CA2093716C - Movable heat treat apparatus with sighting means - Google Patents

Movable heat treat apparatus with sighting means

Info

Publication number
CA2093716C
CA2093716C CA002093716A CA2093716A CA2093716C CA 2093716 C CA2093716 C CA 2093716C CA 002093716 A CA002093716 A CA 002093716A CA 2093716 A CA2093716 A CA 2093716A CA 2093716 C CA2093716 C CA 2093716C
Authority
CA
Canada
Prior art keywords
lamp
heat detection
detection means
sighting
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002093716A
Other languages
French (fr)
Other versions
CA2093716A1 (en
Inventor
Thomas M. Sorensen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITW
Original Assignee
BGK Finishing Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BGK Finishing Systems Inc filed Critical BGK Finishing Systems Inc
Publication of CA2093716A1 publication Critical patent/CA2093716A1/en
Application granted granted Critical
Publication of CA2093716C publication Critical patent/CA2093716C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/30Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun from infrared-emitting elements

Abstract

An apparatus for heat treating tree surface of a body is disclosed. The apparatus includes an infrared heat source carried on a stand. A circuit controls the energization of the lamp. The circuit includes a heat detector for detecting a targeted area temperature. The apparatus includes a sighting mechanism to permit an operator to accurately sight the heat detector against the surface to be heat treated.

Description

MOVABLE HEAT TREAT APPARATUS WITH SIGHING MEANS
I. BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
This invention pertains to an infrared heater for heat treating a surface. More specifically, this invention pertains to such an apparatus with means for sighting the apparatus.
2. BACKGROUND OF THE INVENTION
U.S. Patent No. 5,050,232 dated September 17, l991, teaches an apparatus for heat treating the surface of a body. For example, the apparatus is used to touch-up repair of paint on an automobile surface. The apparatus of U.S. Patent No. 5,050,232 includes a movable stand with infrared heaters. The stand is rolled across a work surface toward and away from an automobile body. As a result, the infrared heaters may be positioned adjacent to an area of the body surface to be heat treated.
U.S. Patent No. 5,050,232 teaches the use of closed-loop , proportional control to control the intensity of the heating lamps while using the apparatus.
As disclosed in U.S. Patent No. 5,050,232, an optical pyrometer (item 62 in the drawings of the '232 patent) is centrally positioned within the bank of infrared lamps and aimed at the automobile surface to be heat treated. Correct pyrometer aiming is important due to the fact that the closed-loop control can only control to the level of accuracy of the feed back information given to it. For example, the apparatus will not control well if the pyrometer is aimed through a vehicle window or at a wheel well.
Accordingly the present invention seeks to provide means for improved aiming or sighting of an apparatus of the type such as that shown in U.S. Patent No. 5,050,232.
II. SUMMARY OF THE INVENTION
Accordingly the present invention broadly provides an apparatus is provided for heat treating the surface of a body.
The apparatus includes a panel of infrared lamps and a stand for mounting the lamps in at least one of a plurality of positions.
A heat detector is provided for detecting a temperature of a surface to be heat treated. A sighting mechanism is provided for aiming the lamps at the surface with the sighting mechanism 20937e including means for indicating to an operator a location on the surface against which the heat detection means is aimed.
The invention in one aspect provides an apparatus for heat treating a finish applied to a surface of a body, the apparatus comprising a movable platform, at least one infrared lamp secured to the platform for movement therewith, power connect means for connecting the lamp to a source of electrical power, heat detection means for detecting a temperature of the surface including means for detecting a temperature of a target area of the surface, the heat detection means secured to the lamp in fixed relative position for movement therewith. Circuit means controls energization of the lamp and includes the heat detection means and sighting means is provided for aiming the lamp at the surface with the sighting means including means for indicating to an operator a location on the surface against which the heat detection means is aimed, the sighting means including a light source for projecting a beam of visible light toward the target area. The sighting means is secured to the lamp for movement therewith and the sighting means includes means to direct both the heat detection means and the light source along an axis of direction of the heat detection means.
III. BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a side elevation view of an apparatus according to the present invention with alternate positioning of elements of the apparatus shown in phantom lines.
Fig. 2 is a rear elevation view of the apparatus of the present invention.
Fig. 3 is a front plan view, shown partially in section, of an infrared heater for use with the present invention.
Fig. 4 is a side view of the heater of Fig. 3.
Fig. 5 is an end view of the heater of Fig. 4.
Fig. 6 is a block diagram showing a circuit for controlling the apparatus of the present invention.
Fig. 7 is a top plan view of the heater with dual laser sighting. .
Fig. 8 is a cross-sectional view of a mechanism providing single laser sighting.
Fig. 9 is a top plan view of the apparatus of Fig. 8.

w Fig. 10 is a side elevation view of the apparatus of Fig. 8.
IV. DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the several drawing Figs. in which identical elements are numbered identically throughout, a preferred embodiment of the present invention will now be described. Indicated at numeral 10, an apparatus is generally shown for heat treating an article body.
Preferably, the apparatus 10 is for use with curing or otherwise heat treating an automobile finish.
The apparatus 10 includes a stand 12 having a vertical support post 14 carried on a support platform 16. The support platform 16 has attached to its underside wheels or coasters 18 which permit the stand 12 to be positioned adjacent an automobile.
The stand 12 carries an infrared heater 20. The heater is attached to the support post 14 by an adjustably positionable support arm 22.
20 Shown in Fig. 1, support arm 22 comprises two parallel support rods 24. First ends of the support rods 24 are pivotably secured to a mounting bracket 26 carried on an upper end of vertical support post 14. The distal ends of the support rods 24 are pivotably connected to a position adjustment plate 30 to which the infrared heater is attached, as will be described. A linkage 28 connects the rods 24 at an intermediate location.
The plate 30 is pivotable connected to each of the support rods 24 by pivot pins 32. An arcuate slot 34 is formed in plate 30. Adjustment knob 36 is carried on a shaft which passes through slot 34 and is received in either of support rods 24. By tightening the adjustment knob 36, the relative positioning of support rods 24 can be fixed resulting in fixed positioning of the support arm 22 relative to the vertical support post 14. In Fig. 1, an ~2093~ 1d alternative positioning is shown in phantom lines. It will be appreciated that a support arm 22 connected to a support post 14 as shown, forms no part of this invention per se and is described for ease of understanding of the present invention.
Plate 30 includes two vertically spaced apart tabs 38. An infrared heater mounting head 40 is provided with a vertical shaft 42 received between tabs 38 permitting head 40 to pivot about a vertical axis.
A head mounting bracket 44 is pivotably secured to mounting head 40 by a pivot pin 46. A retaining pin 48 extending through head mounting bracket 44 and into any one of a plurality of holes 50 formed through mounting head 40. The retaining pin 48 permits the head mounting bracket 44 to be fixed in any one of a plurality of positions pivoted about the axis of pivot pin 46.
The infrared heater 20 is attached to the head mounting bracket 44 by a rotatable coupling 52. The coupling 52 permits heater 20 to be rotated about the longitudinal axis of the head mounting bracket 44.
As a result of the structure described, the apparatus 10 may be accurately positioned adjacent a surface to be heat treated. The adjustable arm 22 permits the heater 20 to be raised or lowered. The mounting head 40 permits the heater 20 to be pivoted relative to the stand 12. Further, the adjustable head mounting bracket 44 and rotatable coupling 52 permit the heater 20 to be pivoted and swivelled with respect to the mounting head 40. The combination of structure permits great flexibility in positioning of the infrared heater 20 relative to an automobile body.
It will be appreciated that the combination of elements thus described form no part of this invention er se and are described for the purposes of facilitating an understanding of the present invention. Such a combination is shown in U.S.
Patent No. 5,050,232.
Shown best in Figs. 3 through 5, infrared heater 20 carries a plurality of infrared lamps 54. To counter-balance the weight of the infrared heater 20, gas-filled piston assembly 56 is provided pivotably connected between vertical post 14 and support arm 22 (see Fig. 1).
The infrared heater 20 is generally box-like in configuration. The heater 20 contains a reflecting panel 58 in the form of parabolic reflecting troughs for reflecting radiation from lamps 54 toward the surface of an automobile body to be treated. For purposes that will become apparent, an optical pyrometer 62 is mounted in the heater 20 to be directed toward the surface being heat treated by the lamps 54. The optical pyrometer 62 senses the temperature of a surface which is being heat treated and transmits a signal indicative of the sensed temperature. It will~be appreciated that optical pyrometers such as pyrometer 62 are commercially available.
A control box 64 is carried on stand 12 (see Figs. 1 and 2). Control box 64 contains circuitry for controlling the intensity of the infrared lamps 54. A cable 57 connects the circuitry of the control box 64 to the infrared lamps 54 and the optical pyrometer 62. Means, such as a conventional electrical plug 68, connects the circuitry of the control box 64 to a power source (not shown).
The circuitry of the control box 64 includes means for inputting at least one parameter (but preferably a plurality of parameters) by which an operator can more accurately and thoroughly control the heating of an automobile body through use of the infrared lamps 54.
Further, the control circuitry contained within box 64 includes a feed back loop by sensing, through optical pyrometer 62, the temperature of the surface being heat treated.
The control box contains control circuitry for providing a closed-loop proportional controlled system for controlling the intensity of the infrared lamps 54 in response to a measured temperature as measured via optical pyrometer 62. A more complete description of the circuitry of the apparatus 10 is shown and described in U.S. Patent No. 5,050,232, which may be referred to for further details. The control mechanism is schematically shown in Fig. 6 which includes programmable settings 84 which may provide inputs, etc. which can be set by an operator. The circuitry also includes a proportional controller 90 which receives the inputs from the programmable settings 84 as well as the input from the optical pyrometer 62.
The proportional controller provides operator readable readouts 88 as well as controlling the intensity of the lamps 54. Since the proportional controller 90 utilizes the input from the optical pyrometer 62, correct aiming of the optical pyrometer 62 is important since the closed-loop control can only control to the level of accuracy of the feed back information given to it by the optical pyrometer 62.
The present invention provides means for enhanced sighting and aiming of the optical pyrometer 62. The ease of illustration, the sighting means is not shown in Figs. 1 - 6.
Instead, the sighting mechanism of the invention is best shown in Fig. 7. In Fig. 7, the heater 20 is shown with its front surface 21 aimed toward a target surface 100. The optical pyrometer 62 is shown centrally mounted on heater 20. The optical pyrometer 62 senses heat from an area l02 on surface 100. The area 102 is that area of surface l00 intersected by the sensing cone 101.
First and second lasers 90,92 are carried on heater 20 and mounted thereto by adjustable mounting brackets 9l,93. The lasers 90,92 are mounted to project laser beams 93,94 at an angle relative to an axis X - X of the pyrometer 62.
Accordingly, the laser beams 93,94 intersect at an :,.=: '.

intersection point 95 spaced from surface 21. Further, the lasers 90,92 are mounted such that the intersection point 95 intersects the axis line X-X of pyrometer axis 63. The lasers 90,92 have their angular positions on heater 20 preset such that the intersection point 95 is accurately controlled. For example, in a preferred embodiment, the axis point 95 may be spaced about 10" from surface 21.
When positioning the heater 20 against a surface 100, unless the surface 100 is located exactly 10" from surface 21, the operator will notice two visible light dots 98,99 at the point where the laser beams 93,94 hit surface 100.
The operator can then move. the heater 20 towards or away from surface I00 such that the light dots 98,.99 converge toward one another into a single dot indicating that the intersection 95 is positioned on the surface 100. At this point, the operator knows that the surface 100 is exactly 10" from the surface 21. Further, the operator knows the precise aiming of the optical pyrometer 62 since the intersection point 95 is centrally positioned within the pyrometer sensing area 102. The angular positioning of lasers 90,92 may be modified by adjustable screws 105,106 or the like such that the lasers 90,92 may be set in any one of a plurality of desired angular positions such that the intersection point 95 may be varied in distance from the surface 21. For example, an operator may desire to preset the angular positions of lasers 90,92 such that the intersection point 95 is 8", 10" or 12" from surface 21.
Figs. 8-10 show an alternative embodiment for providing a sensing mechanism for the apparatus 10. In Fig. 8, the optical pyrometer 62' is connected to a housing 200 which may be mounted on heater 20 through use of a mounting plate 202 which is held in spaced relation from the heater 20 by standoffs 204.
With best reference to Fig. 8, the optical pyrometer is mounted with its axis Y-Y generally perpendicular to an axis Z-Z of a laser 206 generating a laser beam 208. A
mirror 210 is mounted within the housing 200 at a 45' angle to the axis Y-Y. As a result, when mounted on a heater 20, the heat from a surface 100' is detected by the optical pyrometer 62 since the energy from the surface is reflected from the pyrometer sensing area 102' to the pyrometer 62' via the mirror 210.
The mirror is provided with a hole 212 therethrough (shown exaggerated in size in Fig. 8). The hole permits the laser beam 208 to project unimpeded from laser 206 to the sensing area 102'. The laser 206 is positioned such that the laser beam 208 projects centrally through the axis of the pyrometer sensing area 102'. Accordingly, with use of this assembly, an operator can utilize the laser beam to accurately position the pyrometer on the surface to be detected. With the e~ibodiment of Figs. 8-10, the laser 206 can be provided as an optional feature in the product.
In both the embodiments of Figs. 7 and the embodiments of Figs. 8-10, any suitable circuitry (not shown) may be provided to energize the laser at the selection of an operator such that the laser may be turned on when sighting and positioning the heater 20 and be turned off after the heater 20 is in place in its desired position.
Having described the present invention with reference to a preferred embodiment, it has been shown how the objects of the invention have been attained. However, the foregoing description of a preferred embodiment is not intended to limit the scope of the present invention and is intended to include a11 modifications and equilavents thereof.

Claims (3)

1. An apparatus for heat treating a finish applied to a surface of a body, said apparatus comprising:
a movable platform;
at least one infrared lamp secured to said platform for movement therewith and having an adjustable position relative to said platform;
power connect means for connecting said lamp to a source of electrical power;
heat detection means for detecting a temperature of said surface, said heat detection means having a directional axis, said heat detection means connected to said lamp for movement therewith;
circuit means for controlling the energization of said lamp and including said heat detection means; and sighting means for aiming said lamp at said surface with said sighting means including means for indicating to an operator a target area on said surface against which said heat detection means is aimed, said sighting means connected to said lamp for movement therewith, said sighting means including a distance indicating means for indicating when said heat detection means is spaced from said surface by a predetermined distance, said sighting means further including at least a first and second light source disposed at an angle to said directional axis of said heat detection means; said first and second light sources disposed for first and second beams generated by said first and second light sources, respectively, to intersect at a point disposed within said target area and at said predetermined distance.
2. An apparatus for heat treating a finish applied to a surface of a body, said apparatus comprising:
at least one infrared lamp secured to a movable platform for movement therewith and having an adjustable position relative to said platform;

power connect means for connecting said lamp to a source of electrical power;
heat detection means for detecting a temperature of said surface, said heat detection means connected to said lamp for movement therewith;
circuit means for controlling the energization of said lamp and including said heat detection means;
sighting means for aiming said lamp at said surface with said sighting means including means for indicating to an operator a location on said surface against which said heat detection means is aimed, said sighting means connected to said lamp for movement therewith;
said heat detection means including means for detecting a temperature of a target area of said surface, said sighting means including a light source for projecting a beam of visible light toward said target area;
said sighting means including a mirror opposing said surface, said mirror and heat detection means mutually positioned for said heat detection means to be aimed to measure heat from said surface as reflected off of said mirror, said mirror including an opening therethrough, said light source positioned for said beam to pass through said mirror toward said surface within a target area of said heat detection means.
3. An apparatus for heating treating a finish applied to a surface of a body, said apparatus comprising:
a movable platform;
at least one infrared lamp secured to said platform for movement therewith;
power connect means for connecting said lamp to a source of electrical power;
heat detection means for detecting a temperature of said surface including means for detecting a temperature of a target area of said surface, said heat detection means secured to said lamp in fixed relative position for movement therewith;
circuit means for controlling energization of said lamp and including said heat detection means;

sighting means for aiming said lamp at said surface with said sighting means including means for indicating to an operator a location on said surface against which said heat detection means is aimed, said sighting means including a light source for projecting a beam of visible light toward said target area, said sighting means secured to said lamp for movement therewith;
said sighting means including means to direct both said heat detection means and said light source along an axis of direction of said heat detection means.
CA002093716A 1992-05-04 1993-04-08 Movable heat treat apparatus with sighting means Expired - Lifetime CA2093716C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US87804792A 1992-05-04 1992-05-04
US878,047 1992-05-04

Publications (2)

Publication Number Publication Date
CA2093716A1 CA2093716A1 (en) 1993-11-05
CA2093716C true CA2093716C (en) 1999-08-17

Family

ID=25371269

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002093716A Expired - Lifetime CA2093716C (en) 1992-05-04 1993-04-08 Movable heat treat apparatus with sighting means

Country Status (4)

Country Link
US (1) US5335308A (en)
EP (1) EP0569200A1 (en)
JP (1) JP2525715B2 (en)
CA (1) CA2093716C (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9520855D0 (en) * 1995-10-11 1995-12-13 Trisk Edwin Systems Ltd Spray booth paint curing apparatus
GB9626965D0 (en) * 1996-12-27 1997-02-12 Pentara Commercial Enterprises Apparatus for drying paint
US6115129A (en) * 1998-12-04 2000-09-05 Weyerhaeuser Company Laser guided loading system
CA2260276A1 (en) * 1999-02-09 2000-08-09 Hydro-Quebec Apparatus and method for heating by superimposition of lights
US7011869B2 (en) * 1999-05-26 2006-03-14 Ppg Industries Ohio, Inc. Multi-stage processes for coating substrates with multi-component composite coating compositions
US6221441B1 (en) 1999-05-26 2001-04-24 Ppg Industries Ohio, Inc. Multi-stage processes for coating substrates with liquid basecoat and powder topcoat
US6113764A (en) * 1999-05-26 2000-09-05 Ppg Industries Ohio, Inc. Processes for coating a metal substrate with an electrodeposited coating composition and drying the same
US6231932B1 (en) 1999-05-26 2001-05-15 Ppg Industries Ohio, Inc. Processes for drying topcoats and multicomponent composite coatings on metal and polymeric substrates
US6863935B2 (en) 1999-05-26 2005-03-08 Ppg Industries Ohio, Inc. Multi-stage processes for coating substrates with multi-component composite coating compositions
US6291027B1 (en) 1999-05-26 2001-09-18 Ppg Industries Ohio, Inc. Processes for drying and curing primer coating compositions
US6596347B2 (en) 1999-05-26 2003-07-22 Ppg Industries Ohio, Inc. Multi-stage processes for coating substrates with a first powder coating and a second powder coating
KR100394222B1 (en) * 1999-07-13 2003-08-06 윤희선 Treatment apparatus in high and low temperature
US6735379B2 (en) 2000-06-28 2004-05-11 Fisher & Paykel Healthcare Limited Energy sensor
US6718128B2 (en) * 2000-06-28 2004-04-06 Fisher & Paykel Healthcare Limited Radiant warmer with distance determination between heater and patient
DE10051169B4 (en) * 2000-10-16 2005-12-08 Advanced Photonics Technologies Ag Hand-held irradiation device and thermal processing method
US7089718B2 (en) * 2002-06-10 2006-08-15 Green-Line Products, Inc. Apparatus for heat-shrinking film onto an open-topped container and method of using same
DE10236756A1 (en) 2002-08-10 2004-02-19 Sms Meer Gmbh Device for measuring the wall thickness of a pipe in a rolling mill has lamp emitting a bundled light and fixed to different sites on a measuring head
US20040057708A1 (en) * 2002-09-25 2004-03-25 Nelson James S. Flexible height paint curing apparatus and method
US20040196888A1 (en) * 2002-10-31 2004-10-07 Fluke Corporation IR thermometer for automotive applications
WO2005012859A1 (en) * 2003-07-30 2005-02-10 Optris Gmbh Device for non-contact temperature measurement
DE102004046750A1 (en) * 2003-10-14 2005-06-09 Houben, Alexander, Dipl.-Ing. Surface drying method for films or materials applied to surfaces uses a laser which dries only specifically selected areas
US7351999B2 (en) * 2004-12-16 2008-04-01 Au Optronics Corporation Organic light-emitting device with improved layer structure
US7212736B2 (en) * 2005-06-03 2007-05-01 Illinois Tool Works Inc. Infrared curing device having electrically actuated arm and system and method therewith
EP1867941A1 (en) * 2006-06-16 2007-12-19 B.Lux Impianti Elettrici Snc Dryer device for car body paints
US7974739B2 (en) * 2006-06-27 2011-07-05 Illinois Tool Works Inc. System and method having arm with cable passage through joint to infrared lamp
JP4663685B2 (en) * 2007-06-13 2011-04-06 気高電機株式会社 Drying equipment
US7919152B2 (en) * 2008-01-07 2011-04-05 Objet Geometries Ltd. Method and apparatus for curing waste containing photopolymeric components
US20100012862A1 (en) * 2008-07-17 2010-01-21 Chia Hao Chang Mechanism of adjusting irradiating angle for a far infrared radiator
US8240912B2 (en) * 2008-08-15 2012-08-14 Fluke Corporation Multi-zone non-contact spot thermometer
US8693855B2 (en) * 2009-05-07 2014-04-08 Cambridge Engineering, Inc Infra-red heater assembly
US7984557B1 (en) 2009-06-05 2011-07-26 Carl Keith D Laser-guided positioning device
FR3008496B1 (en) * 2013-07-12 2016-12-23 Valeo Etudes Electroniques DEVICE AND METHOD FOR DETECTING THE POSITION OF THE FACE OF AN INDIVIDUAL, IN PARTICULAR A DRIVER OF A MOTOR VEHICLE, DISPLAY COMPRISING SUCH A DEVICE
JP6896866B2 (en) * 2017-08-24 2021-06-30 三菱重工業株式会社 Infrared heating device
US11504996B2 (en) * 2019-03-29 2022-11-22 Nallen Holdings, Llc Paint removal unit

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2813203A (en) * 1950-04-07 1957-11-12 Leeds & Northrup Co Optical systems for radiation pyrometers
US3441348A (en) * 1968-02-20 1969-04-29 Williamson Dev Co Inc Energy concentrating and sighting device for radiometric apparatus
US3693143A (en) * 1970-06-22 1972-09-19 Francis V Kennedy Process and apparatus for facilitating the landing of a vehicle on a landing surface
DE2316086A1 (en) * 1973-03-30 1974-10-17 Vianova Kunstharz Ag ARRANGEMENT FOR CURING COATINGS AND PAINTING MATERIALS USING IRASER EMITTED INFRARED RADIATION
BE872578A (en) * 1978-12-06 1979-03-30 Centre Rech Metallurgique DEVICE TO CONTROL THE SURFACE OF THE LOAD OF A TANK OVEN
EP0020879A1 (en) * 1979-06-06 1981-01-07 Erwin Sick GmbH Optik-Elektronik Optical electronic distance sensor
JPS5994024A (en) * 1982-11-20 1984-05-30 Seiichi Okuhara Surface observing/surface temperature measuring apparatus for slab in continuously casting equipment
JPS59128420A (en) * 1983-01-13 1984-07-24 Mitsubishi Electric Corp Thermostatic chamber
US4753528A (en) * 1983-12-13 1988-06-28 Quantime, Inc. Laser archery distance device
JPS60257089A (en) * 1984-05-31 1985-12-18 ニチデン機械株式会社 Infrared ray heating device
JPH0617828B2 (en) * 1984-10-30 1994-03-09 ミノルタカメラ株式会社 Radiation thermometer optics
US4647775A (en) * 1985-03-04 1987-03-03 Quantum Logic Corporation Pyrometer 1
JPS61107681A (en) * 1985-09-05 1986-05-26 不二サ−ミツク株式会社 Bar-like far infrared heater
US4761072A (en) * 1986-09-30 1988-08-02 Diffracto Ltd. Electro-optical sensors for manual control
WO1990009560A1 (en) * 1989-02-17 1990-08-23 John Lysaght (Australia) Limited Distance gauge
JPH02291932A (en) * 1989-05-02 1990-12-03 Shisaka Kenkyusho:Kk Temperature measuring method
JPH0337529A (en) * 1989-07-03 1991-02-18 Minolta Camera Co Ltd Radiation thermometer
US4978841A (en) * 1989-08-24 1990-12-18 Lasa Industries, Inc. Automatic leveling system and a method of leveling a workpiece based on focus detection
US5050232A (en) * 1990-03-28 1991-09-17 Bgk Finishing Systems, Inc. Movable heat treating apparatus utilizing proportionally controlled infrared lamps
US5102231A (en) * 1991-01-29 1992-04-07 Texas Instruments Incorporated Semiconductor wafer temperature measurement system and method

Also Published As

Publication number Publication date
CA2093716A1 (en) 1993-11-05
US5335308A (en) 1994-08-02
JPH06111922A (en) 1994-04-22
EP0569200A1 (en) 1993-11-10
JP2525715B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
CA2093716C (en) Movable heat treat apparatus with sighting means
US5050232A (en) Movable heat treating apparatus utilizing proportionally controlled infrared lamps
US5782003A (en) Device for projecting a flat beam of diverging laser rays
US5982481A (en) Alignment system and method for dish concentrators
KR100295096B1 (en) Small Arms Laser Transmitter
US4466196A (en) Laser alignment system for vehicles
JP4044183B2 (en) Portable device for temperature measurement
US5085525A (en) Scanning infrared temperature sensor with sighting apparatus
US5136886A (en) Accelerated weathering and lightfastness testing chamber
WO2002057726A3 (en) Apparatus and method for measuring spatially varying bidirectional reflectance distribution function
JP2004515745A (en) Adjustment device with optical adjustment device with reflector
US5220840A (en) Method of calibrating light output of a multi-lamp light fastness testing chamber
JPS6329204B2 (en)
US4134680A (en) Vehicle headlight testing apparatus
US20090294671A1 (en) Target brightness
JP2000221036A (en) Surveying apparatus with apparatus height measuring device
EP1498709B1 (en) Laser system
CN111766562B (en) Tunnel tunneling guiding method and system
US5007734A (en) Apparatus for measuring the refraction characteristics of ophthamological lenses
US20030185349A1 (en) Device for a non-contact measurement of distance at a radiotherapy of the human body
US4588253A (en) Infrared collimator
US4629321A (en) Grade setting and calibration arrangement for laser beam projection device
GB2293770A (en) Luminotherapy device and measuring instrument
GB2307312A (en) Headlight aiming apparatus
US5373429A (en) Illuminator, especially a runway approach flashlight

Legal Events

Date Code Title Description
EEER Examination request