CA2082327C - Surgical cutting instrument - Google Patents

Surgical cutting instrument Download PDF

Info

Publication number
CA2082327C
CA2082327C CA002082327A CA2082327A CA2082327C CA 2082327 C CA2082327 C CA 2082327C CA 002082327 A CA002082327 A CA 002082327A CA 2082327 A CA2082327 A CA 2082327A CA 2082327 C CA2082327 C CA 2082327C
Authority
CA
Canada
Prior art keywords
tissue
distal end
instrument
sheath
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002082327A
Other languages
French (fr)
Other versions
CA2082327A1 (en
Inventor
Edward D. Pingleton
Paul G. Thomson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cook Urological Inc
Original Assignee
Vance Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vance Products Inc filed Critical Vance Products Inc
Publication of CA2082327A1 publication Critical patent/CA2082327A1/en
Application granted granted Critical
Publication of CA2082327C publication Critical patent/CA2082327C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system

Abstract

A surgical cutting instrument is disclosed for percutaneously debulking tissue through an access sheath commonly used in minimally invasive laparoscopic or endoscopic surgical procedures. The cutting instrument includes a inner rotary member tube having a cutting edge at the distal end thereof for cutting and slicing tissue. The outside surface of the rotary inner cutting member tube and outer sheath annularly close about the distal ends thereof for preventing perforation of the surgical tissue bag in which the tissue is contained. The inner cutting member tube includes a hollow passageway for suctioning and aspirating tissue and fluid through the tube and into a collection chamber or out through a vacuum or suction line attached thereto. Vacuum or suction control ports are included at the proximal end of the inner cutting member tube and stationary sheath for also controlling the amount of vacuum or suction applied to the tissue. The surgical cutting instrument includes a control handle for grasping by the physician. A collection chamber is connected to a coupler connected to the stationary sheath for collecting tissue therein. The inner cutting member tube extends through the collection chamber to a drive motor or to a remotely positioned rotary drive mechanism. A vacuum line is attached to the collection chamber for drawing tissue and fluid through the inner cutting member tube and into the collection chamber.

Description

SURGICAL GUTTING INSTRUMENT
Technical Field S This invention relates to percutaraeous surgical cutting instruments and, i.n particular, rtzrgi:~al instrument, for debulking biological tissue.
Background of the Invention One of the rnaj~r problems associated with minimally invasive surgery is percu~aneously debulking or reducing a large tissue volume :uch ~~s wi.t:h a cyst::, tumor, or an organ for removal through an access sheath. A number of power-driven, surgical cutting' i;~struments are presently available in which a side port: or a partial opening at t:he distal end of a cutting tube are rotated to shear and aspirate bone and cartilage through a lumen of the instrument. These side ports or partially oper:-ended cutting instruments are inefficient in debulking large ~o:LumE.:s. o:E soft tissue due to their limited access: cutting surfaces, which require an angled or. a side approacr~ f:or cutt:i.nc; . Fur,~hermore, these side port. or partially open-ended instruments cannot core soft tissue. This signi.fic.antly increases the time necessary to debulk. and remove t.Lss~ze throu<~h ,r access sheath. This is particularly applicable in laparoscopic or pelviscopic procedures in which large fibroid c:yats must: be removed.
These power-driven side port or partially open-ended instruments are best suited fear cut.tincy cartilage or bone material in arthroscopic procedurE>s, but are very inefficient in debulking and removing i_arge volumes of soft tissue.
Another side port cutting insiarument is manually Ec'w gird D. Pingleton-Paul G. Thomson 5-6 operated and uses a series of opposing jaws that are opened and closed to grasp and shear the tissue. Such a manually operated device is extremely limited in debulking tissue because of the time required for grasping and cutting each piece of the large tissue volume.
Another problem associated with these side port or partially open-ended instruments are the complex angles that are required for the cutting edges. Not only do these complex cutting angle instruments have limited access, but also provide limited control or directionality with respect to slicing or cutting soft tissue.
Summary of the Invention The foregoing problems are solved and a technical advantage is achieved by a surgical cutting instrument in which an open-ended rotary cutting edge positioned about the distal end of an inner elongated member extends beyond the distal end of a stationary outer sheath. The stationary sheath provides a protective guard for the inner member by limiting the lateral contact of the inner member with tissue, which advantageously prevents the wrapping of tissue around the inner rotary cutting member. The stationary sheath not only prevents tissue from wrapping around the rotary cutting member, but also prevents unwanted tearing or binding of the tissue around the inner cutting member.
Wrapping tissue around the inner cutting member also severely limits the control and directionality of the cutting member through the tissue being debulked.
The rotary cutting edge extends circumferentially about the distal end of the inner member, thereby providing continual and head-on controlled cutting or debulking of the tissue. Such a configuration advantageously provides direct cutting or slicing of the tissue while maintaining precise control of the cutting operation.
The cutting edge of the inner rotating tube is radiused Ed -~rd D. Pingleton-Paul G. Thomson 5-6 to cut soft tissue but yet not cut a surgical tissue bag, which may be brought in contact with the inner rotary cutting member.
Another outer safety shield is positioned about the inner cutting member and the stationary sheath and includes a rounded distal end, which further prevents puncturing of a tissue bag or unintended cutting of tissue. Laterally located about the distal end of the safety shield tube is an access channel through the passageway thereof for accepting tissue and guiding the tissue against the cutting edge of the inner rotary cutting member. This advantageously acts as a jaw for feeding the tissue into the cutting edge for cutting large portions of tissue. This variable size access channel also acts as a valve to control aspiration of fluid and tissue through the hollow passageway of the inner cutting member. Vacuum or suction control ports at the proximal end of the inner member and intermediately positioned stationary sheath also regulate the amount of vacuum or suction that is applied to the passageway of the inner cutting member for aspirating tissue or fluid therethrough.
The outer safety shield longitudinally slides along the stationary sheath to close and open the suction control ports of the inner member and the sheath for controlling the amount of vacuum or suction applied for aspirating tissue or fluid. The outer safety shield is also longitudinally extendable and withdrawable for controlling the size of the side access channel.
The outer shield includes a radial control arm attached to the proximal end of the shield for longitudinally sliding the shield with respect to the inner cutting member and stationary sheath and controlling the size of the side access channel and suction control ports.
The surgical cutting instrument also includes a collection chamber and an evacuation port for connecting a vacuum line thereto for aspirating tissue and fluid. The Ec' ~rd D. Pingleton-Paul G. Thomson 5-6 instrument further includes a rotary drive mechanism and coupler for rotating said inner member. A handle at the proximal end of the cutting instrument allows. directional control of the instrument along with providing manual control of the instrument and the outer shield.
The foregoing problem of inadvertently cutting tissue with an open-ended surgical instrument is solved and a technical advantage is achieved by a surgical cutting instrument in which a cutting edge, that is positioned circumferentially about the distal end of an inner rotating member, is contained within the passageway of a stationary outer sheath. To further safeguard the cutting edge from inadvertent contact, the outer surface of the inner member and outer sheath annularly close about the distal ends thereof. The cutting action of the instrument is facilitated with a sideways motion when tissue is drawn through the distal ends of the outer sheath and inner member.
The distal ends of the elongated sheath and the inner member each have a distal opening therein. The hollow passageway of the elongated sheath has a first predetermined cross-sectional dimension, whereas the distal opening of the sheath has a second predetermined cross-sectional dimension smaller than that of the sheath passageway. The second distal opening of the inner member is positioned within the first opening of the elongated sheath and has a fourth predetermined cross-sectional dimension smaller than the third predetermined cross-sectional dimension of the inner member passageway.
Positioned between the inner member and elongated sheath is a bearing surface on which the inner member rotates freely within the passageway of the outer sheath. The bearing surface comprises an electrolyzed material such as chrome deposited on the outer surface of the inner member about the distal and proximal ends thereof. In another embodiment, the bearing surface comprises a tube of Edw ~d D. Pingleton-Paul G. Thomson 5-6 polytetrafluoroethylene that extends between the distal and proximal ends of the inner member.
To advantageously draw tissue into contact with the cutting edge that is circumferentially positioned about the distal end of the inner member, the cutting instrument includes suction means for drawing tissue through the first and second distal openings of the outer sheath arid inner member. The inner member also includes an evacuation port communicating with the hollow passageway thereof and the suction means. A tissue collection chamber is also advantageously included in the instrument, which communicates with the evacuation port and suction means for collecting tissue received from the hollow passageway of the inner member.
The surgical cutting instrument also includes a rotary drive mechanism such as an electric motor connected to the proximal end of the inner member for rotating the member within the outer sheath. The annularly closing outer surface of the elongated sheath and inner member positioned about the distal ends thereof includes a uniformly radiused curvature for facilitating easy rotation of the inner member within the outer sheath and also for advantageously preventing inadvertent head-on cutting of tissue.
Brief Description of the Drawing FIG. 1 depicts an illustrative surgical cutting instrument of the present invention;
FIG. 2 depicts the surgical cutting instrument of FIG.
1 modified to receive an outer shield for containing the inner cutting member and stationary sheath of FIG. 1;
FIG. 3 is a cross-sectional view of the surgical cutting instrument of FIG. 2;
FIG. 4 depicts a partially sectioned side view of another embodiment of the surgical cutting instrument of the present invention;
FIG. 5 depicts a partially sectioned side view of the E~ zrd D. Pingleton°Paul G. Thomson 5°6 distal end of the surgical cutting instrument of FIG. 4; and FIG. 6 depicts a partially sectioned pictorial view of t:he distal end of the surgical cutting instrument of FIG. 4.
Detailed Description Depicted in FIG. 1 is an illustrative surgical cutting instrument 100 for percutaneously debulking and cutting tissue through an access sheath that is commonly utilized in minimally invasive surgery. A trocar sheath is normally pushed through the skin and subcutaneous tissue layers into a cavity of the patient during, for example, an endoscopic or laparoscopic procedure. The cutting instrument is inserted through the sheath or into a percutaneously positioned surgical tissue bag for debulking or reducing large tissue volumes such as cysts, tumors, organs or the like. A preferred surgical tissue bag is disclosed in a U.S. patent application of one of the present inventors and filed concurrently herewith.
The cutting instrument comprises an inner elongated member tube 101 having a distal end 102, a proximal end 103, and a hollow passageway 104 extending longitudinally therebetween. Positioned at the distal end of the inner member tube is a rotary cutting edge 105 that is circumferentially positioned thereabout. The cutting edge includes radius 106 extending from the hollow passageway to an outer surface 107 of the inner member tube. The radiused edge reduces the possibility of puncturing a surgical tissue bag or unintentionally cutting tissue. Surrounding the rotary cutting tube is elongated stationary sheath 108 connected to coupler 109. The stationary sheath has a distal end 110, a proximal end 111, and a hollow passageway 122 positioned longitudinally therebetween. Distal end 112 includes a bevel 113 extending circumferentially therearound for preventing the tearing or ripping of tissue coming in contact therewith. By way of example, inner cutting member tube is a stainless steel tube having a .300" diameter with Ec~--~rd D. Pingleton-Paul G. Thomson 5-6 a wall thickness of .010". The stationary sheath is also a stainless steel tube having a .330" outside diameter with a .010" wall thickness. The lengths of the inner cutting member tube and the stationary sheath range in length preferably from 5-lOcm.
The proximal end 111 of stationary sheath 108 is connected to the distal end 114 of coupler 109. A hollow passageway 115 extends through the coupler to the proximal end 116 thereof where rotary drive mechanism 117 is connected thereto. By way of example, rotary drive mechanism 117 includes a well-known DC electric motor 123 connected to the proximal end 103 of rotary inner member tube 101. Alternatively, drive mechanism 123 may include a casing and well-known bearings for applying air to a turbine also positioned at the proximal end of the inner cutting member tube. Other well-known means of providing a rotary motion to the inner cutting member are also contemplated.
A handle 118 extends radially from the coupler to provide manual control of the entire cutting instrument by the attending physician. An evacuation port 119 extends radially from hollow coupler passageway i15 for suctioning tissue and other fluid from side proximal evacuation port 120 of inner cutting member tube 101. A well-known connector 121 provides means for fastening a vacuum line or suction tube 122 to coupler 109.
As previously suggested, the inner cutting member tube extends through stationary sheath 108 with the proximal end 103 extending through the hollow passageway of the coupler for connection to rotary drive mechanism 117.
Depicted in FIG. 2 is a side view and in FIG. 3 a partial cross-sectional view of a modified embodiment of surgical cutting instrument 100 of FIG. 1 with an outer safety shield 201 positioned about stationary sheath 108 and inner cutting member tube 101. Outer safety shield 201 includes a proximal end 202, a rounded distal end 203, and a hollow passageway 204 positioned and extending Ec~wwrd D. Pingleton-Paul G. Thomson 5-6 longitudinally therebetween. The shield is sized for inserting the stationary sheath and the inner cutting member tube within passageway 204. By way of example, the outer shield comprises a stainless steel tube having a .340"
outside diameter with a wall thickness of .015". The distal end 203 of the outer shield is rounded to prevent unintentional cutting of tissue and puncturing the surgical tissue bag should such be utilized in the surgical procedure.
Extending radially from the proximal end is a control arm 205 having an eyelet ring 20u at the proximal end thereof for slidably controlling the position of the outer shield with respect to stationary sheath 108 and inner cutting member tube 101. The attending physician typically inserts his index finger therein while the rest of the hand grasps control handle 118.
Positioned about the distal end 203 of the outer shield is access channel 207 that extends laterally across the shield tube and through hollow passageway 204. Face edge 208 of the channel acts as a jaw for grasping tissue and feeding it into cutting edge 105 of the inner cutting member tube. In this modified embodiment, distal end 102 of the inner cutting member tube is beveled to provide a sharper cutting edge 105. Control eyelet ring 206 is longitudinally moved by the physician to cause face edge 208 of the channel to engage and draw the tissue into the cutting edge of the inner cutting member tube.
A plurality of vacuum control parts 209 are positioned longitudinally along the length of stationary sheath 108.
A plurality of vacuum access ports 210 are correspondingly positioned with respect to access ports 209 of the stationary sheath to control the amount of vacuum applied to the distal end of the inner cutting member tube. As the outer shield 201 is longitudinally moved along stationary sheath 108, the vacuum control access ports are either opened or covered up to allow respectively more or less E~ ~°rd D. Pingleton-Paul G. Thomson 5-6 suction to be applied to the distal end of the inner cutting member tube.
As depicted in FIGS. 2 and 3, coupler 211 has been modified to receive a detachable tissue collection chamber 212. Handle 118 is fixedly attached to coupler 211 as is stationary sheath 108. The collection chamber is of a cylindrical form including a cylindrical collection screen 213 for collecting tissue as vacuum is applied via evacuation port 214, vacuum connector 215, and vacuum tube 216. Vacuum tube 216 is connected to a source of suctioning vacuum, which is readily available in most surgical suites.
The inner cutting member tube extends longitudinally through the collection chamber to rotary drive mechanism 217 which is part of the proximal end of the collection chamber. The proximal end of the inner rotary cutting member tube is connected to a remote source of rotary power via rotary power line 218. Means for positioning the inner cutting member tube within the collection chamber using two bearing flanges and a slotted end are well-known in the art and may be readily modified by one skilled in the art to accept any number of different types of rotary drive mechanisms.. The rotary drive mechanism may include a remote source of power as indicated in this particular example or may be integrally incorporated into the cutting instrument as was described with respect to FIG. 1.
Extending longitudinally from coupler 211 is elongated stop arm 219 having a cross member 220 positioned at the distal end thereof. The built-up distal end of radial control arm 205 includes a longitudinal slot or channel 221 formed therein for slidably receiving stop arm 219. Cross member 220 limits the longitudinal motion of the outer shield when control arm 205 engages cross member 220. The distal end of the control arm is moveable as shown by arrow 222 to remove the outer shield for cleaning.
Depicted in FIG. 4 is a partially sectioned side view of another illustrative surgical cutting instrument 400 having Ec?~-°~rd D. Pingleton-Paul G. Thomson 5-6 a rotary, open-ended cutting edge 407 for percutaneously debulking and cutting tissue. The cutting edge is completely contained within passageway 412 of outer sheath 409, which annularly closes about distal end 410 thereof to prevent perforation of the surgical tissue bag. The cutting instrument comprises an inner elongated cutting member tube 401 rotatably positioned within outer elongated sheath tube 409. Tissue is drawn into hollow passageway 404 of inner cutting tube member 401 with a vacuum applied thereto and cut with a sideways or lateral motion of the distal end of the instrument, which is provided by the attending physician. Rotary drive mechanism 416 includes, for example, electric motor 440, which is positioned about proximal end 403 of inner cutting member tube 401 for rotating the tube and cutting tissue drawn within. A
suction or vacuum line 422 is connected to the handle of the instrument to draw tissue within hollow passageway 404 of the inner cutting member tube. Severed tissue is drawn through the inner cutting member tube and exits evacuation port 418 of the tube into tissue collection chamber 419, which is positioned in the handle of the instrument.
Conically shaped screen 423 positioned in the bottom of the tissue collection chamber over vacuum port 424 prevents the severed tissue from exiting the chamber and blocking the vacuum line. Vacuum control means 417 includes stopcock 425 that is positioned between the vacuum port and vacuum line and controls the amount of suction or vacuum applied to the cutting instrument.
Inner cutting member tube 401 includes distal end 402, proximal end 403, and hollow passageway 404 extending longitudinally therein. Surrounding the rotary inner cutting member tube is stationary outer elongated sheath tube 409 with proximal end 411 thereof connected to the handle of the instrument via coupler 426. Hollow passageway 412 extends longitudinally in the outer sheath between distal end 410 and proximal end 411.

E!' gird D. Pingleton-Paul G. Thomson 5-6 ~~~~3~~
Depicted in FIGS. 5 and 6 are enlarged partially sectioned views of distal end 402 of inner cutting member tube 401 and distal end 410 of outer sheath- 409 of the cutting instrument. To prevent perforation of a surgical tissue bag of which the tissue is contained, outer surface 413 of the stationary outer sheath closes annularly about distal end 410. Tissue is drawn through distal opening 414 of the outer sheath for engagement with rotary cutting edge 407 that is circumferentially positioned about distal opening 406 of the rotary inner cutting member tube. The physician applies a sideways or circular motion to the distal end of the instrument for rotary edge 407 to cut the tissue drawn through the distal openings of the outer sheath and inner member tube. To further prevent perforation of the surgical tissue bag and ease operation of the instrument therein, respective annularly closing surfaces 427 and 428 of outer sheath 409 and inner cutting member tube 401 are uniformly radiused. As a result, distal opening 414 of the outer sheath and distal opening 406 of the inner cutting member tube each have a cross-sectional diameter dimension smaller than the cross-sectional diameter dimension of respective hollow passageways 412 and 404. In addition, circular distal opening 406 of the inner tube is positioned within distal opening 414 of the outer sheath and has a smaller cross-sectional diameter dimension to draw tissue into the inner cutting member tube and into contact with rotary cutting edge 407 to cut the tissue with a sideways or circular motion provided by the attending physician.
By way of example, outer elongated sheath tube 409 comprises a 300 series stainless steel tube approximately 4.875" in length with an outside diameter of .428" and inside diameter of .410". The diameter of distal opening 414 of the outer sheath is approximately .310" to .315" with outer annularly closing surface 427 having a uniform radius of approximately .100". Inner cutting member tube 401 comprises a 7.500" length of 300 series stainless steel tube Ed~-°rd D. Pingleton-Paul G. Thomson 5-6 having an outside diameter dimension of approximately .377"
with a wall thickness of .010" resulting in an inside diameter of approximately .357". The diameter of circular distal opening 406 is approximately .275" with outer annularly closing surface 428 having a uniform radius of approximately .100". Rotary cutting edge 407 has an included angle of approximately 25 to 30 degrees and faces inwardly in a perpendicular radial direction toward the longitudinal axis of the cutting tube. This particular orientation provides for a sideways cutting or sculpting action when tissue is drawn with suction through distal openings 406 and 414. As partially depicted in FIG. 4, approximately .375" from proximal end 403 of the inner cutting member tube, evacuation port 418 extends for approximately 1.125" with a depth of .177" from outer surface 405 into hollow passageway 404. Nylon coupler 408 is fixedly positioned in hollow passageway 404 and extends from proximal end 403 of the inner cutting member tube for detachable engagement with shaft 441 of electric motor 440.
As depicted in FIGS. 4 and 5, positioned about distal end 402 on outer surface 405 of the inner member is distal bearing surface 415 approximately .5 cm in length and .5 cm from distal end 402. This bearing surface is approximately .015" in thickness and comprises an electrolyzed material such as 95% hard chrome for rotating inner member 401 within the passageway of the outer sheath. A proximal bearing surface 420 is similarly positioned on the outer surface of the inner member about the proximal end of the outer sheath.
The distance between the distal ends of the rotary inner cutting member tube and the stationary outer sheath is maintained with thrust disk 429, which is positioned around inner member tube 401 proximal to the outer sheath and engages distal handle coupler 426 and polytetrafluoroethylene bearing disk 430. Alternatively as shown in FIG. 6, a thin-wall tube 421 of approximately .015"
polytetrafluoroethylene material is inserted between the Ed'~rd D. Pingleton-Paul G. Thomson 5-6 inner member and outer sheath, which acts as the bearing surface.
Hollow passageway 404 of rotary inner cutting member tube 401 extends the entire length of the tube for drawing and removing tissue severed from the surgical site through tissue evacuation port 418 and into tissue collection chamber 419. Handle 431 of the instrument comprises a cylindrical T-shaped member with coupler 426 fixedly positioned in distal cross-bar opening 432. Rotary inner cutting member tube 401 is inserted through proximal cross-bar opening 433 of handle 431 and into outer sheath 409. A
circular solimide material disk 434 is positioned about the proximal end of the cutting tube to prevent tissue from being drawn into electric motor 440. The disk is fixedly positioned in passageway 435 of the handle about proximal cross-bar opening 433 between inwardly extending flange 436 and the distal end of the rotary drive mechanism.
Tissue collection chamber 419 of the cutting instrument handle includes hollow T-shaped passageway 435 which communicates with inner passageway 404 of the rotary inner cutting member tube via evacuation port 418. The tissue collection chamber is enclosed by cylindrical wall 437 of the T-shaped handle. The proximal end of the chamber includes removable cap 438 with chamber evacuation port 424 positioned therein and vacuum stopcock 425 extending therefrom. As previously discussed, canically-shaped screen 423 prevents tissue from being drawn through evacuation port 424 and into vacuum or suction line 422.
Suction means 417 of the cutting instrument comprises evacuation port 424, stopcock 425, and conically-shaped screen 423. The cylindrical T-shaped handle of the instrument is comprised of any well-known plastic material such as polyvinylchloride which is easily molded and shaped.
Rotary drive mechanism 416 comprises a commercially available electrical motor 440 that is encased, for example, in plastic material cylinder case 439, which is readily Ec'~~rd D. Pingleton-Paul G. Thomson 5-6 screwed into proximal cross-bar opening 433 of the handle to engage rotary inner cutting member tube coupler 408.
With rotary drive mechanism 416 rotating inner cutting member tube 401, tissue is severed with cutting edge 407 and drawn through hollow passageway 404 and into tissue collection chamber 419 via evacuation port 418. A power and control line (not shown) is connected to the rotary drive mechanism to energize and control the speed of the electric motor. The physician controls the speed, for example, with the use of a foot pedal (not shown) connected to the power and control line. The vacuum applied to the tissue collection chamber via the suction means draws the severed tissue from the inner cutting member tube and into the collection chamber of the surgical cutting instrument handle. The physician regulates the suction applied to the chamber via stopcock 425.
It is to be understood that the above-described surgical cutting instrument is merely an illustrative embodiment of the principles of this invention and that other cutting instruments may be devised by those skilled in the art without departing from the spirit and scope of this invention. In particular, the distal end of the cutting instrument may be devised to include serrated teeth or a modified cutting edge for providing any number of different cutting or slicing actions. The rounded distal end of the outer shield may be devised to include a series of rounded wires to permit penetration through soft tissue to permit cutting and slicing by the inner cutting member tube. Such a wire cage arrangement would also prevent puncture of a surgical tissue bag should one be desired to be used by the physician.

Claims (20)

1. A surgical cutting instrument comprising:
an elongated sheath having a first distal end including a first distal opening, a first proximal end, and a first hollow passageway positioned longitudinally therein, said sheath having a first outer surface annularly closing in a continuous manner about said first distal end, said first distal opening being uniform and of a smaller cross-sectional dimension than of said first hollow passageway; and an inner elongated member rotatably positioned within said first hollow passageway of said sheath, said member having a second distal end contained within said first hollow passageway of said sheath, a second proximal end connectable to a rotary drive mechanism, and a second hollow passageway extending from said second distal end thereof for removing tissue, said inner member also having a second outer surface annularly closing about said second distal end thereof, said second distal end of said member including a second distal opening positioned within said first opening and having a cutting edge positioned circumferentially thereabout contained within said first hollow passageway at said first distal end for cutting through tissue when said member is rotated.
2. The instrument of claim 1 wherein said first hollow passageway has a first predetermined cross-sectional dimension, wherein said first distal opening has a second predetermined cross-sectional dimension smaller than said first predetermined dimension, wherein said second hollow passageway of said inner elongated member has a third predetermined cross-sectional dimension and wherein said second distal opening of said inner elongated member has a fourth predetermined cross-sectional dimension smaller than said third dimension.
3. The instrument of claim 2 wherein said fourth predetermined dimension of said second distal opening of said inner elongated member i.s smaller than said second predetermined cross-sectional dimension of said first distal opening of said outer sheath.
4. The instrument of claim 1 further comprising a bearing surface positioned between raid inner member and said outer sheath.
5. The instrument of claim 4 wherein said bearing surface comprises an electrolyzed material deposited on said outer surface of said inner member about said second distal end thereof.
6. The instrument of claim 5 wherein said electrolyzed material comprises chrome.
7. The instrument of claim 1 further comprising said rotary drive mechanism.
8. The instrument of claim 7 wherein said rotary drive mechanism includes an electric motor.
9. The instrument of claim 1 further comprising suction means communicating with said second passageway of said inner member for drawing tissue through said first and second distal openings.
10. The instrument of claim 9 wherein said inner member includes an evacuation port positioned about said second proximal end thereof and communicating with said second passageway and said suction means.
11. The instrument of claim 10 further comprising a tissue collection chamber communicating with said evacuation port and said suction means for collecting tissue received from said second passageway therein.
12. The instrument of claim 1 wherein said outer surface closing about said first distal end of said outer sheath includes a first uniformly radiused, longitudinal curvature.
13. A surgical cutting instrument comprising:
an elongated sheath having a first distal end including a first distal opening, a first proximal end, and a first hollow passageway positioned longitudinally therein, said sheath having a first outer surface uniformly radiused longitudinally and annularly closing in a continuous manner about said first distal end, said first distal opening being uniform and of a smaller cross-sectional dimension than of said first hollow passageway; and an inner elongated member rotatably positioned within raid first hollow passageway of said sheath, said member leaving a second distal end contained within said first hollow passageway of said sheath, a second proximal end connectable to a rotary drive mechanism, and a second hollow passageway extending from said second distal end thereof for removing tissue, said inner member also having a second outer surface uniformly radiused longitudinally and annularly closing about raid second distal end thereof, said second distal end of said member including a second distal opening positioned within said first opening and having a cutting edge positioned circumferentially thereabout and contained within said first hollow passage at said first distal end for cutting through tissue when said member is rotated.
14. The instrument of claim 13 further comprising suction means communicating with said second passageway of said inner member for drawing tissue through said first and second distal openings.
15. The instrument of claim 13 further comprising said rotary drive mechanism.
16. The instrument of claim 15 further comprising a bearing surface positioned between said inner member and said outer sheath.
17. The instrument of claim 16 wherein said bearing surface comprises polytetrafluoroethylene.
18. The instrument of claim 16 wherein said bearing surface comprises chrome.
19. The instrument of claim 14 further comprising a tissue collection chamber communicating with said second passageway of said inner member and said suction means for collecting tissue therein.
20. A surgical cutting instrument comprising:
an elongated sheath having a first distal end including a first distal opening, a first proximal end, and a first hollow passageway positioned longitudinally therein, said sheath having a first outer surface uniformly radiuses longitudinally and annularly closing in a continuous manner about said first distal end, said first passageway having a first predetermined cross-sectional dimension, said first distal opening being uniform and having a second predetermined cross-sectional dimension smaller than said first predetermined dimension;
an inner elongated member rotatably positioned within said first hollow passageway of said sheath, said member having a second distal end completely contained within said first hollow passageway of said sheath, a second proximal end connectable to a rotary drive mechanism, and a second hollow passageway extending from said second distal end thereof for removing tissue, said inner member also craving a second outer surface uniformly radiuses longitudinally and annularly closing about said second distal end thereof, said second passageway having a third predetermined cross-sectional dimension, said second distal opening having a fourth predetermined cross-sectional dimension smaller than said second and third dimensions, said second distal end of said member including a second distal opening positioned within said first opening and having a cutting edge positioned circumferentially thereabout and contained within said first hollow passageway at said first distal end for cutting through tissue when said member is rotated, said inner member having an evacuation port positioned about said second proximal end and communicating with said second passageway;
a first bearing surface positioned on said outer surface of said inner member about said second distal end;
a second bearing surface positioned on said outer surface of said inner member about said second proximal end, said first and second bearing surfaces including chrome and positioned between said outer sheath and said inner member;
a tissue collection chamber communicating with said second hollow passageway of said inner member via said evacuation port;
suction means communicating with said tissue collection chamber and said second hollow passageway of said inner member for drawing tissue into said first and second distal openings;
and a rotary drive mechanism connectable to said inner member for rotation thereof.
CA002082327A 1991-11-08 1992-11-06 Surgical cutting instrument Expired - Fee Related CA2082327C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US790,583 1991-11-08
US07/790,583 US5275609A (en) 1990-06-22 1991-11-08 Surgical cutting instrument

Publications (2)

Publication Number Publication Date
CA2082327A1 CA2082327A1 (en) 1993-05-09
CA2082327C true CA2082327C (en) 2003-09-30

Family

ID=25151145

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002082327A Expired - Fee Related CA2082327C (en) 1991-11-08 1992-11-06 Surgical cutting instrument

Country Status (7)

Country Link
US (1) US5275609A (en)
EP (1) EP0541377B1 (en)
JP (1) JP3284504B2 (en)
AT (1) ATE125136T1 (en)
AU (1) AU669677B2 (en)
CA (1) CA2082327C (en)
DE (1) DE69203571T2 (en)

Families Citing this family (320)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797907A (en) 1989-11-06 1998-08-25 Mectra Labs, Inc. Electrocautery cutter
US5409013A (en) 1989-11-06 1995-04-25 Mectra Labs, Inc. Tissue removal assembly
US5505210A (en) 1989-11-06 1996-04-09 Mectra Labs, Inc. Lavage with tissue cutting cannula
FR2696334B1 (en) * 1992-10-01 1994-12-02 Boudjema J Pascal Device for transplanting small diameter hair grafts.
US6193672B1 (en) 1993-05-11 2001-02-27 Mectra Labs, Inc. Lavage
US5372604A (en) * 1993-06-18 1994-12-13 Linvatec Corporation Suture anchor for soft tissue fixation
US5649547A (en) * 1994-03-24 1997-07-22 Biopsys Medical, Inc. Methods and devices for automated biopsy and collection of soft tissue
EP0781114B1 (en) 1994-09-16 2005-05-25 Ethicon Endo-Surgery, Inc. Devices for defining and marking tissue
US5569284A (en) * 1994-09-23 1996-10-29 United States Surgical Corporation Morcellator
US5562694A (en) * 1994-10-11 1996-10-08 Lasersurge, Inc. Morcellator
US5527332A (en) 1994-11-02 1996-06-18 Mectra Labs, Inc. Tissue cutter for surgery
US5575293A (en) * 1995-02-06 1996-11-19 Promex, Inc. Apparatus for collecting and staging tissue
US5814044A (en) * 1995-02-10 1998-09-29 Enable Medical Corporation Apparatus and method for morselating and removing tissue from a patient
US5601583A (en) * 1995-02-15 1997-02-11 Smith & Nephew Endoscopy Inc. Surgical instrument
US5674235A (en) * 1995-05-10 1997-10-07 Ultralase Technologies International Ultrasonic surgical cutting instrument
US5626606A (en) * 1995-07-11 1997-05-06 Schellpfeffer; Michael A. Laparoscopic tissue retrieval forceps
US5766134A (en) * 1995-07-18 1998-06-16 Atrion Medical Products, Inc. Autogenous bone specimen collector
US5618296A (en) * 1995-07-24 1997-04-08 Endomedix Corporation/Box 330 Tissue morcellator system and method
US5665101A (en) * 1996-04-01 1997-09-09 Linvatec Corporation Endoscopic or open lipectomy instrument
EP0910290B1 (en) * 1996-04-12 2005-04-13 Howmedica Osteonics Corp. Surgical cutting device removably
DE19627992A1 (en) * 1996-07-11 1998-01-22 Storz Karl Gmbh & Co Instrument with two independent jaws
DE19629278C2 (en) * 1996-07-19 2001-07-05 Storz Karl Gmbh & Co Kg Instrument for cutting tissue with HF current
US5733297A (en) * 1996-09-10 1998-03-31 Medical Instrument Development Laboratories, Inc. Cutter for surgical probe
AU4058897A (en) 1997-08-08 1999-03-01 Arthur C. Johnson Multiple sample biopsy forceps
NL1006944C2 (en) 1997-09-04 1999-03-11 Mark Hans Emanuel Surgical endoscopic cutting device.
US6142955A (en) 1997-09-19 2000-11-07 United States Surgical Corporation Biopsy apparatus and method
US5947983A (en) * 1998-03-16 1999-09-07 Boston Scientific Corporation Tissue cutting and stitching device and method
IL124445A0 (en) 1998-05-12 1998-12-06 Med En Ltd Device and method for evacuating refuse from tissues of the body
US6007497A (en) * 1998-06-30 1999-12-28 Ethicon Endo-Surgery, Inc. Surgical biopsy device
US6080175A (en) * 1998-07-29 2000-06-27 Corvascular, Inc. Surgical cutting instrument and method of use
US20080146965A1 (en) 2003-08-11 2008-06-19 Salvatore Privitera Surgical Device for The Collection of Soft Tissue
US20010047183A1 (en) * 2000-04-05 2001-11-29 Salvatore Privitera Surgical device for the collection of soft tissue
CA2287087C (en) * 1998-10-23 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical device for the collection of soft tissue
US8282573B2 (en) 2003-02-24 2012-10-09 Senorx, Inc. Biopsy device with selectable tissue receiving aperture orientation and site illumination
US7189206B2 (en) * 2003-02-24 2007-03-13 Senorx, Inc. Biopsy device with inner cutter
US6120462A (en) * 1999-03-31 2000-09-19 Ethicon Endo-Surgery, Inc. Control method for an automated surgical biopsy device
US6086544A (en) * 1999-03-31 2000-07-11 Ethicon Endo-Surgery, Inc. Control apparatus for an automated surgical biopsy device
US6716233B1 (en) * 1999-06-02 2004-04-06 Power Medical Interventions, Inc. Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
US7951071B2 (en) * 1999-06-02 2011-05-31 Tyco Healthcare Group Lp Moisture-detecting shaft for use with an electro-mechanical surgical device
US7695485B2 (en) 2001-11-30 2010-04-13 Power Medical Interventions, Llc Surgical device
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6325801B1 (en) 1999-12-04 2001-12-04 Karl Storz Gmbh & Co. Kg Instrument for severing tissue with HF current
US8016855B2 (en) * 2002-01-08 2011-09-13 Tyco Healthcare Group Lp Surgical device
US6277135B1 (en) * 2000-03-17 2001-08-21 Kuen-Chyr Wang Driven rotary incision scalpel
US6712773B1 (en) * 2000-09-11 2004-03-30 Tyco Healthcare Group Lp Biopsy system
US6602203B2 (en) * 2000-10-13 2003-08-05 Ethicon Endo-Surgery, Inc. Remote thumbwheel for a surgical biopsy device
US7458940B2 (en) * 2000-11-06 2008-12-02 Suros Surgical Systems, Inc. Biopsy apparatus
US6758824B1 (en) 2000-11-06 2004-07-06 Suros Surgical Systems, Inc. Biopsy apparatus
JP4064243B2 (en) 2000-11-06 2008-03-19 スルーズ サージカル システムズ、インク Biological tissue examination device
WO2002041787A2 (en) * 2000-11-27 2002-05-30 Tyco Healthcare Group Lp Tissue sampling and removal apparatus and method
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
US10849681B2 (en) 2001-04-06 2020-12-01 Covidien Ag Vessel sealer and divider
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US6942627B2 (en) * 2001-07-19 2005-09-13 Ethicon Endo-Surgery, Inc. Surgical biopsy device having a flexible cutter
US20050154411A1 (en) * 2001-08-23 2005-07-14 Breznock Eugene M. Method and apparatus for trephinating body vessels and hollow organ walls
US7226459B2 (en) 2001-10-26 2007-06-05 Smith & Nephew, Inc. Reciprocating rotary arthroscopic surgical instrument
WO2003043549A1 (en) * 2001-11-22 2003-05-30 Eduard Anton Haefliger Device and method for performing ophthalmological operations
JP4458464B2 (en) 2001-12-04 2010-04-28 パワー メディカル インターベンションズ, エルエルシー System and method for calibrating a surgical instrument
DE10162933B4 (en) * 2001-12-20 2008-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for tissue extraction
US9113878B2 (en) 2002-01-08 2015-08-25 Covidien Lp Pinion clip for right angle linear cutter
CN101803938B (en) * 2002-06-14 2012-06-20 Tyco医疗健康集团 Device for clamping cutting and stapling tissue
US7491212B2 (en) * 2003-02-19 2009-02-17 Smith & Nephew, Inc. Transmitting an actuating force along a curved instrument
US8048003B2 (en) 2003-10-14 2011-11-01 Suros Surgical Systems, Inc. Vacuum assisted biopsy device
US7390306B2 (en) * 2003-10-14 2008-06-24 Suros Surgical Systems, Inc. Vacuum assisted biopsy needle set
US7988642B2 (en) * 2003-10-14 2011-08-02 Suros Surgical Systems, Inc. Vacuum assisted biopsy device
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US7708751B2 (en) 2004-05-21 2010-05-04 Ethicon Endo-Surgery, Inc. MRI biopsy device
US8932233B2 (en) 2004-05-21 2015-01-13 Devicor Medical Products, Inc. MRI biopsy device
US9638770B2 (en) 2004-05-21 2017-05-02 Devicor Medical Products, Inc. MRI biopsy apparatus incorporating an imageable penetrating portion
US8062214B2 (en) 2004-08-27 2011-11-22 Smith & Nephew, Inc. Tissue resecting system
US20060074345A1 (en) 2004-09-29 2006-04-06 Hibner John A Biopsy apparatus and method
PL1802245T3 (en) 2004-10-08 2017-01-31 Ethicon Endosurgery Llc Ultrasonic surgical instrument
US7621917B2 (en) * 2004-11-17 2009-11-24 Anthogyr Bone recovery device
US7556622B2 (en) * 2005-05-18 2009-07-07 Suros Surgical Systems, Inc. Selectively openable tissue filter
US20160001064A1 (en) * 2005-07-22 2016-01-07 The Spectranetics Corporation Endocardial lead cutting apparatus
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US7763033B2 (en) * 2006-10-18 2010-07-27 Interlace Medical, Inc. System and methods for preventing intravasation during intrauterine procedures
US9392935B2 (en) * 2006-11-07 2016-07-19 Hologic, Inc. Methods for performing a medical procedure
US8025656B2 (en) 2006-11-07 2011-09-27 Hologic, Inc. Methods, systems and devices for performing gynecological procedures
US8251916B2 (en) * 2006-12-13 2012-08-28 Devicor Medical Products, Inc. Revolving tissue sample holder for biopsy device
US8702623B2 (en) * 2008-12-18 2014-04-22 Devicor Medical Products, Inc. Biopsy device with discrete tissue chambers
US7981049B2 (en) * 2006-12-13 2011-07-19 Devicor Medical Products, Inc. Engagement interface for biopsy system vacuum module
US8480595B2 (en) * 2006-12-13 2013-07-09 Devicor Medical Products, Inc. Biopsy device with motorized needle cocking
US20130324882A1 (en) 2012-05-30 2013-12-05 Devicor Medical Products, Inc. Control for biopsy device
US20140039343A1 (en) 2006-12-13 2014-02-06 Devicor Medical Products, Inc. Biopsy system
US7938786B2 (en) * 2006-12-13 2011-05-10 Devicor Medical Products, Inc. Vacuum timing algorithm for biopsy device
US9345457B2 (en) 2006-12-13 2016-05-24 Devicor Medical Products, Inc. Presentation of biopsy sample by biopsy device
US9028520B2 (en) 2006-12-22 2015-05-12 The Spectranetics Corporation Tissue separating systems and methods
US8961551B2 (en) 2006-12-22 2015-02-24 The Spectranetics Corporation Retractable separating systems and methods
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
EP2134283B1 (en) * 2007-04-06 2014-06-11 Hologic, Inc. System and device for tissue removal
US9095366B2 (en) 2007-04-06 2015-08-04 Hologic, Inc. Tissue cutter with differential hardness
US9259233B2 (en) * 2007-04-06 2016-02-16 Hologic, Inc. Method and device for distending a gynecological cavity
US8951274B2 (en) * 2007-04-06 2015-02-10 Hologic, Inc. Methods of high rate, low profile tissue removal
US8348967B2 (en) * 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
JP5357161B2 (en) 2007-09-21 2013-12-04 コヴィディエン リミテッド パートナーシップ Surgical equipment
CN101801284B (en) * 2007-09-21 2012-10-03 Tyco医疗健康集团 Surgical device
US8808200B2 (en) 2007-10-01 2014-08-19 Suros Surgical Systems, Inc. Surgical device and method of using same
US8202229B2 (en) * 2007-10-01 2012-06-19 Suros Surgical Systems, Inc. Surgical device
EP2217157A2 (en) 2007-10-05 2010-08-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US7798813B1 (en) 2007-11-20 2010-09-21 Harrel Stephen K Rotary tissue removing instrument
US9039634B2 (en) * 2007-11-20 2015-05-26 Devicor Medical Products, Inc. Biopsy device tissue sample holder rotation control
US20090131821A1 (en) * 2007-11-20 2009-05-21 Speeg Trevor W V Graphical User Interface For Biopsy System Control Module
US8052616B2 (en) * 2007-11-20 2011-11-08 Devicor Medical Products, Inc. Biopsy device with fine pitch drive train
US7806835B2 (en) * 2007-11-20 2010-10-05 Devicor Medical Products, Inc. Biopsy device with sharps reduction feature
US20090131819A1 (en) * 2007-11-20 2009-05-21 Ritchie Paul G User Interface On Biopsy Device
US7858038B2 (en) * 2007-11-20 2010-12-28 Devicor Medical Products, Inc. Biopsy device with illuminated tissue holder
US8454531B2 (en) 2007-11-20 2013-06-04 Devicor Medical Products, Inc. Icon-based user interface on biopsy system control module
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US7901423B2 (en) 2007-11-30 2011-03-08 Ethicon Endo-Surgery, Inc. Folded ultrasonic end effectors with increased active length
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US8936598B2 (en) * 2009-01-14 2015-01-20 DePuy Synthes Products, LLC Spinal disc preparation tool
US8070765B2 (en) 2009-01-28 2011-12-06 Medtronic Xomed, Inc. Systems and methods for surgical removal of brain tumors
US20120022434A1 (en) * 2009-04-07 2012-01-26 Doheny Eye Institute Disposable handheld phacomorcellation device
US11903602B2 (en) 2009-04-29 2024-02-20 Hologic, Inc. Uterine fibroid tissue removal device
US20100298743A1 (en) * 2009-05-20 2010-11-25 Ethicon Endo-Surgery, Inc. Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9700339B2 (en) * 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8344596B2 (en) 2009-06-24 2013-01-01 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments
DE102009031770A1 (en) * 2009-06-30 2011-01-05 Aesculap Ag Medicinal or surgical separation device for use in separation system, for separating bones and bone parts from rinsing fluid containing bones and bone parts, is provided with rinsing fluid inlet, rinsing fluid outlet and separator
US8529468B2 (en) * 2009-07-01 2013-09-10 Suros Surgical Systems, Inc. Surgical system
US8663220B2 (en) * 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8461744B2 (en) * 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8348929B2 (en) 2009-08-05 2013-01-08 Rocin Laboratories, Inc. Endoscopically-guided tissue aspiration system for safely removing fat tissue from a patient
US8465471B2 (en) 2009-08-05 2013-06-18 Rocin Laboratories, Inc. Endoscopically-guided electro-cauterizing power-assisted fat aspiration system for aspirating visceral fat tissue within the abdomen of a patient
IN2012DN01917A (en) 2009-09-08 2015-07-24 Salient Surgical Tech Inc
WO2011031570A1 (en) * 2009-09-11 2011-03-17 Boston Scientific Scimed,Inc. Filter for fine needle biopsy
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
US8382782B2 (en) * 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8961547B2 (en) * 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8323302B2 (en) * 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8486096B2 (en) * 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8419759B2 (en) * 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US8790321B2 (en) 2010-04-21 2014-07-29 Genesis Medical Devices, LLC Apparatus, system, and method for harvesting improved bone graft material with reamer-irrigator-aspirator (RIA) device
US8409235B2 (en) * 2010-04-30 2013-04-02 Medtronic Xomed, Inc. Rotary cutting tool with improved cutting and reduced clogging on soft tissue and thin bone
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9155454B2 (en) 2010-09-28 2015-10-13 Smith & Nephew, Inc. Hysteroscopic system
US8968293B2 (en) 2011-04-12 2015-03-03 Covidien Lp Systems and methods for calibrating power measurements in an electrosurgical generator
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
USD700699S1 (en) 2011-08-23 2014-03-04 Covidien Ag Handle for portable surgical device
US9186166B2 (en) * 2011-09-01 2015-11-17 Depuy Mitek, Llc Tissue shavers
GB2494730B (en) * 2012-01-17 2013-07-31 Elena Georgina Addison Non clogging suction device (ncsd)
JP6165780B2 (en) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Robot-controlled surgical instrument
DE102012005536A1 (en) * 2012-03-21 2013-09-26 Olympus Winter & Ibe Gmbh Surgical milling instrument
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9226792B2 (en) 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US20140081289A1 (en) 2012-09-14 2014-03-20 The Spectranetics Corporation Lead removal sleeve
CN104853688B (en) 2012-09-28 2017-11-28 伊西康内外科公司 Multifunctional bipolar tweezers
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US8920419B2 (en) 2012-11-30 2014-12-30 Gyrus Acmi, Inc. Apparatus and method for tubeset with drive axle
US9358036B2 (en) 2013-03-12 2016-06-07 Gyrus Acmi, Inc. Blade positioning device
US9291663B2 (en) 2013-03-13 2016-03-22 The Spectranetics Corporation Alarm for lead insulation abnormality
US10383691B2 (en) 2013-03-13 2019-08-20 The Spectranetics Corporation Last catheter with helical internal lumen
US9283040B2 (en) 2013-03-13 2016-03-15 The Spectranetics Corporation Device and method of ablative cutting with helical tip
US9883885B2 (en) 2013-03-13 2018-02-06 The Spectranetics Corporation System and method of ablative cutting and pulsed vacuum aspiration
US9456872B2 (en) 2013-03-13 2016-10-04 The Spectranetics Corporation Laser ablation catheter
US10835279B2 (en) 2013-03-14 2020-11-17 Spectranetics Llc Distal end supported tissue slitting apparatus
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US10448999B2 (en) 2013-03-15 2019-10-22 The Spectranetics Corporation Surgical instrument for removing an implanted object
US9925366B2 (en) 2013-03-15 2018-03-27 The Spectranetics Corporation Surgical instrument for removing an implanted object
US9668765B2 (en) 2013-03-15 2017-06-06 The Spectranetics Corporation Retractable blade for lead removal device
US9918737B2 (en) 2013-03-15 2018-03-20 The Spectranetics Corporation Medical device for removing an implanted object
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US10842532B2 (en) 2013-03-15 2020-11-24 Spectranetics Llc Medical device for removing an implanted object
US9980743B2 (en) 2013-03-15 2018-05-29 The Spectranetics Corporation Medical device for removing an implanted object using laser cut hypotubes
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9782193B2 (en) 2013-12-11 2017-10-10 Medos International Sàrl Tissue shaving device having a fluid removal path
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US10448968B2 (en) 2014-02-26 2019-10-22 Infuez, Llc Follicle extraction system and related methods
WO2015134383A1 (en) 2014-03-03 2015-09-11 The Spectranetics Corporation Multiple configuration surgical cutting device
US11464500B2 (en) * 2014-03-09 2022-10-11 Spinesmith Holdings, Llc Combined trocar and cannula bone marrow aspiration device with integral valve and ports for aspiration, and methods for using same
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10405924B2 (en) 2014-05-30 2019-09-10 The Spectranetics Corporation System and method of ablative cutting and vacuum aspiration through primary orifice and auxiliary side port
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US9737322B2 (en) 2014-09-08 2017-08-22 Medtronic Xomed, Inc. Method for resection of tumors and tissues
US9636132B2 (en) 2014-09-08 2017-05-02 Medtronic Xomed, Inc. Tumor debulker
US9387050B2 (en) 2014-09-15 2016-07-12 Gyrus Acmi Inc. Surgical system having detachable component and state detection circuit for detection of state of attachment of detachable component
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
CN107106201B (en) 2014-12-16 2020-04-24 柯惠有限合伙公司 Surgical device integrated with tissue extraction
US10772652B2 (en) 2015-01-28 2020-09-15 Covidien Lp Tissue resection system
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10376302B2 (en) 2015-02-18 2019-08-13 Medtronic Xomed, Inc. Rotating electrical connector for RF energy enabled tissue debridement device
US10188456B2 (en) 2015-02-18 2019-01-29 Medtronic Xomed, Inc. Electrode assembly for RF energy enabled tissue debridement device
CA2975389A1 (en) 2015-02-18 2016-08-25 Medtronic Xomed, Inc. Rf energy enabled tissue debridement device
USD765243S1 (en) 2015-02-20 2016-08-30 The Spectranetics Corporation Medical device handle
US9820825B2 (en) 2015-02-20 2017-11-21 Gyrus Acmi Inc. Surgical system having plurality of detachably attachable components and circuit for detecting target states of detachably attachable components and performing control based on detected target states, and method for providing surgical system
USD770616S1 (en) 2015-02-20 2016-11-01 The Spectranetics Corporation Medical device handle
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10022144B2 (en) 2015-04-17 2018-07-17 Medtronic Xomed, Inc. Surgical cutting instrument
WO2016191422A1 (en) 2015-05-26 2016-12-01 Covidien Lp Systems and methods for generating a fluid bearing for an operative procedure
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US10804769B2 (en) 2015-06-17 2020-10-13 Covidien Lp Surgical instrument with phase change cooling
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
WO2016205126A1 (en) 2015-06-17 2016-12-22 Covidien Lp Endoscopic device with drip flange and methods of use thereof for an operative procedure
WO2016205197A1 (en) 2015-06-18 2016-12-22 Covidien Lp Surgical instrument with suction control
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10716612B2 (en) 2015-12-18 2020-07-21 Medtronic Advanced Energy Llc Electrosurgical device with multiple monopolar electrode assembly
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10729582B2 (en) 2016-05-17 2020-08-04 Alcon Inc. Vitrectomy probe with end tissue cutter and associated devices, systems, and methods
US11864735B2 (en) 2016-05-26 2024-01-09 Covidien Lp Continuous flow endoscope
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10299819B2 (en) 2016-07-28 2019-05-28 Covidien Lp Reciprocating rotary surgical cutting device and system for tissue resecting, and method for its use
US10299803B2 (en) 2016-08-04 2019-05-28 Covidien Lp Self-aligning drive coupler
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10918407B2 (en) 2016-11-08 2021-02-16 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10772654B2 (en) 2017-03-02 2020-09-15 Covidien Lp Fluid-driven tissue resecting instruments, systems, and methods
US11793498B2 (en) 2017-05-19 2023-10-24 Merit Medical Systems, Inc. Biopsy needle devices and methods of use
WO2018213324A1 (en) 2017-05-19 2018-11-22 Merit Medical Systems, Inc. Semi-automatic biopsy needle device and methods of use
US11116483B2 (en) 2017-05-19 2021-09-14 Merit Medical Systems, Inc. Rotating biopsy needle
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10869684B2 (en) 2018-02-13 2020-12-22 Covidien Lp Powered tissue resecting device
US11547815B2 (en) 2018-05-30 2023-01-10 Covidien Lp Systems and methods for measuring and controlling pressure within an internal body cavity
US11065147B2 (en) 2018-10-18 2021-07-20 Covidien Lp Devices, systems, and methods for pre-heating fluid to be introduced into a patient during a surgical procedure
US11197710B2 (en) 2018-10-26 2021-12-14 Covidien Lp Tissue resecting device including a blade lock and release mechanism
US11083481B2 (en) 2019-02-22 2021-08-10 Covidien Lp Tissue resecting instrument including an outflow control seal
US11154318B2 (en) 2019-02-22 2021-10-26 Covidien Lp Tissue resecting instrument including an outflow control seal
US10898218B2 (en) 2019-02-25 2021-01-26 Covidien Lp Tissue resecting device including a motor cooling assembly
US10945752B2 (en) 2019-03-20 2021-03-16 Covidien Lp Tissue resecting instrument including a rotation lock feature
US11883058B2 (en) 2019-03-26 2024-01-30 Covidien Lp Jaw members, end effector assemblies, and ultrasonic surgical instruments including the same
CN113840578A (en) 2019-05-29 2021-12-24 柯惠有限合伙公司 Hysteroscopy systems and methods for managing patient fluids
US11890237B2 (en) 2019-10-04 2024-02-06 Covidien Lp Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures
US11452806B2 (en) 2019-10-04 2022-09-27 Covidien Lp Outflow collection vessels, systems, and components thereof for hysteroscopic surgical procedures
US11179172B2 (en) 2019-12-05 2021-11-23 Covidien Lp Tissue resecting instrument
US11376032B2 (en) 2019-12-05 2022-07-05 Covidien Lp Tissue resecting instrument
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US20210196361A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with monopolar and bipolar energy capabilities
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11547782B2 (en) 2020-01-31 2023-01-10 Covidien Lp Fluid collecting sheaths for endoscopic devices and systems
US11737777B2 (en) 2020-02-05 2023-08-29 Covidien Lp Tissue resecting instruments
US11317947B2 (en) 2020-02-18 2022-05-03 Covidien Lp Tissue resecting instrument
US11596429B2 (en) 2020-04-20 2023-03-07 Covidien Lp Tissue resecting instrument
US11571233B2 (en) 2020-11-19 2023-02-07 Covidien Lp Tissue removal handpiece with integrated suction

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2801465A (en) * 1956-09-07 1957-08-06 William W Cason Hair clippers for the ears and nose
US3381373A (en) * 1965-09-02 1968-05-07 Brown Ernest Device for cutting body hairs growing in or adjacent body cavities
US3889657A (en) * 1974-02-12 1975-06-17 Gomco Surgical Mfg Co Uterine aspirating curette
US4142517A (en) * 1976-07-23 1979-03-06 Contreras Guerrero De Stavropo Apparatus for extracting bone marrow specimens
US4200106A (en) * 1977-10-11 1980-04-29 Dinkelkamp Henry T Fixed arc cyclic ophthalmic surgical instrument
US4203444A (en) * 1977-11-07 1980-05-20 Dyonics, Inc. Surgical instrument suitable for closed surgery such as of the knee
US4368734A (en) * 1978-01-27 1983-01-18 Surgical Design Corp. Surgical instrument
US4517977A (en) * 1981-07-24 1985-05-21 Unisearch Limited Co-axial tube surgical infusion/suction cutter tip
US4754755A (en) * 1984-05-14 1988-07-05 Husted Royce Hill Catheter with a rotary blade
EP0310685A1 (en) * 1985-11-22 1989-04-12 Kontron-Holding Ag Angioplasty catheter
DE3801318A1 (en) * 1988-01-19 1989-07-27 Stocksmeier Uwe MEDICAL CATHETER WITH CUTTER
US5019036A (en) * 1989-11-28 1991-05-28 Stahl Norman O Method and apparatus for removing gelatinous tissue

Also Published As

Publication number Publication date
AU2820692A (en) 1993-05-13
DE69203571D1 (en) 1995-08-24
EP0541377B1 (en) 1995-07-19
JPH05208021A (en) 1993-08-20
EP0541377A1 (en) 1993-05-12
US5275609A (en) 1994-01-04
ATE125136T1 (en) 1995-08-15
JP3284504B2 (en) 2002-05-20
AU669677B2 (en) 1996-06-20
DE69203571T2 (en) 1996-01-11
CA2082327A1 (en) 1993-05-09

Similar Documents

Publication Publication Date Title
CA2082327C (en) Surgical cutting instrument
US5290303A (en) Surgical cutting instrument
US5947990A (en) Endoscopic surgical instrument
US5984939A (en) Multifunctional grasping instrument with cutting member and operating channel for use in endoscopic and non-endoscopic procedures
US6916328B2 (en) Percutaneous cellulite removal system
KR101495551B1 (en) Anti-coring device for a surgical morcellator
US8192370B2 (en) Biopsy apparatus
US5569284A (en) Morcellator
US6213957B1 (en) Apparatus and method for removing tissue
US5527332A (en) Tissue cutter for surgery
US5797958A (en) Endoscopic grasping instrument with scissors
US5957944A (en) Method for treatment of trigger finger
WO2000029045A1 (en) Vented aspirator and method
JP2012520726A (en) Biological tissue examination apparatus having rotational cutting
WO2003086198A1 (en) Multiple biopsy device
WO2010065214A4 (en) Benign prostatic hyperplasia surgical system featuring mechanical coring probe with live aspiration
EP0669105A2 (en) Endoscopic resection instrument
EP0841036A1 (en) Surgical system for tissue removal
KR20200097163A (en) Device for removal during minimally invasive surgery
US20220218379A1 (en) Surgical cutting tool

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed