CA2096001C - Compositions of gastric acid-resistant microspheres containing salts of bile acid - Google Patents

Compositions of gastric acid-resistant microspheres containing salts of bile acid Download PDF

Info

Publication number
CA2096001C
CA2096001C CA002096001A CA2096001A CA2096001C CA 2096001 C CA2096001 C CA 2096001C CA 002096001 A CA002096001 A CA 002096001A CA 2096001 A CA2096001 A CA 2096001A CA 2096001 C CA2096001 C CA 2096001C
Authority
CA
Canada
Prior art keywords
composition
ursodeoxycholic acid
polymer
acid
microspheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002096001A
Other languages
French (fr)
Other versions
CA2096001A1 (en
Inventor
Tibor Sipos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Digestive Care Inc
Original Assignee
Digestive Care Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Digestive Care Inc filed Critical Digestive Care Inc
Publication of CA2096001A1 publication Critical patent/CA2096001A1/en
Application granted granted Critical
Publication of CA2096001C publication Critical patent/CA2096001C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/575Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of three or more carbon atoms, e.g. cholane, cholestane, ergosterol, sitosterol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/32Alcohol-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

Disclosed are gastric acid-resistant polymer-coated ursodeoxycholate compositions, process for their preparations and methods of treating digestive disorders, impaired liver function, autoimmune diseases of the liver and biliary tract, prevention of colon cancer following cholecystectomy, cystic fibrosis, dissolving gallstones and regulating dietary cholesterol absorption by administering said compositions to a mammal in need of such treatment.

Description

Ts-oo~
COMPOSITIONS OF GASTRIC ACID-RESISTANT MICROSPHERES
CONTA11~TING SALTS OF BILE ACIDS
Back~r~ound of the Invention Field of the Invention This invention relates to salts of ursodeoxycholic acid compositions for ingestion by a mammal, a process for preparing said compositions, and a 1 0 method for treating digestive disorders, impaired liver function, autoimmune diseases of the liver and biliary tract, prevention of colon cancer following cholecystectomy, cystic fibrosis, dissolving gallstones, and regulating dietary cholesterol absorption by administering said compositions to a mammal in need of such treatment.
Beg~rted Developments It is known in the prior art that ursodeoxycholic acid (hereinafter UDCA) administered to mammals can remedy various diseased conditions of 2 0 the liver, gallstones, liver toxicity due to toxic metabolites, alcohol induced hang-over, drug related toxicity, colon cancer following gallbladder surgery, and deficiency associated with poor digestion of fats and lipids in the intestine.
UDCA requires the presence of certain conditions in order for it to be safe and effective as will be described hereunder.
UDCA, conjugated-UDCA and other bile salts are produced by the patient's liver; stored in the gall bladder and released into the duodenum in response to a meal, the pH of which is slightly alkaline. Under these alkaline pH conditions UDCA is soluble and biologically active, and digestion of food by.
3 0 UDCA proceeds normally in the upper segment of the intestine. However, when UDCA is administered exogenously to the patient, the gastric conditions in the stomach, namely the presence of acid, will render the UDCA insoluble.
The insoluble UDCA is biologically inactive. Therefore, orally administered Na-UDCA must be protected against gastric inactivation so that it remains 3 5 intact during its transit through the stomach into the duodenum.

Once the exogenously introduced UDCA reaches the duodenum, another requirement must be satisfied: the UDCA must be released from its protective environment and intimately mixed with the food transferred from the stomach to effect digestion.
U.S. Patent No. 4,079,125, addresses these requirements in a composition containing pancreatic enzymes, which closely approximate the behavior of Na-UDCA in the acidic environment of the stomach and in the neutral-to-basic environment of the upper intestine, and provides preparative methods for making the compositions.
The compositions provided by said patent comprise: an enzyme concentrate formulated with a binder/disintegrant and is coated with a non-porous, pharmaceutically acceptable enteric coating polymer which is insoluble in the pH range of from about 1.5 to about 5 normally present in gastric fluids, and soluble at a pH of from about 6 to about 9, the normal pH range for mammalian intestinal fluids. The orally administered composition passes through the stomach while being protected against the acidic environment by its acid-insoluble coating which then disintegrates in the neutral to basic environment of the upper intestine releasing the enzymes from the composition.
The process of making the compositions includes the provision of using a solvent and avoiding the presence of water in the blending step of the enzyme/binder/disintegrant, since it is believed that water deactivates some of the enzymes.
It is known that ursodeoxycholic acid is capable of augmenting liver function, dissolving gallstones and improving the nutritional state of patients having cystic fibrosis caused by hepatobiliary complications. (See for example:
Ursodeoxycholic acid dissolution of gallstones in cystic fibrosis. Sahl, B., Howat, J., Webb, K., Thorax, 43:490.1 (1988); Effects of Ursodeoxycholic Acid Therapy for Liver Disease Associated with Cystic Fibrosis. Colombo, C., Setchell, K.D., Podda, M., Crosignani, A., Roda A., Curcio, L., Ronchi, M. and Giunta, A., The Journal of Pediatrics, 117:482-489 (1990); Effects of Ursodeoxycholic Acid Treatment on Nutrition and Liver Function in Patients with Cystic Fibrosis and Longstanding Cholestasis. Lotting, J., Lentze, M.J.
and Reichen, J., ut 31:918-921 (1990). Also, UDCA has recently gained acceptance as an effective therapeutic modality to dissolve small to medium size cholesterol gallstones in gallstone afflicted patients. (See for example:
The Effect of High and Low Doses of Ursodeoxycholic Acid on Gallstone Dissolution in Humans, Salen, G., Colalillo, A., Verga, D., Bagan, E., Tint, G.S. and Shefer, S., Gastro., 78:1412-1418 (1980); Ursodeoxycholic Acid: A
Clinical Trial of a Safe and Effective Agent for Dissolving Cholesterol Gallstones, Tint, G.S., Salen, G., Colalillo, A., Graber, D., Verga, D. Speck, J.
and Shefer, S., Annals of Internal Medicine, 91:1007-1018 (1986); Clinical Perspective on the Treatment of Gallstones with Ursodeoxycholic Acid, Salen, G., J. Clin. Gastroenteroloav, 10 (Suppl. 2):512-17 (1988); Nonsurgical 1 0 Treatment of Gallstones, Salen, G. and Tint, G.S., New En~ land J. Med., 320:665-66 (1989); and Reducing Cholesterol Levels, A.H. Weigand, U. S. Patent No. 3,859,437. The recommended dosage is 10 to 15 mg/kg of body weight. In some patients much higher dosages (for example, about 30 mg/kg of body weight) are required to achieve limited benefits. However, in some patients 1 5 undesirable side effects (such as severe diarrhea) seriously limit the use of this drug. The reasons for this wide variation of dosage requirements for therapeutic effectiveness and associated side effects are not completely understood. One hypothesis is that the acidic form of UDCA is only partially neutralized in the upper intestine to its sodium salt form. Many patients, such 2 0 as patients with cystic fibrosis, pancreatitis or Billroth I & II and many elderly are de~.cient in bicarbonate secretion and lack neutralization capacity. These patients will only partially benefit from UDCA therapy. The insoluble acidic form of UDCA is poorly absoxbed from the intestine, and a good portion of the administered dosage is excreted intact with feces. When a higher dosage of 2 5 the acidic form of UDCA is administered to the patient, a large portion of it is neutralized in the distal parts of the intestine which in turn induces diarrhea, a highly undesirable side effect. Also, if the acidic form of UDCA is to be converted into its salt form in the duodenum, it will temporarily exhaust the buffering capacity of the duodenum and it will render the upper intestine 3 0 partially acidic. The acidic pH impedes the function of the pancreatic enzymes and UDCA cannot emulsify fats and facilitate the hydrolysis of lipids.
Furthermore, the many therapeutic benefits derived from the salt forms of UDCA cannot be realized. Accordingly, the salt forms of UDCA should be administexed to patients in need of IJDCA, since only the ionized, i.e. salt form 3 5 of UDCA possess the desirable biological characteristics in the upper intestine, 20~60~~
including the following: 1) is readily absorbed from the intestine; 2) inhibits cholecystokinin release by the intestinal mucosa, thus ameliorating pain and producing symptomatic relief; 3) enhances the flow of bile which cleanses the liver cells from accumulated toxic metabolites and thus reduces liver toxicity and autoimmune diseases of the liver and biliary tract; 4) prevents the binding and absorption of deoxycholic acid in the colon, thus prevents colon cancer development; 5) prevents the crystallization of cholesterol into gallstones;
6) emulsifies fats; and 7) facilitates the hydrolysis of fat globules. U. S.
Patent No.
3,859,437 recommends the administration of a "small but effective amount 1 0 sufficient to effect a reduction in the cholesterol level of said human being, of the compound 3a, 7(3-dihydroxy-5~3-cholanic acid (UDCA) and the non-toxic pharmaceutically acceptable salts thereof" However, administering the salt form of UDCA to patients has no advantage over the acidic form of UDCA and does not accomplish the desired result since the salt form of UDCA is 1 5 converted back to the acidic form of UDCA by gastric acidity. Furthermore, the salt forms, i.e., sodium or potassium, of UDCA are extremely bitter-tasting, ana in most patients cause esophageal reflux, nausea and vomiting. Because of these highly undesirable organoleptic and gastric side effects, the salt forms of UDCA have not gained therapeutic utility in the treatment of biliary 2 0 diseases.
It has now been discovered that the problems associated with tablets and capsules containing UDCA may be overcome in a composition containing a salt of UDCA instead of the acidic form of UDCA. In accordance with the 2 5 discovery, UDCA is first converted to a pharmaceutically acceptable salt, such as a sodium or a potassium salt, processed into microspheres, and coated with an acid-resistant polymer coating. Such composition overcomes the herein-described problems: 1) the polymer coating protects the Na-UDCA from gastric acidity and from conversion back to the insoluble acidic form; and 2) 3 0 once the microspheres pass through the stomach in the duodenum, the protective coating dissolves in the neutral-to-alkaline range of the upper intestine. The microspheres disintegrate and release the Na-UDCA into the intestine within ten to thirty minutes. Once the Na-UDCA is released from the microspheres, it provides extra buffering capacity to neutralize the acid thyme 3 5 and is rapidly absorbed from the intestine.
~~~~QV~.
It has also been discovered that the salt of UDCA composition can be prepared into microtablets and microspheres in the presence of moisture without having detrimental effects on the bile salt composition thereby resulting in products that do not crumble upon drying or disintegrate upon initiation of the polymer coating procedure. This discovery is contrary to the teaching of the aforementioned U.S. Patent No. 4,079,125 which requires complete exclusion of water (anhydrous condition) during the process of preparing pancreatic enzyme-containing microtablets and microsgheres. It 1 0 was found that anhydrous conditions leads to products that are extremely friable, tend to crumble into pieces upon drying in a fluidized bed dryer or a conventional coating pan and disintegrate upon initiation of the polymer coating step. This results in large amounts of dust and agglomeration of the beads into multiplets during the process as well as improper doses of Na-1 5 UDCA upon administration to the patient when quality control fails adequately to sort-out and discard said rejects. The bitter taste and associated gastric disadvantages of UDCA are also eliminated by the polymer coating which prevents solubilization of the product in the mouth and stomach of the patient.
2 0 Still further, it has been discovered that microspheres in the range of 10 to 40 mesh size can be prepared utilizing bile salts as seeds to build up the microspheres. Such small particle size microspheres are especially beneficial for treating bile salt deficiencies in cystic fibrosis children.
Sum~p~~~,r~f of thg Ir~v~~nti,~r~
This invention will be described with particular reference to salts of ursodeoxycholic acid, however, it is to be understood that other bile salts may be used as well.
In accordance with one aspect of the invention, there is provided a microencapsulated, polymer-coated composition comprising a salt of UDCA in a novel pharmaceutical dosage form. In another aspect, the invention provides a process for preparing salts of UDCA for use in said composition. In still another aspect, the invention provides a process for the preparation of gastric acid-resistant polymer-coated bile salt-containing microspheres and microtablets. In another aspect, the invention provides a method for treating bile salt deficiencies associated with biliary diseases in mammals, such as gallstones, liver toxicity due to toxic metabolites and autoimmune disease of the liver and biliary tract, alcohol induced hang-over, drug related toxicity', prevention of colon cancer following cholescystectomy, deficiency associated with poor digestion of fats and lipids in the intestines, and regulating dietary cholesterol absorption.
In accordance with one embodiment of the present invention there is provided a process for preparing a ursodeoxycl°~olate composition for the treatment of ursodeoxycholic acid deficient mammals comprising the steps of: a) preparing a starting seed of the ursodeoxycholate comprising: blending the powdery salt of ursodeoxycholic acid with a disintegrant and a buffering agent; b) spraying the blend with a solution of an adhesive polymer until the blend agglomerates; c) granulating or extruding the moistened blend through a 10 or 18 mesh S/S screen; d) converting the granules to a uniform diameter particle size of 40 to fi0 mesh; e) compacting the uniform particles to spherical particles; f) drying the spherical particles;
g) separating the spherical particles if not of uniform size according to desired sizes using U.S.

Standard sieve screens; h) employing the 40 to 60 mesh particles as staring seeds for the preparation of larger microspheres in the 10 to 20 mesh size range by placing the 40 to 60 mesh starting seeds in a rotating coating pan" spraying the microspheres with a liquid/adhesive polymer-containing mixture, followed by slowly dusting the buffered Na-ursodeoxycholic acidldisintegrant composition over the tumbling and flowing starting seeds until the desired particle sizes are obtained.
In accordance with another embodiment of the present invention there is provided a method for treating ursodeoxychoiic acid deficiency in mammals comprising orally administering an effective amount of the composition.
In accordance with yet another embodiment of the present invention there is provided a method wherein the bile acid deficiency treatment is to eliminate in a mammal diseased states or conditions selected from the group consising of digestive disorders, impaired liver function, autaimmune diseases of the liver and biliary tract, prevention of colon cancer following cholecystectomy, alcohol induced hang-over, drug related toxicity" deficiency associated with poor digestion of fats and lipids, cystic fibrosis, gallstones, and regulating dietaryr cholesterol absorption.
In accordance with a further embodiment of the present invention there is provided a method wherein the composition is administered admixed with a liquid or a semi-solid food.
In accordance with one embodiment of the present invention there is provided a bile salt composition for the treatment of ursadeoxycholic acid deficiency of a mammal comprising, by weight per weight percentages based on the total weight of the composition: a) from about 60 to about 89°~ of a therapeutically acceptable salt of ursodeoxycholic acid ore conjugated derivative of ursodeoxycholic acid in powder form; b) up to about ~% of a buffering agent selected from the group consisting of 6a about 0.25 to about 5%, anhydrous sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate and from about 0.25 to about 1.5°~
tromethamine, diethanolamine and triethanolamine; c) from about 1.0 to about 16%
of a disintegrant selected from the group consisting of starch and modified starches, microcrystalline cellulose and propylene glycol alginate; d) from about 2 to about 19°~ of an adhesive polymer selected from the group consisting of hydroxypropyl cellulose, polyvinylpyrrolidone, cellulose acetate phthalate and methyl cellulose; and e) from about 8°~ to about 16°~ of a non-porous, gastric acid-resistant and pharmaceutically acceptable polymer-coating which contains less than 2% talc and which is insoluble in a pH range of from about 1.5 to about 5 but is soluble in pH
range of from about 5.5 to about 9.
In accordance with another embodiment of the present invention there is provided the use of a therapeutically effective amount of the composition noted above for the treatment of ursadeoxycholic acid deficiencies.
In accordance with yet another embodiment of the present invention there is provided a process for preparing a therapeutically acceptable ursodeoxycholic composition for the treatment of ursodeoxycholic acid deficient mammals comprising the steps of: a) blending dry, powdery ingredients comprising (i) from about 60 to about 89% wlw of a salt of ursadeoxychoiic acid or a conjugated derivative of ursodeoxycholic acid; (ii) up to about 5°~ of a buffering agent selected from the group consisting of from about 0.25 to about 5.0°h wlw anhydrous sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate and from about 0.25 to about 1.5% w/w, tromethamine, diethanalamine and triethanolamine;
(iii) of from about 2 to about 19°r6 wlw of an adhesive polymer selected from the group consisting of polyvinylpyrrolidone, cellulose acetate phthalate, hydroxypropylcellulose and methylcellulose and; (iv) of from about 1 to about 16°~
w/w of a disintegrant selected from the group consisting of starch and rnodified 6b starches, microcrystalline cellulose and propylene glycol alginate to form a blend thereof; b) wetting the blend with a liquid to cause the blend to stick together to form liquid-wetted blend, and wherein said liquid is selected from the group consisting of:
1 %-25% w/w ethanol/75% - 99% w/w 2-propanol/0.2% - 2% w/w water; 98% - 99%
w/w 2-propano1/0.2°r6 - 2°~ wlw water; 1 % - 25°~ w/w methanol/0.2°~ - 2°~ w/w water/75% - 98% w/w 2 propanol/1 % - 5°/a w/w ethylacetate; c) granulating or extruding the liquid-wetted blend through a 10 to 18 mesh S/S screen to form granules; d) converting the granules to a uniform diameter particle size; e) compacting the uniform particles to spherical particles; f) drying the spherical particles; g) separating the spherical particles, which are not of uniform size, into desired sizes; h) coating the particles with a gastric acid-resistant polymer that disintegrates under neutral or slightly basic conditions to form generally polymer coated spherical particles; and i) drying the generally polymer-coated spherical particles.
In accordance with a further embodiment of the present invention there is provided the use of a therapeutically effective amount of the compositian prepared by any of the above processes.
In accordance with a still further embodiment of the present invention there is provided a process for preparing a therapeutically acceptable ursodeoxycholate composition for the treatment of ursodeoxycholic acid deficient mammals comprising the steps of: a) preparing a starting seed of the ursodeoxycholic comprising:
blending a powdery salt of ursodeoxycholic acid or a conjugated derivative of ursodeoxycholic acid with a disintegrant and a buffering agent to form a blend thereof; b) spraying the blend with a solution of an adhesive polymer until the blend agglomerates to form a moistened blend; c) granulating or extruding the moistened blend through a 10 to 18 mesh S/S screen to form granules; d) converting the granules to a uniform diameter particle size of 20 to fi0 mesh; e) compacting the uniform particles to spherical particles; f) drying the spherical particles;
g) separating the spherical particles, which are not of uniform size into desired sizes; h) employing said 20 to 60 mesh particles as starting seeds far the preparation of larger microspheres in the 10 to 20 mesh size range by placing the 20 to 60 mesh starting seeds in a rotating coating pan wherein the seeds are tumbling, spraying the microspheres with a liquid~adhesive polymer-containing mixture; i) dusting the salt of ursodeoxycholic acid over the tumbling starting seeds until the desired particle sizes are obtained; j) coating the particles with a gastric acid-resistant polymer that dissolves under neutral or slightly basic conditions to form generally polymer-coated spherical particles, and k) drying the generally polymer-coated spherical particles.
,alts of UDCA and Pr~paration'hereof The pharmaceutically acceptable, water soluble salts of UDCA and conjugated derivatives of UDCA (for example, glycol and taurine ursadeoxycholate, N-methylglycyl and N-methyltaurine ursodeoxycholate) include the sodium, potassium and ammonium salts of UDCA and conjugated-UDCA of which the sodium salt is preferred. Suitable salt complexes of UDCA and conjugated-UDCA with organic bases may also be used including tromethamine, ethanolamine, diethanolamine and triethanolamine salts..
In preparing salts of UDCA and conjugated-UDCA, the acidic form of UDCA
is dissolved in a suitable solvent followed by titration of solvated acid with a water-soluble alkaline hydroxide, carbonate, bicarbonate or buffer solution, such as sodium hydroxide, sodium carbonate, sodium bicarbonate, 6d potassium hydroxide, potassium carbonate, potassium bicarbonate, tromethamine, and the like, until the pH of the solution reaches about 8.6.
Most of the solvents are then removed farm the titrated solution by evaporation or distillation and the salt of I.JDCA is reacoverecl by spray drying oz' by lyophilizing the remaining solution.
For one modification of preparing salts of LTT~CA, an alcoholic solution of UDCA is percolated through a cr~tian~-exchange resin (DowexTM) in its sodium form, followed by washing the column with two resin-bed volume of methanol, 1 0 concentrating the methanol wash and recovering the Na-UDCA crystals from the methanolic mother liquor.
In accordance with the present invention, salts of UDCA compositions are provided which possess desirable characteristics heretobefore: absent in 1 5 proposed or existing prier art products.
The salts of UDCA are instantly salable in water, while UDCA alone is essentially insoluble.
2 0 Only the salts and conjugated derivatives of UDCA are absorbed from the intestine, while the acidic forrn al' ~UDCA is passed through the intestine intact, unless it is converted to the radium salt by intestinal buffers.
However, many patients, such as patients with cystic fibrosis, pancreatitis, Billroth I
&
II diseases and some elderly people, are defzcie:nt in bicarbonate secretion and 2 5 lack neutralization capacity to convert the acidic form of UDCA to the sodium salt of UDCA. These patients will only partially benefit from the insoluble acidic form of UDCA therapy. ~I'he silt of UDCA-containing composition of the present invention overcomes this problem by being instantly soluble in the intestinal juices and is readily absorbable Pram the intestine. Additionally, the 3 0 composition also provides extra buffering capacity to neutralize the acid chyme that is present in the intestine and re-establish the normal digestive conditions in patients deficient of intestinal buffer:,.
The salts of UDCA composition is microencapsulated and coated with 3 5 an acid-resistant polymer-caatirig, which protects the composition from gastric acid and from conversion of the salts of UDCA to the insoluble acidic form of UDCA. The polymer-coated microcapsules are tasteless and the problem associated with the offensive bitter taste of the uncoated acidic form of UDCA or the uncoated salts of UDCA is thereby alleviated.
The microcapsules uniformly disperse with the food in the stomach and deliver high levels of biologically active salts of UDCA into the duodenum.
Once in the duodenum, the polymer coating dissolves within about 10 to 30 minutes and the salts of UDCA are released to enhance digestion of fats and 1 0 lipids. As a result, the natural digestive conditions in the intestine are re-established. Epigastric pain, cramps, bloating, flatulence and stool frequency associated with maldigestion of fatty foods are reduced.
Soluble salts of UDCA and conjugated derivatives of UDCA are absorbed 1 5 more ef~xciently and in a greater quantity from the intestine than the insoluble acidic form of UDCA, resulting in a more efficient stimulation of the liver enzymes to conjugate ursodiol (UDCA). The increased concentration of the conjugated ursodiol stimulates bile flow, enhances the displacement of toxic bile acid metabolites from the hepatocytes, decreases cholesterol secretion into 2 0. bile, alters the cholesterol/phospholipid ratio of secreted bile and decreases the absorption of dietary cholesterol from the intestine. The overall result is decreased biliary cholesterol saturation, increased bile flow, dissolution of alxeady formed cholesterol gallstones and protection of the liver from accumulated toxic metabolites.
Compositions of Salts of UDCA
The composition containing a salt of UDCA comprises a blend of ingredients and a coating therefor expressed in weight per weight percentages 0 based on the total weight of the composition:
a) from about 60. to about 89% of a salt of UDCA in powder or microsphexe form;

2 ~i 9 ~ ~'~ :~ T~ooS
b) up to 5% of a buffering agent selected from the group consisting of about 0.25 to about 5.0% sodium carbonate (anhydrous powder), sodium bicarbonate, potassium carbonate and potassium bicarbonate and from about 0.25 to about 1.5% tromethamine, diethanolamine and triethanolamine;
c) from about 1.0 to about 16% of a disintegrant selected from the group consisting of starch and modified starches, microcrystalline cellulose and propylene glycol alginate;
d) from about 2.0 to about 19% of an adhesive polymer selected from the group consisting of polyvinylpyrrolidone, hydroxypropyl cellulose, cellulose acetate phthalate, and methyl cellulose; and 1 S e) from about 8.0 to about 16% of a non-porous, pharmaceutically acceptable gastric acid-resistant polymer-coating which contains less than 2% talc and which is insoluble in the pH range of from about 1.5 to about 5 but is soluble~in the pH range of from about 5.5 to about 9.
The Process of Making~the Microsphere In accordance with the present invention, the bile salt composition is prepared by a,process comprising the steps of a) blending dry, powdery ingredients selected from the group consisting of (i) from about 60 to about 92% w/w of a salt or conjugated derivative of UDCA
from the group consisting of sodium, potassium, ammonium, tromethamine, ethanolamine, diethanolamine and triethanolamine; (ii) 3 0 up to 5% of a buffering agent selected from the group consisting of from about 0.25 to about 5.0% w/w sodium carbonate (anhydrous), sodium bicarbonate, potassium carbonate and potassium bicarbonate and from about 0.25 to about 1.5% w/w, tromethamine, diethanolamine and triethanolamine; (iii) of from about 1.0 to about 16% w/w of a disintegrant 3 5 selected from the group consisting of starch and modified starches, Ts-oo5 microcrystalline cellulose and propylene glycol alginate; and (iv) from about 2.0% to about 19% w/w of an adhesive polymer selected from the group consisting of polyvinylpyrrolidone, cellulose acetate phthalate, hydroxypropyl cellulose and methylcellulose;
b) wetting said blended ingredients with a liquid to cause the blend to stick together, wherein said liquid is selected from the group consisting of: 1%-25% w/w ethanol/75% - 99% w/w 2-propanol/0.2% - 2% w/w water; 98% -99% w/w 2-propanol/0.2% - 2% w/w water; 1% - 25% w/w methanol/0.2% -1 0 2% w/w water/75%o - 98% w/w 2 propanol/1% - 5% w/w ethylacetate;
c) granulating or extruding the liquid-wetted blend through a 10 to 18 mesh S/S screen;
1 ~5 d) converting the granules to a uniform diameter particle size;
e) compacting the uniform particles to spherical particles;
f) drying the spherical particles;
g) separating the spherical particles if not of uniform size according to desired sizes using U.S. Standard sieve screens;
h) coating the particles with a gastric acid-resistant polymer that dissolves 2 5 under neutral or slightly basic conditions; and i) drying the polymer-coated spherical particles.

DETAILED DESCRIPTION OF THE lIVVENTION

In preparing the bile salt containing microspheres of the present invention utilizing the extrusion, uni-sizer and marumerization process (later described) moisture must be included in the liquid or solvent-adhesive composition to render the adhesive polymer sticky enough to bind the bile salt-containing fluffy powder into a pliable, solid mass. This prevents the crumbling of the microspheres during the drying and coating process as well as allows the preparation of much smaller particle size microspheres, i.e. in 1 0 the range of 10 to 80 mesh. Accordingly, it was found that the moisture level during the preparation of the composition should be in the range of from about 0.2% w/w to about 2.5% w/w, preferably, in the range of 0.2%w/w to 1.5% w/w, and most preferably in the range of 0.2% w/w to 3.0% w/w. When the compositions contained such amounts of moisture, the microspheres were 1 5 found to be stable on aging and the integrity of the microspheres was preserved.
Further reference is now made to the process of preparing compositions of the present invention.
The process of manufacturing the micro spheres comprises the following steps:
a) The dry, powdery ingredients are blended together in a conventional 2 5 blender.
b) The blend is then wetted with a suitable liquid, hereinbefore described, that causes the dry blend to stick .together. The stickiness of the blend can be tested by compressing a handful of the blend in the palm of the hand. If 3 0 the composition is compressible and sticks together but readily crumbles when squeezed between the fingers, sufficient liquid has been added to the composition for processing in the subsequent granulation step.
c) The blend is granulated or extruded though a 10 to 18 mesh S/S screen 3 5 using an oscillating/reciprocating granulator or a twin-screw extruder at a medium-to-high speed.

d) The granulated particles are classified in a so-called uni-sizer vessel that rotates at 15 to 45 rpm for about 5 to 10 minutes. The particles in this vessel are converted to a uniform diameter particle size.
e) The uniform particles are then compacted in a marumerizer, which is essentially a cylindrical vessel with a rotating disk at the bottom thereof, for about 15 to 90 seconds. An alternative method of compacting the microspheres can also be accomplished in a rotating conventional coating pan. In this case, the particles are tumbled in the pan for about 15 to 30 1 0 minutes, occasionally wetting the particles with a fine mist of the liquid composition (described in (b) under the Summary of the Invention).
f) The spherical particles axe dried in an oven under a stream of dry air not exceeding 35~C and 40% relative humidity.
g) The microspheres are separated according to the desired sizes using U. S.
Standard sieve screens.
h) The microspheres having 10 to 20 and 30 to 40 mesh size are separately 2 0 ~ coated with an acid-resistant polymer in a fluidized bed coating equipment, or in a conventional coating pan according to standard operating procedures as described in the manufacturer's instruction manual.
2 5 i) The polymer-coated microspheres are then dried in an oven under a stream of warm and dry air, not exceeding 35oC and 40% relative humidity until all the volatile substances (moisture and solvents) are removed.
3 0 The following examples will further serve to illustrate the compositions of the present invention wherein the compositions and the process of preparing them will be described with reference to microsphere forms; however, it is to be noted that the microtablet form of the composition and the process of making it is also intended to be covered by the present invention. The process of making 3 5 the microtablet form of the composition is analogous to that of making the microspheres with the exception that the 20 to 80 mesh particles are compressed together into microtablets of 0.5 mm to 2.5 mm with a suitable tablet press and polymer-coated, and should be understood by those skilled in the art.
Exam~~le I: Formula Composition (microspheres) 1 0 A (uncoated) B (coated) In~,redients %w/w %w/w Disintegrant................................... 5.0 4.3 Sodium-Ursodeoxycholate ................ 89.0 76.'7 1 5 Buffering agent (anhydrous) .....:...... 3.0 2.6 Adhesive Polymer ........................... 3.0 2.6 Polymer coat/talc mixture................ 13.8 Example II: Formula Composition (microspheres) 2 5 A (uncoated) B (coated) Ingredients %w/w %w/w Disintegrant...................................~ 9.0 ~ 7.6 Sodium-Ursodeoxycholate................82.0 69.5 3 0 Buffering agent (anhydrous) 1.0 0.8 ............

Adhesive Polymer ...........................8.0 6.8 Polymer coat/talc mixture................ 15.3 I ~.

Example III: Formula Composition (Microtablets) A (uncoated) B (coated) Ingredients % wlw % w/w Disintegrant.............................................3.0 2.7 Sodiuim-Ursodeoxycholate...................... 92.0 82.1 Buffering agent (anhydrous) 1.0 0.9 Adhesive Polymer....................................3.0 2.7 Lubricant (stearic acid)............................1.0 0.9 Polymer coat/talc mixture......................... 10.7 The microtablets are prepared by the following procedure: 1 ) grinding the dry blend of Na-UDCAlbufferldisintegrant in a centrifugal mill or impact pulverizer to a uniform particle size; 2) spraying the powdery mix with a fine mist of the adhesive polymer/liquid mixture; 3) and drying the composition, followed by blending the dried composition with a lubricant and compressing the free flowing powder into microtablets of 1.5 mm x 2.0 mm with appropriate punches and dies and using a tableting press as described in U.S. Patent No. 4,828,843 (Pich et al.).
The microtablets are polymer coated with a gastric acid-resistant polymer as described above in The Process of Making the Microspheres.
Example IV: Formula Composition (polymer coated microspheres) Ingredients % wlw Bile salt starting seed (20-40 mesh)........................................
12.8 Disintegrant...................................................................
.......... 2.3 Buffering agent (anhydrous).................................................... 1.1 Sodium-Ursodeoxycholate.....................................................
61.7 Adhesive polymer mixture......................................................
12.1 Polymer coat/talc mixture....................................................... 10.7 The microspheres were prepared by employing a conventional coating pan. The microspheres were built up to larger particle sizes by placing the bile salt-containing 30 to 40 mesh starting seeds in the rotating coating pan, wetting the microspheres with the liquid/adhesive polymer-containing mixture, followed by slowly dusting the Na-UDCA/buffer/disintegrant composition over the tumbling and flowing bile salt seeds. The sequence of these steps is repeated until the seeds are built up into microspheres having diameters in the range of 10 to 20 mesh, preferably 14 to 16 mesh.
1 0 An alternate procedure for the preparation of the microspheres was carried out in fluidized bed coating equipment (Glatt Mfg. Co.) using a Wurster column. The starting seeds were placed in the equipment and fluidization was started. The Na-UDCA/disintegrant/ buffer/adhesive polymer mixture was sprayed on the fluidized microspheres as a homogenous mixture 1 5 at a rate that allowed the growth of the starting seeds to larger microspheres.
Exam lp a V: Preparation of Bile Salt Containing Starting Seeds 2 0 In~~redients %w/w Bile Salt ......................................... 60.7 Disintegrant................................... 16.0 Buffering agent (anhydrous) ............ 4.6 2 S Adhesive polymer mixture............... 18.7 The process of making the bile salt-containing starting seeds consisted of 1) blending the bile salt, disintegrant and the buffering agent together for 10 minutes; 2) spraying the composition with the adhesive polymer mixture until 3 0 the powdery blend agglomerated; and 3) granulating or extruding the liquid moistened composition through a 10 or 18 mesh S/S scre.en using an oscillating/reciprocating granulator or a twin-screw extruder. The subsequent processing steps were the same as outlined in Steps a through g in "The Process of Making the Microspheres" under Summary of the Invention.

Example VI: Preparation of Salts of Ursodeoxycholic Acid 20g of UDCA is dissolved in 1.00 ml of alcohol (methanol, ethanol, isopropanol or any other suitable alcalaol that is easily removed after UDCA
has been neutralized) and a 1.010-;30% salutior~ oi° hydroxide, bicarbonate or carbonate solution of Na, K, etc. is added to the reaction mixture with vigorous mixing. The UDCA solution is titratecl until thc.~ pI-I reaches ~.5. The alcohol is removed from the reaction mixture an a rotor°y evaporator, and the aqueous solution is lyophilized or spray-dried to recover the Na-UDCA.
Reference is now made to the ingredients used in the above examples:
Bile Salts: Water soluble Salts of UDCr'~ and conjugated derivatives of UDCA
(for example, glycyl and taurine ursadeoxycholate, N-methylglycyl and N-methyltauroursodeoxycholate) include the :odium, potassium and ammonium salts of UDCA and UI)CA-aonjuga~;es of which the sodium salt is preferred. Suitable salt complexes of l_1I)f;A. and UDCA-conjugates with organic bases may also be used including tromethamine, ethanolamine, diethanolamine and triethanolamine salts.
Disintegrant: ExplotabT~' (Mendell, Inc.') and micracrystalline cellulose.
Buffering agents: from about 0.25% to about S.O~Io w/w~o, sodium carbonate (anhydrous), sodium bicarbonate, potassium carbonate, potassium 2 5 bicarbonate and based on the total weight of the composition; from about 0.251 to about i.5olo why%~ tromethamir~e, diethanalamine and trisahanolamine based on the total weight of the composition.
Adhesive Polymeric Agents: Hydroxypropyl cellulose (Klucel HF, Hercules 3 0 Co.), polyvinylpyrrolidone (Plasdone, GAF Co.), a &0:40 blend of methyl cellulose and ethyl cellulose (Dow C~hem. Co.), hydroxypropyl methyl cellulose (Grades 50 and 55, Eastman Kodak Co.), cellule~se acetate phthalate (Eastman Kodak Co.) and propylene glycol al~~inate (Keleo Ca. e.

Acid-resistant polymers to coat the microspheres and rnicrotablets:
hydroxypropyl methyl cellulose phthalate, Grades 50 and 55 (Eastman Kodak Co., or Shin-Etsu Chemical Co., Ltd.), Aquateri~ aqueous enteric coating polymer dispersion (FMC Corp.), Eudragit~ acrylic based polymeric S dispersion (Rohm Pharma GMBH, Germany), and cellulose acetate phthalate (Eastman Kodak Co.). The following example will further illustrate the composition of the acid-resistant polymer-coatings:
1 0 Example VII
%w/w Hydroxypropyl methyl cellulose phthalate (HPMCP)*..... 7.5 Diethyl phthalate (DEP) .............................................. 2.0 1 5 Isopropyl alcohol (IPA)...............................................
45.0 Ethylacetate (EtoAc) ................................................... 45.0 Talc, USP..................................................................
0.5 2 0 * When the hydroxypropyl methyl cellulose phthalate was replaced with cellulose acetate phthalate, an equally suitable acid-resistant polymer-coating was obtained, as long as talc was also included in the composition. The presence of talc with the film-forming polymer caused the deposition of an acid-impermeable polymer coat. When Aquateric~ or Eudragit~ aqueous 2 5 enteric coating polymer dispersion was employed in place of hydroxypropyl methyl cellulose phthalate (HPMCP), the niicrospheres were first sealed with a thin layer coat of the HPMCP (2-4% w/w of the microspheres) followed by coating with the Aquateric4 or Eudragit~. The advantage of using an aqueous based polymeric dispersion is to save on solvents that are evaporated 3 0 during the solvent based coating step and cut down on air pollution.
Distribution of microspheres according to sizes is shown in Table I

Table I
Distribution of the Microspheres According, to Sizes Example IIB Example IIIB

Mesh Size mm Microspheres (%) Micros~heres (%) 2.00 8.2 3.3%

14 30.0 57.0%

0.84 53.8 32.7%

40 0.42 10.0 7.0%

Method of Treating UD~A Deficiency The composition of the present invention are orally administerable to patients having UDCA deficiency in an effective amount to treat such deficiency. The compositions are tasteless unlike the insoluble acidic form of UDCA which is associated with an offensive bitter taste. This advantage increases patient compliance in taking the medication. The microspheres are administerable admixed with food or they may be filled into gelatin capsules 2 0 for administration in a conventional mariner. In both methods of administration the microcapsules pass through the stomach intact, being protected by their acid-resistant coating. While in the stomach, the microcapsules uniformly disperse with the food therein and pass into the duodenum to deliver high levels of biologically active salts of UDCA. In the 2 5 ~ duodenum the polymer coating dissolves within ten to thirty minutes and the salt of UDCA is released.
The total amount of the composition required to be administered to a bile acid deficient patient will vary with the severity of the conditions, age and other 3 0 physical characteristics of the patent. The physicians will prescribe the total amount, the dosage, and the frequency of administration on a patient by patient basis. Generally, fox bile acid deficient patients, from about 0.15 to about 0.75 grams of the composition are administered once or twice a day.
Larger amount may, however, be requir ed for certain conditions, such as for 3 5 dissolving gallstones.

For ease of administration of the compositions it is preferred to use gelatin capsules containing about 0.25 to 0.4 grams microspheres or microtablets. Gelatin capsules which disintegrate in the acidic environment of the stomach are well-known and utilized in the prior art. Microtablets are of small size, having a diameter between about 1 to 5 mm and a thickness between 0.5 to 4 mm. The tablet is prepared by conventional tableting procedure. However, the compositions of the present invention in the form of very small particle sizes may be used per se. For example, young children, handicapped individuals with certain diseases, and elderly patients are unable 1 0 to swallow big gelatin capsules. Microspheres of very small sizes of the present invention could then be administered to these patients with liquid food, such as milk, apple sauce and semi-solid foods.
The advantages of the polymer-coated microspheres and microtablets 1 5 over capsules and large tablets are well recognized in the administxation of therapeutic medications. The microspheres and mini tablets disperse uniformly with the food in the stomach due to the smaller particle size of these particles and are more uniformly coated with the polymer coating because of their spherical shape. They also release their Na-UDCA content more readily 2 0 than compressed large tablets or capsules. The microspheres are protected from gastric acidity by the acid-resistant polymer-coating during gastric transit. Once the microspheres reach the duodenum, the polymer coating dissolves under neutral-to-slightly-alkaline conditions and the microspheres discharge their bile salt content in the upper intestine within minutes. This 2 5 release results in an efficient emulsification of fats and lipids, digestion of the emulsified lipids by pancreatic lipase, liquefaction of mucus that abstracts the intestinal mucosa and acceleration of the enzymatic digestion of mucopolysaccharides. As a result of this synergetic interaction between bile salts and pancreatic enzymes, mucus is lysed, and the receptor sites on the 3 0 intestinal villi are exposed to the outer environment. The unblocked receptors can bind essential metabolites and transport them through the intestinal membrane into portal circulation. The net result is the normalization of the intestinal digestive functions, enhanced absorption of the liberated metabolites and the amelioration of the dyspeptic symptoms associated with the upper 3 5 gastrointestinal tract.

Claims (24)

1. A bile salt composition for the treatment of ursodeoxycholic acid deficiency of a mammal comprising, by weight per weight percentages based on the total weight of the composition:

a. from about 60 to about 89% of a therapeutically acceptable salt of ursodeoxycholic acid or a conjugated derivative of ursodeoxycholic acid in powder form;
b. up to about 5% of a buffering agent selected from the group consisting of about 0.25 to about 5%, sodium carbonate anhydrous, sodium bicarbonate, potassium carbonate and potassium bicarbonate and from about 0.25 to about 1.5% tromethamine, diethanolamine and triethanolamine;
c. from about 1.0 to about 16% of a disintegrant selected from the group consisting of starch and modified starches, microcrystalline cellulose and propylene glycol alginate;
d. from about 2 to about 19% of an adhesive polymer selected from the group consisting of hydroxypropyl cellulose, polyvinylpyrrolidone, cellulose acetate phthalate and methyl cellulose; and e. from about 8% to about 16% of a non-porous, gastric acid-resistant and pharmaceutically acceptable polymer-coating which contains less than 2% talc and which is insoluble in a pH range of from about 1.5 to about 5 but is soluble in a pH range of from about 5.5 to about 9.
2. The composition according to claim 1, wherein said composition is in the form of microspheres or microtablets.
3. The composition according to claim 1 or 2, wherein said composition is incorporated into an acid disintegratable capsule.
4. The composition according to claim 1, 2 or 3, wherein said composition has a mesh size of about 10 to 60.
5. The composition according to claim 1, 2 or 3, wherein said composition has a mesh size of about 10 to 40.
6. The composition according to claim 1,2 or 3, wherein said composition has a mesh size of about 10 to 20.
7. The composition according to any one of claims 1 to 6, wherein said salt of ursodeoxycholic acid or said conjugated derivative of ursodeoxycholic acid is selected from the group consisting of sodium, potassium, ammonium, tromethamine, ethanolamine, diethanolamine, triethanolamine, glycyl and taurine ursodeoxycholate, N-methylglycyl and N-methyltaurine urosdeoxycholate.
8. A process for preparing a therapeutically acceptable ursodeoyxcholic composition for the treatment of ursodeoxycholic acid deficient mammals comprising the steps of:

a. blending dry, powdery ingredients comprising (i) from about 60 to about 89% w/w of a salt of ursodeoxycholic acid or a conjugated derivative of ursodeoxycholic acid; (ii) up to about 5% of a buffering agent selected from the group consisting of from about 0.25 to about 5.0% w/w anhydrous sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate and from about 0.25 to about 1.5% w/w, tromethamine, diethanolamine and triethanolamine; (iii) of from about 2 to about 19% w/w of an adhesive polymer selected from the group consisting of polyvinylpyrrolidone, cellulose acetate phthalate, hydroxypropylcellulose and methylcellulose and; (iv) of from about 1 to about 16% w/w of a disintegrant selected from the group consisting of starch and modified starches, microcrystalline cellulose and propylene glycol alginate to form a blend thereof;

b. wetting said blend with a liquid to cause the blend to stick together, to form liquid-wetted blend, and wherein said liquid is selected from the group consisting of: 1 %-25% w/w ethanol/75% - 99% w/w 2-propano1/0.2% - 2% w/w water; 98% -99% w/w 2-propanol/0.2% - 2%
w/w water; 1 % - 25% w/w methano1/0.2% - 2% w/w water/75% - 98%
w/w 2 propanol/1 % - 5% w/w ethylacetate;

c. granulating or extruding the liquid-wetted blend through a 10 to 18 mesh S/S screen to form granules;

d. converting the granules to a uniform diameter particle size;

e. compacting the uniform particles to spherical particles;

f. drying the spherical particles;

g. separating the spherical particles, which are not of uniform size, into desired sizes;

h. coating the particles with a gastric acid-resistant polymer that disintegrates under neutral or slightly basic conditions to form polymer coated spherical particles; and i. drying the polymer-coated spherical particles.
9. The process of claim 8 wherein said salt of ursodeoxycholic acid or said conjugated derivative of ursodeoxycholic acid is selected from the group consisting of sodium, potassium, ammonium, tromethamine, ethanolamine, diethanolamine and triethanolamine.
10. The process of claim 8 or 9, wherein said composition is in the form of microspheres having a mesh size of about 10 to 60.
11. The process of claim 8 or 9, wherein said composition is in the form of microspheres having a mesh size of about 10 to 40.
12. The process of claim 8 or 9, wherein said composition is in the form of microspheres having a mesh size of about 10 to 20.
13. The process of any one of claims 8 to 12, wherein said liquid for wetting the blended ingredient comprises from about 0.2% to about 2.5% moisture.
14. The process of claim 13, wherein said liquid moisture has a content from 0.2% to 1.5%.
15. The process of claim 13, wherein said liquid moisture has a content from 0.2% to 1.0%.
16. A process for preparing a therapeutically acceptable ursodeoxycholate composition for the treatment of ursodeoxycholic acid deficient mammals comprising the steps of:
a. preparing a starting seed of the ursodeoyxcholic comprising: blending a powdery salt of ursodeoxycholic acid or a conjugated derivative of ursodeoxycholic acid with a disintegrant and a buffering agent to form a blend thereof;
b. spraying said blend with a solution of an adhesive polymer until the blend agglomerates to form a moistened blend;
c. granulating or extruding the moistened blend through a 10 to 18 mesh S/S screen to form granules;
d. converting the granules to a uniform diameter particle size of 20 to 60 mesh;
e. compacting the uniform particles to spherical particles;
f. drying the spherical particles;

g. separating the spherical particles, which are not of uniform size to desired sizes;
h. employing said 20 to 60 mesh particles as starting seeds for the preparation of larger microspheres in the 10 to 20 mesh size range by placing the 20 to 60 mesh starting seeds in a rotating coating pan, wherein the seeds are tumbling, spraying the microspheres with a liquid/adhesive polymer-containing mixture;
i. dusting said salt of ursodeoxycholic acid over the tumbling starting seeds until the desired particle sizes are obtained;
j. coating the particles with a gastric acid-resistant polymer that dissolves under neutral or slightly basic conditions to form polymer-coated spherical particles; and k. drying the polymer-coated spherical particles.
17. The process according to claim 16, wherein the particle size range of said seeds is from about 20 to 40 mesh.
18. The process according to claim 16 or 17, wherein said starting seed is selected from the group consisting of: sodium, potassium and ammonium salts of ursodeoxycholic acid; sodium, potassium and ammonium salts of glycyl and tauroursodeoxycholate; and sodium and potassium salts of N-methylglycyl and N-methyl taurine ursodeoxycholate.
19. The process according to claim 16, wherein the polymer-coated spherical particles are of 10 to 20 mesh.
20. Use of a therapeutically effective amount of the composition of any one of claims 1 to 7 for the treatment of ursodeoxycholic acid deficiencies.
21. Use of a therapeutically effective amount of the composition prepared by the process of any one of claims 8 to 19 for the treatment of ursodeoxycholic acid deficiencies.
22. The use according to claim 20 or 21, wherein a therapeutically effective amount of the composition is from about 0.15 to 0.75 gms.
23. The use according to any one of claims 20 to 22, wherein said composition is in the form of an acid disintegratable capsule containing from about 0.25 to about 0.4 grams of microspheres or microtablets.
24. The use according to any one of claims 20 to 22, wherein said composition is admixed with a liquid food or a semi-solid food.
CA002096001A 1992-06-22 1993-05-11 Compositions of gastric acid-resistant microspheres containing salts of bile acid Expired - Fee Related CA2096001C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/902,578 US5234697A (en) 1992-06-22 1992-06-22 Compositions of gastric acid-resistant microspheres containing salts of bile acids
US07/902,578 1992-06-22

Publications (2)

Publication Number Publication Date
CA2096001A1 CA2096001A1 (en) 1993-12-23
CA2096001C true CA2096001C (en) 2005-05-03

Family

ID=25416053

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002096001A Expired - Fee Related CA2096001C (en) 1992-06-22 1993-05-11 Compositions of gastric acid-resistant microspheres containing salts of bile acid

Country Status (3)

Country Link
US (2) US5234697A (en)
AU (1) AU4132893A (en)
CA (1) CA2096001C (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9212511D0 (en) * 1992-06-12 1992-07-22 Cortecs Ltd Pharmaceutical compositions
US5415872A (en) * 1992-06-22 1995-05-16 Digestive Care Inc. Compositions of gastric acid-resistant microspheres containing salts of bile acids
US5260074A (en) * 1992-06-22 1993-11-09 Digestive Care Inc. Compositions of digestive enzymes and salts of bile acids and process for preparation thereof
US5460812A (en) * 1992-06-22 1995-10-24 Digestive Care Inc. Compositions of digestive enzymes and salts of bile acids and process for preparation thereof
DE4239442C2 (en) * 1992-11-24 2001-09-13 Sebo Gmbh Use of an adsorbent material modified with polynuclear metal oxide hydroxides for the selective elimination of inorganic phosphate from protein-containing liquids
WO1995003056A1 (en) * 1993-07-19 1995-02-02 Tokyo Tanabe Company Limited Hepatitis c virus proliferation inhibitor
US5965161A (en) 1994-11-04 1999-10-12 Euro-Celtique, S.A. Extruded multi-particulates
US5750104A (en) * 1996-05-29 1998-05-12 Digestive Care Inc. High buffer-containing enteric coating digestive enzyme bile acid compositions and method of treating digestive disorders therewith
DE29717252U1 (en) * 1997-09-26 1998-02-19 Falk Pharma Gmbh Drug kit consisting of a budesonide-containing and an ursodeoxycholic acid-containing drug for the treatment of cholestatic liver diseases
DE19901692C2 (en) * 1999-01-18 2002-06-20 Gruenenthal Gmbh Process for the production of pellets containing up to 90% by weight of an active pharmaceutical ingredient
DE19906290A1 (en) * 1999-02-15 2000-08-17 Falk Pharma Gmbh Orally administered medicament for treating colon cancer comprises ursodesoxycholic acid in gastric fluid resistant coating to provide direct topical action at target site
DE19918325A1 (en) 1999-04-22 2000-10-26 Euro Celtique Sa Extruded drug dosage form, e.g. granulate for tableting, comprising an active agent in a polysaccharide-containing matrix, giving a release profile which is controllable by extrusion conditions and/or the inclusion of additives
AR034813A1 (en) * 2001-07-20 2004-03-17 Novartis Ag PHARMACEUTICAL COMPOSITIONS AND USE OF THE SAME
WO2007053619A2 (en) * 2005-11-01 2007-05-10 Bio-Cat, Inc. A composition with a fungal (yeast) lipase and method for treating lipid malabsorption in cystic fibrous as well as people suffering from pancreatic lipase insufficiency
SI2319804T1 (en) * 2006-12-14 2015-01-30 Novartis Ag Iron(III)-Carbohydrate based phosphate adsorbent
EP2367554A4 (en) 2008-11-26 2020-03-25 Satiogen Pharmaceuticals, Inc. Bile acid recycling inhibitors for treatment of obesity and diabetes
ES2552657T3 (en) 2010-05-26 2015-12-01 Satiogen Pharmaceuticals, Inc. Inhibitors of the recycling of bile acids and satiogens for the treatment of diabetes, obesity, and inflammatory gastrointestinal conditions
US8268305B1 (en) 2011-09-23 2012-09-18 Bio-Cat, Inc. Method and compositions to reduce serum levels of triacylglycerides in human beings using a fungal lipase
FR2981572B1 (en) * 2011-10-21 2018-01-19 Inopharm Limited PHARMACEUTICAL COMPOSITIONS OF URSODESOXYCHOLIC ACID

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3004893A (en) * 1959-10-21 1961-10-17 Richardson Merrell Inc Enteric coated trypsin and chymotrypsin anti-inflammatory compositions
US3064622A (en) * 1960-06-20 1962-11-20 Xerox Corp Immersion development
GB1362365A (en) * 1970-07-28 1974-08-07 Novo Terapeutisk Labor As Production of enzyme preparations
USRE30910E (en) * 1971-03-19 1982-04-20 Intellectual Property Development Corporation Reducing cholesterol levels
GB1509866A (en) * 1975-06-10 1978-05-04 Johnson & Johnson Enteric coated digestive enzyme compositions
DE2923279B1 (en) * 1979-06-08 1980-11-20 Kali Chemie Pharma Gmbh Process for the production of pancreatin pellets
DE3572440D1 (en) * 1984-06-19 1989-09-28 Basf Ag Gastro-resistant cylindrical pancreatine-microtablets
JPS62175497A (en) * 1986-01-28 1987-08-01 Wakunaga Pharmaceut Co Ltd Bile acid derivative and production thereof
CH674369A5 (en) * 1986-11-26 1990-05-31 Jago Res Ag
EP0321527B1 (en) * 1987-07-01 1992-08-12 Ici Australia Operations Proprietary Limited Water dispersible granules
US5260074A (en) * 1992-06-22 1993-11-09 Digestive Care Inc. Compositions of digestive enzymes and salts of bile acids and process for preparation thereof

Also Published As

Publication number Publication date
US5352460A (en) 1994-10-04
CA2096001A1 (en) 1993-12-23
US5234697A (en) 1993-08-10
AU4132893A (en) 1993-12-23

Similar Documents

Publication Publication Date Title
US5262172A (en) Compositions of gastric acid-resistant microspheres containing buffered bile acids
US5415872A (en) Compositions of gastric acid-resistant microspheres containing salts of bile acids
US5260074A (en) Compositions of digestive enzymes and salts of bile acids and process for preparation thereof
US5302400A (en) Preparation of gastric acid-resistant microspheres containing digestive enzymes and buffered-bile acids
US5460812A (en) Compositions of digestive enzymes and salts of bile acids and process for preparation thereof
CA2096001C (en) Compositions of gastric acid-resistant microspheres containing salts of bile acid
US5578304A (en) Compositions of digestive enzymes and salts of bile acids and process for preparation thereof
US5750104A (en) High buffer-containing enteric coating digestive enzyme bile acid compositions and method of treating digestive disorders therewith
CN1149075C (en) Enteric coated pharmaceutical compsn. and method of mfg.
EP0735892B1 (en) Laxative compositions containing bulk fiber and dioctyl sulfosuccinate
JP2820319B2 (en) Rapidly disintegrating multiparticulate tablets
US4814354A (en) Lipid regulating agents
JP2002508772A (en) Health supplement
US7122207B2 (en) High drug load acid labile pharmaceutical composition
WO1995017174A1 (en) Process for making laxatives containing dioctyl sulfosuccinate
WO2002041912A1 (en) Drugs and foods improving the quality of life and process for producing the same
US5352682A (en) Compositions containing salts of bile acid-aminosalicylate conjugates
JP2002524410A (en) Lipstatin derivative-soluble fiber tablet
US5618527A (en) Calcium polycarbophil sprinkle
EP0366058A2 (en) Controlled-release delivery device, method for producing device, and method of using device
KR100221396B1 (en) Psyllium cholestryramine compositions with improved palatability
IE902554A1 (en) Aspirin granules with gastroprotectant coating
MXPA00010963A (en) Enteric coated pharmaceutical composition and method of manufacturing

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20100511