CA2080905A1 - Device for the treatment of constricted vessels - Google Patents

Device for the treatment of constricted vessels

Info

Publication number
CA2080905A1
CA2080905A1 CA2080905A CA2080905A CA2080905A1 CA 2080905 A1 CA2080905 A1 CA 2080905A1 CA 2080905 A CA2080905 A CA 2080905A CA 2080905 A CA2080905 A CA 2080905A CA 2080905 A1 CA2080905 A1 CA 2080905A1
Authority
CA
Canada
Prior art keywords
spiral
wire
tubular member
elongated tubular
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2080905A
Other languages
French (fr)
Inventor
Daniel Yachia
Beyar Mordechay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ev3 Peripheral Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2080905A1 publication Critical patent/CA2080905A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/88Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure the wire-like elements formed as helical or spiral coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0017Catheters; Hollow probes specially adapted for long-term hygiene care, e.g. urethral or indwelling catheters to prevent infections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30092Properties of materials and coating materials using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
    • A61F2002/9511Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument the retaining means being filaments or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0076Quadric-shaped ellipsoidal or ovoid

Abstract

ABSTRACT

This invention is directed to a system for implanting a device to open constrictions in corpeal conduits, which com-prises (a) an elongated tubular member (40) and (b) a spa-tial spiral (1) of elongate axial extension wound of thin wire and having attachment means at each end, said spiral being positioned on and concentric to said elongated tubular member, said spiral being in a constricted condition such that its lateral profile is smaller than it would be if said spiral were not constricted.

Description

wosltl~HK PCT/US91/02716 ~ . 1 208090S

~OE FOR TffE TREATffNT oF
, FIELD OF THE INVENTION

This invention is directed to devices for the treatment of con~tricted ducts in human bodi-s. More particularly, this invention is directQd to intravascular, ur-thral, ureteral, bronchial, oesophageal, and biliary stents and sy6te~s for implanting them.

BACKGROUND OF THE I~Y~IIQ~

Urethral strictures can be congenital or acquired.
Acquired ur thral ~tricture is comoon in men but rare ln women. Mo~t acqui,ed ~trictures are due to infection or trauma. Apart from infections caused by venereal disea~es, infection from long term use of urethral catheters and the u~e of large caliber instruments inserted for m dical us-s into the urethra causes trauma to the urethra. External trauma, WO 91/16005 PCT'~1~i91/02716 ~080sos the urethra causes trauma to the urethra. External trauma, e.g., pelvic bone fractures or saddle injuries, can also cause urethral strictures. These narrowings restrict the urine flow. In chronic cases the bladder muscle becomes hypertrophic, and later an increase in the residual urine may develop in the bladder. Prolonged obstruction may cause incompetence of the outflow controm mechanis~ resulting in incontinence or high pressures in the bladder resulting in kidney damage and renal failure. Residual urine may be a predisposing factor for urinary infections which include prostatic infections, urethral abscess and also bladder stones.

Urethral strictures can be managed with palliative treatments such a~ dilatations of the urethra, which are not curative, because dilatation ~ractures the scar ti~sue and temporarily enlargQs the lumen. As healing occurs, the scar tissue reform.

; Vi~ually controlled internal urethrotomy is also used in the treat~ nt of urethral strictures. However, in most cases the stricture reoccurs and the procedure ha~ to be rep-ated.

Plastic surgical repair of the stricture is a m ticulous and complicated procedure. However, this procedure has a high recurrence of urethral strictures, and because of th~ lac~ of enough experiencod surgQons for reconstructive ~urgery, the ma;ority of cases are managed by non-curative mQthods.

WO91/1~W~ PCT/US91/02716 208090~

An intraurethral device designed for urethral strictures made of an expandable tubular mesh is described by E J . G .
Milroy et al , in an article which appeared in the Journal of Urology (Vol 141, May 1989) The device is inserted in a stenotic duct and keeps the lumen open as its inner dia~eter is as large as the duct lumen Due of its sharp ends, this device cannot be inserted into the mobile parts of the urethra because of severe pain and the dangor of perforations of the urethra This device becomes incorporated into the urethral wall within 3 to 6 months of its insertion, becoming a per~anent device and necessitating surg~cal intervention for its removal Bladder outlet obstruction is one of the most commonly encountered disord-rs in urology The most frequontly occurring anato~ical cau~- of bladd-r outlet obstruction in maies is enlargement of the prostate gland, either by benign hypertrophy or cancer The prostate is a che~tnut-sized gland lying inferior to th- bladder and surrounding approximately the first inch of the urethr~ As males age, the prostate commonly nlarg-~ -- without n-c--sarlly being mallgnant --and tends to gradually narrow or constrict its centr~l opening and thus exert radial, inwardly dir-cted pressure on the prostatic urethra Thi~ condition, known as benign prostatic hyperplasia, can cause a variety of obstructive symptoms, including urinary hesitancy, straining to void, and decreased size and force of the urinary stream As the condition WO91/1600~ PCT/US91/02716 gradually worsens, there may be total closure of the urethra and concomitant complete urinary retention, possibly leading to renal failure.

When intervention is indicated, there has heretofore been no widely accepted alternative to surgery. The preferred surgical procedure is the transurethral resection, wherein a resectoscope is inserted through the external opening of the urethra, and an electrosurgical loop is employed to cut away sections of the prostate gland from within the prostatic urethra. Another surgical intervention is open surgical removal of the gland performed through an abdominal incision.
However, many patients are poor candidates for surgery.

Another treatment is balloon dilatation of the prostate.
According to that technique expansion of the prostatic urethra up to a diameter of 3 to 4 cm results in tearing of the prostate comissures while keeping the prostatic urethra open.
The long time efficacy of this treatment has not yet been established.

The aforementioned treatments are not applicable in the ca~e of poor operativo risk patients bocauso these surqical steps are performed under general or regional anaesthesia and incapacitate a patient for a certain period. Moreover, surgery does not always result in full relief. In some cases a seriously ill patient has to rely on a perpetually worn catheter.

wosl/l6oos PCT/US91/02?16 2~8090~

A number of devices have been suggested which are said to provide relief of the effects of prostate hypertrophy.
European Patent Application No. 027486, which is based on U.S.
Patent Application Serial No. 939,754, filed Dece~ber 9, 1986, describes an expansion catheter which is transurethrally inserted and i5 placed in a stenotic prostatic urethra. The insertion is performed with the aid of a special balloon catheter which is removed after insertion, leaving in the urethra an expanded stent which ensures the maintenance of the open lumen of the prostatic lumen.

A full description of pathology of male urethra is given by K.A. Kropp in an article "Strictures of the Male Urethra", published by Year Book Medical Publisher, Chicago, London, and in Campbell's Urology, 5th Edition, published by W.B. Saunders Co., Philadelphia, Pa. U.S.A., which article is incorporated herein by reference.

SUMMARY OF T~ V~N~ION

The present invention relates to a device intended for use in dealing with constrictions in ducts in the human body to relieve the possible pathological results of such stenoses.

One of the frequently occurring such constrictions is that of the male urethra due to urethrostenosis of inflammatory or traumatic origin or benign or malignant enlargement of the wosl/16~s PCT/US91/02716 6 203~9a5 prostate. However, the device of this invention is nct intended exclusively for such use but is useful to treat restriction or constriction of other body ducts. Other frequent strictures for which the device according to the invention is useful include those of the ureters, blood vessels, biliary ducts, intestines, oesophagus, and airways of the lungs. The attending physician will decide to what extent the new device can be employed in treatment of stenotic conditions of a duct in a human body.

The invention will be described below, using the conditions resulting from prostatic urethral constriction as an example for use of the device. However, as stated above, the invention i5 not limited to this use.

The invention further relates to means and methods for introducing the device into and depositing it in the urethra (or other duct~, to ensure free and unimpeded flow of urine from the bladder to the natural outlet, or of whatever other fluid into or out of the respective conduit.

.
Treatment by means of the device of this invention can a}so be applied to all kinds of urethral stricture caused by other causes, such as infections, inflammations, and trauma.

Another applica~ion of the different design of the device is to open the prostatic urethral lumen to a VQry large diameter (30 to 40 mm diameter), resulting in devulsion of ~he WO91/1~ PCT/US91/02716 prostatic commissure and application of pressure atrophy on the gland tissue. This method results in opening of the prostatic lumen and freeinq of the patient from the obstruction caused by the pressure of the gland. Also, this method has an advantage on the balloon dilatation of the prostate as it does not require anaesthesia and it acts for a long period (up to a few days) and causes pressure atrophy - a method which cannot be applied in the balloon dilatation of the prostate because of the short time of the procedure.
OBJECTS OF THE INVENTION
It is an object of this invention to provide a device and a delivery system for the treatment of constricted ducts in human bodies.

It is also object of this invention to provide an intravascular stent to open and/or maintain the opening in a constricted body duct, particularly the male urethra, cardiovascular system, ureters, biliary ducts, oesophageal, and bronchial syste~.

It is a further object of the invention to provide a helically wound coil having attachments at the re~pective ends and an insertion means for inserting said coil into a constricted body duct.

These and other objects of the invention will become more apparent in the discussion below.

WO91/1~5 PCT/US91/02716 2~$~0~

~R~F DESCRIPTION OF TH~ ~RAWINGS

Figs. la, lb, and lc represents schematic lateral views of different embodiments of the invention in relaxed, non-torqued condition;

Fig. 2a represents a schematic lateral view of an embodiment of the invention positioned in torqued, stressed condition on a delivery means;

Fig. 2b represents schematic-lateral view of a further embodiment of the invention in relaxed, non-torqued condition:

Fig. 3 represents a simplified croas-sectional view of a male pelvis illustrating a stenotic condition of the urethra;

Fig. 4 repre~ents a simplified cross-sectional view similar to Fig. 3 showing ~n em~odiment of the invention placed in the prostatic and anterior urethra;

Fig. 4a repre~ents a schematic croas-aectional view showing the embodiment of Fig. 2b aa po~itioned in the prostatic aection of the urethra;

Figs. 5 and 5a represent cross-sectional lateral views of delivery means for inserting stents of the invention into the urethra;

WO91/16~ PCT/US91~02716 9 2 0~ 09 05 Figs. 6, 6a, 7, and 7a represent lateral views of insertion systems according to the invention; and Figs. 7b and 7c represent lateral and cross-sectional views of the locking and release mechanism of a stent of the invention mounted on a delivery catheter.
DETAILE~ DESCRIPTION OF THE INVENTION

The new device according to the invention is a spatial spiral o~ elongate axial extension wound helically and tightly of thin wire and having attachment means at each end. It is preferred that the windings of the device are non-uniform to the extent that at one or more locations intermediate of the two ends the diameter of the device is greater than at the ends and/or at a majority of the windings, such that at each such location a circumferential bulge of the otherwise cylindrical shape is created. The invention is also directed to an insertion system which comprises the device, or stent, as described above and a suitable means for delivering the device to a constricted area in a stressad or torgued condition where the device's profile ha~ been reduced. Then, once the device is in position, the ends of the device are released and the device returns to its larger diameter, larger profile condition.

These and further features of the invention will become clear from the following detailed description which refers to WO91/1~5 PCT/US91/02716 20~90~
the drawings herein. In the embodiment of the invention shown in Figs. 1 and 2, a spatial spiral (helix) is wound of wire of a material tolerated by the human body and which, furthermore, is not corroded or otherwise attacked by body liquids. Such a material, also known as a physiologically or medically acceptable material, could be one or more of several materials known for this purpose. Especially useful here are metals such as medical grade stainless steel, gold-plated medical grade stainless steel, stainless steel coated with silicone, bicarbon, or polytetrafluoroethylene, such as TEFLON~, tantalum, titanium, or nickel-titanium alloy, such as Nitinol, or bioabsorbable material. The wire typically has a diameter of from about 0.1 to 1.0 mm, preferably from about 0.15 to 0.60 mm. It is important that the winding be sufficiently tight that the outer ~urface of the device is substantially continuous, thus preventing ~leaking through" of the inner lining of a ve~sel or duct. However, in cases in which incorporation of the stent into the wall of a duct is preferred, ~pac~ of about 0.1 to 2.0 mm will be left between the loops of the coil.

The outer di~meter and length of the device will vary according to the intended use. For proctatic or urinary use, the outer diameter of the wound device will typically be ~rom about 10 to 40 French (from about 3.3 to 13.3 mm), and the length of the device can vary from about 2 to 15 cm, preferably from about 4 to 12 cm. It i5 also wi~hin the scope of the invention that the device may comprise two spirals WO91/l~W~ PCT/US91/02716 connected by a wire, the spirals and wire preferably being a continuous wire.

In Figs. 'a, lb, and lc the windings of the helix of the spiral l at two locations 2 intermediate the two ends thereof are of successively increasing/decreasing diameter. Each increased winding, or bulge, 2, relative to the major part of the helix creates an outward bulge of the device, the purpose of which will become clear. The number of such bulges 2 need not be two; there may be one such location of increased diameter or more than two, as shown in Fig. lc, or even no bulges at all.

Rotating the respective ends of the helical spiral l in opposite directions causes its total length to increase, resultlng in a decrease of the diameter of the stent and its bulges.

The bulges of the device are significant in assisting the device to maintain its relative position within a body vessel, channel, or duct. While non-expandable cylindrical devices would tend to reposition themselves due to body movement and/or fluid flow, devices with bulges tend to remain in position or move only slightly. The pressure exerted radially by the bulges as well the overall rad$al pre~sure from the spiral tend to anchor the device within a passageway.

At both end~ of the spiral l there are provided very W09t/1600S PCT/US91/02716 ~ 12 2080905 small hooks, rings, or balls 3. Hooks or rings can result from, for example, bending of the free ends of the wire of which the spiral l is wound, and balls can be formed from soldering or melting the ends of the wires. The balls will typically have a diameter of from about 0.2 to 5 mm. It is within the scope of the invention that these attachments 3 could also comprise hooks, rings, balls, or similar means affixed to the wire.

Fig. 2b shows another embodiment according to the invention constituting a spatial spiral with windings gradually increasing and then decreasing. In this way the device is given an amphora-like outline. In Fig. 2a this device is stretched on an insertion member 40, which will be described more fully below.

In Fig. 3 the bladder of a male person is seen indicated by ~. From the bladder B leads the urethra U, which due to hypertrophy of th~ prostate P has become constricted at resulting in total stenosis.

According to Fig. 4 the steno~ic condition has been remedied by in~ertion of the spatial spiral l into the prostatic urethra, or the stenotic urethra, ensuring unimpeded flow of urine from bladder B to the natural exit ~ through the urethra U.

The circumferential bulges (see Figs. la, lb, and lc) WO91/1~5 PCT/US91/02716 also seen in Fig. 4 prevent the spiral 1 from becoming dislocated within the urethra, because the larger diameter of the spiral bulges firmly anchor the spiral in situ.

The device shown in Figs. 2a and 2b is intended to use for opening the prostatic urethral lumen to a very large diameter, e.g., 30 to 40 mm, resulting in devulsion of prostatic commissures and exerting pressure atrophy on the gland tissue which results in increased prostate urethral diameter.

According to another aspect of the invention, the devices or stents are inserted into a corpeal channel or passageway using special means for that purpose, the device and the insertion means becoming an insertion or delivery system.
Since the diameter of the device will be greater than, for example, the urethral lumen, the diameter of the device must be reduced to eliminate trauma as the device is inserted.
Apparatus and methods of reducing the diameter and inserting the device into the respective body duct have been developed~

An instrument for inserting the nsw device into a fluid conducting conduit in the human body, e.g., into the urethra of a parson, is shown in Figs. 5 and 5a. The instrument 9 co~pri~es two elongated tubes telescoping into one another.
In the outer tube 10 is held an inner tube 11 (sae Fig. 5a) having a head portion 12. The axial bore of tube 11 and of the head portion 12 are co-extensive and throughout the length WO9t/1~5 PCT/US91/02716 of these combined bores extends guidewire 14, i.e., a flexible wire or thin rod, the primary purpose of which is to guide the instrument 9 to a constriction. At the outermost end lOa of tube ll is provided a grip 15. Between grip 15 and a thickened end lOa of tube lO a pressure spring 16, which abuts with both its ends on the grip 15 and the end phase l~a of tube lO, is slipped on tube ll . This spring 16 also acts as a locking means preventing the rotated spiral from returning spontaneously to its initial diametrical state.

For insertion of the spiral l into the respective duct, the spiral l is slipped onto the instrument 9 shown in Fiq. 5 and Fig. 5a~ covering part of the head portion 12 and the forward or distal end of tube lO. The small hooks 3 on the spiral ~ are received in holes 17 in the head position 12 of the tube lO, thereby immobilizing the helix l on the instrument 9. As the inner tube ll is turned by means of grip lS in counterclockwise direction, the spatial spiral l is axially extended, i.e., lengthened, and the spiral diameter is consequently reduced.

In this condition of reduced diameter the attending physician or surgeon can insert the instrument into the urethra (or any other duct) while viewing the position through x-ray or by endoscopy or ultrasonography.

As soon as the spiral arrives at the stenotic reqion, the physician imparts clockwise turns to grip 15, slowly enlarging WO91/1~ PCT/US91/02716 2 ~8 the spiral diameter and thereby freeing the spatial spiral from the instrument and leaving the spiral 1 in the urethra, widening the stenotic portion thereof. Due to the elastic properties of the spiral winding, the spiral diameter, including that of the bulges 2, revert to the condition of Fig. 1, preventing the spiral 1 from becoming displaced.

The inner axial space of the tube 11 makes it possible to the physician or surgeon to insert the combined tubes 10 and 11, guiding them along the guidewire 14 previously inserted into the patient's stenotic duct. Thus, this method ensures a directed insertion of the device with minimal probability of damage or perforztion of the respective duct.

As a further example, there is shown in Figs. 7 and 7a an insertion instrument 39 comprising a semi-stiff tube 30 having an end piece 31 for the connection to tube 30 of whatever auxiliary instrument of known kind, such as an irrigation syringe, and a head portion 32 with openings 32a, 32b, and 32c. A flexible guidewire (not shown) can extend throughout the length of tube 30 and through opening 32a.

A wire 34 keeps the spiral 1 at reduced diameter as it extends through ene or more openings, such as 32b and 32c, and keeps the ~wo small terminal rings or balls 3 of the spiral 1 pushed against the introducing instrument wall (see Figs. 7, 7a, 7b, and 7c). The balls prevent rotational discharge of the stent because the ball cannot pass under the wire 34 WO91~1~X~ PCT/US91/02716 208090~

because its diameter is larger than the distance 4 between the external wall of the introducing instrument and the wire 34.
The instrument is introduced into the urethra in the same way as described in connection with the other instruments mentioned above. As soon as it is at the stenotic region, handle 35 is rotated or withdrawn to pull out the wire 34 to free the spiral terminals 3, resulting in radial pressure and rotational movement of the spiral l, which continues until it reaches its initial, larger diameter. The introducing instrument is now pulled out, leaving the spiral in the stenotic region.

It is within the scope of the invention that there may be variations of the releasable locking syst~m shown in Figs. 7 to 7c. Any system wherein ends of the spiral l would be constrained when the spiral is wound or constricted but relea~ed by a remotely, proximally operated mechanism, would be suitable. For example, rings or balls 3 might be held within the introducing instrum-nt rather than on its exterior surface.

Fig. 6 illustrates another method of introducing the spiral into a body duct, similar to conventional catherization of the urethra or blood vessels. The balloon catheter 20 is of generally known type of polymeric catheter, which would be known to those in the art and really does not require extensive description. At the distal end 21 of the catheter 20 the spiral 1 is slid thereon, as shown at enlarged scale in 20~a90~

Fig. 6a. The spiral stent diameter is reduced to facilitate insertion into the urethra and return to initial diameter once the balloon is deflated ~see Fig. 6a). In this method the spiral is mounted on the catheter when the spiral is in condition of reduced diameter. In that position it is slipped onto the catheter balloon, and when the balloon is inflated, the circumferentially acting forces sgueeze the spiral wire.
These frictional forces are greater than those urging the spring 16 to rotate. As long as the balloon is in inflated condition, the spiral stays at smaller diameter and is so inserted. With slow deflation of the balloon the spiral slowly reverts to large diameter, and the catheter is withdrawn.

The way of introducing a generally known catheter into the urinary tract of a person (or any other body conduit) is well known and does not require any elaborate explanatory information.
A further exa~ple for insertion of the new d~vice comprises endoscopic insertion of the spiral. In that method the spiral in the state of reduced diameter is inserted into, i.e., within, an endoscopic tube. When the endoscopic distal opening is positioned in the stenotic region, the spiral is pushed out of the endoscopic tube with the aid of a special push instrument located in the endoscopic tube. As the spiral is pushed from the endoscope, it regains its initial, larger diameter, whereupon the endoscope is removed.

WO91/1~5 PCT/US91/0~716 18 208~905 The insertion of the device according to Figs. 2a and 2b is performed by use of an insertion catheter 40 onto which the device 4l is wound in extended condition. The insertion with the aid of a catheter is preferable to that of balloon dilation of the prostate since it can be performed without requiring anesthesia and remains active for a relatively long period (up to several days) and causes pressure atrophy, a method which cannot be applied at balloon dilation of the prostate due to the short duration of the procedure.

In all cases the attending medical practitioner will choose the instrument which in his judgment is the most appropriate of the case.

~ he preceding specific embodiments are illustrative of the practice of the invention. It is to be understood, however, that oth~r expedients known to those skilled in the art or disclosed herein, may be employed without departing from the spirit of the invention or the 5cope of the appended claims.

Claims (14)

  1. WE CLAIM:

    l. A medical device for opening constrictions in conduits in the body of humans or animals, comprising a spatial spiral of elongate axial extension wound of thin wire and having attachment means at each distal end, to hold the spiral when wound in a constricted condition and to permit self-expansion when the attachment means are released.
  2. 2. The device of Claim l, wherein at one or more locations intermediary of the two ends of the spiral the diameter of the spiral is greater than the major part of the windings, such that at each such location a circumferential bulge of the otherwise cylindrical shape of the device is created.
  3. 3. The device of Claim 2, wherein there are two bulges.
  4. 4. The device of Claim 2, wherein the device has an amphora-like outer shape.
  5. 5. The device of Claim l, wherein the spatial spiral is wound of wire that is physiologically acceptable.
  6. 6. The device of Claim 5, wherein the wire is selected from the group consisting of medical grade stainless steel, gold-plated medical grade stainless steel, medical grade stainless steel coated with silicone, biocarbon, or polytetrafluoroethylene, tantalum, titanium, nickel-titanium, bioabsorbable materials, and other medially implantable materials.
  7. 7. The device of Claim 2, wherein the windings of the helix at two locations intermediate the two ends thereof are of successively increasing/decreasing diameter.
  8. 8. A system for implanting a device to open constrictions in corpeal conduits, which comprises (a) an elongated tubular member and (b) a spatial spiral of elongate axial extension wound of thin wire and having attachment means at each end, said spiral being positioned on and concentric to said elongated tubular member, said spiral being in a constricted condition such that its lateral profile is smaller than it would be if said spiral were not constricted.
  9. 9. The system of Claim 8, wherein the elongated tubular member has openings in which the ends of the spiral are removably secured.
  10. 10. The system of Claim 8, wherein the elongated tubular member is a balloon dilatation catheter in which the balloon is sufficiently inflated to hold said spiral in its smaller profile.
  11. 11. The system of Claim 8, wherein the elongated tubular member comprises two, inner and outer concentrically positioned tubes, where an end of the spiral is secured in each of said inner and outer tubes.
  12. 12. The system of Claim 8 wherein the respective ends of the spiral wire each form a ball and the elongated tubular member has (1) two opening areas into which the wire ends and balls are positioned when the spiral is in a constricted condition and (2) a second wire extending therethrough, such that each ball fits under a portion of the second wire to secure that ball and that end of the wire and such that when the wire is pulled longitudinally the balls and the wire ends are released to permit the lateral profile or diameter of the device to spontaneously increase by unwinding.
  13. 13. The system of Claim 12, wherein the wire extends proximally from the elongated tubular member.
  14. 14. A method of opening a constriction in a body duct which comprises inserting a system of Claim 8, disengaging the spatial spiral from the elongated tubular member, and removing the elongated tubular member from the body.
CA2080905A 1990-04-19 1991-04-19 Device for the treatment of constricted vessels Abandoned CA2080905A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IL094,138 1990-04-19
IL9413890A IL94138A (en) 1990-04-19 1990-04-19 Device for the treatment of constricted fluid conducting ducts
PCT/US1991/002716 WO1991016005A1 (en) 1990-04-19 1991-04-19 Device for the treatment of constricted vessels

Publications (1)

Publication Number Publication Date
CA2080905A1 true CA2080905A1 (en) 1991-10-31

Family

ID=11061121

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2080905A Abandoned CA2080905A1 (en) 1990-04-19 1991-04-19 Device for the treatment of constricted vessels

Country Status (8)

Country Link
US (1) US5246445A (en)
EP (2) EP0525110B1 (en)
JP (1) JP3245156B2 (en)
AU (1) AU651826B2 (en)
CA (1) CA2080905A1 (en)
DE (1) DE69126428T2 (en)
IL (1) IL94138A (en)
WO (1) WO1991016005A1 (en)

Families Citing this family (257)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147370A (en) * 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits
US5662713A (en) * 1991-10-09 1997-09-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5876445A (en) * 1991-10-09 1999-03-02 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
US5372600A (en) * 1991-10-31 1994-12-13 Instent Inc. Stent delivery systems
WO1994016629A1 (en) * 1993-01-27 1994-08-04 Instent Inc. Vascular and coronary stents
FR2701648B1 (en) * 1993-02-19 1995-03-31 Marian Devonec Prosthesis intended for the treatment of a light or natural way, in particular endo-urethral prosthesis.
US6576008B2 (en) 1993-02-19 2003-06-10 Scimed Life Systems, Inc. Methods and device for inserting and withdrawing a two piece stent across a constricting anatomic structure
SG85682A1 (en) 1993-03-11 2002-01-15 Medinol Ltd Stent
US6090115A (en) * 1995-06-07 2000-07-18 Intratherapeutics, Inc. Temporary stent system
SE505436C2 (en) * 1993-04-27 1997-08-25 Ams Medinvent Sa prostatic stent
FR2706764B1 (en) * 1993-06-24 1995-08-04 Synthelabo
US5545209A (en) * 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5782904A (en) 1993-09-30 1998-07-21 Endogad Research Pty Limited Intraluminal graft
US6685736B1 (en) 1993-09-30 2004-02-03 Endogad Research Pty Limited Intraluminal graft
DE4334140C2 (en) * 1993-10-07 1996-04-18 Angiomed Ag Stent and device with stent
US5609624A (en) * 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5876418A (en) * 1994-01-13 1999-03-02 Angiomed Ag Device for providing a duct in a living body
US5466242A (en) * 1994-02-02 1995-11-14 Mori; Katsushi Stent for biliary, urinary or vascular system
US5486191A (en) * 1994-02-02 1996-01-23 John Hopkins University Winged biliary stent
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
DE69507800T2 (en) 1994-05-19 1999-07-22 Scimed Life Systems Inc IMPROVED TISSUE SUPPORTS
DE69518275T3 (en) 1994-06-08 2007-10-18 CardioVascular Concepts, Inc., Portola Valley Blood vessel graft
US5846261A (en) * 1994-07-08 1998-12-08 Aga Medical Corp. Percutaneous catheter directed occlusion devices
US6123715A (en) * 1994-07-08 2000-09-26 Amplatz; Curtis Method of forming medical devices; intravascular occlusion devices
ES2340142T3 (en) * 1994-07-08 2010-05-31 Ev3 Inc. SYSTEM TO CARRY OUT AN INTRAVASCULAR PROCEDURE.
FR2722413B1 (en) * 1994-07-13 1997-02-07 Marian Devonec THERAPEUTIC IMPLANT INTENDED FOR THE SELECTIVE CYTOREDUCTIVE TREATMENT OF LIGHT OR NATURAL PATH OBSTRUCTION OF A HUMAN OR ANIMAL BODY
JPH10507090A (en) * 1994-10-20 1998-07-14 インステント インコーポレーテッド Cystoscope delivery system
US5514176A (en) * 1995-01-20 1996-05-07 Vance Products Inc. Pull apart coil stent
US6863686B2 (en) * 1995-04-17 2005-03-08 Donald Shannon Radially expandable tape-reinforced vascular grafts
US5641373A (en) * 1995-04-17 1997-06-24 Baxter International Inc. Method of manufacturing a radially-enlargeable PTFE tape-reinforced vascular graft
US6027516A (en) * 1995-05-04 2000-02-22 The United States Of America As Represented By The Department Of Health And Human Services Highly elastic, adjustable helical coil stent
US5601537A (en) * 1995-06-05 1997-02-11 Frassica; James J. Catheter system
US5871475A (en) * 1995-06-05 1999-02-16 Frassica; James J. Catheter system
US6364868B1 (en) 1995-08-02 2002-04-02 The Trustees Of Columbia University In The City Of New York Ureteral catheter and tissue expander and method of megaureter creation
DE19540919B4 (en) * 1995-11-03 2011-07-28 Sachse, Hans E., Prof. Dr.med., 90425 Arrangement for keeping urine flow open through the urethra
US6991614B2 (en) 1995-11-07 2006-01-31 Boston Scientific Scimed, Inc. Ureteral stent for improved patient comfort
US5827304A (en) * 1995-11-16 1998-10-27 Applied Medical Resources Corporation Intraluminal extraction catheter
AT404557B (en) * 1995-12-11 1998-12-28 Hassan Ali Dr Device (stent) for stabilizing stenosed or angioplastically treated partial regions of a vessel wall
US5989230A (en) * 1996-01-11 1999-11-23 Essex Technology, Inc. Rotate to advance catheterization system
US6168622B1 (en) 1996-01-24 2001-01-02 Microvena Corporation Method and apparatus for occluding aneurysms
US6258116B1 (en) 1996-01-26 2001-07-10 Cordis Corporation Bifurcated axially flexible stent
US5980553A (en) * 1996-12-20 1999-11-09 Cordis Corporation Axially flexible stent
US5895406A (en) * 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
US5938682A (en) * 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
CN1218414A (en) * 1996-02-02 1999-06-02 血管转换公司 Methods and apparatus for blocking flow through blood vessels
FR2744625B1 (en) * 1996-02-14 1998-05-07 Bfl Sa URETRAL SHAPE MEMORY PROSTHESIS AND DELIVERY DEVICE
FR2745172B1 (en) * 1996-02-26 1998-05-29 Braun Celsa Sa EXPANDABLE PROSTHESIS, OF VARIABLE DIAMETER, ESPECIALLY VASCULAR, AND METHOD FOR MANUFACTURING THE SAME
US5849036A (en) * 1996-03-29 1998-12-15 Zarate; Alfredo R. Vascular graft prosthesis
US6533805B1 (en) 1996-04-01 2003-03-18 General Surgical Innovations, Inc. Prosthesis and method for deployment within a body lumen
US6413269B1 (en) 2000-07-06 2002-07-02 Endocare, Inc. Stent delivery system
US6629981B2 (en) 2000-07-06 2003-10-07 Endocare, Inc. Stent delivery system
US5830179A (en) 1996-04-09 1998-11-03 Endocare, Inc. Urological stent therapy system and method
US6702846B2 (en) 1996-04-09 2004-03-09 Endocare, Inc. Urological stent therapy system and method
US6254571B1 (en) 1996-04-18 2001-07-03 Applied Medical Resources Corporation Remote clot management
US5797952A (en) * 1996-06-21 1998-08-25 Localmed, Inc. System and method for delivering helical stents
ZA9710342B (en) * 1996-11-25 1998-06-10 Alza Corp Directional drug delivery stent and method of use.
US5776142A (en) * 1996-12-19 1998-07-07 Medtronic, Inc. Controllable stent delivery system and method
US5964732A (en) 1997-02-07 1999-10-12 Abbeymoor Medical, Inc. Urethral apparatus with position indicator and methods of use thereof
US6379334B1 (en) * 1997-02-10 2002-04-30 Essex Technology, Inc. Rotate advance catheterization system
US6582472B2 (en) * 1997-02-26 2003-06-24 Applied Medical Resources Corporation Kinetic stent
US6395021B1 (en) * 1997-02-26 2002-05-28 Applied Medical Resources Corporation Ureteral stent system apparatus and method
US6425915B1 (en) 1997-03-18 2002-07-30 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5824052A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Coiled sheet stent having helical articulation and methods of use
US5824053A (en) * 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5779732A (en) * 1997-03-31 1998-07-14 Medtronic, Inc. Method and apparatus for implanting a film with an exandable stent
GB2324729B (en) * 1997-04-30 2002-01-02 Bradford Hospitals Nhs Trust Lung treatment device
US5836966A (en) 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US5971967A (en) * 1997-08-19 1999-10-26 Abbeymoor Medical, Inc. Urethral device with anchoring system
US6746476B1 (en) 1997-09-22 2004-06-08 Cordis Corporation Bifurcated axially flexible stent
US5961548A (en) * 1997-11-18 1999-10-05 Shmulewitz; Ascher Bifurcated two-part graft and methods of implantation
US5962007A (en) * 1997-12-19 1999-10-05 Indigo Medical, Inc. Use of a multi-component coil medical construct
US6130406A (en) * 1998-01-08 2000-10-10 Adam Spence Corporation Method for forming a medical tubing device
EP1685808B1 (en) 1998-01-30 2016-09-14 St.Jude Medical ATG, Inc. Device for use in closing septal defects and an installation assembly for such device
US6533807B2 (en) 1998-02-05 2003-03-18 Medtronic, Inc. Radially-expandable stent and delivery system
US5944738A (en) * 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
US5938697A (en) * 1998-03-04 1999-08-17 Scimed Life Systems, Inc. Stent having variable properties
US6001117A (en) * 1998-03-19 1999-12-14 Indigo Medical, Inc. Bellows medical construct and apparatus and method for using same
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6656215B1 (en) 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
US6887268B2 (en) 1998-03-30 2005-05-03 Cordis Corporation Extension prosthesis for an arterial repair
US8029561B1 (en) 2000-05-12 2011-10-04 Cordis Corporation Drug combination useful for prevention of restenosis
US6019779A (en) * 1998-10-09 2000-02-01 Intratherapeutics Inc. Multi-filar coil medical stent
US6494879B2 (en) * 1998-10-15 2002-12-17 Scimed Life Systems, Inc. Treating urinary retention
US6475234B1 (en) 1998-10-26 2002-11-05 Medinol, Ltd. Balloon expandable covered stents
US6190403B1 (en) 1998-11-13 2001-02-20 Cordis Corporation Low profile radiopaque stent with increased longitudinal flexibility and radial rigidity
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US20020138094A1 (en) * 1999-02-12 2002-09-26 Thomas Borillo Vascular filter system
US6248122B1 (en) 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
CA2359507C (en) 1999-02-26 2005-03-29 Vascular Architects, Inc. Catheter assembly with endoluminal prosthesis and method for placing
US6332892B1 (en) 1999-03-02 2001-12-25 Scimed Life Systems, Inc. Medical device with one or more helical coils
US6709465B2 (en) * 1999-03-18 2004-03-23 Fossa Medical, Inc. Radially expanding ureteral device
US7214229B2 (en) 1999-03-18 2007-05-08 Fossa Medical, Inc. Radially expanding stents
US7048717B1 (en) 1999-09-27 2006-05-23 Essex Technology, Inc. Rotate-to-advance catheterization system
US7044980B2 (en) * 2000-02-03 2006-05-16 Boston Scientific Scimed, Inc. Facilitating drainage
GB0003387D0 (en) 2000-02-14 2000-04-05 Angiomed Ag Stent matrix
US9522217B2 (en) 2000-03-15 2016-12-20 Orbusneich Medical, Inc. Medical device with coating for capturing genetically-altered cells and methods for using same
US8088060B2 (en) 2000-03-15 2012-01-03 Orbusneich Medical, Inc. Progenitor endothelial cell capturing with a drug eluting implantable medical device
IL153753A0 (en) * 2002-12-30 2003-07-06 Neovasc Medical Ltd Varying-diameter vascular implant and balloon
US6953476B1 (en) * 2000-03-27 2005-10-11 Neovasc Medical Ltd. Device and method for treating ischemic heart disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US6764519B2 (en) 2000-05-26 2004-07-20 Scimed Life Systems, Inc. Ureteral stent
US6558350B1 (en) * 2000-06-20 2003-05-06 Applied Medical Resources Corp. Drainage catheter
US6540775B1 (en) * 2000-06-30 2003-04-01 Cordis Corporation Ultraflexible open cell stent
US6699278B2 (en) 2000-09-22 2004-03-02 Cordis Corporation Stent with optimal strength and radiopacity characteristics
US7261735B2 (en) 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
DE60124285T3 (en) 2000-09-29 2011-03-17 Cordis Corp., Miami Lakes COATED MEDICAL EQUIPMENT
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US6881217B2 (en) * 2000-10-13 2005-04-19 Henry M. Israel Stent assembly
US6843802B1 (en) 2000-11-16 2005-01-18 Cordis Corporation Delivery apparatus for a self expanding retractable stent
US7229472B2 (en) 2000-11-16 2007-06-12 Cordis Corporation Thoracic aneurysm repair prosthesis and system
US6942692B2 (en) 2000-11-16 2005-09-13 Cordis Corporation Supra-renal prosthesis and renal artery bypass
US7314483B2 (en) 2000-11-16 2008-01-01 Cordis Corp. Stent graft with branch leg
US7267685B2 (en) 2000-11-16 2007-09-11 Cordis Corporation Bilateral extension prosthesis and method of delivery
WO2002058541A2 (en) 2001-01-23 2002-08-01 Abbeymoor Medical, Inc. Endourethral device & method
US20020107536A1 (en) * 2001-02-07 2002-08-08 Hussein Hany M. Device and method for preventing kidney failure
CA2435306C (en) * 2001-02-16 2010-12-21 Stephan Wnendt Implants with fk506
US6679911B2 (en) 2001-03-01 2004-01-20 Cordis Corporation Flexible stent
US6740114B2 (en) 2001-03-01 2004-05-25 Cordis Corporation Flexible stent
US6790227B2 (en) 2001-03-01 2004-09-14 Cordis Corporation Flexible stent
AU784552B2 (en) 2001-03-02 2006-05-04 Cardinal Health 529, Llc Flexible stent
US6719804B2 (en) 2001-04-02 2004-04-13 Scimed Life Systems, Inc. Medical stent and related methods
BRPI0208931B1 (en) * 2001-04-16 2018-09-25 A Strobel Gary METHODS OF INHIBITING THE GROWTH OF A FRUIT, TREATMENT OR PROTECTION BODY, PLANT, SEED, GRAIN OR SOIL CIRCUITING PLANTS AGAINST INFESTATION A BODY CONSTRUCTION AND TREATMENT PROTECTION ORGANISM A VOLATILE COMPOSITION
US8182527B2 (en) 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US6685745B2 (en) 2001-05-15 2004-02-03 Scimed Life Systems, Inc. Delivering an agent to a patient's body
US6494855B2 (en) 2001-05-16 2002-12-17 Scimed Life Systems, Inc. Draining bodily fluid
US6749628B1 (en) * 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6981964B2 (en) * 2001-05-22 2006-01-03 Boston Scientific Scimed, Inc. Draining bodily fluids with a stent
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US7252679B2 (en) * 2001-09-13 2007-08-07 Cordis Corporation Stent with angulated struts
US7195640B2 (en) 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US7108701B2 (en) 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
CA2462509A1 (en) * 2001-10-04 2003-04-10 Neovasc Medical Ltd. Flow reducing implant
US6770101B2 (en) 2001-10-09 2004-08-03 Scimed Life Systems, Inc. Prostatic stent and delivery system
US6620202B2 (en) 2001-10-16 2003-09-16 Scimed Life Systems, Inc. Medical stent with variable coil and related methods
US7219799B2 (en) * 2002-12-31 2007-05-22 Possis Medical, Inc. Packaging system with oxygen sensor
US7326237B2 (en) 2002-01-08 2008-02-05 Cordis Corporation Supra-renal anchoring prosthesis
US7029493B2 (en) * 2002-01-25 2006-04-18 Cordis Corporation Stent with enhanced crossability
US8506647B2 (en) 2002-02-14 2013-08-13 Boston Scientific Scimed, Inc. System for maintaining body canal patency
US6913625B2 (en) * 2002-03-07 2005-07-05 Scimed Life Systems, Inc. Ureteral stent
US8328877B2 (en) 2002-03-19 2012-12-11 Boston Scientific Scimed, Inc. Stent retention element and related methods
US6949125B2 (en) * 2002-04-16 2005-09-27 Boston Scientific Scimed, Inc. Ureteral stent with end-effector and related methods
US7976564B2 (en) 2002-05-06 2011-07-12 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
IL149828A (en) * 2002-05-23 2007-09-20 Ronnie Levi Medical device having a tubular portion
US20040133270A1 (en) * 2002-07-08 2004-07-08 Axel Grandt Drug eluting stent and methods of manufacture
JP2006507032A (en) * 2002-07-16 2006-03-02 アプライド メディカル リソーシーズ コーポレイション Drainage catheter
EP1534180A4 (en) * 2002-08-08 2007-04-04 Neovasc Medical Ltd Geometric flow regulator
US20060106449A1 (en) * 2002-08-08 2006-05-18 Neovasc Medical Ltd. Flow reducing implant
GB0220340D0 (en) * 2002-09-02 2002-10-09 Anson Medical Ltd Flexible stent-graft
US6733536B1 (en) 2002-10-22 2004-05-11 Scimed Life Systems Male urethral stent device
US20040087886A1 (en) * 2002-10-30 2004-05-06 Scimed Life Systems, Inc. Linearly expandable ureteral stent
US7846198B2 (en) * 2002-12-24 2010-12-07 Novostent Corporation Vascular prosthesis and methods of use
US20040158314A1 (en) * 2002-12-24 2004-08-12 Novostent Corporation Ribbon-type vascular prosthesis having stress-relieving articulation and methods of use
US20050033410A1 (en) * 2002-12-24 2005-02-10 Novostent Corporation Vascular prothesis having flexible configuration
US20050165469A1 (en) * 2002-12-24 2005-07-28 Michael Hogendijk Vascular prosthesis including torsional stabilizer and methods of use
US20040160685A1 (en) * 2003-01-27 2004-08-19 Everardo Daniel Faires Quiros Lower rear view mirror (LRVM for short)
US6929663B2 (en) * 2003-03-26 2005-08-16 Boston Scientific Scimed, Inc. Longitudinally expanding medical device
AU2004226464A1 (en) 2003-03-26 2004-10-14 Cardiomind, Inc. Implant delivery technologies
US7771463B2 (en) 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
US8016869B2 (en) 2003-03-26 2011-09-13 Biosensors International Group, Ltd. Guidewire-less stent delivery methods
US20040199246A1 (en) * 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Expandable stent
US20040254627A1 (en) * 2003-04-04 2004-12-16 Thompson Paul J. Stent with end adapted for flaring
US20040267306A1 (en) 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US7651529B2 (en) 2003-05-09 2010-01-26 Boston Scientific Scimed, Inc. Stricture retractor
US20050021128A1 (en) * 2003-07-24 2005-01-27 Medtronic Vascular, Inc. Compliant, porous, rolled stent
US9498366B2 (en) * 2003-07-28 2016-11-22 Baronova, Inc. Devices and methods for pyloric anchoring
US20090259236A2 (en) 2003-07-28 2009-10-15 Baronova, Inc. Gastric retaining devices and methods
US8048169B2 (en) * 2003-07-28 2011-11-01 Baronova, Inc. Pyloric valve obstructing devices and methods
US8821521B2 (en) 2003-07-28 2014-09-02 Baronova, Inc. Gastro-intestinal device and method for treating addiction
US9700450B2 (en) 2003-07-28 2017-07-11 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US7766899B2 (en) 2003-09-17 2010-08-03 Prostalund Operations Ab Partial-length, indwelling prostatic catheter using coiled inflation tube as an anchor and methods of draining urine and flushing clots
US7338530B2 (en) * 2003-11-24 2008-03-04 Checkmed Systems, Inc. Stent
US7636998B2 (en) * 2003-12-29 2009-12-29 Ethicon, Inc. Urethral stent reducer
US20050209671A1 (en) * 2004-03-02 2005-09-22 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
US8425539B2 (en) 2004-04-12 2013-04-23 Xlumena, Inc. Luminal structure anchoring devices and methods
US7758633B2 (en) * 2004-04-12 2010-07-20 Boston Scientific Scimed, Inc. Varied diameter vascular graft
US8267985B2 (en) 2005-05-25 2012-09-18 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
EP1750619B1 (en) 2004-05-25 2013-07-24 Covidien LP Flexible vascular occluding device
CA2758946C (en) 2004-05-25 2014-10-21 Tyco Healthcare Group Lp Vascular stenting for aneurysms
US8623067B2 (en) 2004-05-25 2014-01-07 Covidien Lp Methods and apparatus for luminal stenting
US8617234B2 (en) 2004-05-25 2013-12-31 Covidien Lp Flexible vascular occluding device
US20060206200A1 (en) 2004-05-25 2006-09-14 Chestnut Medical Technologies, Inc. Flexible vascular occluding device
US8123762B2 (en) 2004-08-19 2012-02-28 Boston Scientific Scimed, Inc. Suturing instrument
IL164563A0 (en) * 2004-10-13 2005-12-18 Protech Medical Technologies L Prostate treatment stent
DE102004062296A1 (en) * 2004-12-23 2006-07-06 Strecker, Ernst Peter, Prof. Dr.med. Device for positioning a stent
EP1861133B1 (en) * 2005-02-28 2012-11-21 Spirus Medical Inc. Rotate-to-advance catheterization system
DE102005016103B4 (en) 2005-04-08 2014-10-09 Merit Medical Systems, Inc. Duodenumstent
DE102005019649A1 (en) 2005-04-26 2006-11-02 Alveolus Inc. Flexible stent for positioning in lumen of esophagus comprises tube and stabilization members defined circumferentially about tube, where each member extends inwardly in tube to define inner diameter that is less than inner diameter of tube
US8414477B2 (en) 2005-05-04 2013-04-09 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8317678B2 (en) 2005-05-04 2012-11-27 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US7780650B2 (en) 2005-05-04 2010-08-24 Spirus Medical, Inc. Rotate-to-advance catheterization system
US8343040B2 (en) 2005-05-04 2013-01-01 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8235942B2 (en) 2005-05-04 2012-08-07 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8273101B2 (en) 2005-05-25 2012-09-25 Tyco Healthcare Group Lp System and method for delivering and deploying an occluding device within a vessel
WO2006127005A1 (en) 2005-05-25 2006-11-30 Chestnut Medical Technologies, Inc. System and method for delivering and deploying and occluding device within a vessel
US20060276886A1 (en) * 2005-06-07 2006-12-07 Cardiomind, Inc. Ten-thousandths scale metal reinforced stent delivery guide sheath or restraint
JP3816092B1 (en) * 2005-08-03 2006-08-30 ベクトル株式会社 Ureteral stent
US20070055339A1 (en) * 2005-08-23 2007-03-08 George William R Staged stent delivery systems
US20070078386A1 (en) * 2005-08-30 2007-04-05 Cytyc Corporation Movable anchoring catheter
US8998923B2 (en) 2005-08-31 2015-04-07 Spinealign Medical, Inc. Threaded bone filling material plunger
US20070067034A1 (en) * 2005-08-31 2007-03-22 Chirico Paul E Implantable devices and methods for treating micro-architecture deterioration of bone tissue
US8663308B2 (en) * 2005-09-19 2014-03-04 Cook Medical Technologies Llc Graft with bioabsorbable support frame
EP2243507A1 (en) * 2005-10-29 2010-10-27 PNN Medical SA Stent with anchoring portion
US20070100414A1 (en) 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
EP1954224B1 (en) * 2005-11-14 2013-05-29 Covidien LP Stent delivery system for ostial locations in a conduit
US7837702B2 (en) * 2005-12-21 2010-11-23 Nexeon Medsystems, Inc. Interventional catheter for retrograde use having embolic protection capability and methods of use
US8152833B2 (en) 2006-02-22 2012-04-10 Tyco Healthcare Group Lp Embolic protection systems having radiopaque filter mesh
US7473232B2 (en) 2006-02-24 2009-01-06 Boston Scientific Scimed, Inc. Obtaining a tissue sample
US8435229B2 (en) 2006-02-28 2013-05-07 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US8574220B2 (en) 2006-02-28 2013-11-05 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
US7699884B2 (en) 2006-03-22 2010-04-20 Cardiomind, Inc. Method of stenting with minimal diameter guided delivery systems
US8828091B2 (en) * 2006-03-23 2014-09-09 Boston Scientific Scimed, Inc. Movable stent reinforcement
US20090234431A1 (en) * 2006-08-22 2009-09-17 The Trustees Of Columbia University In The City Of New York Arteriovenous graft blood flow controllers and methods
US20080051879A1 (en) * 2006-08-23 2008-02-28 Cook Incorporated Methods of treating venous valve related conditions with a flow-modifying implantable medical device
CA2934202A1 (en) 2006-10-22 2008-05-02 Idev Technologies, Inc. Methods for securing strand ends and the resulting devices
AU2007309087B2 (en) 2006-10-22 2012-07-05 Idev Technologies, Inc. Devices and methods for stent advancement
US8287519B2 (en) * 2006-10-27 2012-10-16 Smith Tech Innovations, Llc Self-cleansing bladder drainage catheter
US8388679B2 (en) 2007-01-19 2013-03-05 Maquet Cardiovascular Llc Single continuous piece prosthetic tubular aortic conduit and method for manufacturing the same
US20080208214A1 (en) * 2007-02-26 2008-08-28 Olympus Medical Systems Corp. Applicator and tissue fastening method through natural orifice
EP2129329A2 (en) * 2007-03-07 2009-12-09 Spinealign Medical, Inc. Systems, methods, and devices for soft tissue attachment to bone
US8870755B2 (en) 2007-05-18 2014-10-28 Olympus Endo Technology America Inc. Rotate-to-advance catheterization system
WO2009033049A1 (en) 2007-09-07 2009-03-12 Baronova, Inc. Device for intermittently obstructing a gastric opening and method of use
US8287602B2 (en) * 2007-12-12 2012-10-16 Boston Scientific Scimed, Inc. Urinary stent
US8454632B2 (en) 2008-05-12 2013-06-04 Xlumena, Inc. Tissue anchor for securing tissue layers
US20090281379A1 (en) 2008-05-12 2009-11-12 Xlumena, Inc. System and method for transluminal access
US9675482B2 (en) 2008-05-13 2017-06-13 Covidien Lp Braid implant delivery systems
US9242068B2 (en) * 2008-07-17 2016-01-26 Covidien Lp Spirally conformable infusion catheter
US8105335B1 (en) 2008-08-11 2012-01-31 Burton Bentley Fecal impaction removal tool
DE102009003890A1 (en) * 2009-01-02 2010-07-08 Bioregeneration Gmbh Apparatus comprising a device and a liner implantable in a vessel of the body of a patient, and methods of making same
WO2010138277A1 (en) 2009-05-29 2010-12-02 Xlumena, Inc. Apparatus and method for deploying stent across adjacent tissue layers
US20110021869A1 (en) * 2009-07-24 2011-01-27 Hilary John Cholhan Single-incision minimally-invasive surgical repair of pelvic organ/vaginal prolapse conditions
EP2477617B1 (en) 2009-09-18 2018-01-31 Bioinspire Technologies Inc. Free-standing biodegradable patch
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US8696741B2 (en) 2010-12-23 2014-04-15 Maquet Cardiovascular Llc Woven prosthesis and method for manufacturing the same
DE102011010754A1 (en) 2011-02-09 2012-08-09 Alaxo GmbH Stent to the rails of a nasal passage
AU2012230966B2 (en) 2011-03-22 2017-05-11 Applied Medical Resources Corporation Method of making medical tubing having drainage holes
WO2013114782A1 (en) * 2012-01-30 2013-08-08 国立大学法人新潟大学 Substitute trachea
US9155647B2 (en) 2012-07-18 2015-10-13 Covidien Lp Methods and apparatus for luminal stenting
US9114001B2 (en) 2012-10-30 2015-08-25 Covidien Lp Systems for attaining a predetermined porosity of a vascular device
US9855129B2 (en) * 2012-10-31 2018-01-02 Cook Medical Technologies Llc Multi-level suture attachments for coupling a stent to graft material
US9452070B2 (en) 2012-10-31 2016-09-27 Covidien Lp Methods and systems for increasing a density of a region of a vascular device
US9943427B2 (en) 2012-11-06 2018-04-17 Covidien Lp Shaped occluding devices and methods of using the same
US9157174B2 (en) 2013-02-05 2015-10-13 Covidien Lp Vascular device for aneurysm treatment and providing blood flow into a perforator vessel
JP6342431B2 (en) 2013-02-21 2018-06-13 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Stent for forming anastomosis and medical device including the stent
BR112015023344B1 (en) 2013-03-15 2022-05-31 Baronova, Inc Device for intermittently occluding a gastric opening; and reconfiguration method installing an occlusion device
EP3003211B1 (en) * 2013-05-29 2018-05-02 MagCath ApS Incontinence device
US10433847B2 (en) * 2013-12-17 2019-10-08 The Board Of Regents Of The University Of Nebraska Platform device and method of use to assist in anastomosis formation
US10898096B2 (en) * 2014-10-27 2021-01-26 St. Jude Medical, Cardiology Division, Inc. Apparatus and method for connecting elements in medical devices
AU2017371223B2 (en) 2016-12-09 2023-04-27 Zenflow, Inc. Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra
US10940030B2 (en) 2017-03-10 2021-03-09 Serenity Medical, Inc. Method and system for delivering a self-expanding stent to the venous sinuses
CN108464945B (en) * 2018-05-03 2024-03-22 杭州糖吉医疗科技有限公司 Duodenal internal jejunum sleeve release system and application method thereof
CN113891686A (en) 2019-01-23 2022-01-04 内奥瓦斯克医疗有限公司 Flow-altering device with cover
US11103260B2 (en) 2019-07-18 2021-08-31 Medline Industries, Inc. Fecal impaction removal device
CN114786629A (en) 2019-11-19 2022-07-22 真复灵公司 Systems, devices, and methods for accurate deployment and imaging of implants in the prostatic urethra

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2499045A (en) * 1948-08-16 1950-02-28 Walker Frank Ray Rectal dilator and medicator
DE2821048C2 (en) * 1978-05-13 1980-07-17 Willy Ruesch Gmbh & Co Kg, 7053 Kernen Medical instrument
EP0027486B1 (en) 1979-10-18 1983-04-13 CIMENTS D'OBOURG, Société Anonyme Process for reducing the calorific consumption of wet process cement kilns by reduction of the water content of the crude material
US4553545A (en) * 1981-09-16 1985-11-19 Medinvent S.A. Device for application in blood vessels or other difficultly accessible locations and its use
EP0257091B1 (en) * 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
US4878906A (en) * 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4913141A (en) * 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
FI85223C (en) * 1988-11-10 1992-03-25 Biocon Oy BIODEGRADERANDE SURGICAL IMPLANT OCH MEDEL.
US5147370A (en) * 1991-06-12 1992-09-15 Mcnamara Thomas O Nitinol stent for hollow body conduits

Also Published As

Publication number Publication date
US5246445A (en) 1993-09-21
EP0525110B1 (en) 1997-06-04
EP0723765A3 (en) 1998-01-07
IL94138A (en) 1997-03-18
DE69126428D1 (en) 1997-07-10
IL94138A0 (en) 1991-01-31
AU7799491A (en) 1991-11-11
AU651826B2 (en) 1994-08-04
WO1991016005A1 (en) 1991-10-31
JPH05507633A (en) 1993-11-04
EP0723765A2 (en) 1996-07-31
EP0525110A4 (en) 1993-06-30
EP0525110A1 (en) 1993-02-03
DE69126428T2 (en) 1997-10-30
JP3245156B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
AU651826B2 (en) Device for the treatment of constricted vessels
US5372600A (en) Stent delivery systems
US5269802A (en) Prostatic stent
EP0702535B1 (en) Prosthesis delivery system with dilating tip
US5984964A (en) Prothesis delivery system
US6027510A (en) Stent delivery system
US4762128A (en) Method and apparatus for treating hypertrophy of the prostate gland
US6733519B2 (en) Endolumenal prosthesis delivery assembly and method of use
JP2013240652A (en) Apparatus and method for deployment of custom-length prosthesis
Milroy et al. The UroLume stent in the management of benign prostatic hyperplasia
US11812930B2 (en) Devices for the treatment of benign prostatic hyperplasia and related lower urinary tract symptoms
US8506647B2 (en) System for maintaining body canal patency
YACHIA et al. A new, large calibre, self‐expanding and self‐retaining temporary intraprostatic stent (ProstaCoil) in the treatment of prostatic obstruction
Lam et al. Use of prostatic stents for the treatment of benign prostatic hyperplasia in high-risk patients
Seymour et al. Ureteric stenting-Current status
Huibregtse The wallstent for malignant biliary obstruction
YACHIA Temporary metal stents in bladder outflow obstruction
Dawson et al. Metal endoprostheses in malignant biliary obstruction
EP2749311B1 (en) Self-retentive and anti-reflux ureteral catheter
Yachia et al. benign prostatic hyperplasia bebneingnig npr porsotastiact ihc yhpyepreprlapslaiasia benign prostatic hyperplasia Introduction IntIrnotdruodctuicotnion Introduction: D. Yachia D. DYa. cYhaicahia D. Yachia
Yachia History of the UroCoil and ProstaCoil stents
Chapple et al. Prostate Stents
Yachia et al. of complex urethral strictures ofo cfo cmopmlepxle ux ruerthetrharl aslt rsitcrtiuctruerses of complex urethral strictures Introduction Introduction: DK Shah and GH Badlani D. DK. KSh. Sah aahn da nGd. GH.. HB. a dBladnliani DK Shah and GH Badlani IntIrnotdruodctuicotnion
Yachia A site-specific dynamic stent for the lower urinary tract A site-specific dynamic stent for the lower urinary tract Introduction Introduction

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued
FZDE Discontinued

Effective date: 20020419