CA2092874C - Process, transmitter and receiver for data transmission with variable traffic volume and a control station for coordinating several such transmitters and receivers - Google Patents

Process, transmitter and receiver for data transmission with variable traffic volume and a control station for coordinating several such transmitters and receivers Download PDF

Info

Publication number
CA2092874C
CA2092874C CA002092874A CA2092874A CA2092874C CA 2092874 C CA2092874 C CA 2092874C CA 002092874 A CA002092874 A CA 002092874A CA 2092874 A CA2092874 A CA 2092874A CA 2092874 C CA2092874 C CA 2092874C
Authority
CA
Canada
Prior art keywords
codes
traffic volume
parts
control station
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002092874A
Other languages
French (fr)
Other versions
CA2092874A1 (en
Inventor
Karl-Albert Turban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent NV
Original Assignee
Alcatel NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel NV filed Critical Alcatel NV
Publication of CA2092874A1 publication Critical patent/CA2092874A1/en
Application granted granted Critical
Publication of CA2092874C publication Critical patent/CA2092874C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing
    • H04Q11/0428Integrated services digital network, i.e. systems for transmission of different types of digitised signals, e.g. speech, data, telecentral, television signals
    • H04Q11/0478Provisions for broadband connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2618Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using hybrid code-time division multiple access [CDMA-TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • H04J13/18Allocation of orthogonal codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/54Store-and-forward switching systems 
    • H04L12/56Packet switching systems
    • H04L12/5601Transfer mode dependent, e.g. ATM
    • H04L2012/5672Multiplexing, e.g. coding, scrambling

Abstract

During data transmission or transmission of redundancy-reduced signals, the traffic volume and, hence, the necessary transmission capacity are not constant. Instead of the prior art approach of more or less intensive use of the total capacity, the basic idea of the invention is coded transmission and simultaneous use of more or less many, mutually orthogonal codes. An embodiment shows the use of a mixed code-division multiplex (CDMA)-time division multiplex (TDMA) radio system. The number of channels assigned to a signal station (CDMA) is determined anew frame-by-frame (TDMA) in response to requests in preceding frames.

Description

PROCESS, TRANSMITTER AND RECEIVER FOR DATA TRANSMISSION
WITH VARIABLE TRAFFIC VOLUME AND A CONTROL STATION
FOR COORDINATING SEVERAL SUCH TRANSMITTERS AND RECEIVERS
Technical Field The invention relates to a data transmission process with variable traffic volume and corresponding transmitters and receivers and, more particularly, to a control station for coordinating several such transmitters and receivers.
Background of the Invention Future telecommunication is characterized by an ever increasing part of nonverbal services. Intermittent traffic volume is characteristic of nonverbal services.
The transmission capacity required for such services is therefore not constant. Video transmissions occupy a certain intermediate position. The starting point is the analog video signal, which is periodically scanned and converted into a digital signal with constant data flow.
Aside from the television-radio service, in which no digitalization takes place, the very high traffic volume of video signals is not accepted. For that reason, the redundancy contained in such signals is reduced to a greater or lesser degree by means of ''videocodecs". The greater the reduction of redundancies, the less constant is the traffic volume. The reduction of redundancies also plays a role in voice transmission by radio. Voice pauses can be recognized and no signal is transmitted during such voice pauses.
An expanded solution for the transmission of signals with variable traffic volume consists of separating the total capacity of a transmission channel , into equally long sections (time slots, cells), and utilizing more or less of these sections for a single transmission. The remaining sections are either used in the time multiplex for other transmissions, are filled with blank information, or they are not used. Examples are the multiple access to telecommunication satellites with the Time Division Multiple Access (TDMA), or the Asynchronous Transfer node (ATM) in broad-band networks.
The disadvantages of this solution are greater interference occurring, above all during radio traffic, which is due to the time compression; the greater expense for synchronization in radio networks, in which different running times must also be taken into consideration; and sharp limitation of the total capacity. Even if a lower transmission quality is accepted, the total capacity of a transmission medium can only be increased at great expense.
Disclosure of Tnvention An object of the invention is to provide a solution to the problem of data transmission with variable traffic volume.
According to a first aspect of the present invention, coded parallel data is transmitted in time, with the simultaneous use of more or less many, mutually orthogonal codes.
According further to this first aspect of the present invention, a data stream to be transmitted as a whole is divided into time intervals which are subdivided into parts whose number depends on the current traffic volume and which each contain a predetermined number of data, and that the different parts, coded with different, mutually orthogonal codes, are transmitted simultaneously over the same transmission medium and subsequently recombined into the whole.
In further accord with the first aspect of the present invention, a demultiplexer is provided for dividing a data stream to be transmitted into time intervals which are subdivided into parts whose number depends on the current traffic volume and which each contain a predetermined number of data, that coders are provided by which the different parts are coded with different, mutually orthogonal codes, and that the differently-coded parts are transmitted simultaneously over the same transmission medium.
According to the present invention, there is also provided a receiver for simultaneous reception of plural signals, said signals being indicative of parts of a data stream with variable traffic volume; said parts being determined by the division of said data stream, within a time interval, based on the traffic volume in said data stream, said parts being coded by mutually orthogonal codes for simultaneous transmission, the receiver having a plurality of decoders which use different, mutually orthogonal codes to decode a plurality of said signals received simultaneously over the same transmission medium, and having a multiplexer which combines said signals decoded by the different decoders into a whole indicative of said data stream.
According to the present invention, there is also provided a control station for coordinating a plurality of transmitters and receivers which each transmit and receive, respectively, signals indicative of parts of a data stream with variable traffic volume, said parts being determined by the division of said data stream, within a time interval, based on the traffic volume in said data stream, wherein the control station includes a control station receiver, responsive to requests from the plurality of transmitters and receivers, for assigning different, mutually orthogonal codes to the plurality of transmitters and receivers, said parts being coded by said mutually orthogonal codes for simultaneous transmission, and wherein the control station includes a control station transmitter for transmitting the assigned codes to the plurality of transmitters and receivers.
According to a third aspect of the present invention, a control station assigns a number of different, mutually orthogonal codes to the various transmitters and receivers in response to requests therefrom.
A configuration example is a mixed CDMA-TDMA radio system, in which the number of channels assigned to a single station (Code-multiplex, CDMA) is determined anew, frame by frame (TDMA), on the basis of the requirements of previous frames.
The use of a code for modulating a signal, and the.
resulting code-multiplex in which several different, mutually orthogonal codes are used, is known in itself.
The simplest, and easiest to understand, case of code modulation is the modulation of a signal with a binary code. This case can be described as a change of amplitude modulation and the resulting frequency multiplex. With amplitude modulation, a carrier signal periodically changes the polarity of a baseband signal on the transmission side, in accordance with~the carrier frequency pulse. A synchronous demodulator at the receiving end now changes the polarity of the signal to the correct phase at the same pulse frequency, recreating the original baseband signal. If the pulses (frequencies), with which.the polarity is changed on the transmitting and the receiving side, differ from each 3a other, the original signal is not recreated, it rather remains a signal that is at the zero time-center because of the constant polarity changes, and can easily be eliminated by the filter. It is therefore possible and commonplace to modulate several baseband signals with different carrier frequencies, transmit them through the same transmission medium, arid separate them at the receiving end with synchronous demodulation and simple low-pass filters. (However, the separation frequently occurs in band-pass filters before the demodulation).
In principle, nothing changes if different mutually orthogonal code signals are used, instead of the periodic carrier signals, for the polarity change on the transmitting side and at the synchronous receiving end.
Two codes are then considered mutually orthogonal, if they keep the signal fully suppressed, after having been used in sequence to change the polarity of that same signal. Examples of such orthogonal digital signals are known as Walsh functions and Rademacher functions.
For the purpose at hand in particular, the code-multiplex has several advantages over the time-multiplex.
With the code-multiplex, signals modulated with different codes are fairly independent of each other. A reciprocal effect is only produced under less than ideal conditions of the system. The individual codes need not to be synchronized with each other, insofar as the property of noncorrelation is also provided in addition to the property of orthogonality, even though such synchronization can very easily be achieved. The running times need not be taken into account when different codes are used by different stations of a radio network or a local network (LAN). With many time-multiplex systems, the unused time periods must be filled with blank signals, to maintain the synchronization, for example.
If allowed by the given transmission medium, each code can easily be added, and possibly reduces the transmission quality of the others slightly. The upper limit of the capacity of a transmission medium is determined by the number of codes, which are mutually orthogonal on the one hand, and can be transmitted by the transmission medium, on the other.
In principle, the code modulation can also take place by not using the code signal to change the polarity of the baseband signal, but using the baseband signal to turn the code signal on and off, or by switching the baseband signal between two code signals. This presupposes that the baseband signal is digital and not analog, which is anyway a given, as a rule. A check must then be made at the receiving end whether the code signal is present or not, or which of the two code signals in question is being received. The first type, in which the code signal changes the polarity of the baseband signal, is known as the straddle band technique. It is also possible with this technique to use the baseband signal to switch between two code signals, by using a second code signal to change the polarity of the inverted baseband signal. The code signals are mostly binary , pseudo-random sequences with large, sometimes extremely large code lengths. At the same time, the code signals are used for coding. With the sometimes extremely long code lengths (with running times on the order of a , month), synchronization is impossible without additional information, even with a known coda. In the instance at hand, it is proposed to start all codes in a defined manner, when the number of the utilized codes changes as a result of a change in the traffic volume. In the preferred case, in which the assignment of the codes is always for fixed periods of time, their length should be equal to such a period of time, or the code should be completely repeated during such a period of time.
Significantly shorter code lengths are indicated, when the baseband signal switches the node signal on or off in bits. In this instance it is possible to use sequences as code signals, whose code lengths always S

~~9~~'~~~
correspond to the duration of a baseband signal bit, and which also have a fixed phase position with respect to the bit cycle.
In both instances, the physical properties are essentially the same, insofar as the cade cycle is the same. In the latter case, it is possible to save on the transmission output.
These and other objects, features and advantages of the present invention will become more apparent in light of the detailed description of a best mode embodiment thereof, as illustrated in the accompanying drawing.
Brief Description of the Drawing Fig. 1 shows a communications system according to the present invention.
Fig. 2 compares the signal input to the transmitter of the system of Fig. 1 with the signal transmitted over the transmission medium and with the recovered signal in the receiver.
Fig. 3 shows a plurality of stations along with a base station using the same transmission medium, according to the invention.
Best Mode far Carryincr Out the Invention Referring to Fig. 1, the extent of the actual traffic volume must first be detected on a transmission side 10. This can be done, for example, by means of a signal IIi on a line 12 from the data source. Variable buffer storage 14, e.g. a Fifo, are often used for variable traffic volume. In such instances, the actual fill condition of the buffer storage is indicated on a line 16 and indicates the actual traffic volume. Also, constant measurement of the incoming amount of data per time unit may be performed to provide information about the actual traffic volume. An actual value can be adaptively determined in the known manner from successively determined values of a traffic volume, both for the purpose of predicting and for smoothing out the traffic volume. Any of these known techniques may be carried out as indicated generally in the block 14.
According to the invention, the determined actual traffic volume is now indicated on a signal line 16 and compared in a comparator 18 to a specified reference value on a line 20, and a value is determined therefrom, which indicates the number of data to be simultaneously transmitted. In the event a Fifo is used for buffer storage, this value can be formed by division of the fill condition.
In accordance with the determined value, a control signal is provided on a line 22 and the entire buffered data stream IIZ provided on a line 26 is now separated by a demultiplexer 24 (Deml) into more or less many parallel data streams on lines 28. The signal on the line 26 is shown, for example, in Fig. 2(a), stream (IIZ) divided into time intervals (T1, T2, T3) which are subdivided into parts (I1-I6) whose number depends on the current traffic volume and which each contain a predetermined number of data (e.g., bits). A component 24 that is normally described as demultiplexing can be used as a demultiplexer, which has a data input and several data outputs that can be turned on by control inputs indicated generally by the lane 22. In ATM, for example, five successive ATM-cells can be switched to five different outputs, where they are temporarily stored and ftarther processed at the same time. Also a bit-wise distribution by a series-parallel converter operating as a demultiplexer (shift register with serial input and parallel output) is possible. Depending on the value used, one bit each, for example, must be input successively and serially five times, and five bits must then be output simultaneously in parallel. Each of the parallel data streams is now either rescanned (modulated) by itself, but simultaneously, by an inherent code sequence, or is used to turn a code sequence on and off, or to switch between two code sequences. The necessary switches, change-overs, mixers or multipliers are generally well known. These are not shown, but the coding process is indicated generally by a plurality of coders (Codll, ..., Codlm) 30, ..., 32, each responsive to a corresponding code signal (C1-Cm) 34, ..., 36.
The applicable code signals 34, ..., 36 are either stored as such, or are continuously produced anew in suitable regenerative shift registers, in the known manner as shown generally by a code signal generator 40.
In principle and in practice, it is of secondary importance whether all possible node signals are always produced or read-out from memory, or only those used at the time.
Synchronization of the individual code signals with each other, as indicated generally by a synchronization signal on a line 42, is very significant in practice.
Although such synchronization is not absolutely necessary, it eases the synchronization at the receiving end, however. If the synchronization of the code signals with each other on the transmission side is only provided for one of the code signals at the receiving end, it immediately ensures the synchronization of each arriving node signal. The lack of synchronization of the code signals with each other can also be detrimental to the orthogonality of the code.
The synchronization of the codes with each other can take place, for example, by using regenerated shift registers, insofar as they produce equal code lengths, where they start simultaneously from defined starting points and operate with a common cycle. Synchronization of the codes with each other can also be achieved by filing them in dynamic RAMS (DRAM) in such a way, that one bit from each code is filed at each address. A DRAM
with a size of 2K x 8 would be able to store eight codes with 2048 bits each. However, with each startup, the codes must first be written into the DRAMS, for which purpose they must be built anew on the basis of an algorithm, for example.
If the preparation on the transmission side is program controlled, for example by means of a signal processor, the synchronization is necessary when all functions in the time multiplex are realized by the very same program. These functions are, above all, the coding, but also the demultiplexing function and the production of code signals.
Synchronization between code signals and the signals to be transmitted can also be useful. It must be attempted, in particular, to select the basic cycle of one code signal as an integral multiple of the cycle of the signals to be transmitted, and to phase-lock these cycles to each other.
Two particularly advantageous coupling types for code signals and signals to be transmitted should be pointed out:
- In the event that certain sequences are used as ' code signals, it must be attempted to have such a sequence coincide precisely with one bit from 'the signal to be transmitted.
- If pseudo-random sequences are used as code signals, it is useful if such a sequence coincides with a block, for example an ATM-cell, of the signal to be transmitted.
Until now it had been quietly assumed that the signal to be transmitted is a digital signal. However, this assumption is not compulsory. Basically, an analog signal can also be multiplied by a code signal. A
scanned analog signal with discrete time values can also be temporarily stored and expanded in time to form partial time-parallel signals, perhaps by using charge-coupled devices. The fact that, with the analog transmission of digital signals by means of modems, their transmission speed can be varied on the basis of a changing transmission quality, can be seen as a variable traffic volume with an analog signal fox example. A
variation of the bandwidth can result from a variation of the scanning cycle.
If the actual traffic volume in Fig. 2 and Fig.
2(a) has been determined and the input data stream on the line 26 has been divided into correspondingly more or less many parallel data streams on the lines 28, and multiplication of the data streams in the corresponding coders 30, ..., 32 by code signals 34, ..., 36 takes place, the resulting partially coded data streams on lines 44, 46, .., 48 are combined as shown in Fig. 2(b).
Although later in time, it will be noted that the time intervals (Tl', T2', T3') correspond to the intervals T1, T2, T3 of Fig. 2(a). This combination takes place through analog summation in a summer 50 which provides a summed signal on a line 52. ether data streams that are to be transmitted by the same transmitter via the same transmission medium can be added here as well. Such additional data streams can be signalizing signals, for example, which are to be transmitted to the same receiver, or in principle, they can be data streams that are fully independent of the first data stream, but which were prepared in the same manner, and can also be intended for different receivers. It is of course necessary to code all data streams with different codes, so that they can be separated again at the receiving end.
A radio channel 54, or a passive electrical or optical transmission network, for example, can be used as the transmission medium.
It is not compulsory to transmit all individual data streams with the same amplitude and the same output, both of which are often called levels. A signalizing signal, which possibly operates at a reduced clock rate, can also be added with a correspondingly reduced amplitude and still be recovered at the receiving end with the same quality. For different receivers, certain ~. 0 P
data streams need not all be added with the same amplitude. It is sufficient to send each (partial) data stream with the~amplituda at which it can still be correctly received.
Several decoders (Dec2l, ..., Dec2m) 56, ..., 58 are located at a receiving end 60, to simultaneously decode a received input signal on a line 62 which is split into a plurality of signal lines 64, 66, ..., 68.
As stated earlier, the decoding takes place through repeated multiplication for each line by the same code signal used on the transmission side, followed by filtering, as indicated, e.g., by low-pass filters 70, ..., 72. Subsequently, decoded partial data streams on lines 74, 76, ..., 78 are combined into the original data stream (IO) on a line 80 by means of a multiplexer 82.
The combined signal on the line 80 is shown in Fig. 2(c), where it may be compared to the input signal on line 26 as shown in Fig. 2(a). The time intervals T1 " , T2 " , T3 " correspond to the original intervals T1, T2, T3, although later in time. All of these functions, as well as the corresponding functions on the transmission side, can be realized by discrete circuits, program-controlled processing or the like.
For each partial signal to be received, either a decoder consisting of a code signal from a generator 84 and multiplier 56, ..., 58 must be provided, or far program-controlled processing, it must be ensured that a corresponding number of decoder functions can be processed. Tf it is assured, on the one hand, that all codes can never be used at the same time, and it is always known in advance on the other hand, which codes are being used, then it is sufficient if only as many decoders or decoder functions are realized, as there are codes that can be used simultaneously. Otherwise, each code must be provided with its own decoder.
The decoding must of course be code-synchronous, to cancel the coding on the transmission side. Suitable synchronization circuits for synchronizing an individual signal are well known and may be provided separately or within the code~signal generator 84c. If the individual codes are synchronized with. each other on the transmission side, they must also be synchronized with each other at the receiving end insofar as they are not physically different so that they expand differently in the transmission medium), and it is sufficient to synchronize one code each time. A code synchronization signal 86 may be recovered from the incoming signal; this may be done by the above-mentioned synchronization circuit which may include a synchronization signal detector responsive to the signal on the line 62 for providing the signal on the line 86. With the variable traffic volume assumed in this instance, which leads to the simultaneous use of more or less many codes, it is sufficient if a basic load is present, which ensures that at least one code is always transmitted, at least intermittently. Such a basic load can also be ensured by blank information. If a signalizing signal is additionally transmitted with its own code, it can also be used for the synchronization. In this case it is sufficient as well for both the signalization and not only for the synchronization, if a signal is transmitted at regular intervals.
In order to subsequently recombine the partial data streams into a single data stream in a multiplexer, it is necessary to know which codes are actually being used, and how the individual partial data streams are to be correctly recombined. The necessary knowledge can be exchanged by signalization. A one-time arrangement is also sufficient with regard to the order of the partial data streams that are transmitted by different codes.
Which codes are actually being used can be determined from the received signal. In that case a decoder must be active for each code, and it must be determined at the decoder output whether a signal containing information is present, or not. The partial data streams must then be combined in the succeeding multiplexer, in accordance with their order.
It is useful for the switching between more or less many partial data streams not to take place at random points in time. It is rather advantageous when the entire data transmission is divided into successive time periods of equal length, and if the number of the codes used within one such time period remains unchanged.
It is also useful to synchronize the codes with the beginning of these time periods. The length of a time period should be equal to the running length of the codes, or an integral multiple thereof.
If, as described earlier, the number of codes being used, and their selection from the set of codes available from the participating stations, is determined by means of signalization, it must take place before the time period of their utilization. It may be useful to basically reestablish the codes being used before each time period, or only to make new arrangements when changes are necessary.
These arrangements or determinations can take place with or without prior confirmation. It is therefore possible to announce during the first time period and to utilize during the second. However, it is also possible to request during the first time period, to allocate during the second, and only to utilize during the third time period.
Aside from the already mentioned out-band signalization, in which a separate signalization channel is created by using an additional code, an in-band signalization can also be created in such a way, that the individual time periods have both (shorter) subsections for signalization as well as (longer) subsections for data transmission. The distribution of the subsections among themselves can be variable.

~~~28~~
The above described process is already advantageous when only one sender communicates with one receiver through the same transmission medium, as shown in Fig. 3.
However, it becomes particularly advantageous when several stations exchange data through the same transmission medium. In particular, such stations are combined transmitter-receivers, but also individual transmitters and receivers. In the simplest case, two transmitter-receiver stations 90, 92 share a common transmission medium and a specified set of codes, to exchange data with each other. The directional separation, which is always required in a common transmission medium, occurs here by using different codes. Two such stations often operate in such a way, that the one with a high traffic volume transmits data, and the other with a low traffic volume returns acknowledgment signals, and both stations alternate reciprocally.
An entire network of stations 90, 92, 94, ..., 96 can operate in this manner. For example, such a network can be a radio network with a predetermined radio frequency used in free space as the transmission medium, or a so-called local area network, in which several stations exchange data with each other in a closed ring.
Known types of operation of such networks are time-division-multiplex access, in which more or less many time slots axe allocated as needed. There are very many possibilities for the allocation of these time slots, which can all be used more or less with the required allocation of codes in the invention.
A basic possibility consists in a station 98 operating as the control station, the master or base station (BS), to which the requests are directed according to transmission capacity, codes in this instance, and which then allocates the codes an the basis of the requests. Another basic possibility is a locally controlled capacity allocation on the basis of an allocation procedure known to all stations, and based on requests directed to all stations or at least available to all stations: An example of local capacity allocation is described in DE-OS 33 13 841.
The signalization required for the distribution of the codes can take place as described above. When an in-band signalization is used, the already mentioned possibility exists, to divide each time period into subsections for signalization and subsections far data ZO transmission, as well as the possibility to insert time periods fox- the exclusive use of signalization.
An out-band signalization with the use of separate codes can take place by dividing in time the signalization code channel into the individual stations.
It is also possible to provide each station with its own code, instead of a single signalization code for all stations, creating partial channels in this way. In that instance, the signalization of all stations runs parallel in time. The transmission speed of the signalization channels, the bit cycle of the signalization code and the level of these channels as well, can clearly be reduced in this way without detracting from the transmission quality. However, this requires a further number of codes, which are also mutually orthogonal and in regard to all other codes as well.
Although the invention has been shown and described with respect to a best mode embodiment thereof, it should be understood by those skilled in the art that the foregoing and various other changes, omissions and additions in the form and detail thereof may be made therein without departing from the spirit and scope of the invention.

Claims (16)

WHAT IS CLAIMED IS:
1. A method for data transmission with variable traffic volume, wherein a data stream to be transmitted as a whole is divided into time intervals which are subdivided into parts whose number depends on the current traffic volume and which each contain a predetermined number of data, and that the different parts, coded with different, mutually orthogonal codes, are transmitted simultaneously over the same transmission medium and subsequently recombined into the whole.
2. A method as claimed in claim 1, wherein the different codes used for coding the different parts are selected according to a fixed rule of order and wherein the fixed rule of order is used for decoding the different parts after transmission over the transmission medium, by which an unambiguous relationship is established between the subdivided and recombined parts and the whole.
3. A method as claimed in claim 1, wherein the time intervals are of equal length, and wherein a number of codes used is unchanged within a time interval.
4. A method as claimed in claim 3, wherein all the codes used are synchronized with one another and with beginnings of the time intervals.
5. A method as claimed in claim 3, wherein the number of codes used and selection of the codes are agreed between stations at respective ends of the transmission medium by suitable signaling prior to a time interval of use of the codes:
6. A method as in claim 5, wherein the codes used are agreed to anew before each time interval.
7. A method as in claim 5, wherein new agreements are only made when changes in the traffic volume take place.
8. A method as in claim 5, wherein the time intervals contain subsections for signalization and subsections for data transmission.
9. A method as in claim 5, wherein signalization and data transmission take place with separate codes.
10. A method as claimed in claim 1, wherein a plurality of stations share the same transmission medium and a predetermined set of codes, and that the codes are assigned to the individual stations according to the respective traffic volumes of the stations.
11. A method as in claim 10, wherein one of the stations is the control station, that requests for codes are only made to the control station, and that codes are only allocated by the control station.
12. A method as in claim 10, wherein the allocation of the codes is made locally, on the basis of an allocation procedure known to all stations, and on the basis of requests directed to all stations.
13. A method as claimed in claim 1, wherein the levels with which the different parts are transmitted are fixed separately.
14. A transmitter for data transmission with variable traffic volume, wherein a demultiplexer is provided for dividing a data stream to be transmitted into time intervals which are subdivided into parts whose number depends on the current traffic volume and which each contain a predetermined number of data, that coders are provided by which the different parts are coded with different, mutually orthogonal codes, and that the differently-coded parts are transmitted simultaneously over the same transmission medium.
15. A receiver for simultaneous reception of plural signals, said signals being indicative of parts of a data stream with variable traffic volume, said parts being determined by the division of said data stream, within a time interval, based on the traffic volume in said data stream, said parts being coded by mutually orthogonal codes for simultaneous transmission, the receiver having a plurality of decoders which use different, mutually orthogonal codes to decode a plurality of said signals received simultaneously over the same transmission medium, and having a multiplexer which combines said signals decoded by the different decoders into a whole indicative of said data stream.
16. A control station for coordinating a plurality of transmitters and receivers which each transmit and receive, respectively, signals indicative of parts of a data stream with variable traffic volume, said parts being determined by the division of said data stream, within a time interval, based on the traffic volume in said data stream, wherein the control station includes a control station receiver, responsive to requests from the plurality of transmitters and receivers, for assigning different, mutually orthogonal codes to the plurality of transmitters and receivers, said parts being coded by said mutually orthogonal codes for simultaneous transmission, and wherein the control station includes a control station transmitter for transmitting the assigned codes to the plurality of transmitters and receivers.
CA002092874A 1992-03-30 1993-03-29 Process, transmitter and receiver for data transmission with variable traffic volume and a control station for coordinating several such transmitters and receivers Expired - Fee Related CA2092874C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4210305.3 1992-03-30
DE4210305A DE4210305A1 (en) 1992-03-30 1992-03-30 Method, transmitter and receiver for information data transmission with variable traffic volume and control station for coordinating several such transmitters and receivers

Publications (2)

Publication Number Publication Date
CA2092874A1 CA2092874A1 (en) 1993-10-01
CA2092874C true CA2092874C (en) 2000-08-22

Family

ID=6455369

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002092874A Expired - Fee Related CA2092874C (en) 1992-03-30 1993-03-29 Process, transmitter and receiver for data transmission with variable traffic volume and a control station for coordinating several such transmitters and receivers

Country Status (8)

Country Link
US (1) US5373502A (en)
EP (1) EP0567771B1 (en)
AT (1) ATE192886T1 (en)
CA (1) CA2092874C (en)
DE (2) DE4210305A1 (en)
DK (1) DK0567771T3 (en)
ES (1) ES2145016T3 (en)
FI (1) FI931409A (en)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37802E1 (en) 1992-03-31 2002-07-23 Wi-Lan Inc. Multicode direct sequence spread spectrum
DE69428492T2 (en) * 1993-06-04 2002-05-23 Motorola Inc METHOD AND DEVICE FOR DYNAMICALLY SETTING A MAXIMUM NUMBER OF PARTICIPANTS ON A PHYSICAL CHANNEL
US6445725B1 (en) * 1993-09-03 2002-09-03 Canon Kabushiki Kaisha Spread spectrum communication apparatus
KR960003102B1 (en) * 1993-12-01 1996-03-04 재단법인 한국전자통신연구소 Channel modulation circuit of cdma modulation apparatus
JP3302168B2 (en) * 1994-04-05 2002-07-15 株式会社東芝 Mobile radio communication system
US6018528A (en) * 1994-04-28 2000-01-25 At&T Corp System and method for optimizing spectral efficiency using time-frequency-code slicing
US5442625A (en) * 1994-05-13 1995-08-15 At&T Ipm Corp Code division multiple access system providing variable data rate access to a user
JPH07336767A (en) * 1994-06-10 1995-12-22 Oki Electric Ind Co Ltd Transmitter
US5614914A (en) 1994-09-06 1997-03-25 Interdigital Technology Corporation Wireless telephone distribution system with time and space diversity transmission for determining receiver location
JP3215018B2 (en) * 1994-09-09 2001-10-02 三菱電機株式会社 Mobile communication system
US6334219B1 (en) 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
US5654955A (en) * 1994-12-15 1997-08-05 Stanford Telecommunications, Inc. Network entry channel for CDMA systems
US5600633A (en) * 1995-02-24 1997-02-04 Lucent Technologies Inc. Wireless telecommunication base station for integrated wireless services with ATM processing
USRE42236E1 (en) 1995-02-06 2011-03-22 Adc Telecommunications, Inc. Multiuse subcarriers in multipoint-to-point communication using orthogonal frequency division multiplexing
US7280564B1 (en) 1995-02-06 2007-10-09 Adc Telecommunications, Inc. Synchronization techniques in multipoint-to-point communication using orthgonal frequency division multiplexing
WO1996026582A1 (en) * 1995-02-23 1996-08-29 Ntt Mobile Communications Network Inc. Variable rate transmitting method, and transmitter and receiver using it
US6292476B1 (en) * 1997-04-16 2001-09-18 Qualcomm Inc. Method and apparatus for providing variable rate data in a communications system using non-orthogonal overflow channels
ZA961025B (en) * 1995-02-28 1996-07-16 Qualcomm Inc Method and apparatus for providing variable rate data in a communications system using non-orthogonal overflow channels
FI100212B (en) * 1995-03-06 1997-10-15 Nokia Telecommunications Oy High speed data transmission in mobile networks
FI100211B (en) 1995-03-06 1997-10-15 Nokia Telecommunications Oy High speed data transmission in mobile telephony systems
MY121893A (en) * 1995-04-28 2006-03-31 Qualcomm Inc Method and apparatus for providing variable rate data in a communications system using statistical multiplexing.
US5883899A (en) * 1995-05-01 1999-03-16 Telefonaktiebolaget Lm Ericsson Code-rate increased compressed mode DS-CDMA systems and methods
US5896368A (en) * 1995-05-01 1999-04-20 Telefonaktiebolaget Lm Ericsson Multi-code compressed mode DS-CDMA systems and methods
US6112056A (en) 1995-06-07 2000-08-29 Cisco Systems, Inc. Low power, short range point-to-multipoint communications system
US5619492A (en) * 1995-06-16 1997-04-08 Unisys Corporation CDMA communication system in which bit rates are dynamically allocated
US7020111B2 (en) 1996-06-27 2006-03-28 Interdigital Technology Corporation System for using rapid acquisition spreading codes for spread-spectrum communications
US6788662B2 (en) 1995-06-30 2004-09-07 Interdigital Technology Corporation Method for adaptive reverse power control for spread-spectrum communications
US6816473B2 (en) 1995-06-30 2004-11-09 Interdigital Technology Corporation Method for adaptive forward power control for spread-spectrum communications
US6940840B2 (en) 1995-06-30 2005-09-06 Interdigital Technology Corporation Apparatus for adaptive reverse power control for spread-spectrum communications
ZA965340B (en) 1995-06-30 1997-01-27 Interdigital Tech Corp Code division multiple access (cdma) communication system
US7123600B2 (en) 1995-06-30 2006-10-17 Interdigital Technology Corporation Initial power control for spread-spectrum communications
US5841768A (en) 1996-06-27 1998-11-24 Interdigital Technology Corporation Method of controlling initial power ramp-up in CDMA systems by using short codes
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US6697350B2 (en) 1995-06-30 2004-02-24 Interdigital Technology Corporation Adaptive vector correlator for spread-spectrum communications
US6885652B1 (en) 1995-06-30 2005-04-26 Interdigital Technology Corporation Code division multiple access (CDMA) communication system
US6831905B1 (en) 1995-06-30 2004-12-14 Interdigital Technology Corporation Spread spectrum system assigning information signals to message-code signals
US7072380B2 (en) 1995-06-30 2006-07-04 Interdigital Technology Corporation Apparatus for initial power control for spread-spectrum communications
US5805583A (en) * 1995-08-25 1998-09-08 Terayon Communication Systems Process for communicating multiple channels of digital data in distributed systems using synchronous code division multiple access
US6665308B1 (en) 1995-08-25 2003-12-16 Terayon Communication Systems, Inc. Apparatus and method for equalization in distributed digital data transmission systems
US5793759A (en) * 1995-08-25 1998-08-11 Terayon Corporation Apparatus and method for digital data transmission over video cable using orthogonal cyclic codes
US5768269A (en) * 1995-08-25 1998-06-16 Terayon Corporation Apparatus and method for establishing frame synchronization in distributed digital data communication systems
US5991308A (en) * 1995-08-25 1999-11-23 Terayon Communication Systems, Inc. Lower overhead method for data transmission using ATM and SCDMA over hybrid fiber coax cable plant
US6356555B1 (en) * 1995-08-25 2002-03-12 Terayon Communications Systems, Inc. Apparatus and method for digital data transmission using orthogonal codes
US6307868B1 (en) 1995-08-25 2001-10-23 Terayon Communication Systems, Inc. Apparatus and method for SCDMA digital data transmission using orthogonal codes and a head end modem with no tracking loops
US5745837A (en) * 1995-08-25 1998-04-28 Terayon Corporation Apparatus and method for digital data transmission over a CATV system using an ATM transport protocol and SCDMA
ES2229240T3 (en) * 1995-08-31 2005-04-16 Nokia Corporation DATA TRANSMISSION METHOD AND RADIOCOMMUNICATIONS CELL SYSTEM.
US5960032A (en) * 1995-09-20 1999-09-28 The Hong Kong University Of Science & Technology High speed data transmission using expanded bit durations in multiple parallel coded data streams
DE19603443C1 (en) * 1996-01-31 1997-07-10 Siemens Ag Code-modulated transmission method and a transmission system operating according to this transmission method
US5850392A (en) * 1996-04-10 1998-12-15 Ericsson Inc. Spread spectrum random access systems and methods for time division multiple access radiotelephone communication systems
US6678311B2 (en) 1996-05-28 2004-01-13 Qualcomm Incorporated High data CDMA wireless communication system using variable sized channel codes
US5930230A (en) 1996-05-28 1999-07-27 Qualcomm Incorporated High data rate CDMA wireless communication system
US5737326A (en) * 1996-07-12 1998-04-07 Lucent Technologies Inc. Multi-code code division multiple access receiver
US5881056A (en) * 1996-08-20 1999-03-09 Lucent Technologies Inc. Method and apparatus of a multi-code code division multiple access receiver having shared accumulator circuits
US6192068B1 (en) 1996-10-03 2001-02-20 Wi-Lan Inc. Multicode spread spectrum communications system
US6496543B1 (en) 1996-10-29 2002-12-17 Qualcomm Incorporated Method and apparatus for providing high speed data communications in a cellular environment
GB2320661B (en) 1996-12-20 2001-10-03 Dsc Telecom Lp Processing data transmitted and received over a wireless link connecting a central terminal and a subscriber terminal of a wireless telecommunications system
GB2320660A (en) 1996-12-20 1998-06-24 Dsc Telecom Lp Processing data transmitted and received over a wireless link connecting a central terminal and a subscriber terminal of a wireless telecommunication system
DE19708626C2 (en) * 1997-03-04 1999-08-05 Rohde & Schwarz Radio communication system working according to the spread spectrum method
DE19716323A1 (en) 1997-04-18 1998-10-22 Alsthom Cge Alcatel Modulation device for modulating digital signals
US6075792A (en) * 1997-06-16 2000-06-13 Interdigital Technology Corporation CDMA communication system which selectively allocates bandwidth upon demand
US6542481B2 (en) 1998-06-01 2003-04-01 Tantivy Communications, Inc. Dynamic bandwidth allocation for multiple access communication using session queues
US6151332A (en) 1997-06-20 2000-11-21 Tantivy Communications, Inc. Protocol conversion and bandwidth reduction technique providing multiple nB+D ISDN basic rate interface links over a wireless code division multiple access communication system
US6081536A (en) 1997-06-20 2000-06-27 Tantivy Communications, Inc. Dynamic bandwidth allocation to transmit a wireless protocol across a code division multiple access (CDMA) radio link
JP3985299B2 (en) * 1997-07-14 2007-10-03 三菱電機株式会社 Mobile communication system
KR100369794B1 (en) * 1997-08-18 2003-04-11 삼성전자 주식회사 Apparatus and method for generating spread signal of transmitter of mobile communication system
IL121892A0 (en) * 1997-10-06 1998-03-10 Telescicom Ltd CDMA system
US6266385B1 (en) 1997-12-23 2001-07-24 Wireless Facilities, Inc. Elastic store for wireless communication systems
US6373827B1 (en) 1997-10-20 2002-04-16 Wireless Facilities, Inc. Wireless multimedia carrier system
US6370158B1 (en) * 1997-11-14 2002-04-09 Wireless Facilities, Inc. Wireless T/E Transceiver frame signaling subcontroller
DE59801997D1 (en) * 1997-10-27 2001-12-06 Siemens Ag METHOD, MOBILE STATION AND BASE STATION FOR TRANSMITTING INFORMATION VIA A RADIO INTERFACE OF A MOBILE COMMUNICATION SYSTEM
US9118387B2 (en) 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US7184426B2 (en) 2002-12-12 2007-02-27 Qualcomm, Incorporated Method and apparatus for burst pilot for a time division multiplex system
US7496072B2 (en) 1997-12-17 2009-02-24 Interdigital Technology Corporation System and method for controlling signal strength over a reverse link of a CDMA wireless communication system
US7394791B2 (en) 1997-12-17 2008-07-01 Interdigital Technology Corporation Multi-detection of heartbeat to reduce error probability
US8175120B2 (en) 2000-02-07 2012-05-08 Ipr Licensing, Inc. Minimal maintenance link to support synchronization
US7936728B2 (en) 1997-12-17 2011-05-03 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
US6222832B1 (en) 1998-06-01 2001-04-24 Tantivy Communications, Inc. Fast Acquisition of traffic channels for a highly variable data rate reverse link of a CDMA wireless communication system
US9525923B2 (en) 1997-12-17 2016-12-20 Intel Corporation Multi-detection of heartbeat to reduce error probability
JP2962356B2 (en) * 1998-02-10 1999-10-12 日本電気株式会社 Time division spread code transmission control device
US7221664B2 (en) 1998-06-01 2007-05-22 Interdigital Technology Corporation Transmittal of heartbeat signal at a lower level than heartbeat request
US8134980B2 (en) 1998-06-01 2012-03-13 Ipr Licensing, Inc. Transmittal of heartbeat signal at a lower level than heartbeat request
US7773566B2 (en) 1998-06-01 2010-08-10 Tantivy Communications, Inc. System and method for maintaining timing of synchronization messages over a reverse link of a CDMA wireless communication system
KR20000019059A (en) * 1998-09-08 2000-04-06 윤종용 Source allocation and release method thereof according to data transmitting method in wireless local loop(wwl) system
JP3680592B2 (en) * 1998-10-30 2005-08-10 株式会社日立製作所 Communication device
FR2786641B1 (en) * 1998-11-26 2002-01-25 Cit Alcatel TELECOMMUNICATION METHOD IN WHICH TERMINALS TRANSMIT TO THE SAME STATION
US6483828B1 (en) 1999-02-10 2002-11-19 Ericsson, Inc. System and method for coding in a telecommunications environment using orthogonal and near-orthogonal codes
US6512750B1 (en) 1999-04-16 2003-01-28 Telefonaktiebolaget Lm Ericsson (Publ) Power setting in CDMA systems employing discontinuous transmission
US6614776B1 (en) 1999-04-28 2003-09-02 Tantivy Communications, Inc. Forward error correction scheme for high rate data exchange in a wireless system
KR100396286B1 (en) * 1999-05-29 2003-09-02 삼성전자주식회사 Apparatus and method for generating sync word pattern and transmitting and receiving said sync word in w-cdma communication system
US8064409B1 (en) 1999-08-25 2011-11-22 Qualcomm Incorporated Method and apparatus using a multi-carrier forward link in a wireless communication system
US6526034B1 (en) 1999-09-21 2003-02-25 Tantivy Communications, Inc. Dual mode subscriber unit for short range, high rate and long range, lower rate data communications
US6621804B1 (en) 1999-10-07 2003-09-16 Qualcomm Incorporated Method and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US8463255B2 (en) * 1999-12-20 2013-06-11 Ipr Licensing, Inc. Method and apparatus for a spectrally compliant cellular communication system
JP2001211432A (en) * 2000-01-26 2001-08-03 Nec Corp Image decoder, semiconductor device and image decoding method
US7068683B1 (en) 2000-10-25 2006-06-27 Qualcomm, Incorporated Method and apparatus for high rate packet data and low delay data transmissions
US6973098B1 (en) 2000-10-25 2005-12-06 Qualcomm, Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US8155096B1 (en) 2000-12-01 2012-04-10 Ipr Licensing Inc. Antenna control system and method
US6920118B2 (en) * 2000-12-20 2005-07-19 Lucent Technologies Inc. Method and apparatus for communicating heterogeneous data traffic
US6954448B2 (en) 2001-02-01 2005-10-11 Ipr Licensing, Inc. Alternate channel for carrying selected message types
US7551663B1 (en) 2001-02-01 2009-06-23 Ipr Licensing, Inc. Use of correlation combination to achieve channel detection
ES2626289T3 (en) 2001-06-13 2017-07-24 Intel Corporation Method and apparatus for transmitting heartbeat signal at a lower level than the heartbeat request
KR100763378B1 (en) * 2001-07-27 2007-10-05 엘지전자 주식회사 Method for transmitting/receiving using plurality of antennas, system for the same
DE10143303A1 (en) * 2001-09-04 2003-03-20 Univ Ilmenau Tech Transmission method for limited bandwidth signals uses distance coding for sampling of limited bandwidth analogue signals
DE10244135B3 (en) * 2002-09-23 2004-04-15 Siemens Ag Process for the secure transmission of data, in particular for transmission via an air interface
DE10256252A1 (en) * 2002-12-03 2004-06-24 Technische Universität Ilmenau Abteilung Forschungsförderung und Technologietransfer Synchronous code multiplex transmission method for distance coded pulses for mobile radio applications
EP1779055B1 (en) * 2004-07-15 2017-03-01 Cubic Corporation Enhancement of aimpoint in simulated training systems
JP2008017341A (en) * 2006-07-07 2008-01-24 Ntt Docomo Inc Radio communication apparatus and method
US8359525B2 (en) 2009-03-06 2013-01-22 Electronics And Telecommunications Research Institute Method and apparatus for transmitting data in optical transport network
US8811200B2 (en) 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494228A (en) * 1982-08-12 1985-01-15 The United States Of America As Represented By The Secretary Of The Army Orthogonal code division multiple access communications systems
DE3313841A1 (en) * 1983-04-16 1984-10-18 Standard Elektrik Lorenz Ag, 7000 Stuttgart Data transmission system with time division multiple access (TDMA) with locally controlled capacity allocation
US4615040A (en) * 1984-06-14 1986-09-30 Coenco Ltd. High speed data communications system
DD236843A1 (en) * 1985-02-18 1986-06-18 Ilmenau Tech Hochschule CIRCUIT ARRANGEMENT FOR TRANSMITTING LANGUAGE SIGNALS
US4641318A (en) * 1985-04-25 1987-02-03 Bell Communications Research, Inc. Method for improving the reliability of data transmission over Rayleigh fading channels
DE3527330A1 (en) * 1985-07-31 1987-02-05 Philips Patentverwaltung DIGITAL RADIO TRANSMISSION SYSTEM WITH CONNECTING ORGANIZATION CHANNEL IN THE TIME MULTIPLEX FRAME
DE3527331A1 (en) * 1985-07-31 1987-02-05 Philips Patentverwaltung DIGITAL RADIO TRANSMISSION SYSTEM
DE3527329A1 (en) * 1985-07-31 1987-02-05 Philips Patentverwaltung DIGITAL RADIO TRANSMISSION SYSTEM WITH VARIABLE TIME SLOT DURATION OF TIME SLOTS IN TIME MULTIPLEX FRAME
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system

Also Published As

Publication number Publication date
FI931409A0 (en) 1993-03-29
ATE192886T1 (en) 2000-05-15
EP0567771A2 (en) 1993-11-03
DE4210305A1 (en) 1993-10-07
CA2092874A1 (en) 1993-10-01
DK0567771T3 (en) 2000-09-25
EP0567771B1 (en) 2000-05-10
ES2145016T3 (en) 2000-07-01
DE59310032D1 (en) 2000-06-15
US5373502A (en) 1994-12-13
EP0567771A3 (en) 1996-02-28
FI931409A (en) 1993-10-01

Similar Documents

Publication Publication Date Title
CA2092874C (en) Process, transmitter and receiver for data transmission with variable traffic volume and a control station for coordinating several such transmitters and receivers
JP2737873B2 (en) Digital wireless transmission system
CA1165476A (en) Modem to be coupled to a directional transmission line of an ss multiplex communication network
US5134615A (en) Frequency agile tdma communications system
US5107490A (en) Ring-type communication network
KR100445842B1 (en) CDMA communication method and spread spectrum communication system
US5805583A (en) Process for communicating multiple channels of digital data in distributed systems using synchronous code division multiple access
US4972506A (en) Method of transmitting data information in a mobile, cellular radio communication system
US5745837A (en) Apparatus and method for digital data transmission over a CATV system using an ATM transport protocol and SCDMA
WO1993015573A1 (en) Cdma/tdma communication system
CA2037140C (en) Multidirection multiplex communication system
CA2197757A1 (en) Synchronous multipoint-to-point cdma communication system
JPS6335025A (en) Digital radio transmission system
JPH09135226A (en) Method and device to support tdma operation through hybrid fiber coaxial (hfc) channel or other channel
EP0519954A1 (en) Digital data transmission system.
WO1994014255A1 (en) Arrangement in a communications network
CA2171029C (en) Slot assign system with each peripheral station pre-assigned
US7990918B2 (en) Wireless T/E transceiver frame and signaling controller
US4751699A (en) Multiplexing and demultiplexing equipments for a synchronous digital link with variable modulation speed and rate
KR20000069002A (en) Packet transmission method, packet transmission device, radio frame transmission method, mobile communication method, mobile communication system, and switching center
US3602647A (en) Control signal transmission in time division multiplex system communications
JP2895840B2 (en) Circuit layout to convert data packet sequence to normal multiplex format
US4099029A (en) Asynchronous pcm common decoding apparatus
KR100564068B1 (en) Transmission method and communication system employing the method
JP2874602B2 (en) Satellite communication system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20050329