibition of natural antisense transcript to bdnf
EP3424939A1 (en) 2009-03-02 2019-01-09 Alnylam Pharmaceuticals Inc. Nucleic acid chemical modifications
US20110319317A1 (en) 2009-03-04 2011-12-29 Opko Curna, Llc Treatment of sirtuin 1 (sirt1) related diseases by inhibition of natural antisense transcript to sirt1
WO2010107733A2 (en) 2009-03-16 2010-09-23 Curna, Inc. Treatment of nuclear factor (erythroid-derived 2)-like 2 (nrf2) related diseases by inhibition of natural antisense transcript to nrf2
EP2408920B1 (en) 2009-03-17 2017-03-08 CuRNA, Inc. Treatment of delta-like 1 homolog (dlk1) related diseases by inhibition of natural antisense transcript to dlk1
KR20120022938A (en) 2009-04-15 2012-03-12 노오쓰웨스턴 유니버시티 Delivery of oligonucleotide-functionalized nanoparticles
EP3248618A1 (en) 2009-04-22 2017-11-29 Massachusetts Institute Of Technology Innate immune suppression enables repeated delivery of long rna molecules
ES2661787T3 (en) 2009-05-01 2018-04-04 Curna, Inc. Treatment of hemoglobin-related diseases (hbf / hbg) by inhibition of natural antisense transcript for hbf / hbg
NZ596186A (en) 2009-05-05 2014-03-28 Alnylam Pharmaceuticals Inc Lipid compositions
CA3045126A1 (en) 2009-05-05 2010-11-11 Arbutus Biopharma Corporation Methods of delivering oligonucleotides to immune cells
KR101722541B1 (en) 2009-05-06 2017-04-04 큐알엔에이, 인크. Treatment of tristetraproline(ttp) related diseases by inhibition of natural antisense transcript to ttp
CN103223177B (en) 2009-05-06 2016-08-10 库尔纳公司 By suppression therapy lipid transfer and the metabolic gene relevant disease of the natural antisense transcript for lipid transfer and metabolic gene
WO2010132665A1 (en) 2009-05-15 2010-11-18 Yale University Gemm riboswitches, structure-based compound design with gemm riboswitches, and methods and compositions for use of and with gemm riboswitches
CN102575251B (en) 2009-05-18 2018-12-04 库尔纳公司 The relevant disease of the reprogramming factor is treated by inhibiting the natural antisense transcript for the reprogramming factor
KR101703695B1 (en) 2009-05-22 2017-02-08 큐알엔에이, 인크. Treatment of transcription factor e3 (tfe3) and insulin receptor substrate 2 (irs2) related diseases by inhibition of natural antisense transcript to tfe3
EP2435571B1 (en) 2009-05-28 2016-12-14 CuRNA, Inc. Treatment of antiviral gene related diseases by inhibition of natural antisense transcript to an antiviral gene
KR101766408B1 (en) 2009-06-10 2017-08-10 알닐람 파마슈티칼스 인코포레이티드 Improved lipid formulation
JP5944311B2 (en) 2009-06-16 2016-07-05 クルナ・インコーポレーテッド Treatment of collagen gene-related diseases by suppression of natural antisense transcripts against collagen genes
EP2443238B1 (en) 2009-06-16 2017-03-22 CuRNA, Inc. Treatment of paraoxonase 1 (pon1) related diseases by inhibition of natural antisense transcript to pon1
CN102597238B (en) 2009-06-24 2016-06-29 库尔纳公司 The relevant disease of TNFR2 is treated by suppressing for the natural antisense transcript of tumor necrosis factor receptor 2 (TNFR2)
WO2010151674A2 (en) 2009-06-26 2010-12-29 Curna, Inc. Treatment of down syndrome gene related diseases by inhibition of natural antisense transcript to a down syndrome gene
SG177564A1 (en) 2009-07-06 2012-02-28 Ontorii Inc Novel nucleic acid prodrugs and methods of use thereof
JP6128848B2 (en) 2009-08-05 2017-05-17 クルナ・インコーポレーテッド Treatment of insulin gene (INS) -related diseases by suppression of natural antisense transcripts against the insulin gene (INS)
WO2011017521A2 (en) 2009-08-06 2011-02-10 Isis Pharmaceuticals, Inc. Bicyclic cyclohexose nucleic acid analogs
WO2011022420A1 (en) 2009-08-17 2011-02-24 Yale University Methylation biomarkers and methods of use
WO2011031482A2 (en) 2009-08-25 2011-03-17 Curna, Inc. Treatment of 'iq motif containing gtpase activating protein' (iqgap) related diseases by inhibition of natural antisense transcript to iqgap
CA2772715C (en) 2009-09-02 2019-03-26 Genentech, Inc. Mutant smoothened and methods of using the same
CN102711826B (en) 2009-10-22 2017-03-29 霍夫曼-拉罗奇有限公司 For the method and composition that the HEPSIN for regulating and controlling macrophage-stimulating albumen is activated
WO2011056687A2 (en) 2009-10-27 2011-05-12 Swift Biosciences, Inc. Polynucleotide primers and probes
CA2779099C (en) 2009-10-30 2021-08-10 Northwestern University Templated nanoconjugates
US20130084565A1 (en) 2009-11-03 2013-04-04 University Of Virginia Patent Foundation Versatile, visible method for detecting polymeric analytes
AU2010321576A1 (en) 2009-11-23 2012-06-07 Swift Biosciences, Inc. Devices to extend single stranded target molecules
CA2781887C (en) 2009-11-30 2018-03-27 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
CA3044884A1 (en) 2009-12-07 2011-06-16 Arbutus Biopharma Corporation Compositions for nucleic acid delivery
WO2011084455A2 (en) 2009-12-16 2011-07-14 Opko Curna, Llc. Treatment of membrane bound transcription factor peptidase, site 1 (mbtps1) related diseases by inhibition of natural antisense transcript to mbtps1
ES2749426T3 (en) 2009-12-18 2020-03-20 Univ British Columbia Nucleic Acid Administration Methods and Compositions
KR101793753B1 (en) 2009-12-23 2017-11-03 큐알엔에이, 인크. Treatment of uncoupling protein 2 (ucp2) related diseases by inhibition of natural antisense transcript to ucp2
CN102869776B (en) 2009-12-23 2017-06-23 库尔纳公司 HGF relevant diseases are treated by suppressing the natural antisense transcript of HGF (HGF)
EP2519633B1 (en) 2009-12-29 2017-10-25 CuRNA, Inc. Treatment of nuclear respiratory factor 1 (nrf1) related diseases by inhibition of natural antisense transcript to nrf1
WO2011090741A2 (en) 2009-12-29 2011-07-28 Opko Curna, Llc TREATMENT OF TUMOR PROTEIN 63 (p63) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENSE TRANSCRIPT TO p63
NO2521784T3 (en) 2010-01-04 2018-05-05
US8912157B2 (en) 2010-01-06 2014-12-16 Curna, Inc. Treatment of pancreatic developmental gene related diseases by inhibition of natural antisense transcript to a pancreatic developmental gene
US8779118B2 (en) 2010-01-11 2014-07-15 Isis Pharmaceuticals, Inc. Base modified bicyclic nucleosides and oligomeric compounds prepared therefrom
DK2524039T3 (en) 2010-01-11 2018-03-12 Curna Inc TREATMENT OF GENDER HORMON-BINDING GLOBULIN (SHBG) RELATED DISEASES BY INHIBITION OF NATURAL ANTISENCE TRANSCRIPTS TO SHBG
EP2524042A2 (en) 2010-01-12 2012-11-21 Yale University Structured rna motifs and compounds and methods for their use
WO2011091390A2 (en) 2010-01-25 2011-07-28 Opko Curna, Llc Treatment of rnase h1 related diseases by inhibition of natural antisense transcript to rnase h1
WO2011100131A2 (en) 2010-01-28 2011-08-18 Alnylam Pharmacuticals, Inc. Monomers and oligonucleotides comprising cycloaddition adduct(s)
WO2011094580A2 (en) 2010-01-28 2011-08-04 Alnylam Pharmaceuticals, Inc. Chelated copper for use in the preparation of conjugated oligonucleotides
US20130028889A1 (en) 2010-02-04 2013-01-31 Ico Therapeutics Inc. Dosing regimens for treating and preventing ocular disorders using c-raf antisense
WO2011103528A2 (en) 2010-02-22 2011-08-25 Opko Curna Llc Treatment of pyrroline-5-carboxylate reductase 1 (pycr1) related diseases by inhibition of natural antisense transcript to pycr1
WO2011105900A2 (en) 2010-02-23 2011-09-01 Academisch Ziekenhuis Bij De Universiteit Van Amsterdam Antagonists of complement component 8-alpha (c8-alpha) and uses thereof
WO2011105901A2 (en) 2010-02-23 2011-09-01 Academisch Ziekenhuis Bij De Universiteit Van Amsterdam Antagonists of complement component 9 (c9) and uses thereof
WO2011105902A2 (en) 2010-02-23 2011-09-01 Academisch Ziekenhuis Bij De Universiteit Van Amsterdam Antagonists of complement component 8-beta (c8-beta) and uses thereof
EP2538981B1 (en) 2010-02-23 2017-12-20 F. Hoffmann-La Roche AG Compositions and methods for the diagnosis and treatment of tumor
WO2011112516A1 (en) 2010-03-08 2011-09-15 Ico Therapeutics Inc. Treating and preventing hepatitis c virus infection using c-raf kinase antisense oligonucleotides
US20130101512A1 (en) 2010-03-12 2013-04-25 Chad A. Mirkin Crosslinked polynucleotide structure
WO2011112732A2 (en) 2010-03-12 2011-09-15 The Brigham And Women's Hospital, Inc. Methods of treating vascular inflammatory disorders
WO2011115817A1 (en) 2010-03-16 2011-09-22 Isis Pharmaceuticals, Inc. Methods of preparing 2'-o-substituted purine nucleosides
US9193752B2 (en) 2010-03-17 2015-11-24 Isis Pharmaceuticals, Inc. 5′-substituted bicyclic nucleosides and oligomeric compounds prepared therefrom
US8889350B2 (en) 2010-03-26 2014-11-18 Swift Biosciences, Inc. Methods and compositions for isolating polynucleotides
ES2893199T3 (en) 2010-03-29 2022-02-08 Alnylam Pharmaceuticals Inc dsRNA therapy for transthyretin (TTR)-related ocular amyloidosis
US9102938B2 (en) 2010-04-01 2015-08-11 Alnylam Pharmaceuticals, Inc. 2′ and 5′ modified monomers and oligonucleotides
US9044494B2 (en) 2010-04-09 2015-06-02 Curna, Inc. Treatment of fibroblast growth factor 21 (FGF21) related diseases by inhibition of natural antisense transcript to FGF21
WO2011133695A2 (en) 2010-04-20 2011-10-27 Swift Biosciences, Inc. Materials and methods for nucleic acid fractionation by solid phase entrapment and enzyme-mediated detachment
WO2011133871A2 (en) 2010-04-22 2011-10-27 Alnylam Pharmaceuticals, Inc. 5'-end derivatives
US10913767B2 (en) 2010-04-22 2021-02-09 Alnylam Pharmaceuticals, Inc. Oligonucleotides comprising acyclic and abasic nucleosides and analogs
US20130260460A1 (en) 2010-04-22 2013-10-03 Isis Pharmaceuticals Inc Conformationally restricted dinucleotide monomers and oligonucleotides
EP2625186B1 (en) 2010-04-28 2016-07-27 Ionis Pharmaceuticals, Inc. 5' modified nucleosides and oligomeric compounds prepared therefrom
WO2011139695A2 (en) 2010-04-28 2011-11-10 Isis Pharmaceuticals, Inc. Modified 5' diphosphate nucleosides and oligomeric compounds prepared therefrom
KR101869570B1 (en) 2010-04-28 2018-06-20 아이오니스 파마수티컬즈, 인코포레이티드 Modified nucleosides and oligomeric compounds prepared therefrom
WO2011139911A2 (en) 2010-04-29 2011-11-10 Isis Pharmaceuticals, Inc. Lipid formulated single stranded rna
WO2011139917A1 (en) 2010-04-29 2011-11-10 Isis Pharmaceuticals, Inc. Modulation of transthyretin expression
MA34291B1 (en) 2010-05-03 2013-06-01 Genentech Inc COMPOSITIONS AND METHODS FOR DIAGNOSING AND TREATING A TUMOR
EP2566966A4 (en) 2010-05-03 2013-12-11 Curna Inc Treatment of sirtuin (sirt) related diseases by inhibition of natural antisense transcript to a sirtuin (sirt)
TWI586356B (en) 2010-05-14 2017-06-11 可娜公司 Treatment of par4 related diseases by inhibition of natural antisense transcript to par4
WO2011150227A1 (en) 2010-05-26 2011-12-01 Qiagen Gaithersburg, Inc. Quantitative helicase assay
CA2799207C (en) 2010-05-26 2019-03-26 Curna, Inc. Treatment of atonal homolog 1 (atoh1) related diseases by inhibition of natural antisense transcript to atoh1
US20130203045A1 (en) 2010-05-26 2013-08-08 University Of Virginia Patent Foundation Method for detecting nucleic acids based on aggregate formation
CA2802049C (en) 2010-06-07 2018-07-10 Firefly Bioworks, Inc. Scanning multifunctional particles
WO2011156278A1 (en) 2010-06-07 2011-12-15 Isis Pharmaceuticals, Inc. Bicyclic nucleosides and oligomeric compounds prepared therefrom
EP2580228B1 (en) 2010-06-08 2016-03-23 Ionis Pharmaceuticals, Inc. Substituted 2'-amino and 2'-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
US9638632B2 (en) 2010-06-11 2017-05-02 Vanderbilt University Multiplexed interferometric detection system and method
WO2011159836A2 (en) 2010-06-15 2011-12-22 Isis Pharmaceuticals, Inc. Compounds and methods for modulating interaction between proteins and target nucleic acids
WO2011163466A1 (en) 2010-06-23 2011-12-29 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Regulation of skin pigmentation by neuregulin-1 (nrg-1)
US8980860B2 (en) 2010-07-14 2015-03-17 Curna, Inc. Treatment of discs large homolog (DLG) related diseases by inhibition of natural antisense transcript to DLG
WO2012012467A2 (en) 2010-07-19 2012-01-26 Isis Pharmaceuticals, Inc. Modulation of nuclear-retained rna
WO2012016184A2 (en) 2010-07-30 2012-02-02 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
WO2012016188A2 (en) 2010-07-30 2012-02-02 Alnylam Pharmaceuticals, Inc. Methods and compositions for delivery of active agents
US20130143955A1 (en) 2010-08-09 2013-06-06 Yale University Cyclic di-GMP-II Riboswitches, Motifs, and Compounds, and Methods for Their Use
JP5868324B2 (en) 2010-09-24 2016-02-24 株式会社Wave Life Sciences Japan Asymmetric auxiliary group
US8481680B2 (en) 2010-10-05 2013-07-09 Genentech, Inc. Mutant smoothened and methods of using the same
US8993533B2 (en) 2010-10-06 2015-03-31 Curna, Inc. Treatment of sialidase 4 (NEU4) related diseases by inhibition of natural antisense transcript to NEU4
US20140031250A1 (en) 2010-10-07 2014-01-30 David Tsai Ting Biomarkers of Cancer
US8648053B2 (en) 2010-10-20 2014-02-11 Rosalind Franklin University Of Medicine And Science Antisense oligonucleotides that target a cryptic splice site in Ush1c as a therapeutic for Usher syndrome
CA2815212A1 (en) 2010-10-22 2012-04-26 Curna, Inc. Treatment of alpha-l-iduronidase (idua) related diseases by inhibition of natural antisense transcript to idua
CN103201387B (en) 2010-10-27 2018-02-02 库尔纳公司 IFRD1 relevant diseases are treated by suppressing the natural antisense transcript of interferon correlative development regulatory factor 1 (IFRD1)
CN110123830A (en) 2010-11-09 2019-08-16 阿尔尼拉姆医药品有限公司 Composition and method for inhibiting the lipid of the expression of Eg5 and VEGF gene to prepare
EP3260540A1 (en) 2010-11-12 2017-12-27 The General Hospital Corporation Polycomb-associated non-coding rnas
EP2640853B1 (en) 2010-11-17 2018-12-26 Ionis Pharmaceuticals, Inc. Modulation of alpha synuclein expression
WO2012071238A2 (en) 2010-11-23 2012-05-31 Opko Curna Llc Treatment of nanog related diseases by inhibition of natural antisense transcript to nanog
US9150926B2 (en) 2010-12-06 2015-10-06 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Diagnosis and treatment of adrenocortical tumors using human microRNA-483
DK3202760T3 (en) 2011-01-11 2019-11-25 Alnylam Pharmaceuticals Inc PEGYLED LIPIDS AND THEIR USE FOR PHARMACEUTICAL SUPPLY
WO2012097261A2 (en) 2011-01-14 2012-07-19 The General Hospital Corporation Methods targeting mir-128 for regulating cholesterol/lipid metabolism
EP2670404B1 (en) 2011-02-02 2018-08-29 The Trustees of Princeton University Sirtuin modulators as virus production modulators
SI2670411T1 (en) 2011-02-02 2019-06-28 Excaliard Pharmaceuticals, Inc. Antisense compounds targeting connective tissue growth factor (ctgf) for use in a method of treating keloids or hypertrophic scars
WO2012109157A2 (en) 2011-02-07 2012-08-16 The Governing Council Of The University Of Toronto Bioprobes and methods of use thereof
EP3467109A1 (en) 2011-02-08 2019-04-10 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleotides and uses thereof
US9562853B2 (en) 2011-02-22 2017-02-07 Vanderbilt University Nonaqueous backscattering interferometric methods
WO2012138453A1 (en) 2011-04-03 2012-10-11 The General Hospital Corporation Efficient protein expression in vivo using modified rna (mod-rna)
US20140186844A1 (en) 2011-04-26 2014-07-03 Swift Biosciences, Inc. Polynucleotide primers and probes
WO2012151324A1 (en) 2011-05-02 2012-11-08 Isis Pharmaceuticals, Inc. Antisense compounds targeting genes associated with usher syndrome
WO2012151268A1 (en) 2011-05-02 2012-11-08 University Of Virginia Patent Foundation Method and system for high throughput optical and label free detection of analytes
WO2012151289A2 (en) 2011-05-02 2012-11-08 University Of Virginia Patent Foundation Method and system to detect aggregate formation on a substrate
WO2012170347A1 (en) 2011-06-09 2012-12-13 Isis Pharmaceuticals, Inc. Bicyclic nucleosides and oligomeric compounds prepared therefrom
RU2620980C2 (en) 2011-06-09 2017-05-30 Курна, Инк. Treatment of diseases associated with frataxin (fxn), by inhibiting natural antisense fxn transcript
US9222093B2 (en) 2011-06-30 2015-12-29 The University Of Hong Kong Two-way, portable riboswitch mediated gene expression control device
US20140227293A1 (en) 2011-06-30 2014-08-14 Trustees Of Boston University Method for controlling tumor growth, angiogenesis and metastasis using immunoglobulin containing and proline rich receptor-1 (igpr-1)
RU2014105311A (en) 2011-07-19 2015-08-27 Уэйв Лайф Сайенсес Пте. Лтд. METHODS FOR SYNTHESIS OF FUNCTIONALIZED NUCLEIC ACIDS
EP2742136B1 (en) 2011-08-11 2017-09-27 Ionis Pharmaceuticals, Inc. Gapped oligomeric compounds comprising 5'-modified deoxyribonucleosides in the gap and uses thereof
DK2751270T3 (en) 2011-08-29 2018-10-29 Ionis Pharmaceuticals Inc OLIGOMER-CONJUGATE COMPLEXES AND THEIR USE
EP2751269B1 (en) 2011-08-29 2016-03-23 Ionis Pharmaceuticals, Inc. Methods and compounds useful in conditions related to repeat expansion
EP2756080B1 (en) 2011-09-14 2019-02-20 Translate Bio MA, Inc. Multimeric oligonucleotide compounds
EP2755692B1 (en) 2011-09-14 2020-11-25 Northwestern University Nanoconjugates able to cross the blood-brain barrier
US9580713B2 (en) 2011-09-17 2017-02-28 Yale University Fluoride-responsive riboswitches, fluoride transporters, and methods of use
CA2849476A1 (en) 2011-09-27 2013-04-04 Alnylam Pharmaceuticals, Inc. Di-aliphatic substituted pegylated lipids
EP2766482B1 (en) 2011-10-11 2016-12-07 The Brigham and Women's Hospital, Inc. Micrornas in neurodegenerative disorders
ES2687951T3 (en) 2011-10-14 2018-10-30 F. Hoffmann-La Roche Ag Anti-HtrA1 antibodies and procedures for use
US9243291B1 (en) 2011-12-01 2016-01-26 Isis Pharmaceuticals, Inc. Methods of predicting toxicity
EP2790736B1 (en) 2011-12-12 2018-01-31 Oncoimmunin, Inc. In vivo delivery of oligonucleotides
WO2013106770A1 (en) 2012-01-11 2013-07-18 Isis Pharmaceuticals, Inc. Compositions and methods for modulation of ikbkap splicing
SG11201405669XA (en) 2012-03-13 2014-10-30 Swift Biosciences Inc Methods and compositions for size-controlled homopolymer tailing of substrate polynucleotides by a nucleic acid polymerase
EP2639238A1 (en) 2012-03-15 2013-09-18 Universität Bern Tricyclic nucleosides and oligomeric compounds prepared therefrom
JP2015511494A (en) 2012-03-15 2015-04-20 キュアナ,インク. Treatment of BDNF-related diseases by inhibition of natural antisense transcripts against brain-derived neurotrophic factor (BDNF)
WO2013138662A1 (en) 2012-03-16 2013-09-19 4S3 Bioscience, Inc. Antisense conjugates for decreasing expression of dmpk
AU2013202595B2 (en) 2012-03-30 2016-04-21 Biogen Ma Inc. Methods for modulating Tau expression for reducing seizure and modifying a neurodegenerative syndrome
EP2850092B1 (en) 2012-04-09 2017-03-01 Ionis Pharmaceuticals, Inc. Tricyclic nucleic acid analogs
WO2013154799A1 (en) 2012-04-09 2013-10-17 Isis Pharmaceuticals, Inc. Tricyclic nucleosides and oligomeric compounds prepared therefrom
JP2015518485A (en) 2012-04-20 2015-07-02 アプタミアール セラピューティクス インコーポレイテッド Thermogenic miRNA regulator
EP2839006B1 (en) 2012-04-20 2018-01-03 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleotides and uses thereof
EP2841572B1 (en) 2012-04-27 2019-06-19 Duke University Genetic correction of mutated genes
US9273949B2 (en) 2012-05-11 2016-03-01 Vanderbilt University Backscattering interferometric methods
AU2013262663A1 (en) 2012-05-16 2015-01-22 The General Hospital Corporation D/B/A Massachusetts General Hospital Compositions and methods for modulating gene expression
EA201492123A1 (en) 2012-05-16 2015-10-30 Рана Терапьютикс, Инк. COMPOSITIONS AND METHODS FOR MODULATING THE EXPRESSION OF THE SMN GENES FAMILY
US9574193B2 (en) 2012-05-17 2017-02-21 Ionis Pharmaceuticals, Inc. Methods and compositions for modulating apolipoprotein (a) expression
US20160002624A1 (en) 2012-05-17 2016-01-07 Isis Pharmaceuticals, Inc. Antisense oligonucleotide compositions
US9828602B2 (en) 2012-06-01 2017-11-28 Ionis Pharmaceuticals, Inc. Antisense compounds targeting genes associated with fibronectin
US9487780B2 (en) 2012-06-01 2016-11-08 Ionis Pharmaceuticals, Inc. Antisense compounds targeting genes associated with fibronectin
WO2013184209A1 (en) 2012-06-04 2013-12-12 Ludwig Institute For Cancer Research Ltd. Mif for use in methods of treating subjects with a neurodegenerative disorder
WO2013185097A1 (en) 2012-06-08 2013-12-12 The Regents Of The University Of Michigan Ultrasound-triggerable agents for tissue engineering
SG11201500243WA (en) 2012-07-13 2015-04-29 Shin Nippon Biomedical Lab Ltd Chiral nucleic acid adjuvant
SG11201500239VA (en) 2012-07-13 2015-03-30 Wave Life Sciences Japan Asymmetric auxiliary group
US9982257B2 (en) 2012-07-13 2018-05-29 Wave Life Sciences Ltd. Chiral control
US20140038182A1 (en) 2012-07-17 2014-02-06 Dna Logix, Inc. Cooperative primers, probes, and applications thereof
WO2014022852A1 (en) 2012-08-03 2014-02-06 Aptamir Therapeutics, Inc. Cell-specific delivery of mirna modulators for the treatment of obesity and related disorders
CN104736551B (en) 2012-08-15 2017-07-28 Ionis制药公司 The method for preparing oligomeric compounds using improved end-blocking scheme
CA2884245C (en) 2012-09-06 2023-03-14 The University Of Chicago Antisense polynucleotides to induce exon skipping and methods of treating dystrophies
US9695418B2 (en) 2012-10-11 2017-07-04 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising bicyclic nucleosides and uses thereof
EP4144845A1 (en) 2012-10-12 2023-03-08 Ionis Pharmaceuticals, Inc. Antisense compounds and uses thereof
DK2906256T3 (en) 2012-10-12 2018-11-19 Ionis Pharmaceuticals Inc SELECTIVE ANTISENSE COMPOUNDS AND APPLICATIONS THEREOF
US9029335B2 (en) 2012-10-16 2015-05-12 Isis Pharmaceuticals, Inc. Substituted 2′-thio-bicyclic nucleosides and oligomeric compounds prepared therefrom
US9695475B2 (en) 2012-12-11 2017-07-04 Ionis Pharmaceuticals, Inc. Competitive modulation of microRNAs
WO2014121287A2 (en) 2013-02-04 2014-08-07 Isis Pharmaceuticals, Inc. Selective antisense compounds and uses thereof
KR20150130430A (en) 2013-03-14 2015-11-23 아이시스 파마수티컬즈 인코포레이티드 Compositions and methods for modulating tau expression
US9347095B2 (en) 2013-03-15 2016-05-24 Bio-Rad Laboratories, Inc. Digital assays for mutation detection
EP2978446B1 (en) 2013-03-27 2020-03-04 The General Hospital Corporation Anti-cd33 antibody for use in treating alzheimer's disease
WO2015012916A2 (en) 2013-04-23 2015-01-29 Northwestern University Metal-ligand coordination polymer nanoparticles and methods for making
SG10201906382QA (en) 2013-05-01 2019-08-27 Ionis Pharmaceuticals Inc Compositions and methods for modulating hbv and ttr expression
AU2014280847B2 (en) 2013-06-13 2019-07-04 Antisense Therapeutics Ltd Combination therapy
CA2916252A1 (en) 2013-06-21 2014-12-24 Isis Pharmaceuticals, Inc. Compositions and methods for modulation of target nucleic acids
EP3022176B8 (en) 2013-07-15 2019-12-25 The Regents of the University of California Azacyclic constrained analogs of fty720
TWI657819B (en) 2013-07-19 2019-05-01 美商Ionis製藥公司 Compositions for modulating tau expression
US10435430B2 (en) 2013-07-31 2019-10-08 Ionis Pharmaceuticals, Inc. Methods and compounds useful in conditions related to repeat expansion
ES2773547T3 (en) 2013-08-08 2020-07-13 Scripps Research Inst An in vitro nucleic acid site specific enzymatic labeling procedure by incorporating unnatural nucleotides
TW201536329A (en) 2013-08-09 2015-10-01 Isis Pharmaceuticals Inc Compounds and methods for modulation of dystrophia myotonica-protein kinase (DMPK) expression
WO2015042447A1 (en) 2013-09-20 2015-03-26 Isis Pharmaceuticals, Inc. Targeted therapeutic nucleosides and their use
WO2015054451A1 (en) 2013-10-09 2015-04-16 The United States Of America As Represented By The Secretary Department Of Health And Human Services Detection of hepatitis delta virus (hdv) for the diagnosis and treatment of sjögren's syndrome and lymphoma
US11162096B2 (en) 2013-10-14 2021-11-02 Ionis Pharmaceuticals, Inc Methods for modulating expression of C9ORF72 antisense transcript
WO2015066708A1 (en) 2013-11-04 2015-05-07 Northwestern University Quantification and spatio-temporal tracking of a target using a spherical nucleic acid (sna)
US10752940B2 (en) 2013-11-08 2020-08-25 Ionis Pharmaceuticals, Inc. Compounds and methods for detecting oligonucleotides
ES2797679T3 (en) 2013-12-02 2020-12-03 Ionis Pharmaceuticals Inc Antisense compounds and their uses
WO2015126502A2 (en) 2013-12-03 2015-08-27 Northwestern University Liposomal particles, methods of making same and uses thereof
US10385388B2 (en) 2013-12-06 2019-08-20 Swift Biosciences, Inc. Cleavable competitor polynucleotides
CA2844640A1 (en) 2013-12-06 2015-06-06 The University Of British Columbia Method for treatment of castration-resistant prostate cancer
JPWO2015108047A1 (en) 2014-01-15 2017-03-23 株式会社新日本科学 Chiral nucleic acid adjuvant having immunity induction activity and immunity induction activator
US10149905B2 (en) 2014-01-15 2018-12-11 Shin Nippon Biomedical Laboratories, Ltd. Chiral nucleic acid adjuvant having antitumor effect and antitumor agent
JPWO2015108046A1 (en) 2014-01-15 2017-03-23 株式会社新日本科学 Chiral nucleic acid adjuvant and antiallergic agent having antiallergic action
DK3094728T3 (en) 2014-01-16 2022-05-16 Wave Life Sciences Ltd KIRALT DESIGN
EP3102197B1 (en) 2014-02-04 2018-08-29 Genentech, Inc. Mutant smoothened and methods of using the same
EP3119789B1 (en) 2014-03-17 2020-04-22 Ionis Pharmaceuticals, Inc. Bicyclic carbocyclic nucleosides and oligomeric compounds prepared therefrom
RU2019130898A (en) 2014-03-19 2019-11-11 Ионис Фармасьютикалз, Инк. COMPOSITIONS FOR MODULATION OF ATAXIN 2 EXPRESSION
US10006027B2 (en) 2014-03-19 2018-06-26 Ionis Pharmaceuticals, Inc. Methods for modulating Ataxin 2 expression
RU2704619C2 (en) 2014-04-01 2019-10-30 Биоген Ма Инк. Compositions for modulating expression of sod-1
EP3943607A1 (en) 2014-04-09 2022-01-26 The Scripps Research Institute Import of unnatural or modified nucleoside triphosphates into cells via nucleic acid triphosphate transporters
US10221416B2 (en) 2014-04-24 2019-03-05 Ionis Pharmaceuticals, Inc. Oligomeric compounds comprising alpha-beta-constrained nucleic acid
DK3137476T3 (en) 2014-04-28 2019-11-18 Ionis Pharmaceuticals Inc LINKER-MODIFIED OLIGOMER COMPOUNDS
EP3137604B1 (en) 2014-05-01 2020-07-15 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating growth hormone receptor expression
SG11201608502TA (en) 2014-05-01 2016-11-29 Ionis Pharmaceuticals Inc Compositions and methods for modulating complement factor b expression
SI3137605T1 (en) 2014-05-01 2021-02-26 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating angiopoietin-like 3 expression
US10570169B2 (en) 2014-05-22 2020-02-25 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
CN106661580B (en) 2014-06-10 2022-02-15 鹿特丹伊拉斯谟大学医疗中心 Antisense oligonucleotides for treating pompe disease
EP3161159B1 (en) 2014-06-25 2020-08-05 The General Hospital Corporation Targeting human satellite ii (hsatii)
US9951327B1 (en) 2014-07-17 2018-04-24 Integrated Dna Technologies, Inc. Efficient and rapid method for assembling and cloning double-stranded DNA fragments
MX2017001432A (en) 2014-07-31 2017-05-09 Uab Res Found Apoe mimetic peptides and higher potency to clear plasma cholesterol.
CA2958431A1 (en) 2014-08-19 2016-02-25 Northwestern University Protein/oligonucleotide core-shell nanoparticle therapeutics
CN107074767A (en) 2014-08-20 2017-08-18 西北大学 Unlimited coordination polymer nano particle-nucleic acid conjugate of the bio-compatible adjusted for antisense gene
WO2016033424A1 (en) 2014-08-29 2016-03-03 Genzyme Corporation Methods for the prevention and treatment of major adverse cardiovascular events using compounds that modulate apolipoprotein b
WO2016044271A2 (en) 2014-09-15 2016-03-24 Children's Medical Center Corporation Methods and compositions to increase somatic cell nuclear transfer (scnt) efficiency by removing histone h3-lysine trimethylation
EP3198012B1 (en) 2014-09-26 2019-09-04 University of Massachusetts Rna-modulating agents
WO2016057693A1 (en) 2014-10-10 2016-04-14 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhalation delivery of conjugated oligonucleotide
WO2016077540A1 (en) 2014-11-12 2016-05-19 Ionis Pharmaceuticals, Inc. Compounds and methods for the modulation of comp
CN107106493A (en) 2014-11-21 2017-08-29 西北大学 The sequence-specific cellular uptake of spherical nucleic acid nano particle conjugate
EP3229842B1 (en) 2014-12-08 2022-07-06 The Board of Regents of The University of Texas System Lipocationic polymers and uses thereof
JP6997623B2 (en) 2014-12-12 2022-02-04 エム. ウルフ、トッド Compositions and Methods for Editing Intracellular Nucleic Acids Utilizing Oligonucleotides
US9688707B2 (en) 2014-12-30 2017-06-27 Ionis Pharmaceuticals, Inc. Bicyclic morpholino compounds and oligomeric compounds prepared therefrom
WO2016112132A1 (en) 2015-01-06 2016-07-14 Ionis Pharmaceuticals, Inc. Compositions for modulating expression of c9orf72 antisense transcript
WO2016115490A1 (en) 2015-01-16 2016-07-21 Ionis Pharmaceuticals, Inc. Compounds and methods for modulation of dux4
JP2018506715A (en) 2015-01-23 2018-03-08 ヴァンダービルト ユニバーシティー Robust interferometer and method of use
EP3256487A4 (en) 2015-02-09 2018-07-18 Duke University Compositions and methods for epigenome editing
EP3262173A2 (en) 2015-02-23 2018-01-03 Crispr Therapeutics AG Materials and methods for treatment of human genetic diseases including hemoglobinopathies
US11129844B2 (en) 2015-03-03 2021-09-28 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating MECP2 expression
WO2016164463A1 (en) 2015-04-07 2016-10-13 The General Hospital Corporation Methods for reactivating genes on the inactive x chromosome
PL3283500T3 (en) 2015-04-08 2021-05-31 The University Of Chicago Compositions and methods for correcting limb girdle muscular dystrophy type 2c using exon skipping
WO2016167780A1 (en) 2015-04-16 2016-10-20 Ionis Pharmaceuticals, Inc. Compositions for modulating expression of c9orf72 antisense transcript
CN108139375A (en) 2015-06-26 2018-06-08 贝斯以色列女执事医疗中心股份有限公司 Target the cancer therapy for inhibiting the four transmembrane proteins 33 (TSPAN33) in cell derived from marrow sample
EP3314027A4 (en) 2015-06-29 2019-07-03 Caris Science, Inc. Therapeutic oligonucleotides
EP3313989A4 (en) 2015-06-29 2018-12-05 Ionis Pharmaceuticals, Inc. Modified crispr rna and modified single crispr rna and uses thereof
MY192997A (en) 2015-07-10 2022-09-20 Ionis Pharmaceuticals Inc Modulators of diacyglycerol acyltransferase 2 (dgat2)
CA2993652A1 (en) 2015-07-28 2017-02-02 Caris Science, Inc. Targeted oligonucleotides
WO2017021961A1 (en) 2015-08-04 2017-02-09 Yeda Research And Development Co. Ltd. Methods of screening for riboswitches and attenuators
CN108271360B (en) 2015-09-14 2023-01-24 得克萨斯州大学系统董事会 Lipophilic cationic dendritic polymer and use thereof
CA2999177A1 (en) 2015-09-24 2017-03-30 The Regents Of The University Of California Synthetic sphingolipid-like molecules, drugs, methods of their synthesis and methods of treatment
AU2016339053A1 (en) 2015-09-24 2018-04-12 Crispr Therapeutics Ag Novel family of RNA-programmable endonucleases and their uses in genome editing and other applications
RU2018113709A (en) 2015-09-24 2019-10-30 Айонис Фармасьютикалз, Инк. KRAS EXPRESSION MODULATORS
WO2017053781A1 (en) 2015-09-25 2017-03-30 Ionis Pharmaceuticals, Inc. Compositions and methods for modulating ataxin 3 expression
WO2017058672A1 (en) 2015-09-29 2017-04-06 The Regents Of The University Of Michigan Office Of Technology Transfer Biodegradable hydrogel for tissue expansion
EP4089175A1 (en) 2015-10-13 2022-11-16 Duke University Genome engineering with type i crispr systems in eukaryotic cells
EP3368063B1 (en) 2015-10-28 2023-09-06 Vertex Pharmaceuticals Inc. Materials and methods for treatment of duchenne muscular dystrophy
SI3368578T1 (en) 2015-10-30 2021-08-31 F. Hoffmann-La Roche Ag Anti-htra1 antibodies and methods of use thereof
WO2017075670A1 (en) 2015-11-05 2017-05-11 Children's Hospital Los Angeles "mobilizing leukemia cells"
BR112018008971A2 (en) 2015-11-06 2018-11-27 Crispr Therapeutics Ag Materials and Methods for Treatment of Type 1a Glycogen Storage Disease
US20190046555A1 (en) 2015-11-06 2019-02-14 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds for use in therapy
PE20181180A1 (en) 2015-11-06 2018-07-20 Ionis Pharmaceuticals Inc MODULATE THE EXPRESSION OF APOLIPOPROTEIN (a)
AU2016355178B9 (en) 2015-11-19 2019-05-30 Massachusetts Institute Of Technology Lymphocyte antigen CD5-like (CD5L)-interleukin 12B (p40) heterodimers in immunity
EP3967758A1 (en) 2015-12-01 2022-03-16 CRISPR Therapeutics AG Materials and methods for treatment of alpha-1 antitrypsin deficiency
WO2017096395A1 (en) 2015-12-04 2017-06-08 Ionis Pharmaceuticals, Inc. Methods of treating breast cancer
AU2015416656B2 (en) 2015-12-07 2023-02-23 Erasmus University Medical Center Rotterdam Enzymatic replacement therapy and antisense therapy for Pompe disease
US11761007B2 (en) 2015-12-18 2023-09-19 The Scripps Research Institute Production of unnatural nucleotides using a CRISPR/Cas9 system
AU2016376191A1 (en) 2015-12-23 2018-07-12 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration
AU2017205462A1 (en) 2016-01-05 2018-06-07 Ionis Pharmaceuticals, Inc. Methods for reducing LRRK2 expression
WO2017132483A1 (en) 2016-01-29 2017-08-03 Vanderbilt University Free-solution response function interferometry
AU2017213826A1 (en) 2016-02-04 2018-08-23 Curis, Inc. Mutant smoothened and methods of using the same
US20190112353A1 (en) 2016-02-18 2019-04-18 Crispr Therapeutics Ag Materials and methods for treatment of severe combined immunodeficiency (scid) or omenn syndrome
JP7033072B2 (en) 2016-02-25 2022-03-09 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド Treatment for fibrosis targeting SMOC2
US11136577B2 (en) 2016-03-09 2021-10-05 Ionis Pharmaceuticals, Inc. Methods and compositions for inhibiting PMP22 expression
WO2017158422A1 (en) 2016-03-16 2017-09-21 Crispr Therapeutics Ag Materials and methods for treatment of hereditary haemochromatosis
WO2017161168A1 (en) 2016-03-16 2017-09-21 Ionis Pharmaceuticals, Inc. Modulation of dyrk1b expression
AU2017234678A1 (en) 2016-03-16 2018-08-16 Ionis Pharmaceuticals, Inc. Methods of modulating KEAP1
JP2019516393A (en) 2016-03-18 2019-06-20 カリス サイエンス インコーポレイテッド Oligonucleotide probes and uses thereof
ES2933435T3 (en) 2016-04-13 2023-02-08 Ionis Pharmaceuticals Inc Methods to reduce the expression of C9ORF72
AU2017252023A1 (en) 2016-04-18 2018-11-15 Crispr Therapeutics Ag Materials and methods for treatment of hemoglobinopathies
WO2017191503A1 (en) 2016-05-05 2017-11-09 Crispr Therapeutics Ag Materials and methods for treatment of hemoglobinopathies
CN109414408B (en) 2016-05-16 2022-03-29 得克萨斯州大学系统董事会 Cationic sulfonamide amino lipids and amphiphilic zwitterionic amino lipids
WO2017205686A1 (en) 2016-05-25 2017-11-30 Caris Science, Inc. Oligonucleotide probes and uses thereof
US11708614B2 (en) 2016-06-15 2023-07-25 Streck Llc Assays and methods for determining microbial resistance
EP3471781A4 (en) 2016-06-17 2020-05-06 Ionis Pharmaceuticals, Inc. Modulation of gys1 expression
WO2017223528A1 (en) 2016-06-24 2017-12-28 The Scripps Research Institute Novel nucleoside triphosphate transporter and uses thereof
WO2018002783A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of friedreich ataxia and other related disorders
WO2018002762A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis (als) and other related disorders
WO2018002812A1 (en) 2016-06-29 2018-01-04 Crispr Therapeutics Ag Materials and methods for treatment of myotonic dystrophy type 1 (dm1) and other related disorders
AU2017292173B2 (en) 2016-07-06 2022-01-13 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
EP3481856A1 (en) 2016-07-06 2019-05-15 Crispr Therapeutics AG Materials and methods for treatment of pain related disorders
WO2018007871A1 (en) 2016-07-08 2018-01-11 Crispr Therapeutics Ag Materials and methods for treatment of transthyretin amyloidosis
US11253601B2 (en) 2016-07-11 2022-02-22 Translate Bio Ma, Inc. Nucleic acid conjugates and uses thereof
RS63928B1 (en) 2016-07-15 2023-02-28 Ionis Pharmaceuticals Inc Compounds and methods for modulation of smn2
WO2018020323A2 (en) 2016-07-25 2018-02-01 Crispr Therapeutics Ag Materials and methods for treatment of fatty acid disorders
NL2017294B1 (en) 2016-08-05 2018-02-14 Univ Erasmus Med Ct Rotterdam Natural cryptic exon removal by pairs of antisense oligonucleotides.
NL2017295B1 (en) 2016-08-05 2018-02-14 Univ Erasmus Med Ct Rotterdam Antisense oligomeric compound for Pompe disease
US11364304B2 (en) 2016-08-25 2022-06-21 Northwestern University Crosslinked micellar spherical nucleic acids
SG10201607303YA (en) 2016-09-01 2018-04-27 Agency Science Tech & Res Antisense oligonucleotides to induce exon skipping
WO2018055577A1 (en) 2016-09-23 2018-03-29 Synthena Ag Mixed tricyclo-dna, 2'-modified rna oligonucleotide compositions and uses thereof
JOP20190065A1 (en) 2016-09-29 2019-03-28 Ionis Pharmaceuticals Inc Compounds and methods for reducing tau expression
WO2018067900A1 (en) 2016-10-06 2018-04-12 Ionis Pharmaceuticals, Inc. Method of conjugating oligomeric compounds
SG10201609048RA (en) 2016-10-28 2018-05-30 Agency Science Tech & Res Antisense oligonucleotides
CA3037046A1 (en) 2016-10-31 2018-05-03 University Of Massachusetts Targeting microrna-101-3p in cancer therapy
JOP20190104A1 (en) 2016-11-10 2019-05-07 Ionis Pharmaceuticals Inc Compounds and methods for reducing atxn3 expression
US11033570B2 (en) 2016-12-02 2021-06-15 Cold Spring Harbor Laboratory Modulation of Lnc05 expression
EP3555296A4 (en) 2016-12-13 2020-07-29 Seattle Children's Hospital (DBA Seattle Children's Research Institute) Methods of exogenous drug activation of chemical-induced signaling complexes expressed in engineered cells in vitro and in vivo
IL301053A (en) 2017-01-23 2023-05-01 Regeneron Pharma Hsd17b13 variants and uses thereof
EP3585900B1 (en) 2017-02-22 2022-12-21 CRISPR Therapeutics AG Materials and methods for treatment of spinocerebellar ataxia type 2 (sca2) and other spinocerebellar ataxia type 2 protein (atxn2) gene related conditions or disorders
US11407997B2 (en) 2017-02-22 2022-08-09 Crispr Therapeutics Ag Materials and methods for treatment of primary hyperoxaluria type 1 (PH1) and other alanine-glyoxylate aminotransferase (AGXT) gene related conditions or disorders
WO2018154439A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Materials and methods for treatment of spinocerebellar ataxia type 1 (sca1) and other spinocerebellar ataxia type 1 protein (atxn1) gene related conditions or disorders
CA3054031A1 (en) 2017-02-22 2018-08-30 Crispr Therapeutics Ag Compositions and methods for gene editing
EP3585807A1 (en) 2017-02-22 2020-01-01 CRISPR Therapeutics AG Materials and methods for treatment of early onset parkinson's disease (park1) and other synuclein, alpha (snca) gene related conditions or disorders
US11180756B2 (en) 2017-03-09 2021-11-23 Ionis Pharmaceuticals Morpholino modified oligomeric compounds
JOP20190215A1 (en) 2017-03-24 2019-09-19 Ionis Pharmaceuticals Inc Modulators of pcsk9 expression
US20180284123A1 (en) 2017-03-30 2018-10-04 California Institute Of Technology Barcoded rapid assay platform useful for efficient analysis of candidate molecules and methods of making and using the platform
US11203611B2 (en) 2017-04-14 2021-12-21 Tollnine, Inc. Immunomodulating polynucleotides, antibody conjugates thereof, and methods of their use
WO2018193428A1 (en) 2017-04-20 2018-10-25 Synthena Ag Modified oligomeric compounds comprising tricyclo-dna nucleosides and uses thereof
JP2020517613A (en) 2017-04-20 2020-06-18 シンセナ アーゲー Modified oligomeric compounds containing tricyclo DNA nucleosides and uses thereof
EP3612232A1 (en) 2017-04-21 2020-02-26 The Broad Institute, Inc. Targeted delivery to beta cells
WO2018209270A1 (en) 2017-05-11 2018-11-15 Northwestern University Adoptive cell therapy using spherical nucleic acids (snas)
US11622977B2 (en) 2017-05-12 2023-04-11 Crispr Therapeutics Ag Materials and methods for engineering cells and uses thereof in immuno-oncology
EP3645546A4 (en) 2017-06-30 2021-12-01 Solstice Biologics, Ltd. Chiral phosphoramidite auxiliaries and methods of their use
CN111051512A (en) 2017-07-11 2020-04-21 辛索克斯公司 Incorporation of non-natural nucleotides and methods thereof
EP3652186A4 (en) 2017-07-13 2021-03-31 Northwestern University General and direct method for preparing oligonucleotide-functionalized metal-organic framework nanoparticles
WO2019028425A1 (en) 2017-08-03 2019-02-07 Synthorx, Inc. Cytokine conjugates for the treatment of autoimmune diseases
WO2019036613A1 (en) 2017-08-18 2019-02-21 Ionis Pharmaceuticals, Inc. Modulation of the notch signaling pathway for treatment of respiratory disorders
US10517889B2 (en) 2017-09-08 2019-12-31 Ionis Pharmaceuticals, Inc. Modulators of SMAD7 expression
SG11202003464VA (en) 2017-10-17 2020-05-28 Crispr Therapeutics Ag Compositions and methods for gene editing for hemophilia a
US20210180091A1 (en) 2017-10-26 2021-06-17 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of hemoglobinopathies
US20210032622A1 (en) 2017-11-09 2021-02-04 Crispr Therapeutics Ag Self-inactivating (sin) crispr/cas or crispr/cpf1 systems and uses thereof
TWI809004B (en) 2017-11-09 2023-07-21 美商Ionis製藥公司 Compounds and methods for reducing snca expression
US20200385719A1 (en) 2017-11-16 2020-12-10 Alnylam Pharmaceuticals, Inc. Kisspeptin 1 (kiss1) irna compositions and methods of use thereof
EP3714054A1 (en) 2017-11-20 2020-09-30 Alnylam Pharmaceuticals, Inc. Serum amyloid p component (apcs) irna compositions and methods of use thereof
CN111727251A (en) 2017-11-21 2020-09-29 克里斯珀医疗股份公司 Materials and methods for treating autosomal dominant retinitis pigmentosa
US20200384033A1 (en) 2017-12-05 2020-12-10 Vertex Pharmaceuticals Incorporated Crispr-cas9 modified cd34+ human hematopoietic stem and progenitor cells and uses thereof
WO2019118916A1 (en) 2017-12-14 2019-06-20 Ionis Pharmaceuticals, Inc. Conjugated antisense compounds and their use
CA3084825A1 (en) 2017-12-14 2019-06-20 Crispr Therapeutics Ag Novel rna-programmable endonuclease systems and their use in genome editing and other applications
JP7348185B2 (en) 2017-12-21 2023-09-20 アルニラム ファーマスーティカルズ インコーポレイテッド Chirally enriched double-stranded RNA agent
AU2018393050A1 (en) 2017-12-21 2020-06-18 Bayer Healthcare Llc Materials and methods for treatment of Usher Syndrome Type 2A
EP3728595A1 (en) 2017-12-21 2020-10-28 CRISPR Therapeutics AG Materials and methods for treatment of usher syndrome type 2a and/or non-syndromic autosomal recessive retinitis pigmentosa (arrp)
WO2019126641A2 (en) 2017-12-21 2019-06-27 Ionis Pharmaceuticals, Inc. Modulation of frataxin expression
WO2019140231A1 (en) 2018-01-12 2019-07-18 Bristol-Myers Squibb Company Antisense oligonucleotides targeting alpha-synuclein and uses thereof
CA3088180A1 (en) 2018-01-12 2019-07-18 Crispr Therapeutics Ag Compositions and methods for gene editing by targeting transferrin
MX2020007369A (en) 2018-01-15 2020-10-28 Ionis Pharmaceuticals Inc Modulators of dnm2 expression.
WO2019142135A1 (en) 2018-01-19 2019-07-25 Synthena Ag Tricyclo-dna nucleoside precursors and processes for preparing the same
US20190233816A1 (en) 2018-01-26 2019-08-01 Massachusetts Institute Of Technology Structure-guided chemical modification of guide rna and its applications
MA51788A (en) 2018-02-05 2020-12-16 Vertex Pharma SUBSTANCES AND METHODS FOR TREATING HEMOGLOBINOPATHIES
MA51787A (en) 2018-02-05 2020-12-16 Vertex Pharma SUBSTANCES AND METHODS OF TREATMENT OF HEMOGLOBINOPATHIES
JP7317029B2 (en) 2018-02-12 2023-07-28 アイオーニス ファーマシューティカルズ, インコーポレーテッド Modified compounds and uses thereof
US20210130824A1 (en) 2018-02-16 2021-05-06 Crispr Therapeutics Ag Compositions and methods for gene editing by targeting fibrinogen-alpha
KR20200127207A (en) 2018-02-26 2020-11-10 신톡스, 인크. IL-15 conjugate and uses thereof
US11732260B2 (en) 2018-03-02 2023-08-22 Ionis Pharmaceuticals, Inc. Compounds and methods for the modulation of amyloid-β precursor protein
TW202000199A (en) 2018-03-02 2020-01-01 美商Ionis製藥公司 Modulators of IRF4 expression
EP3768834A1 (en) 2018-03-19 2021-01-27 CRISPR Therapeutics AG Novel rna-programmable endonuclease systems and uses thereof
US11661601B2 (en) 2018-03-22 2023-05-30 Ionis Pharmaceuticals, Inc. Methods for modulating FMR1 expression
EP4051799A2 (en) 2018-03-30 2022-09-07 Rheinische Friedrich-Wilhelms-Universität Bonn Aptamers for targeted activaton of t cell-mediated immunity
CN116536272A (en) 2018-04-06 2023-08-04 儿童医疗中心有限公司 Compositions and methods for somatic reprogramming and imprinting
SG11202008660TA (en) 2018-04-11 2020-10-29 Ionis Pharmaceuticals Inc Modulators of ezh2 expression
WO2019204668A1 (en) 2018-04-18 2019-10-24 Casebia Therapeutics Limited Liability Partnership Compositions and methods for knockdown of apo(a) by gene editing for treatment of cardiovascular disease
WO2019213571A1 (en) 2018-05-03 2019-11-07 The Trustees Of Wheaton College Improved membranes for nanopore sensing applications
CR20200604A (en) 2018-05-09 2021-02-09 Ionis Pharmaceuticals Inc Compounds and methods for reducing atxn3 expression
BR112020020957B1 (en) 2018-05-09 2022-05-10 Ionis Pharmaceuticals, Inc Oligomeric compounds, population and pharmaceutical composition thereof and their uses
US11833168B2 (en) 2018-06-14 2023-12-05 Ionis Pharmaceuticals, Inc. Compounds and methods for increasing STMN2 expression
US11332746B1 (en) 2018-06-27 2022-05-17 Ionis Pharmaceuticals, Inc. Compounds and methods for reducing LRRK2 expression
MX2021000922A (en) 2018-07-25 2021-03-31 Ionis Pharmaceuticals Inc Compounds and methods for reducing atxn2 expression.
AU2019325255A1 (en) 2018-08-20 2021-04-15 Rogcon, Inc. Antisense oligonucleotides targeting SCN2A for the treatment of SCN1A encephalopathies
US20210292766A1 (en) 2018-08-29 2021-09-23 University Of Massachusetts Inhibition of Protein Kinases to Treat Friedreich Ataxia
EP3620520A1 (en) 2018-09-10 2020-03-11 Universidad del Pais Vasco Novel target to treat a metabolic disease in an individual
US20220056220A1 (en) 2018-09-14 2022-02-24 Northwestern University Programming protein polymerization with dna
US20210332367A1 (en) 2018-09-18 2021-10-28 Alnylam Pharmaceuticals, Inc. KETOHEXOKINASE (KHK) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
TW202023573A (en) 2018-09-19 2020-07-01 美商Ionis製藥公司 Modulators of pnpla3 expression
US20210348159A1 (en) 2018-10-17 2021-11-11 Crispr Therapeutics Ag Compositions and methods for delivering transgenes
TW202028222A (en) 2018-11-14 2020-08-01 美商Ionis製藥公司 Modulators of foxp3 expression
BR112021008967A2 (en) 2018-11-15 2021-08-17 Ionis Pharmaceuticals, Inc. irf5 expression modulators
TW202039841A (en) 2018-11-21 2020-11-01 美商Ionis製藥公司 Compounds and methods for reducing prion expression
US20210332495A1 (en) 2018-12-06 2021-10-28 Northwestern University Protein Crystal Engineering Through DNA Hybridization Interactions
KR20210117271A (en) 2018-12-21 2021-09-28 노쓰웨스턴유니버시티 Use of annexin to prevent and treat myofascial injuryUse of annexin to prevent and treat muscle damage
WO2020139977A1 (en) 2018-12-26 2020-07-02 Northwestern University Use of glucocorticoid steroids in preventing and treating conditions of muscle wasting, aging and metabolic disorder
JP2022519532A (en) 2019-01-31 2022-03-24 アイオーニス ファーマシューティカルズ, インコーポレーテッド Modulator of YAP1 expression
AU2020218203A1 (en) 2019-02-06 2021-08-26 Synthorx, Inc. IL-2 conjugates and methods of use thereof
MA54951A (en) 2019-02-15 2021-12-22 Bayer Healthcare Llc GENE EDITING FOR HEMOPHILIA A WITH ENHANCED FACTOR VIII EXPRESSION
AU2020227824A1 (en) 2019-02-27 2021-08-26 Ionis Pharmaceuticals, Inc. Modulators of MALAT1 expression
US20220175956A1 (en) 2019-03-06 2022-06-09 Northwestern University Hairpin-like oligonucleotide-conjugated spherical nucleic acid
CA3139919A1 (en) 2019-03-11 2020-09-17 Ochsner Health System Microrna regulatory network as biomarkers of seizure in patients with spontaneous intracerebral hemorrhage
SG11202109741VA (en) 2019-03-12 2021-10-28 Crispr Therapeutics Ag Novel high fidelity rna-programmable endonuclease systems and uses thereof
WO2020205463A1 (en) 2019-03-29 2020-10-08 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating ube3a-ats
WO2020243644A1 (en) 2019-05-31 2020-12-03 Streck, Inc. Detection of antibiotic resistance genes
US11879145B2 (en) 2019-06-14 2024-01-23 The Scripps Research Institute Reagents and methods for replication, transcription, and translation in semi-synthetic organisms
EP3956450A4 (en) 2019-07-26 2022-11-16 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating gfap
CN114555128A (en) 2019-08-15 2022-05-27 新索思股份有限公司 Combination immunooncology therapy with IL-2 conjugates
EP4013767A4 (en) 2019-08-15 2023-10-25 Ionis Pharmaceuticals, Inc. Linkage modified oligomeric compounds and uses thereof
KR20220051355A (en) 2019-08-23 2022-04-26 신톡스, 인크. IL-15 conjugates and uses thereof
WO2021050554A1 (en) 2019-09-10 2021-03-18 Synthorx, Inc. Il-2 conjugates and methods of use to treat autoimmune diseases
JP2022552249A (en) 2019-10-14 2022-12-15 アストラゼネカ・アクチエボラーグ Modulators of PNPLA3 expression
WO2021086623A1 (en) 2019-10-31 2021-05-06 The Trustees Of Wheaton College Design and characterization of multilayered structures for support of lipid bilayers
JP2022554272A (en) 2019-11-04 2022-12-28 シンソークス, インコーポレイテッド Interleukin 10 conjugates and uses thereof
JP2023503635A (en) 2019-11-27 2023-01-31 クリスパー・セラピューティクス・アクチェンゲゼルシャフト Methods of synthesizing RNA molecules
EP4077674A1 (en) 2019-12-18 2022-10-26 Alia Therapeutics S.R.L. Compositions and methods for treating retinitis pigmentosa
SG10201914033YA (en) 2019-12-31 2021-07-29 Wilmar International Ltd Polypeptides with Lipase Activity and Uses Thereof
WO2021142245A1 (en) 2020-01-10 2021-07-15 Translate Bio, Inc. Compounds, pharmaceutical compositions and methods for modulating expression of muc5b in lung cells and tissues
US20230057461A1 (en) 2020-01-27 2023-02-23 The U.S.A., As Represented By The Secretary, Department Of Health And Human Services Rab13 and net1 antisense oligonucleotides to treat metastatic cancer
TW202140787A (en) 2020-02-28 2021-11-01 美商Ionis製藥公司 Compounds and methods for modulating smn2
CA3169523A1 (en) 2020-02-28 2021-09-02 Jaume Pons Transglutaminase-mediated conjugation
CN116134135A (en) 2020-04-07 2023-05-16 阿尔尼拉姆医药品有限公司 Compositions and methods for silencing SCN9A expression
BR112022021813A2 (en) 2020-04-27 2023-01-17 Alnylam Pharmaceuticals Inc APOLIPOPROTEIN AND (APOE) IRNA AGENT COMPOSITIONS AND METHODS OF USE THEREOF
EP4143321A2 (en) 2020-05-01 2023-03-08 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating atxn1
AR122534A1 (en) 2020-06-03 2022-09-21 Triplet Therapeutics Inc METHODS FOR THE TREATMENT OF NUCLEOTIDE REPEAT EXPANSION DISORDERS ASSOCIATED WITH MSH3 ACTIVITY
AU2021296622A1 (en) 2020-06-25 2023-02-23 Synthorx, Inc. Immuno oncology combination therapy with IL-2 conjugates and anti-EGFR antibodies
JP2023532518A (en) 2020-06-29 2023-07-28 アイオーニス ファーマシューティカルズ, インコーポレーテッド Compounds and methods for modulating PLP1
TW202227102A (en) 2020-09-22 2022-07-16 瑞典商阿斯特捷利康公司 Method of treating fatty liver disease
US20230392134A1 (en) 2020-09-30 2023-12-07 Crispr Therapeutics Ag Materials and methods for treatment of amyotrophic lateral sclerosis
EP3978608A1 (en) 2020-10-05 2022-04-06 SQY Therapeutics Oligomeric compound for dystrophin rescue in dmd patients throughout skipping of exon-51
BR112023006024A2 (en) 2020-10-09 2023-05-09 Synthorx Inc IMMUNO-ONCOLOGY THERAPIES WITH IL-2 CONJUGATES
MX2023004029A (en) 2020-10-09 2023-04-27 Synthorx Inc Immuno oncology combination therapy with il-2 conjugates and pembrolizumab.
US11447521B2 (en) 2020-11-18 2022-09-20 Ionis Pharmaceuticals, Inc. Compounds and methods for modulating angiotensinogen expression
CA3202708A1 (en) 2020-11-23 2022-05-27 Alpha Anomeric Sas Nucleic acid duplexes
GB2603454A (en) 2020-12-09 2022-08-10 Ucl Business Ltd Novel therapeutics for the treatment of neurodegenerative disorders
WO2022174102A1 (en) 2021-02-12 2022-08-18 Synthorx, Inc. Lung cancer combination therapy with il-2 conjugates and an anti-pd-1 antibody or antigen-binding fragment thereof
TW202245843A (en) 2021-02-12 2022-12-01 美商欣爍克斯公司 Skin cancer combination therapy with il-2 conjugates and cemiplimab
US20220288181A1 (en) 2021-03-12 2022-09-15 Northwestern University Antiviral vaccines using spherical nucleic acids
TW202313679A (en) 2021-06-03 2023-04-01 美商欣爍克斯公司 Head and neck cancer combination therapy comprising an il-2 conjugate and a pd-1 antagonist
KR20240021218A (en) 2021-06-11 2024-02-16 바이엘 악티엔게젤샤프트 Novel type V RNA programmable endonuclease system
EP4101928A1 (en) 2021-06-11 2022-12-14 Bayer AG Type v rna programmable endonuclease systems
CN117500815A (en) 2021-06-18 2024-02-02 Ionis制药公司 Compounds and methods for reducing IFNAR1 expression
WO2023285431A1 (en) 2021-07-12 2023-01-19 Alia Therapeutics Srl Compositions and methods for allele specific treatment of retinitis pigmentosa
WO2023034870A2 (en) 2021-09-01 2023-03-09 Ionis Pharmaceuticals, Inc. Compounds and methods for reducing dmpk expression
EP4144841A1 (en) 2021-09-07 2023-03-08 Bayer AG Novel small rna programmable endonuclease systems with impoved pam specificity and uses thereof
WO2023086292A2 (en) 2021-11-10 2023-05-19 University Of Rochester Gata4-targeted therapeutics for treatment of cardiac hypertrophy
WO2023086295A2 (en) 2021-11-10 2023-05-19 University Of Rochester Antisense oligonucleotides for modifying protein expression
GB202117758D0 (en) 2021-12-09 2022-01-26 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023122573A1 (en) 2021-12-20 2023-06-29 Synthorx, Inc. Head and neck cancer combination therapy comprising an il-2 conjugate and pembrolizumab
WO2023118349A1 (en) 2021-12-21 2023-06-29 Alia Therapeutics Srl Type ii cas proteins and applications thereof
WO2023122750A1 (en) 2021-12-23 2023-06-29 Synthorx, Inc. Cancer combination therapy with il-2 conjugates and cetuximab
WO2023118068A1 (en) 2021-12-23 2023-06-29 Bayer Aktiengesellschaft Novel small type v rna programmable endonuclease systems
WO2023194359A1 (en) 2022-04-04 2023-10-12 Alia Therapeutics Srl Compositions and methods for treatment of usher syndrome type 2a
WO2023237587A1 (en) 2022-06-10 2023-12-14 Bayer Aktiengesellschaft Novel small type v rna programmable endonuclease systems
WO2024050261A1 (en) 2022-08-29 2024-03-07 University Of Rochester Antisense oligonucleotide-based anti-fibrotic therapeutics
WO2024056880A2 (en) 2022-09-16 2024-03-21 Alia Therapeutics Srl Enqp type ii cas proteins and applications thereof

Also Published As

Publication number Publication date
ATE159027T1 (en) 1997-10-15
EP0506892A4 (en) 1993-03-31
EP0506892B1 (en) 1997-10-08
AU7344891A (en) 1991-07-18
EP0506892A1 (en) 1992-10-07
AU634450B2 (en) 1993-02-18
WO1991009048A1 (en) 1991-06-27
JPH05507265A (en) 1993-10-21
US5130302A (en) 1992-07-14
DE69031567D1 (en) 1997-11-13

Similar Documents

Publication Publication Date Title
EP0506892B1 (en) Boronated nucleosides
US5659027A (en) Boronated compounds
US5272250A (en) Boronated phosphoramidate compounds
EP0594578B1 (en) Oligoribonucleoside and oligodeoxyribonucleoside boranophosphates
US5750669A (en) Oligonucleotide analogs with terminal 3&#39;-3&#39; or 5&#39;-5&#39; internucleotide linkages
CA2177952C (en) Nucleosides and oligonucleotides containing boron clusters
CN103052646A (en) Methods for the preparation of diasteromerically pure phosphoramidate prodrugs
JP2007504152A (en) Novel tricyclic nucleosides or nucleotides as therapeutic agents
JPS59205394A (en) 2,5-riboadenylate-morpholinoadenylate nucleotide
WO2001040515A1 (en) Gapped oligomers having site specific chiral phosphorothioate internucleoside linkages
Shaw et al. Oligonucleoside boranophosphate (borane phosphonate)
WO1996030386A1 (en) Amidite derivatives and oligonucleotide derivatives
US6033909A (en) Oligonucleotide analogs, their preparation and use
CA2130926C (en) Dual action 2&#39;,5&#39;-oligoadenylate antiviral derivatives and uses thereof
Bellon et al. Sugar modified oligonucleotides: Synthesis, nuclease resistance and base pairing of oligodeoxynucleotides containing 1-(4′-thio-β-d-ribofuranosyl)-thymine
Baraniak et al. Synthesis of nucleoside–amino acid conjugates containing boranephosphate, boranephosphorothioate and boranephosphoramidate linkages

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued