CA2095449A1 - Supersaturated Rare Earth Doped Semiconductor Layers by Chemical Vapor Deposition - Google Patents

Supersaturated Rare Earth Doped Semiconductor Layers by Chemical Vapor Deposition

Info

Publication number
CA2095449A1
CA2095449A1 CA2095449A CA2095449A CA2095449A1 CA 2095449 A1 CA2095449 A1 CA 2095449A1 CA 2095449 A CA2095449 A CA 2095449A CA 2095449 A CA2095449 A CA 2095449A CA 2095449 A1 CA2095449 A1 CA 2095449A1
Authority
CA
Canada
Prior art keywords
rare earth
supersaturated
erbium
semiconductor layers
doped semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2095449A
Other languages
French (fr)
Other versions
CA2095449C (en
Inventor
David B. Beach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CA2095449A1 publication Critical patent/CA2095449A1/en
Application granted granted Critical
Publication of CA2095449C publication Critical patent/CA2095449C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/205Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using reduction or decomposition of a gaseous compound yielding a solid condensate, i.e. chemical deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S252/00Compositions
    • Y10S252/95Doping agent source material
    • Y10S252/951Doping agent source material for vapor transport
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/914Doping
    • Y10S438/918Special or nonstandard dopant

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A CVD process for producing a rare earth-doped, epitaxial semiconductor layer on a substrate is disclosed. The process utilizes a silane or germane and a rare earth compound in the gas phase. By this method single phase, rare earth-doped semiconductor layers, supersaturated in the rare earth, are produced. The preferred rare earth is erbium and the preferred precursors for depositing erbium by CVD are erbium hexafluoroacetylacetonate, acetylacetonate, tetramethylheptanedionate and flurooctanedionate. The process may be used to produce optoelectronic devices comprising a silicon substrate and an erbium-doped epitaxial silicon film.
CA002095449A 1992-08-31 1993-05-04 Supersaturated rare earth doped semiconductor layers by chemical vapor deposition Expired - Fee Related CA2095449C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/940,416 US5322813A (en) 1992-08-31 1992-08-31 Method of making supersaturated rare earth doped semiconductor layers by chemical vapor deposition
US940,416 1992-08-31

Publications (2)

Publication Number Publication Date
CA2095449A1 true CA2095449A1 (en) 1994-03-01
CA2095449C CA2095449C (en) 1997-09-16

Family

ID=25474795

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002095449A Expired - Fee Related CA2095449C (en) 1992-08-31 1993-05-04 Supersaturated rare earth doped semiconductor layers by chemical vapor deposition

Country Status (11)

Country Link
US (3) US5322813A (en)
EP (1) EP0586321B1 (en)
JP (1) JPH0785467B2 (en)
KR (1) KR970008339B1 (en)
CN (3) CN1054234C (en)
AT (1) ATE166491T1 (en)
CA (1) CA2095449C (en)
DE (1) DE69318653T2 (en)
ES (1) ES2116426T3 (en)
MX (1) MX9305267A (en)
TW (1) TW229325B (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873549A (en) * 1987-03-03 1989-10-10 Mita Industrial Co., Ltd. Device for detecting the life of an image forming process unit, opening of a seal of the unit and attachment of the unit to an image forming apparatus
EP0650200B1 (en) * 1993-10-20 1999-03-10 Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno Solid state electro-luminescent device and process for fabrication thereof
US6093246A (en) * 1995-09-08 2000-07-25 Sandia Corporation Photonic crystal devices formed by a charged-particle beam
US5976941A (en) * 1997-06-06 1999-11-02 The Whitaker Corporation Ultrahigh vacuum deposition of silicon (Si-Ge) on HMIC substrates
US6040225A (en) * 1997-08-29 2000-03-21 The Whitaker Corporation Method of fabricating polysilicon based resistors in Si-Ge heterojunction devices
US6130471A (en) * 1997-08-29 2000-10-10 The Whitaker Corporation Ballasting of high power silicon-germanium heterojunction biploar transistors
KR100377716B1 (en) * 1998-02-25 2003-03-26 인터내셔널 비지네스 머신즈 코포레이션 Electric pumping of rare-earth-doped silicon for optical emission
US6307625B1 (en) 1998-06-29 2001-10-23 San Diego State University Method and apparatus for determination of carbon-halogen compounds and applications thereof
US6140669A (en) * 1999-02-20 2000-10-31 Ohio University Gallium nitride doped with rare earth ions and method and structure for achieving visible light emission
US6143072A (en) * 1999-04-06 2000-11-07 Ut-Battelle, Llc Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate
US6255669B1 (en) * 1999-04-23 2001-07-03 The University Of Cincinnati Visible light emitting device formed from wide band gap semiconductor doped with a rare earth element
KR100510996B1 (en) * 1999-12-30 2005-08-31 주식회사 하이닉스반도체 Method for optimizing processes of selective epitaxial growth
US6519543B1 (en) * 2000-05-09 2003-02-11 Agere Systems Inc. Calibration method for quantitative elemental analysis
US6734453B2 (en) 2000-08-08 2004-05-11 Translucent Photonics, Inc. Devices with optical gain in silicon
KR100384892B1 (en) * 2000-12-01 2003-05-22 한국전자통신연구원 Fabrication method of erbium-doped silicon nano-dots
US6853447B2 (en) * 2001-02-12 2005-02-08 Analytical Spectral Devices, Inc. System and method for the collection of spectral image data
US6894772B2 (en) * 2001-02-12 2005-05-17 Analytical Spectral Devices System and method for grouping reflectance data
JP2002334868A (en) * 2001-05-10 2002-11-22 Hitachi Kokusai Electric Inc Substrate treatment equipment and method for manufacturing semiconductor device
US20030111013A1 (en) * 2001-12-19 2003-06-19 Oosterlaken Theodorus Gerardus Maria Method for the deposition of silicon germanium layers
US6771369B2 (en) * 2002-03-12 2004-08-03 Analytical Spectral Devices, Inc. System and method for pharmacy validation and inspection
US20040214362A1 (en) * 2003-01-22 2004-10-28 Hill Steven E. Doped semiconductor nanocrystal layers and preparation thereof
US7440180B2 (en) * 2004-02-13 2008-10-21 Tang Yin S Integration of rare-earth doped amplifiers into semiconductor structures and uses of same
US7163878B2 (en) * 2004-11-12 2007-01-16 Texas Instruments Incorporated Ultra-shallow arsenic junction formation in silicon germanium
CN100385693C (en) * 2005-08-18 2008-04-30 中国科学院半导体研究所 Method for raising radiation of silicone based crystal thin film by use of process of plasma
DE102006031300A1 (en) * 2006-06-29 2008-01-03 Schmid Technology Systems Gmbh Method for doping silicon material for solar cells, correspondingly doped silicon material and solar cell
US20080138955A1 (en) * 2006-12-12 2008-06-12 Zhiyuan Ye Formation of epitaxial layer containing silicon
US8283201B2 (en) * 2008-06-05 2012-10-09 American Air Liquide, Inc. Preparation of lanthanide-containing precursors and deposition of lanthanide-containing films
US8269253B2 (en) * 2009-06-08 2012-09-18 International Rectifier Corporation Rare earth enhanced high electron mobility transistor and method for fabricating same
CN102828242B (en) * 2012-09-06 2015-05-27 西安隆基硅材料股份有限公司 Crystalline silicon with lower converting lighting quantum dots and preparation method thereof
US9481917B2 (en) * 2012-12-20 2016-11-01 United Technologies Corporation Gaseous based desulfurization of alloys
EP3027989B1 (en) * 2013-07-30 2018-02-28 Board of Regents, The University of Texas System Sample transfer to high vacuum transition flow
US9850573B1 (en) 2016-06-23 2017-12-26 Applied Materials, Inc. Non-line of sight deposition of erbium based plasma resistant ceramic coating
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
US10975469B2 (en) 2017-03-17 2021-04-13 Applied Materials, Inc. Plasma resistant coating of porous body by atomic layer deposition
GB201812765D0 (en) * 2018-08-06 2018-09-19 Univ London Queen Mary Substrate layer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1900116C3 (en) * 1969-01-02 1978-10-19 Siemens Ag, 1000 Berlin Und 8000 Muenchen Process for the production of high-purity monocrystalline layers consisting of silicon
US4385946A (en) * 1981-06-19 1983-05-31 Bell Telephone Laboratories, Incorporated Rapid alteration of ion implant dopant species to create regions of opposite conductivity
DE3319134A1 (en) * 1983-05-26 1985-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Optoelectronic component, in particular a laser diode or a light-emitting diode
US4618381A (en) * 1983-05-26 1986-10-21 Fuji Electric Corporate Research And Development Ltd. Method for adding impurities to semiconductor base material
US4800173A (en) * 1986-02-20 1989-01-24 Canon Kabushiki Kaisha Process for preparing Si or Ge epitaxial film using fluorine oxidant
US4826288A (en) * 1987-04-09 1989-05-02 Polaroid Corporation, Patent Department Method for fabricating optical fibers having cores with high rare earth content
US5248890A (en) * 1989-05-13 1993-09-28 Forschungszentrum Julich Gmbh Valance specific lanthanide doped optoelectronic metal fluoride semiconductor device
US5296048A (en) * 1989-05-31 1994-03-22 International Business Machines Corporation Class of magnetic materials for solid state devices
FR2650704B1 (en) * 1989-08-01 1994-05-06 Thomson Csf PROCESS FOR THE MANUFACTURE BY EPITAXY OF MONOCRYSTALLINE LAYERS OF MATERIALS WITH DIFFERENT MESH PARAMETERS
JPH042699A (en) * 1990-04-18 1992-01-07 Mitsubishi Electric Corp Growing of crystal
US5119460A (en) * 1991-04-25 1992-06-02 At&T Bell Laboratories Erbium-doped planar optical device
US5107538A (en) * 1991-06-06 1992-04-21 At&T Bell Laboratories Optical waveguide system comprising a rare-earth Si-based optical device
US5511946A (en) * 1994-12-08 1996-04-30 General Electric Company Cooled airfoil tip corner

Also Published As

Publication number Publication date
CN1054234C (en) 2000-07-05
JPH0785467B2 (en) 1995-09-13
CN1114225C (en) 2003-07-09
CN1255735A (en) 2000-06-07
JPH06177062A (en) 1994-06-24
EP0586321B1 (en) 1998-05-20
DE69318653D1 (en) 1998-06-25
KR940004714A (en) 1994-03-15
EP0586321A3 (en) 1996-03-27
DE69318653T2 (en) 1999-02-04
CN1255736A (en) 2000-06-07
US5534079A (en) 1996-07-09
EP0586321A2 (en) 1994-03-09
MX9305267A (en) 1994-02-28
TW229325B (en) 1994-09-01
CN1117389C (en) 2003-08-06
ATE166491T1 (en) 1998-06-15
CA2095449C (en) 1997-09-16
KR970008339B1 (en) 1997-05-23
US5646425A (en) 1997-07-08
US5322813A (en) 1994-06-21
ES2116426T3 (en) 1998-07-16
CN1085353A (en) 1994-04-13

Similar Documents

Publication Publication Date Title
CA2095449A1 (en) Supersaturated Rare Earth Doped Semiconductor Layers by Chemical Vapor Deposition
US5354387A (en) Boron phosphorus silicate glass composite layer on semiconductor wafer
JP2848647B2 (en) Method for producing silicon-containing coating using organic silicon compound and nitrogen trifluoride
EP0440154B1 (en) Two step process for forming an oxide layer over a stepped surface of a semiconductor wafer
KR930005115A (en) Silicon deposition method at low temperature and high pressure
EP0030638B2 (en) Method for depositing silicon or germanium containing films
US5242530A (en) Pulsed gas plasma-enhanced chemical vapor deposition of silicon
KR910015011A (en) Method of forming metal or metal silicide film
EP1126046A3 (en) Chemical vapor deposition of barriers from novel precursors
TW343375B (en) Low dielectric constant silicon dioxide sandwich layer
EP0421203B1 (en) An integrated circuit structure with a boron phosphorus silicate glass composite layer on semiconductor wafer and improved method for forming same
US5141892A (en) Process for depositing highly doped polysilicon layer on stepped surface of semiconductor wafer resulting in enhanced step coverage
KR950007021A (en) Semiconductor device with planarized insulating film
CA1208805A (en) Vertically isolated complementary transistors
TW326100B (en) Method for forming salicides
EP0845804A3 (en) Pre-treatment of substrate before deposition of an insulating film
US5250463A (en) Method of making doped semiconductor film having uniform impurity concentration on semiconductor substrate
WO2003100828A2 (en) Method of depositing an oxide film by chemical vapor deposition
EP0994118A3 (en) Complex for the high dielectric film deposition and the method of deposition
US3843398A (en) Catalytic process for depositing nitride films
Goulding The selective epitaxial growth of silicon
DE69404971T2 (en) METHOD FOR DEPOSITING A THIN LAYER ON A SUBSTRATE BY DELAYING COLD NITROGEN PLASMA
KR960036155A (en) P.L.T. Thin film manufacturing method
KR950012636A (en) Method for depositing a tungsten silicide thin film on a semiconductor substrate using dichlorosilane and tungsten hexafluoride
KR100235939B1 (en) A method for titanium carbon nitride film

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed