CA2081170C - Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen - Google Patents

Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen Download PDF

Info

Publication number
CA2081170C
CA2081170C CA002081170A CA2081170A CA2081170C CA 2081170 C CA2081170 C CA 2081170C CA 002081170 A CA002081170 A CA 002081170A CA 2081170 A CA2081170 A CA 2081170A CA 2081170 C CA2081170 C CA 2081170C
Authority
CA
Canada
Prior art keywords
fluidized bed
hydrogen
reaction zone
gases
perm selective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002081170A
Other languages
French (fr)
Other versions
CA2081170A1 (en
Inventor
Alaa-Eldin Moustafa Adris
John Ross Grace
Choon Jim Lim
Said Salah-Eldin Elnashaie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noram Engineering and Constructors Ltd
Original Assignee
University of British Columbia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of British Columbia filed Critical University of British Columbia
Priority to CA002081170A priority Critical patent/CA2081170C/en
Priority to US07/965,011 priority patent/US5326550A/en
Priority to PCT/CA1993/000423 priority patent/WO1994008890A1/en
Publication of CA2081170A1 publication Critical patent/CA2081170A1/en
Application granted granted Critical
Publication of CA2081170C publication Critical patent/CA2081170C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/42Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles
    • C01B3/44Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles using the fluidised bed technique
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00123Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00265Part of all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2208/00292Part of all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00628Controlling the composition of the reactive mixture
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S48/00Gas: heating and illuminating
    • Y10S48/05Diffusion membrane for gas reaction or separation

Abstract

Hydrogen gas is generated in a fluidized bed reactor by reacting gases namely steam and a hydrocarbon gas such as methane or natural gas in a fluidized bed of particulate catalytic material. The catalytic material is fluidized by injecting the mixture of the reacting gases at the bottom of the bed.
Hydrogen generated within the bed is removed via a selectively permeable membrane that extends through the bed and through a freeboard area above the bed. The reaction is endothermic and therefore heat to maintain the bed at the desired temperature is added as required. preferably a separator separates particulate catalytic material entrained in the gases in the freeboard area and delivers the particulate material separated from the gas back into the bed.

Description

Fluidized Bed Reaction System for Steam/Hydmcarbon Gas Refomung to P~bduce Hydrogen Field of the Invention The present invention relates to an improved hydrogen forming reaction 5 system using a fluidized bed reactor.
Description of the Pvior An The production of hydrogen ming reaction systems employing steam and hydrocarbon gases such r~s methane or natural gas or the like are well known in the art. These reactions are generally catalytic and are limited by intra particle 10 diffusion and thermodynamic equilibrium Reactors employ;d for this purpose are normally fixed bed type reactors as opposed to fluidized bed reactors although lluidiLed bed reactors have been proposed for use in production of hydrogen in US Patent 3,524,819 issued Aug.
18 1970 to Guerneri and US patents 4,877,550 and 4,888,131 issued October 31 15 1989 and December 18 1989 respectively to Goeisch and . (See also U.S.
Patent 4,938,946 issued July 3, 199t> to Gibsoa, of al. which teaches fluidir~ng Regolith in particulate form 1.'or producing hydrogen gas at elevated temperature.) The addition of hwt to reformers 1z41s also been taught, for example, in US
Patent 3,524,819 to Guerrieri andlor Deutches Patent 3,331,:202 issued 1984 to 20 Reichel. Us patent 4,474,23t? issued Oci. 2 1984 to MeCallister teaches the use ofheat pipes to introduce heat into fluidized bed reactors.
The Goetsch patent 4,877,550 also teaches rapid cooling to overcome the negative effect of the catalyst fuzes entraiizrrrent which reduces the reaction conversion in the Ii~eeboard zone and subsequent process lines.
25 Generally in such steact~hydrocarlxm reaction systems, it is required that the hydrogen be separated using relatively complicated processes for increasing the purity of the hydrogen to that required for subsequent uses. It has also been proposed by Minet et al irr U.S Patent no. 4,981,676 issued January 1 1991 to use a diffusion process for steam relbrming of hydrocarbons in the production of 30 hydrogen, carbon monoxide and carbon dioxide by employing a generally tubular, porous, ceramic membrane and providing a heirted rm.ction ;cone in a container into which the membrane is received. The membrane carries the catalyst and the hydrocarbon gas and steam contact one side of ttze membrrne t.o produce the ~o~~~~o hydrogen, carbon monoxide and carbon dioxide gases. The hydrogen formed selectively diffuses through the membrane and is carried off in an entraining gas.
U.S. Patent 4,810,485 issued March 7, 1989 to Marianowski teaches the formation of hydrogen gas in a reaction zone containing a hydrogen ion porous metallic foil which conducts hydrogen ions therethrough to remove the hydrogen ions from the packed bed as they are' formed and thereby permit a reduction in the operating temperature of the bed and producing a relatively pure hydrogen that is conducted away through the tubular metallic foils to a manifold.
Brief Description ~f the Present Ynvention It is an object of the present invention to provide an improved reaction system employing a fluidized bed to react steam and hydrocarbon gas to produce hydrogen and to separate the hydrogen upon formation thereby to improve the reaction yield.
Broadly the present invention relates to a method and apparatus for producing hydrogen gas comprising forming a fluidized bed of a suitable particulate catalyst by introducing reacting gases comprising a mixture of steam and hydrocarbon gas into the bottom of said fluidized bed to fluidize said particles and form said fluidized bed, said fluidized 'bed occupying a portion of a vessel and forming a reaction zone; a freeboard zone in said vessel above said fluidized bed, reacting said reacting gases 'within said bed to produce hydrogen gas, separating said hydrogen gas as it is formed in said bed as molecular or atomic hydrogen through a perm selective membrane means that extends through said bed' in the direction of flow of said reaction gases and permits transfer of hydrogen therethrough while preventing the transmission of other gases present in said reaction zone therethrough, said hydrogen gas after permeation through the membrane providing a source of relatively pure hydrogen gas.
Preferably said membrane means will also extend through said freeboard zone and separate hydrogen froni said other gases in said freeboard zone.
In some embodiments said perm selective membrane means will comprise a plurality of tubes of perm selective membrane material arranged about said bed with the longitudinal axes of said tubes substantially parallel and extending in said direction of flow of said reaction gases.

2~~~.~~0 Preferably adjacent said perm selective tubes will be spaced at least sufficient to permit fluidizing of said catalyst particles therebetween yet sufficiently small to provide the desired surface area exposed to said reaction zone to permit the transfer of hydrogen generated in said reaction zone.
Preferably said perm selective membrane means will comprise a plurality of modules, each said modules being formed by a plurality of perm selective membrane tubes enclosed in a protective sheath of material that permits hydrogen and other gases to pass therethrough and into contact with said perm selective membrane tubes while prohibiting the passage of said particulate catalyst.
Preferably a pressure significantly lower than that in the reaction zone will be maintained in said perm selective membrane means to improve the permeation rate of hydrogen through. said perm selective meriibrane means.
Preferably, a heating means will be provided to supply heat needed in the reaction zone to maintain said fluidized bed at the desired.reaction temperature.
Preferably, said, other gases leaving said freeboard will be separated from particulate material and said particulate material will be redirected back into said fluidized bed.
Preferably, said separation will comprise centrifugally separating said particulate from said gases in centrifugal cleaner having a conical section having a particulate outlet at 'the small diameter end, said particulate outlet being submerged in said bed and a gas outlet from said base section at the major diameter end of said conical section for removal of cleaned gas from the system and a tangential gas inlet to said centrifugal cleaner adjacent to said gas outlet.
In soma cases it may be desirable to recycle selected amount of other gas evolving from said freeboard and introduce said other gas from said freeboard into said reaction zone with said reacting gasps to control fluidization of said fluidized bed.
l6rief Description of the lDrawings Further features, objects and advantages will be evident from the following detailed description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings in which:
Figure 1 is a schematic illustration of a fluidized bed reactor system ~t constructed in accordance with the presern invention.
Figure 2 is a section along the line 2 - 2 o f Figure 1.
Figure 3 is an enlarged cross section of a perm selective membrane module.
Figure 4 is a section on the line 4 - 4 of Figure 1 with parts omitted showing a modified arrangement of the perm selective membrane tubes within the fluidized bed reaction zone.
Figure 5 is an e,nla~~ged cross section showing the spacing between adjacent perm selective membrane tubes.
Description of the Pmfe~md Embodiments The reactor vessel 1t7 schematically illustrated in Figm-e 1 has two main sections; A fluidized bed section l2 ibrming a reaction -none 12 and a freeboard section or zone 14. A distributor plate 16 forms the bottom of the fluidized bed section 12 and connects the bottom of the fluidized bed 12 with the wind or blow box 18 which in turn is connected via gas inlet 20 to the sources of reacting gases such as methane and steam as indicated by the lines 22 and 24 respectively.
Preferably a preheater 23 will preheat the reacting gases before they enter the wind box 18.
The fluidized bed section 12 is filled to the desired level with particles 26 of catalyst used for the reaction to be performed and these particles are fluidized by introducing the reacting gases entering inlet 20 into the wind box 18 and then passing up through the perforated distributor plate lti to fluidize the particles 26 and form the fluidirxd bed 12.
A plurality of separation tubes 28 extend through the fluidized bed 12 and freeboard 14 with their longitudinal axes substantially parallel to the direction of flow of the gases tluough the bed 12 so as not t~~ interfere si,~mificantly with the formation of the lluidized bed 12 and to mininvze ,abrasion. These separation tubes 28 separate hydrogen formed in the bed (and the freeboard 14) from the other gases in the bed and are formed of material that permits the transmission of hydrogen in molecular or <atomic form into the tubes while inhibiting the transmission of the other gases that are also present in the fluidized bed and in the freeboard 14 so that the gas within the separation tubes 28 is relatively pure hydrogen.

The output from the separation tubes 28 may be connected by a pump 29 to an outlet line 31. 'x he pump 29 may be in the form. of a vacuum pump to apply a negative pressure to the. inside of the tubes 28 and improve the transmission of hydrogen through the membranes.
S The separation tubes 28 extend vertically inside the bed 12 (i.e parallel to the flow direction of the reaction gases) and the freeboard 14 i.e. from the wind box 28 to the top of the freeboard 14.
1n the embodiment illustrated in Figures 1 to 3 inclusive each of the separation tubes 28 is in the form of a membrane module 30 which is composed 1D of an outer protective sheath or tube 32 and inner perm selective membrane tubes 34 which in the illustrated arrangement are shown in a spaced symmetrical arrangement. The periphery of these tubes 34 need not be separated, but must provide the area required to transmit or transfer the desired amount of hydrogen therethrough. The required spacing' for the modules 30 in the bed 12 will be 15 described herein below.
The outer sheath 32 will normally be formed of an abrasion resistant material having a pore size to transmit hydrogen as welt as at least most of the other gases present in the bed 12 and/or freeboard 14 but sufficiently small to prevent the passage of particulate maferial from the bed. This sheath or shielding 20 tube 32 may be made for example of porous ceramic material or porous metallic . material.
The perm selective membrane tubes 34 may be made of any suitable material that will, as above described, result in the partially or perfectly selective transmission of the particular material, in this case hydrogen, while tending to 25 prevent the transmissioxa of any of the other gases or chemicals present in the case of the present invention the reaction mixture gases present within the reactor 10. Membranes maybe substantially perfectly selective to hydrogen (e.g.tubes of dense phase membranes, Ni, Nb, Pd, metal coatings an porous structures enveloped by shielding have been found satisfactory, etc.), i.e. systems wherein the 30 . mechanism of transfer is adsorption, molecule disassociation, atomic diffusion, atoms combination and then molecular desorption; or the membranes that may be partially selective to hydrogen, for example alumina base or silica base porous membranes which operate on the principal of Knudson diffusion or molecular 2~~~~.'~~

sieving wherein selectivity depends on the pore size and relative molecular sizes of the different gases involved in the gas mixture e.g to transfer the smaller molecular size gas while preventing the transmission of the larger molecules.
The choice of which membrane to use in any particular application will S depend on the application including the downstream process requirements and the conditions within the reactor.
If desired the separation tubes may be directly exposed within the bed 12 as shoryn in Figure 4. This arrangement may permit a higher packing of the perm selective membrane tubes within the bed 12 and freeboard 14, but obviously subjects the perm selective nnembrane tubes 34 directly to the fluidized action of the catalyst bed 12 which will likely significantly shorten their life span and thereby increase the operating cost of the system.
The spacing of the separation tubes 28 (which may be discreet tubes 34 or modules 30) will preferably be related to the particle size of the particles 26 of , catalyst to ensure there is ample space for the free movement of the particles 26 to form the fluidized bed 12. Thus the smallest distance eg Sl, SZ or S3 illustrated in Figure 5 will be sufficient to prevent blockages or bridging of the fluidized bed 12 but not significantly larger so that the maximum number of tubes 28 may be provided in the reaction zone 12.
The presence of these tubes 28, aids in limiting the growth of bubbles eg.
tends to prevent bubble coalescing thereby to facilitate maximizing heat and mass transfex i.e. the presence of these tubes 28 influences bubble formation and thus the size of 'bubbles within the bed and optimizing the number, size (diameter) and spacing of such tubes may be used to~ increase the effectiveness of the bed.
The particular catalyst chosen will depend on the reaction intended. For example, a nickel catalyst supported over an alpha-alumina (nickel loading of 4%
to 22%) having a mean particle size range of about 60 to 300 microns, has been found satisfactory for the reforming reaction and formation of the fluidized bed by natural gas, steam mixture maintained at a temperature of 650 to 950 °C under a pressure of 1.5 to 4.5 MPa.
The mixture in the above example will have a steam to carbon ratio preferably in the range of 1.2 to 6.
It will be apparent that the reaction in the fluidized bed 110 is an 20~~1°~p endothermic reaction and thus it is important that the temperature within the xeaction zone of ~luidized bed 12 be maintained. Suitable heat pipes or heat exchangers 36 have been shown schematically as embedded within the bed 12 and serviced by circulating a thermal fluid as indicated by the numeral 38 i.e.
the tube 36 will form at least 1 loop for circulation of a thermal or heating fluid in and out of this fluidized bed 12. This will permit maintaining the temperature in the required range for the particular reaction described above or at any other selected temperature for any particular application to which the present invention may be applied.
While the embedding of a heat exchanger within the bed 12 is the preferred mode of heat transfer to the bed 12, other conventional means for supplying heat to the bed 12 may be used. For example, particles 26 may be withdrawn from the bed 12, heated and then returned to the bed 12 (see the Guerrieri i1S patent 3,524,819 referred to above).
1S In the illustrated arrangement, the gases not absoxbed by the separation tubes 28 move into the freeboard ~ area 14 and tangentially into a cyclone schematically indicated at 40 in Figure 1. These gases enter the cyclone 40 in the a right cylindrical body section 42 which tapers into a conical section 44 joining body 42 to an extension 46 which extends downwardly into the bed 12. The outlet end 48 of the extension 46 is buried well vvithin the bed 12 so that particles separated in the separator 40 are reintroduced into the bed 12. The gas separated from the entrained particulate in tl~e cyclone 40 pass as indicated by a .
line 50 to the further stage in its processing.
- If desired some of the gas separated in the separator 40 and leaving the system may be redirected as indicated by line ~2 under control of the valve 54 back into the system with the re~.ction gases in the blow box 18 and be used to adjust the desired degree of fluidization of the bed 12.
' Generally; when the present invention is employed to produce hydrogen gas by a steam ~ hydrocarbon gas reaction such as the reaction between methane and steam, the reactions will be as follows:
CH4 + 2H20 = C02 -~ 4H2 (1) CH4 + HZO ~ CO + 3H2 (2) as the main reactions. These two reversible reactions will be further promoted ~0~11~0 by removal of hydrogen due to the shift in the chemical equilibrium provided the temperature within the fluidized bed is maintained.
A possible side reaction if CO 'is formed in the fluidized bed comprises:
CO + H20 = COZ + H2, (3) 'Obviously, the removal of hydrogen will favour this reversible reaction as well.
It is important that as much hydrogen as possible be stripped from the product gases before the product gases are exhausted from the system. For this reason, the membrane tubes 28 exteind not just through the fluidized bed 12 but through the freeboard zone 14 as well.
1 The separation tubes 28 within the freeboard 14 aid in further displacing the reaction mixture from the equilibrium compositions to avoid the reduction o~
methane conversion caused by the reverse reaction (methanation) which is :favouzed by the lower temperature in the freeboard 14 and in the lines 50 and 52, It will be apparent that with the present system, the hydxogen gas leaving via line 31 is relatively pure hydrogen gas depending on the perm selective membrane material being used.
It will also be apparent that the gas passing into the freeboard and exiting wia the cleaner 40 and line SO is lean in hydrogen gas due to the separation tubes 28 and to tl~e extension of the separation tubes 28 through the freeboard 14 and therefore is unlikely to undergo methanation over the entrained catalyst. The likelihood of the methanation reaction occurring after the particles of catalyst have been separated in the cleaner 40 is reduced even further.
It will also be apparent that tha reactor and reacting system of the present invention permit the formation of relatively puxe hydrogen gas in a single unit 2S without the need for a purification process. The product gas composition may be controlled by adjusting recycle ratio is the amount of gas recycled via line 52 and the setting of the vacuum pump 29 from a steam hydrocarbon gas reactor, such as a steam, methane or natural gas reactor.
Having described the invention, modifications will be evident to those skilled in the art without departing from the spirit of the invention as defined in the appended claims.

Claims (20)

1. An apparatus for producing hydrogen gas comprising a reaction vessel having a reaction vane, a suitable particulate catalyst contained within said vessel, means for introducing reacting gases comprising a mixture of steam and hydrocarbon gas into a bottom end of said reaction zone to fluidize said particulate catalyst and form said reaction zone into a fluidized bed, said fluidized bed reaction zone occupying a portion of said vessel, means forming a freeboard zone in said vessel above said fluidized bed, separating means for separating hydrogen gas produced in said reaction vessel from other gases in said reaction vessel, a first portion of said separating means in said fluidized bed reaction zone for separating said hydrogen gas in said fluidized bed reaction zone, a second portion of said separating means in said freeboard zone to separate further of said hydrogen gas formed in said vessel, said separating means including perm selective membrane tubes having walls formed by perm selective membrane material that selectively permit said hydrogen to pass therethrough as molecular or atomic hydrogen while preventing the transmission of other gases present in said reaction zone therethrough, the spacing between adjacent said separating means being at least sufficient for fluidizing of said particulate catalyst therebetween, but sufficiently small to provide the surface area of said separation means exposed to said reacting gases in said fluidized bed reaction zone required for effective transfer of hydrogen generated in said reaction zone from said reaction zone, and means for withdrawing said hydrogen gas from inside said perm selective membrane tubes in a stream containing substantially all of said hydrogen gas as hydrogen gas, whereby said hydrogen gas after permeation through said membrane material provides a source of relatively pure hydrogen gas.
2. ~An apparatus as defined in claim 1 wherein said first portion of said separating means extends through said fluidized bed reaction zone in a direction substantially parallel to the direction of flow of said reacting gases through said fluidized bed reaction zone toward said freeboard zone.
3. ~An apparatus as defined in claim 1 wherein at least said first portion of said separating means comprises a plurality of perm selective modules, each of said perm selective modules including a protective sheath and a selected number of said membrane tubes of said perm selective membrane material, said protective sheath formed from material that permits said hydrogen and said other gases to pass therethrough and into contact with said perm selective membrane tubes while preventing the passage of said particulate catalyst therethrough.
4. ~An apparatus as defined in Claim 1 wherein at least said first portion of said separating means comprises a plurality of perm selective modules, each of said perm selective modules being formed by a plurality of perm selective membrane tubes enclosed in a protective sheath, said protective sheath formed from material that permits said hydrogen and said other gases to pass therethrough and into contact with said perm selective membrane tubes while preventing the passage of said particulate catalyst therethrough.
5. ~An apparatus as defined in Claim 3 further comprising means for withdrawing hydrogen gas from the inside of said perm selective membrane tubes.
6. ~An apparatus as defined in Claim 1 further comprising separator means for separating entrained said particulate catalyst from said other gas after said other gas leaves said fluidized bed reaction zone, said separator means having an outlet for separated particulate catalyst submerged in said fluidized bed to return said separated particulate catalyst to said fluidized bed.
7.~An apparatus as defined in Claim 1 further comprising means to recycle selected amount of other gas evolving from said freeboard zone and introduce said other gas from said freeboard zone into said reaction zone with said reacting gases to control fluidization characteristics of said fluidized bed.
8. ~An apparatus as defined in Claim 2 wherein at least said first portion of said separating means comprises a plurality of perm selective modules, each of said perm selective modules including a protective sheath and a selected number of said membrane tubes of said perm selective membrane material, said protective sheath formed from material that permits said hydrogen and said other gases to pass therethrough and into contact with said perm selective membrane tubes while preventing the passage of said particulate catalyst therethrough.
9. ~An apparatus as defined in Claim 2 wherein at least said first portion of said separating means comprises a plurality of perm selective modules, each of said perm selective modules being formed by a plurality of perm selective membrane tubes enclosed in a protective sheath, said protective sheath formed from material that permits said hydrogen and said other gases to pass therethrough and into contact with said perm selective membrane tubes while preventing the passage of said particulate catalyst therethrough.
10. ~A method for producing hydrogen gas comprising forming a fluidized bed of a suitable particulate catalyst by introducing reacting gases comprising a mixture of steam and hydrocarbon gas into the bottom of said fluidized bed to fluidize said particulate catalyst and form said fluidized bed, said fluidized bed occupying a portion of a vessel and forming a reaction zone, forming a freeboard zone in said vessel above said fluidized bed reaction zone, reacting said reacting gases within said fluidized bed reaction zone to produce hydrogen gas, separating said hydrogen gas from other gases in said fluidized bed reaction zone as molecular or atomic hydrogen through a perm selective membrane means that permits transfer of hydrogen therethrough while preventing the transmission of said other gases present in said reaction zone therethrough, separating further hydrogen gas from said other gases through said perm selective membrane means in said freeboard zone, said hydrogen gas after permeation through said perm selective membrane means
11 providing a source of relatively pure hydrogen gas and withdrawing said relatively pure hydrogen gas.

11. A method as defined in claim 10 wherein said separating comprises first separating said hydrogen and said other gases from said particulate catalyst through a protective sheath and then separating said hydrogen from said other gases through said perm selective membrane means.
12. A method as defined in claim 10 further comprising withdrawing hydrogen gas from the side of said perm selective membrane means separated from said fluidized bed and to which said hydrogen passes to improve the permeation rate of said hydrogen through said perm selective membrane means.
13. A method as defined in claim 10 further comprising supplying heat to said reaction zone to maintain said fluidized bed reaction zone at a selected reaction temperature.
14. A method as defined in claim 10 further comprising separating said particulate catalyst from said other gases after leaving said fluidized bed reaction zone and recirculating said separated particulate catalyst back into said fluidized bed.
15. A method as defined in claim 10 further comprising recycling a selected amount of said other gas evolving from said reaction zone back into said reaction zone with said reacting gases to control fluidization of said fluidized bed.
16. A method as defined in claim 10 wherein said separating comprises first separating said hydrogen and said other gases from said particulate catalyst through a protective sheath and then separating said hydrogen from said other gases through said perm selective membrane means.
17. A method as defined in claim 17 further comprising withdrawing hydrogen gas from the side of said perm selective membrane means separated from said fluidized bed to which said hydrogen passes to improve the permeation rate of said hydrogen through said perm selective membrane means.
18. A method as defined in claim 17 further comprising supplying heat to said reaction zone to maintain said fluidized bed reaction zone at a selected reaction temperature.
19. A method as defined in claim l6 further comprising recycling a selected amount of said other gas evolving from said reaction zone back into said reaction zone with said reacting gases to control fluidization of said fluidized bed.
20. A method as defined in claim 14 further comprising recycling a selected amount of said other gas evolving from said reaction zone back into said reaction zone with said reacting gases to control fluidization of said fluidized bed.
CA002081170A 1992-10-22 1992-10-22 Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen Expired - Lifetime CA2081170C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002081170A CA2081170C (en) 1992-10-22 1992-10-22 Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen
US07/965,011 US5326550A (en) 1992-10-22 1992-10-23 Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen
PCT/CA1993/000423 WO1994008890A1 (en) 1992-10-22 1993-10-12 Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002081170A CA2081170C (en) 1992-10-22 1992-10-22 Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen
US07/965,011 US5326550A (en) 1992-10-22 1992-10-23 Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen

Publications (2)

Publication Number Publication Date
CA2081170A1 CA2081170A1 (en) 1994-04-23
CA2081170C true CA2081170C (en) 2002-12-24

Family

ID=25675607

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002081170A Expired - Lifetime CA2081170C (en) 1992-10-22 1992-10-22 Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen

Country Status (3)

Country Link
US (1) US5326550A (en)
CA (1) CA2081170C (en)
WO (1) WO1994008890A1 (en)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674745A (en) * 1989-08-31 1997-10-07 Bush Boake Allen Limited Biotransformation of fatty substrates
DK0615949T3 (en) * 1993-03-16 2000-04-03 Tokyo Gas Co Ltd Hydrogen producing apparatus
JPH07315801A (en) * 1994-05-23 1995-12-05 Ngk Insulators Ltd System for producing high-purity hydrogen, production of high-purity hydrogen and fuel cell system
JP3599370B2 (en) * 1994-05-23 2004-12-08 日本碍子株式会社 Hydrogen production equipment
US5588974A (en) * 1995-04-04 1996-12-31 Exxon Research And Engineering Company Process, and apparatus, for the injection of preheated oxygen into a high temperature reactor
EP0781949B1 (en) * 1995-12-29 2002-06-05 Glatt Gmbh Fluidized bed device
US6319306B1 (en) 2000-03-23 2001-11-20 Idatech, Llc Hydrogen-selective metal membrane modules and method of forming the same
US6152995A (en) * 1999-03-22 2000-11-28 Idatech Llc Hydrogen-permeable metal membrane and method for producing the same
US6537352B2 (en) 1996-10-30 2003-03-25 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6494937B1 (en) 2001-09-27 2002-12-17 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
US7195663B2 (en) 1996-10-30 2007-03-27 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
US6547858B1 (en) 1999-03-22 2003-04-15 Idatech, Llc Hydrogen-permeable metal membrane and hydrogen purification assemblies containing the same
US5997594A (en) * 1996-10-30 1999-12-07 Northwest Power Systems, Llc Steam reformer with internal hydrogen purification
US6376113B1 (en) * 1998-11-12 2002-04-23 Idatech, Llc Integrated fuel cell system
US6783741B2 (en) * 1996-10-30 2004-08-31 Idatech, Llc Fuel processing system
US5861137A (en) * 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
US6221117B1 (en) 1996-10-30 2001-04-24 Idatech, Llc Hydrogen producing fuel processing system
WO1999043610A1 (en) * 1998-02-24 1999-09-02 Niagara Mohawk Power Corporation Use of a membrane reactor for hydrogen production via the direct cracking of hydrocarbons
CA2282948A1 (en) 1998-09-16 2000-03-16 University Technologies International, Inc. Low temperature autothermal steam reformation of methane in a fluidized bed
US6419726B1 (en) 1999-10-21 2002-07-16 Ati Properties, Inc. Fluid separation assembly and fluid separation module
US6835232B2 (en) * 1998-11-10 2004-12-28 Frost Chester B Fluid separation assembly and fluid separation module
US6602325B1 (en) 1999-10-21 2003-08-05 Ati Properties, Inc. Fluid separation assembly
ES2199663B1 (en) * 1998-11-10 2005-05-01 Ati Properties, Inc. HYDROGEN SEPARATION MEMBRANE.
US6767389B2 (en) * 1999-03-22 2004-07-27 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6596057B2 (en) 1999-03-22 2003-07-22 Idatech, Llc Hydrogen-selective metal membranes, membrane modules, purification assemblies and methods of forming the same
US6641625B1 (en) 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls
US7135048B1 (en) 1999-08-12 2006-11-14 Idatech, Llc Volatile feedstock delivery system and fuel processing system incorporating the same
US6375906B1 (en) 1999-08-12 2002-04-23 Idatech, Llc Steam reforming method and apparatus incorporating a hydrocarbon feedstock
ATE284269T1 (en) * 1999-09-02 2004-12-15 Haldor Topsoe As REACTOR FOR THE CATALYTIC SELECTIVE OXIDATION OF A HYDROCARBON
GB0026242D0 (en) * 2000-10-26 2000-12-13 Bp Chem Int Ltd Apparatus and process
US6767376B1 (en) * 2000-11-10 2004-07-27 Sofco-Efs Holdings, L.L.C. Selectively controllable modular auto-thermal reformer and method for same
US6821501B2 (en) * 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US20030068260A1 (en) * 2001-03-05 2003-04-10 Wellington Scott Lee Integrated flameless distributed combustion/membrane steam reforming reactor and zero emissions hybrid power system
US20060037476A1 (en) * 2001-03-08 2006-02-23 Edlund David J Hydrogen purification devices, components and fuel processing systems containing the same
US6569227B2 (en) * 2001-09-27 2003-05-27 Idatech, Llc Hydrogen purification devices, components and fuel processing systems containing the same
DE10119721A1 (en) * 2001-04-21 2002-10-31 Bayer Cropscience Gmbh Herbicidal compositions containing benzoylcyclohexanediones and safeners
US6967063B2 (en) 2001-05-18 2005-11-22 The University Of Chicago Autothermal hydrodesulfurizing reforming method and catalyst
US6852668B2 (en) 2001-12-03 2005-02-08 University Of Western Ont Catalyst for hydrocarbon reforming reaction
US20040068932A1 (en) * 2002-10-15 2004-04-15 Stewart Albert E. Hydrogen generation apparatus and method
US20040093797A1 (en) * 2002-11-15 2004-05-20 Bingham Billy E. Integrated auto-thermal reformer
US7102048B2 (en) 2002-12-17 2006-09-05 Exxonmobil Chemical Patents Inc. Methanol feed for producing olefin streams
US7141231B2 (en) * 2003-08-11 2006-11-28 Membrane Reactor Technologies Ltd. Internally circulating fluidized bed membrane reactor system
FR2866695B1 (en) * 2004-02-25 2006-05-05 Alstom Technology Ltd OXY-COMBUSTION BOILER WITH OXYGEN PRODUCTION
US7547419B2 (en) * 2004-06-16 2009-06-16 United Technologies Corporation Two phase injector for fluidized bed reactor
US7419648B2 (en) * 2004-07-16 2008-09-02 Shell Oil Company Process for the production of hydrogen and carbon dioxide
US7470293B2 (en) * 2004-10-29 2008-12-30 Idatech, Llc Feedstock delivery systems, fuel processing systems, and hydrogen generation assemblies including the same
US7601302B2 (en) 2005-09-16 2009-10-13 Idatech, Llc Self-regulating feedstock delivery systems and hydrogen-generating fuel processing assemblies and fuel cell systems incorporating the same
EP1938415B1 (en) 2005-09-16 2014-05-14 Dcns Sa Self-regulating feedstock delivery system and hydrogen-generating fuel processing assembly incorporating the same
DE102005060171A1 (en) * 2005-12-14 2007-06-21 Uhde Gmbh Oxidation reactor and oxidation process
US7972420B2 (en) 2006-05-22 2011-07-05 Idatech, Llc Hydrogen-processing assemblies and hydrogen-producing systems and fuel cell systems including the same
US7939051B2 (en) 2006-05-23 2011-05-10 Idatech, Llc Hydrogen-producing fuel processing assemblies, heating assemblies, and methods of operating the same
EP2035329A2 (en) * 2006-06-30 2009-03-18 Shell Internationale Research Maatschappij B.V. Process and reactor for the production of hydrogen and carbon dioxide and a fuel cell system
US20080118407A1 (en) * 2006-11-17 2008-05-22 Membrane Reactor Technologies Ltd. Communicating compartmentalized fluidized bed reactor
US8262752B2 (en) 2007-12-17 2012-09-11 Idatech, Llc Systems and methods for reliable feedstock delivery at variable delivery rates
EP2435393A4 (en) * 2009-05-11 2013-01-09 Juranitch James Charles Large scale energy efficient co2 sequestration and processing
US9745191B2 (en) 2011-04-11 2017-08-29 Saudi Arabian Oil Company Auto thermal reforming (ATR) catalytic structures
US8597383B2 (en) 2011-04-11 2013-12-03 Saudi Arabian Oil Company Metal supported silica based catalytic membrane reactor assembly
US10476093B2 (en) 2016-04-15 2019-11-12 Chung-Hsin Electric & Machinery Mfg. Corp. Membrane modules for hydrogen separation and fuel processors and fuel cell systems including the same
US10189763B2 (en) 2016-07-01 2019-01-29 Res Usa, Llc Reduction of greenhouse gas emission
US9981896B2 (en) 2016-07-01 2018-05-29 Res Usa, Llc Conversion of methane to dimethyl ether
US9938217B2 (en) 2016-07-01 2018-04-10 Res Usa, Llc Fluidized bed membrane reactor
US11535514B2 (en) * 2020-02-26 2022-12-27 Gas Technology Institute System and method for recycling pressure swing absorber off-gas
US11712655B2 (en) 2020-11-30 2023-08-01 H2 Powertech, Llc Membrane-based hydrogen purifiers
US20230024915A1 (en) * 2021-07-16 2023-01-26 Battelle Memorial Institute Porous Polybenzimidazole Membrane Supports for Composite Membranes

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516974A (en) * 1946-12-04 1950-08-01 Texace Dev Corp Method and apparatus for gasifying carbonaceous material
US3524819A (en) * 1967-03-03 1970-08-18 Lummus Co Steam reforming of hydrocarbons
US4474230A (en) * 1982-08-31 1984-10-02 Foster Wheeler Energy Corporation Fluidized bed reactor system
DE3424208A1 (en) * 1984-06-30 1986-01-16 Kernforschungsanlage Jülich GmbH, 5170 Jülich METHOD AND DEVICE FOR INCREASING THE SALES OF GAS REACTIONS PROCESSING WITH HYDROGEN PRODUCTION
US4810485A (en) * 1986-08-25 1989-03-07 Institute Of Gas Technology Hydrogen forming reaction process
US4877550A (en) * 1988-03-28 1989-10-31 Exxon Research And Engineering Company Synthesis gas preparation and catalyst therefor
US4888131A (en) * 1988-03-28 1989-12-19 Exxon Research And Engineering Company Synthesis gas preparation and catalyst therefor
CA1333008C (en) * 1988-03-28 1994-11-15 Duane Arlen Goetsch Synthesis gas preparation and catalyst therefor
US4938946A (en) * 1988-04-13 1990-07-03 Carbotek, Inc. Lunar hydrogen recovery process
FR2636858B1 (en) * 1988-09-08 1990-11-02 Air Liquide METHOD AND INSTALLATION FOR SEPARATING A COMPONENT WITH INTERMEDIATE PERMEABILITY OF A GASEOUS MIXTURE
US4981676A (en) * 1989-11-13 1991-01-01 Minet Ronald G Catalytic ceramic membrane steam/hydrocarbon reformer
US5073356A (en) * 1990-09-20 1991-12-17 Air Products And Chemicals, Inc. Integrated processes for the production of carbon monoxide

Also Published As

Publication number Publication date
WO1994008890A1 (en) 1994-04-28
US5326550A (en) 1994-07-05
CA2081170A1 (en) 1994-04-23

Similar Documents

Publication Publication Date Title
CA2081170C (en) Fluidized bed reaction system for steam/hydrocarbon gas reforming to produce hydrogen
US4981676A (en) Catalytic ceramic membrane steam/hydrocarbon reformer
US7141231B2 (en) Internally circulating fluidized bed membrane reactor system
SU1713420A3 (en) Autothermic reactor for producing synthesis gas
JP4903339B2 (en) Method for producing carbon monoxide by catalytic reverse conversion
AU2006264046B2 (en) Compact reforming reactor
JPS6117401A (en) Method and device for converting steam by using coal or hydrocarbon
US20040170559A1 (en) Hydrogen manufacture using pressure swing reforming
RU2248931C2 (en) Method for production of gas enriched with hydrogen and/or carbon oxide
KR101015876B1 (en) Process and apparatus for the preparation of synthesis gas
CA2428761C (en) Carbon monoxide conversion process and reactor
KR101044621B1 (en) Process and apparatus for the preparation of synthesis gas
AU2011204499A1 (en) Isothermal reactor for partial oxidation of methane
JPS63502984A (en) Method and apparatus for producing synthesis gas
CA2282948A1 (en) Low temperature autothermal steam reformation of methane in a fluidized bed
US6923944B2 (en) Membrane reactor for gas extraction
EP1418156B1 (en) Method for operation of membrane reactor, and membrane reactor used therein
WO2012051924A1 (en) System for producing methane-rich gas and process for producing methane-rich gas using the same
WO2013008020A1 (en) Isothermal reactor for partial oxidation of methane
EP1441981B1 (en) Reactor for reformation of natural gas and simultaneous production of hydrogen
CA2130994A1 (en) Process for producing a gaseous product
RU2088517C1 (en) Method of two-step catalytic conversion of hydrocarbon raw material
EP0914200A1 (en) Fixed-bed, catalytic reactor and method for manufacturing same
JP2002274809A (en) Chemical reaction apparatus
AU659296B2 (en) Process for steam reforming a hydrocarbon

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry
MKEX Expiry

Effective date: 20121022