CA2096455A1 - Fabry-perot with coated mirrors - Google Patents

Fabry-perot with coated mirrors

Info

Publication number
CA2096455A1
CA2096455A1 CA002096455A CA2096455A CA2096455A1 CA 2096455 A1 CA2096455 A1 CA 2096455A1 CA 002096455 A CA002096455 A CA 002096455A CA 2096455 A CA2096455 A CA 2096455A CA 2096455 A1 CA2096455 A1 CA 2096455A1
Authority
CA
Canada
Prior art keywords
fabry
perot
dielectric coating
mirrors
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002096455A
Other languages
French (fr)
Inventor
Robert Jan Van Wijk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akzo NV
Original Assignee
Akzo NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akzo NV filed Critical Akzo NV
Publication of CA2096455A1 publication Critical patent/CA2096455A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/284Interference filters of etalon type comprising a resonant cavity other than a thin solid film, e.g. gas, air, solid plates

Abstract

ABSTRACT OF THE DISCLOSURE

In a Fabry-Perot etalon or interferometer the metal mirrors are each provided with a dielectric coating on the side facing away from the enclosed gap. The dielectric coating leads to the advantage of peak transmittance being improved without the finesse being adversely affected. The dielectric coating is transparent for the wavelength (.lambda.) used and, preferably, has a thickness of about 0.25.lambda./n, n being the refractive index of the dielectric coating material. The coating, preferably, is of a material having a high index of refraction, examples thereof including zirconium dioxide, titanium dioxide, zinc sulfide, or zinc selenide.

Description

FABRY-PEROT WITH COATED MIRRORS

The invention pertains to Fabry-Perot etalons and interferometers, hereinafter referred to as "Fabry-Perots"
for s]hort.
Fabry-Perots are well-known and important optical 6 devices. They may be used as a true interferometer, (e.g., for spectroscopy), as a laser cavity or, more particulaxly, as an insert in the laser cavity of a single mode laser.
Currently, Fabry-Perots are also being suggested as reflection or transmission modulators for ~ptical interconnects.
12 A Fabry-Perot commonly comprises two reflective surfaces (the "mirrors") separated by a determined optical path length (the "gap"). In a Fabry-Perot interferometer the gap enclosed by the mirrors usually comprises air and can be mechanically varied, e.g. by moving one of the mirrors. In a Fabry-Perot etalon the mirrors are usually held fixed, for 18 example by means of a spacer, for which, for example, quartz, or glass is commonly used. Common gap widths for an interferometer vary from several millimeters to several centimeters. Considerably greater gap widths are customary when a Fabry-Perot is employed as a laser resonant cavity.
For~some applications, including modulators, gap widths may 24 be of the order of one to several micrometers.
In general, two types of mirrors are used in Fabry-Perots, namely, so-called quarter-wave stacks (QWS~ of a material that would not exhibit substantial reflectance as a single layer, or mirrors comprising a single layer of a material that is in itself reflecting, usually comprising metal or metal compounds. The mirrors frequently are plane parallel, but curved-mirror systems are also known, notably as laser cavities and as spectrum analyzers.
2 ~ '3 The invention pertains to Fabry~Perots of the type comprising two mirrors of a reflecting material, such as metal. As is apparent from the above, the inner surfaces of the mirrors are separated from each other to form the gap, the gap width optionally being fixed.
6 British Patent No. 2,082,380 discloses a Fabry-Perot etalon of this type used in a semiconductor injection laser.
The Fabry-Perot is provided with a quarter-wavelength anti-reflection layer on the inner surface of one of the mirrors in order to broaden the spectral emission, to increase the range of single mode operation, and to reduce spread on the 12 far-field pattern. The inner surface of the other mirror is optionally coated with a half-wavelength layer.
In Annales de Phvsiq~ 6 (1951), pages 5 and following, Fabry-Perots are disclosed, the metal mirrors of which are provided with a dielectric layer on the side facing the gap.
In the disclosure it is concluded that a single dielectric 18 layer is unsuitable to significantly improve the reflectance of a Fabry-Perot.
European Patent Publication No. 371,695 pertains to a spatial light modulator on the basis of a QWS Fabry-Perot in which the gap comprises a liquid crystal layer and which Fabry-Perot includes metal electrodes. The mirrors in this 24 device are dielectric multilayer films, namely, quarter wave stacks.
QWS Fabry-Perots have also been disclosed in such representative references as Thin Solid Films Vol.137, No.2, pages 161-168 tl968) and Optik, Vol.50, No.4, pages 329-340 (1978)-The state of~ithe art further includes the common knowledge which exists in regard to Fabry-Perots. The original interferometer of this type developed by C. Fabry and A. Perot, for instance, comprises two transparent (glass or quartz) plates with planar surfaces. The inner surfaces ~ ~ 9 ~ 4 .~ ~
_ 3 _ AEM 2310 are coated with partially transparent films of high ref:Lectivity and are parallel, enclosing an air gap. The transparent plates serve as a substrate for the reflecting coa1cing. These and other known Fabry-Perot mirrors commonly comprise a metal, such as gold, silver or aluminum, or a 6 metal compound, as a reflecting surface.
Naturally, the mirrors of a Fabry-Perot exhibit substantial reflectance, e.g. higher than 90%, but to a certain extent they also show transmittance. Further, mirrors comprised of a material that is in itself reflecting, notably metal mirrors, display absorption of incident light.
12 The mirror reflectivity being high, the reflectance and transmittance show a series of peaks as a function of the wavelength of the incident light. If the mirror separation is much larger than the wavelength (which is usually the case) the peaks are approximately periodical in the wave-length. The ratio of the distance separating subsequent 18 peaks (the frez spectral range, or FSR) to the full-width at half maximum of the peaks is frequently used to specify the quality of a Fabry-Perot. Said ratio is a dimensionless quantity called the "finesse". For many applications a high finesse is desirable.
In order to achieve a high finesse, a high reflectance 24 is generally required. In the case of Fabry-Perots of the type having mirrors comprising metal or metal compounds, increased reflectance usually is attended with increased absorbance. Consequently, in Fabry-Perots of the present type the demand of high finesse competes with that of high peak transmittance~ It is therefore desired to improve Fabry-Perots with respect to peak transmittance, without the finesse being adversely affectea.
It is an object of the present invention to provide a Fabry-Perot of the aforementioned type containing mirrors of material that is in itself reflecting, such as metal or metal 2 3 ~

compounds, which exhibits improved transmittance while retaining a high finesse. It is a further object of the invention to provide a Fabry-Perot of the type in which the mirrors are of a material that in itself is reflecting, such as ~etal, which allows improved finesse while retaining good 6 transmittance. Still another object of the invention is to provide a metal mirrors-containing Fabry-Perot that simultaneously displays improved transmittance and a higher finesse.
The invention consists in that in a Fabry-Perot of the type described above the mirrors are each provided with a 12 dielectric coating on the side facing away from the gap.
The dielectric coating may be seen as an analogue of an anti-reflection coating such as is commonly applied to the elements of optical instruments, but has a quite different function. In this respect, it should be clearly recognized that the use of such an anti-reflection coating on the outer 18 surface of the mirrors leads to the desired advantages, whilst the working area of the Fabry-Perot (to which the advantages apply) is within the gap, namely, on the inside of the mirrors.
The dielectric coating should be substantially transparent for the wavelength used. The Fabry-Perots 24 according to the invention hereinafter described are suitable for use with light of any wavelength, A. In practice, this light may indeed be of a single wave-length but may also be polychxomatic. In the latter case, ~ indicates the average wavelength.
The dielectric coating will generally function well if it has a thickness of from about 0.1~/n to about 0.5~n, with n indicating the index of refraction of the dielectric material. Preferably, the dielectric coating has a thickness of about 0.25~/n. These thicknesses are to be understood as 2 ~ 9 ~ ~ 3j - 5 - ~EM ~310 comprising said range ~ one or more half wavelengths, as the effect attained is periodical, the period being 0.5~.
It should be noted that such Fabry-Perots according to the invention are clearly distinguished from Fabry-Perots having quarter-wave stacks as mirrors. As indicated above, 6 the present invention pertains to Fabry-Perots having mirrors comprising a reflecting material, namely, a material that is in itself reflecting, such as a metal or a metal compound.
The aforementioned problem that high peak-transmittance and high finesse are competing demands is due to the absorbance observed with mirrors comprising such a reflecting material, 12 and at any rate plays a less significant role in Fabry-Perots having quarter-wave stacks as mirrors. Such Fabry-Perots are outside the scope of the present invention and, besides, are more difficult to produce, as the manufacture process involves the deposition of a number of quarter-wave layers of two different refractive indices.
18 In the embodiment in which a Fabry-Perot according to the original construction of C. Fabry and A. Perot is used, namely, one having mirrors comprising a transparent substrate plate coated on the inside, namely, the side facing the gap, with reflecting material, the dielectric coating of the invention is applied between the reflecting material and the 2~ su~strate.
Suitable dielectric coatings include any inorganic, organic or polymeric materials which satisfy the main reguirement of being, for the wavelength used, a non-absorbing iayer with an index of refraction higher than the gap medium (air or glass, usually). Examples of inorganic materials are the well-known materials co~monly employed in anti-r!eflection coatings, such as cryolite ~a sodium aluminum fluoride compound), magnesium fluoride, cerium fluoride, or a mixture thereof. Examples of polymeric materials are, e.g., 2~9~

those used for optical lenses, such as diethylene glycol bis(allyl carbonate).
It has been found that the higher the refractive index of t]he dielectric coating, the better the Fabry-Perot according to the instant invention functions. Hence, 6 preferred dielectric coatings are those having a refractive index higher than 2Ø These materials are in fact known from the field of Fabry-Perots. They commonly constitute the high refractive index layers in the aforementioned quarter wave stacks. Preferred dielectric coatings, in this respect, comprise zirconium dioxide, titanium dioxide, zinc sulfide, 12 zinc selenide, or a mixture thereof.
It should be noted that, generally, it will be convenient to apply the same dielectric coating to the surfaces of both mirrors. However, each mirror may also be coated with a different dielectric coating.
The mere coating of the mirrors with dielectric layers, 18 under the conditions set forth above, suffices to enhance the peak-transmittance. For various applications a further enhancement is not necessary, or sometimes even undesirable.
~owever, if an optimum enhancement in peak-transmittance with retained finesse is desired, it is required that the thicXness of the mirrors be adapted to the presence of the ~4 dielectric coating in such manner that the reflectance inside the gap remains unchanged. It cannot be predicted in general terms whether, in a specific case, the desired adaption can be achieved by increasing or by decreasing the thickness.
However, the person of ordinary skill in the art may calculate this, using the theory of Abeles described in M.
Born and E. Wolf, "Principles of optics", Pergamon Press, Oxford, 4th edition, 1970, pages 51 and following and 611 and followi~g.
The further constituents of the Fabry-Perots according to the instant invention are customary. The gap may enclose 2a36~5 air, glass, quartz, or any other suitable material, such as a transparent organic polymer. If the Fabry-Perot is to be used as a transmission modulator for optical interconnects, the gap may comprise a non-linear optical (NLO) material, preferably an NLO polymer. NL0 materials are well-known in 6 the art and need no further elucidation here. Examples of suitable NL0 polymers are those described in European Patent Publication Nos. 350,112, 350,113! 358,476, 445,864, 378,185, and 359,648.
The mirrors may be of any suitable reflecting material, and are in themselves well-known. Common examples of such 12 materials include metals, more particularly gold, silver, or aluminum.
The invention will be further described hereinafter with reference to the following Examples which should be construed to be explanatory rather than limitative.

2 ~ CJ

COMPARATIVE EX~MPLE 1 The Fabry-Perot for comparison purposes was an etalon for use with a wavelength of about 514.5 nm comprising two plane parallel mirrors of silver enclosing a 1 mm gap which mirrors comprised glass having a refractive index of 1.55.
6 The thickness of the mirrors was 50 nm. No dielectric coating was present.
For a wavelength near 514.5 nm the Fabry-Perot etalon displayed a peak transmittance of 3.7% at a finesse of 20.

The exemplified Fabry-Perot was an etalon as described 12 in Comparative Example 1, above, with the mirrors being coated on the outer surfaces (namely, the surfaces pointing away from the gap) with a dielectric coating of zinc sulfide.
The thickness of the dielectric coating was 55.9 nm, its refractive index was 2.3, namely, the Fabry Perot etalon, in accordance with the invention, comprised a dielectric coating 18 of 0.25~/n.
For a wavelength near 514.5 nm the Fabry-Perot etalon displayed a peak transmittance of 9.7%, at a finesse of 21.

The Fabry-Perot exemplified here is an etalon as in Example 2, with the thickness of the mirrors being adjusted 24 to 47.8 nm, in order to have the same internal reflectance as the uncoated Fabry-Perot etalon of comparison.
For a wavelength near 514.5 nm the Fabry-Perot etalon displayed a peak transmittance of 12.5% at a finesse of 20.

Claims (13)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A Fabry-Perot comprising two mirrors of a reflecting material with the mirrors being separated from each other by a gap wherein the mirrors are each provided with a dielectric coating on the side facing away from the gap.
2. A Fabry-Perot according to Claim 1, suitable for use with light of average wavelength .lambda., wherein the dielectric coating has a refractive index n, and a thickness of from about 0.1.lambda./n to about 0.5.lambda./n.
3. A Fabry-Perot according to Claim 2 wherein the dielectric coating has a thickness of about 0.25.lambda./n.
4. A Fabry-Perot according to Claim 1 wherein the thickness of the mirrors is adjusted so as to retain the same level of internal reflectance as an uncoated Fabry-Perot.
5. A Fabry-Perot according to Claim 1 wherein the dielectric coating comprises an organic polymer.
6. A Fabry-Perot according to Claim 1 wherein the dielectric coating comprises cryolite, magnesium fluoride, cerium fluoride, or a mixture thereof.
7. A Fabry-Perot according to Claim 1 wherein the dielectric coating has a refractive index higher than 2Ø
8. A Fabry-Perot according to Claim 7, wherein the dielectric coating comprises zirconium dioxide, titanium dioxide, zinc sulfide, zinc selenide, or a mixture thereof.
9. A Fabry-Perot according to Claim 1 wherein the gap comprises a non-linear optical polymer.
10. A Fabry-Perot according to Claim 2 wherein the dielectric coating comprises an organic polymer.
11. A Fabry-Perot according to Claim 2 wherein the dielectric coating comprises cryolite, magnesium fluoride, cerium fluoride, or a mixture thereof.
12. A Fabry-Perot according to Claim 2 wherein the dielectric coating has a refractive index higher than 2Ø
13. A Fabry-Perot according to Claim 13 wherein the dielectric coating comprises zirconium dioxide, titanium dioxide, zinc sulfide, zinc selenide, or a mixture thereof.
CA002096455A 1992-05-19 1993-05-18 Fabry-perot with coated mirrors Abandoned CA2096455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP92201408 1992-05-19
EP92201408.9 1992-05-19

Publications (1)

Publication Number Publication Date
CA2096455A1 true CA2096455A1 (en) 1993-11-20

Family

ID=8210614

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002096455A Abandoned CA2096455A1 (en) 1992-05-19 1993-05-18 Fabry-perot with coated mirrors

Country Status (6)

Country Link
US (1) US5381232A (en)
JP (1) JPH0690045A (en)
KR (1) KR930023745A (en)
CN (1) CN1079820A (en)
CA (1) CA2096455A1 (en)
TW (1) TW245772B (en)

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830587B2 (en) * 1993-03-17 2010-11-09 Qualcomm Mems Technologies, Inc. Method and device for modulating light with semiconductor substrate
US6674562B1 (en) * 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US20010003487A1 (en) * 1996-11-05 2001-06-14 Mark W. Miles Visible spectrum modulator arrays
US7776631B2 (en) 1994-05-05 2010-08-17 Qualcomm Mems Technologies, Inc. MEMS device and method of forming a MEMS device
US7852545B2 (en) * 1994-05-05 2010-12-14 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US7738157B2 (en) 1994-05-05 2010-06-15 Qualcomm Mems Technologies, Inc. System and method for a MEMS device
US7123216B1 (en) * 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US7460291B2 (en) * 1994-05-05 2008-12-02 Idc, Llc Separable modulator
US7619810B2 (en) * 1994-05-05 2009-11-17 Idc, Llc Systems and methods of testing micro-electromechanical devices
US7550794B2 (en) * 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US7826120B2 (en) * 1994-05-05 2010-11-02 Qualcomm Mems Technologies, Inc. Method and device for multi-color interferometric modulation
US7808694B2 (en) 1994-05-05 2010-10-05 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US8081369B2 (en) * 1994-05-05 2011-12-20 Qualcomm Mems Technologies, Inc. System and method for a MEMS device
JP3047311B2 (en) * 1994-12-08 2000-05-29 キヤノン株式会社 Liquid crystal display
US7898722B2 (en) 1995-05-01 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical device with restoring electrode
US7830588B2 (en) * 1996-12-19 2010-11-09 Qualcomm Mems Technologies, Inc. Method of making a light modulating display device and associated transistor circuitry and structures thereof
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO1999052006A2 (en) * 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
US6215926B1 (en) * 1999-02-10 2001-04-10 Avanex Corporation Fiber optic dense wavelength division multiplexer with a phase differential method of wavelengths separation utilizing glass blocks and a nonlinear interferometer
US6169604B1 (en) * 1999-02-10 2001-01-02 Avanex Corporation Nonlinear interferometer for fiber optic dense wavelength division multiplexer utilizing a phase bias element to separate wavelengths in an optical signal
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
FR2805052A1 (en) * 2000-02-14 2001-08-17 Schlumberger Ind Sa FABRY-PEROT FILTER WITH METALLIC LAYERS
US6747775B2 (en) * 2000-03-20 2004-06-08 Np Photonics, Inc. Detunable Fabry-Perot interferometer and an add/drop multiplexer using the same
US6519074B2 (en) 2000-03-20 2003-02-11 Parvenu, Inc. Electrostatically-actuated tunable optical components using entropic materials
US6747784B2 (en) 2000-03-20 2004-06-08 Np Photonics, Inc. Compliant mechanism and method of forming same
US6597461B1 (en) 2000-03-20 2003-07-22 Parvenu, Inc. Tunable fabry-perot interferometer using entropic materials
US6665109B2 (en) 2000-03-20 2003-12-16 Np Photonics, Inc. Compliant mechanism and method of forming same
US6678084B2 (en) 2000-03-20 2004-01-13 Np Photonics, Inc. Methods of making mechanisms in which relative locations of elements are maintained during manufacturing
US6794119B2 (en) * 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
US7781850B2 (en) * 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
DE10251889A1 (en) * 2002-11-07 2004-05-27 Siemens Ag Receiver for angle modulated optical signals has optical resonator to which optical signal is fed and in front of which optical output coupling device for light reflected from resonator is arranged
TW594360B (en) * 2003-04-21 2004-06-21 Prime View Int Corp Ltd A method for fabricating an interference display cell
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
US7221495B2 (en) * 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
TW200506479A (en) * 2003-08-15 2005-02-16 Prime View Int Co Ltd Color changeable pixel for an interference display
TWI231865B (en) * 2003-08-26 2005-05-01 Prime View Int Co Ltd An interference display cell and fabrication method thereof
TWI232333B (en) * 2003-09-03 2005-05-11 Prime View Int Co Ltd Display unit using interferometric modulation and manufacturing method thereof
KR100532303B1 (en) * 2003-11-15 2005-11-29 삼성전자주식회사 Multi channel optical light source and multi channel optical module using the same
US7532194B2 (en) * 2004-02-03 2009-05-12 Idc, Llc Driver voltage adjuster
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7720148B2 (en) * 2004-03-26 2010-05-18 The Hong Kong University Of Science And Technology Efficient multi-frame motion estimation for video compression
US7476327B2 (en) * 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
CN1323286C (en) * 2004-06-03 2007-06-27 中山大学 Fabry-perot cavity structure for optical fibre sensing
US7256922B2 (en) * 2004-07-02 2007-08-14 Idc, Llc Interferometric modulators with thin film transistors
TWI233916B (en) * 2004-07-09 2005-06-11 Prime View Int Co Ltd A structure of a micro electro mechanical system
EP2246726B1 (en) * 2004-07-29 2013-04-03 QUALCOMM MEMS Technologies, Inc. System and method for micro-electromechanical operating of an interferometric modulator
US7630119B2 (en) * 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US20060065366A1 (en) * 2004-09-27 2006-03-30 Cummings William J Portable etch chamber
US7612932B2 (en) * 2004-09-27 2009-11-03 Idc, Llc Microelectromechanical device with optical function separated from mechanical and electrical function
US7583429B2 (en) 2004-09-27 2009-09-01 Idc, Llc Ornamental display device
US7527995B2 (en) * 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7554714B2 (en) * 2004-09-27 2009-06-30 Idc, Llc Device and method for manipulation of thermal response in a modulator
US7161730B2 (en) 2004-09-27 2007-01-09 Idc, Llc System and method for providing thermal compensation for an interferometric modulator display
US7420728B2 (en) * 2004-09-27 2008-09-02 Idc, Llc Methods of fabricating interferometric modulators by selectively removing a material
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7417783B2 (en) * 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US20060065622A1 (en) * 2004-09-27 2006-03-30 Floyd Philip D Method and system for xenon fluoride etching with enhanced efficiency
US7813026B2 (en) * 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US7327510B2 (en) * 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7684104B2 (en) * 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7130104B2 (en) * 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US7719500B2 (en) * 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7420725B2 (en) * 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7369296B2 (en) * 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7936497B2 (en) * 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7553684B2 (en) * 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
US7289259B2 (en) * 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7564612B2 (en) * 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7893919B2 (en) * 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7355780B2 (en) 2004-09-27 2008-04-08 Idc, Llc System and method of illuminating interferometric modulators using backlighting
US7321456B2 (en) 2004-09-27 2008-01-22 Idc, Llc Method and device for corner interferometric modulation
US7304784B2 (en) * 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7349136B2 (en) * 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7373026B2 (en) * 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US8008736B2 (en) * 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US20060067650A1 (en) * 2004-09-27 2006-03-30 Clarence Chui Method of making a reflective display device using thin film transistor production techniques
US7405861B2 (en) * 2004-09-27 2008-07-29 Idc, Llc Method and device for protecting interferometric modulators from electrostatic discharge
US7302157B2 (en) * 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7492502B2 (en) * 2004-09-27 2009-02-17 Idc, Llc Method of fabricating a free-standing microstructure
TW200628877A (en) * 2005-02-04 2006-08-16 Prime View Int Co Ltd Method of manufacturing optical interference type color display
US7884989B2 (en) * 2005-05-27 2011-02-08 Qualcomm Mems Technologies, Inc. White interferometric modulators and methods for forming the same
US7460292B2 (en) * 2005-06-03 2008-12-02 Qualcomm Mems Technologies, Inc. Interferometric modulator with internal polarization and drive method
JP2009503564A (en) * 2005-07-22 2009-01-29 クアルコム,インコーポレイテッド Support structure for MEMS device and method thereof
WO2007014022A1 (en) 2005-07-22 2007-02-01 Qualcomm Incorporated Mems devices having support structures and methods of fabricating the same
EP2495212A3 (en) * 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
JP2009509786A (en) 2005-09-30 2009-03-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド MEMS device and interconnection in MEMS device
US7630114B2 (en) * 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
DE102005052758A1 (en) * 2005-11-04 2007-05-16 Leica Microsystems Substrate holding device for use in a position measuring device
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7382515B2 (en) * 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7652814B2 (en) 2006-01-27 2010-01-26 Qualcomm Mems Technologies, Inc. MEMS device with integrated optical element
US7547568B2 (en) * 2006-02-22 2009-06-16 Qualcomm Mems Technologies, Inc. Electrical conditioning of MEMS device and insulating layer thereof
US7550810B2 (en) * 2006-02-23 2009-06-23 Qualcomm Mems Technologies, Inc. MEMS device having a layer movable at asymmetric rates
US7450295B2 (en) * 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US7643203B2 (en) * 2006-04-10 2010-01-05 Qualcomm Mems Technologies, Inc. Interferometric optical display system with broadband characteristics
US20070249078A1 (en) * 2006-04-19 2007-10-25 Ming-Hau Tung Non-planar surface structures and process for microelectromechanical systems
US7623287B2 (en) * 2006-04-19 2009-11-24 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US7527996B2 (en) * 2006-04-19 2009-05-05 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7417784B2 (en) * 2006-04-19 2008-08-26 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US7369292B2 (en) * 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US20070268201A1 (en) * 2006-05-22 2007-11-22 Sampsell Jeffrey B Back-to-back displays
US7649671B2 (en) * 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7405863B2 (en) * 2006-06-01 2008-07-29 Qualcomm Mems Technologies, Inc. Patterning of mechanical layer in MEMS to reduce stresses at supports
US7385744B2 (en) * 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US7835061B2 (en) * 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7527998B2 (en) * 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US7566664B2 (en) * 2006-08-02 2009-07-28 Qualcomm Mems Technologies, Inc. Selective etching of MEMS using gaseous halides and reactive co-etchants
US20080043315A1 (en) * 2006-08-15 2008-02-21 Cummings William J High profile contacts for microelectromechanical systems
US7629197B2 (en) * 2006-10-18 2009-12-08 Qualcomm Mems Technologies, Inc. Spatial light modulator
US7545552B2 (en) * 2006-10-19 2009-06-09 Qualcomm Mems Technologies, Inc. Sacrificial spacer process and resultant structure for MEMS support structure
US7706042B2 (en) 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US7535621B2 (en) 2006-12-27 2009-05-19 Qualcomm Mems Technologies, Inc. Aluminum fluoride films for microelectromechanical system applications
US8115987B2 (en) * 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US7733552B2 (en) * 2007-03-21 2010-06-08 Qualcomm Mems Technologies, Inc MEMS cavity-coating layers and methods
US7742220B2 (en) * 2007-03-28 2010-06-22 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing conducting layers separated by stops
US7643202B2 (en) * 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US7715085B2 (en) * 2007-05-09 2010-05-11 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane and a mirror
US7719752B2 (en) * 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7625825B2 (en) * 2007-06-14 2009-12-01 Qualcomm Mems Technologies, Inc. Method of patterning mechanical layer for MEMS structures
US7643199B2 (en) * 2007-06-19 2010-01-05 Qualcomm Mems Technologies, Inc. High aperture-ratio top-reflective AM-iMod displays
US7782517B2 (en) * 2007-06-21 2010-08-24 Qualcomm Mems Technologies, Inc. Infrared and dual mode displays
US7630121B2 (en) * 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8068268B2 (en) * 2007-07-03 2011-11-29 Qualcomm Mems Technologies, Inc. MEMS devices having improved uniformity and methods for making them
KR20100066452A (en) 2007-07-31 2010-06-17 퀄컴 엠이엠스 테크놀로지스, 인크. Devices for enhancing colour shift of interferometric modulators
US7570415B2 (en) * 2007-08-07 2009-08-04 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US8072402B2 (en) * 2007-08-29 2011-12-06 Qualcomm Mems Technologies, Inc. Interferometric optical modulator with broadband reflection characteristics
US7773286B2 (en) * 2007-09-14 2010-08-10 Qualcomm Mems Technologies, Inc. Periodic dimple array
US7847999B2 (en) * 2007-09-14 2010-12-07 Qualcomm Mems Technologies, Inc. Interferometric modulator display devices
US20090078316A1 (en) * 2007-09-24 2009-03-26 Qualcomm Incorporated Interferometric photovoltaic cell
WO2009052326A2 (en) * 2007-10-19 2009-04-23 Qualcomm Mems Technologies, Inc. Display with integrated photovoltaics
US8058549B2 (en) * 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
CN101836137A (en) * 2007-10-23 2010-09-15 高通Mems科技公司 Adjustably transmissive mems-based devices
US20090293955A1 (en) * 2007-11-07 2009-12-03 Qualcomm Incorporated Photovoltaics with interferometric masks
US8941631B2 (en) * 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US7715079B2 (en) * 2007-12-07 2010-05-11 Qualcomm Mems Technologies, Inc. MEMS devices requiring no mechanical support
KR20100109924A (en) * 2007-12-21 2010-10-11 퀄컴 엠이엠스 테크놀로지스, 인크. Multijunction photovoltaic cells
US7863079B2 (en) 2008-02-05 2011-01-04 Qualcomm Mems Technologies, Inc. Methods of reducing CD loss in a microelectromechanical device
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US7944604B2 (en) * 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7612933B2 (en) * 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US7898723B2 (en) * 2008-04-02 2011-03-01 Qualcomm Mems Technologies, Inc. Microelectromechanical systems display element with photovoltaic structure
US7969638B2 (en) * 2008-04-10 2011-06-28 Qualcomm Mems Technologies, Inc. Device having thin black mask and method of fabricating the same
US8023167B2 (en) * 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US7768690B2 (en) 2008-06-25 2010-08-03 Qualcomm Mems Technologies, Inc. Backlight displays
US7746539B2 (en) * 2008-06-25 2010-06-29 Qualcomm Mems Technologies, Inc. Method for packing a display device and the device obtained thereof
US7859740B2 (en) * 2008-07-11 2010-12-28 Qualcomm Mems Technologies, Inc. Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control
US7855826B2 (en) 2008-08-12 2010-12-21 Qualcomm Mems Technologies, Inc. Method and apparatus to reduce or eliminate stiction and image retention in interferometric modulator devices
US8358266B2 (en) * 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US20100096006A1 (en) * 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. Monolithic imod color enhanced photovoltaic cell
US20100096011A1 (en) * 2008-10-16 2010-04-22 Qualcomm Mems Technologies, Inc. High efficiency interferometric color filters for photovoltaic modules
US8270056B2 (en) * 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
KR20120030460A (en) * 2009-05-29 2012-03-28 퀄컴 엠이엠스 테크놀로지스, 인크. Illumination devices and methods of fabrication thereof
CN102804005B (en) 2009-06-17 2016-07-06 皇家飞利浦电子股份有限公司 The interference filter with highly transmissive and big suppression scope for micro spectrometer
US8270062B2 (en) * 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) * 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
JP2013524287A (en) 2010-04-09 2013-06-17 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Mechanical layer of electromechanical device and method for forming the same
JP5531832B2 (en) 2010-07-06 2014-06-25 セイコーエプソン株式会社 Optical filter, optical filter module, spectrophotometer and optical instrument
KR20130091763A (en) 2010-08-17 2013-08-19 퀄컴 엠이엠에스 테크놀로지스, 인크. Actuation and calibration of a charge neutral electrode in an interferometric display device
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
CN103547948A (en) * 2011-04-20 2014-01-29 密执安州立大学董事会 Spectrum filtering for visual displays and imaging having minimal angle dependence
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US9547107B2 (en) 2013-03-15 2017-01-17 The Regents Of The University Of Michigan Dye and pigment-free structural colors and angle-insensitive spectrum filters
FI128101B (en) 2017-07-03 2019-09-30 Teknologian Tutkimuskeskus Vtt Oy Microelectromechanical (MEMS) fabry-perot interferometer, apparatus and method for manufacturing fabry-perot interferometer
PL234749B1 (en) * 2017-10-04 2020-03-31 Politechnika Gdanska Method for measuring temperature of electronic components and the head for measuring temperature of electronic components
MX2019002665A (en) * 2018-03-14 2019-09-16 Viavi Solutions Inc Solvent-less method to manufacture thin film devices.
CN108919405A (en) * 2018-07-03 2018-11-30 深圳市融光纳米科技有限公司 The insensitive reflection filter of angle
CN109238437A (en) * 2018-08-28 2019-01-18 电子科技大学 A kind of Fabry-perot optical fiber sonic probe based on silicon nitride MEMS film
EP3650833A1 (en) 2018-11-09 2020-05-13 Technische Universität München Multicolor optical resonator for imaging methods

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400058A (en) * 1980-06-16 1983-08-23 Honeywell Inc. Tunable Fabry-Perot filter
GB2082380A (en) * 1980-08-18 1982-03-03 Standard Telephones Cables Ltd Injection laser
GB8621439D0 (en) * 1986-09-05 1986-10-15 Secr Defence Electro-optic device
US5001209A (en) * 1988-07-04 1991-03-19 Akzo N.V. Non-linear optical active diols and polyurethanes prepared therefrom
DE68928746T2 (en) * 1988-09-08 1999-03-11 Akzo Nobel Nv Integrated optical components
FR2636634B1 (en) * 1988-09-16 1992-11-27 Rhone Poulenc Chimie POLYURETHANES, NON-LINEAR OPTICAL ACTIVE INGREDIENTS AND MATERIALS CONTAINING THE SAME, OPTICAL DEVICE CONTAINING THE SAME, AND METHODS OF MAKING SUCH COMPOUNDS AND MATERIALS
JPH02146526A (en) * 1988-11-29 1990-06-05 Seiko Instr Inc Liquid crystal element
US4957655A (en) * 1989-01-12 1990-09-18 Hoechst Celanese Corp. Copolymeric nonlinear optical media
EP0445864B1 (en) * 1990-03-06 1994-08-24 Akzo Nobel N.V. Thermally curable NLO system and integrated optical components prepared therefrom

Also Published As

Publication number Publication date
KR930023745A (en) 1993-12-21
TW245772B (en) 1995-04-21
US5381232A (en) 1995-01-10
JPH0690045A (en) 1994-03-29
CN1079820A (en) 1993-12-22

Similar Documents

Publication Publication Date Title
US5381232A (en) Fabry-perot with device mirrors including a dielectric coating outside the resonant cavity
JP3792510B2 (en) Two-color polarizer
US5400174A (en) Optical notch or minus filter
US7006292B2 (en) Multi-cavity optical filter
US4929063A (en) Nonlinear tunable optical bandpass filter
JP2003050311A (en) Attenuating filter for ultraviolet light
EP1570304B1 (en) Polarization separator, method for making same and ophthalmic lens including projection inserts comprising same
JP2011138169A (en) Transmission diffraction optical element
US6187445B1 (en) Birefringent plate
EP0519503B1 (en) Antireflection film and display apparatus
JP4749789B2 (en) Transmission type diffractive optical element
Son et al. Polarization modulation by vanadium dioxide on metallic substrates
EP0571022A1 (en) Fabry-perot with coated mirrors
US5179469A (en) Broad band light absorbing film
US5557466A (en) Two-wavelength antireflection film
US20210373208A1 (en) Optical Layer Having A Low Refractive Index and Methods of Fabrication
RU2079861C1 (en) Band-pass light filter
RU218707U1 (en) Multi-layer anti-reflective coating
TWI765807B (en) Filter
CN210222375U (en) Spectroscope of neutral beam splitting membrane combined by metal medium
USH1572H (en) Wavelength stabilizing laser mirror
SU866526A1 (en) Antireflective coating
Muranova et al. Multispectral optical coatings for protection from laser radiation
SU1509791A1 (en) Achromatic anti-reflecting coating
Banerjee et al. Omnidirectional structural color

Legal Events

Date Code Title Description
FZDE Dead