CA2101607A1 - Process for producing sticky polymers - Google Patents

Process for producing sticky polymers

Info

Publication number
CA2101607A1
CA2101607A1 CA002101607A CA2101607A CA2101607A1 CA 2101607 A1 CA2101607 A1 CA 2101607A1 CA 002101607 A CA002101607 A CA 002101607A CA 2101607 A CA2101607 A CA 2101607A CA 2101607 A1 CA2101607 A1 CA 2101607A1
Authority
CA
Canada
Prior art keywords
composition
reactor
ethylene
improvement according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002101607A
Other languages
French (fr)
Inventor
Fathi David Hussein
Kiu Hee Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Union Carbide Chemicals and Plastics Technology LLC
Original Assignee
Union Carbide Chemicals and Plastics Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Carbide Chemicals and Plastics Technology LLC filed Critical Union Carbide Chemicals and Plastics Technology LLC
Publication of CA2101607A1 publication Critical patent/CA2101607A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Abstract

PROCESS FOR PRODUCING STICKY POLYMERS

ABSTRACT OF THE DISCLOSURE

An improvement in the process for producing sticky polymers in a fluidized bed reactor catalyzed by a transition metal catalyst in the presence of an inert particulate material prone to generate excessive negative charges in said reactor, by conducting the process in the presence of a composition comprising a mixture of an alcohol phosphate salt and a quarternary ammonium salt, which is dissolved in a suitable solvent.

Description

D- l 6982 PROCESS FOR PRODUCING STICKY POLYMERS

F'ield of the Invention The present invention relates to a process for producing sticky polymers and more particularly to a process for producing sticky polymers in gas phase reactors without experiencing polymer build up on reactor walls.

Description of the Prior Art The introduction of high activity Ziegler-Natta catalyst systems has lead to the development of new polymerization processes based on gas phase fluid bed reactors such as disclosed in U.S. Patent 4,482,687 issued Nov. 13, 1984. These processes of~er many advantages over bulk monomer slurry processes or solvent processes. They are more economical and inherently safer in that they eliminate the need to handle and recover larger quantities of solvent while advantageously providing low pressure process operation.
The versatility of the gas phase fluid bed reactor has contributed to its rapid acceptance. Alpha olefins polymers produced in this type of reactor cover a ~wide range ~f density, molecular weight distribution and melt indexes. In fact new and better products have been synthesi~ed im gas phase reactors because of the flexibility and adaptability of the gas phase reactor to a large spectrum of operating conditions.
It has now become econoInically attractive to produce so called "sticky polymers" in gas phase fluid bed reactors. The term "sticky polymer" is defined as a polymer, which, although particulate at temperatures below the sticking or softening temperature, agglomerates at temperatures above the sticking or softening temperature. The term "sticking temperature", which, in the conte~ of this specification, concerns the s-ticking temperature of particles of polymer in a fluidized bed, is def ined ~ r~ 0 7 as the temperature at which fluidization ceases due to excessive agglomeration of particles in the bed. The agglomeration may be spontaneous or occur on short periods of settling.
A polymer may be inherently sticky due to its chemical or mechanical properties or pass through a sticky phase during the production cycle. Sticky polymers are also referred to as non free flowing polymers because of their tendency to compact into agglomerates of much larger size than the original particles.
Polymers of this type show acceptable fluidity in a gas phase fluidized bed reactor; however, once motion ceases, the additional mechanical ~orce provided by the fluidi~ing gas passing through the distributor plate is insufficient to break up the agglomerates which form and the bed will not refluidize. These polymers are classified as those, which have a minimum bin opening for free flow at zero storage time of two ~eet and a minimum bin opening for free flow at storage times of greater than five minutes of 4 to 8 feet or more.
Sticky polymers can also be defined by their bulk flow properties. This is called the Flow Function. On a scale of zero to imSnity, the Flow Eunction of free flowing materials such as dry sand is infin~te. The Flow Function of free ilowing polymers is about 4 to 10, while the Flow Function of non-free flowing or sticky polymers is about 1 to 3.
Al~hough many variables influence the degree of stickiness of the resin, it is predominantly governed by the temperature and the crystallinity of the resin. Higher temperatures of the resin increase its stickiness while less crystalline products such as very low density polyethylene (VLDPE), ethylene/propylene monomer (EPM), ethylene/propylene diene monomer (EPDM) and polypropylene (PP) copolymers usually display a larger tendency to agglomerate to form larger particles.

.,, a ~

As mentioned previously, production of sticky polymers Call be carried out in gas-phase fluidized reactors. However to achieve fluidization of sticky polymers which have the tendency to settle and agglomerate under no~nal polymerization conditions, an inert small particle size material is injected into the bed to act as a fluidization aid. Thus, U.S. Patent 4,994,~34 issued to Rhee et al discloses the addition of an inert particulate material to a fluidized bed reactor which in effect prevents particle to part;cle agglomeration during polymerization. The fluidization aid material tends to cover the outer surface of each resin particle. One effective fluidization aid mentioned in said patent is carbon black, however, products made with even low levels of carbon black are completely black and are not satisfactory for applications that require colorable products.
White/colorable fluidization aids are also included in said patent and include different types of calcined silicas, clays, talc, and calcium carbonate. One major problem discovered with the addition oî these white/colorable fluidization aids during the production of sticky polymers is their tendency to generate heavy negative statics which under polymerization conditions leads to resin build-up on reactor walls and as they reach certain thicknesses fall off and prevent either product discharge or proper fluidization. These conditions may force the shutdown of the polymerization reactor for the removal of these skins and sheets.
Accordingly it is an object of the present invention to provide an improvement in the process ~or continuously producing sticky polymers with the aid of an inert particulate material in a gas-phase fluidized bed reactor.
Another object is to provide a process for producing sticky polymers with the aid of an inert particulate material in a fluidized bed reactor which process permits operation over ~1~16~7 extended periods of time without experiencing reactor shut-down due to the generation of heavy negative static charges.
Another object is to provide a process for producing sticky polymers which are colorable.
A further object is to provide a process for producing sticky polymers in a gas-phase, fluidized bed reactor, over extended periods of time while minimizing the extent of resin build-up on the reactor walls.
These and other objects will be apparent ~rom the following detailed descliption of the invention.

SUMMARY OF THE TNVENTlON
Broadly contemplated, the present invention provides an improvement in the process for producing sticky polymers in a fluidized bed reactor catalyzed by a transition metal catalyst in the presence of an inert particulate material prone to generate excessive negat*e charges in said reactor, the improvement comprising conducting said process in the presence of a composition comprising a mixture of an alcohol phosphate salt and a quarternary ammonium salt, said mi~ture being dissolved in a suitable solvent, said mixture being employed in an amount sufflcient to substantially neutralize said negative static charge in said reactor.

DETAILED DESCRIPTION OF THE INVEl!~TION
A process and apparatus whi~ can be used to produce sticky polymers is disclosed in U.S. Patent 4,994,534 which process is incorporated herein by reference.
Examples of sticky polymers vvhich can be produced by the process disclosed in U.S. Patent 4,994,534 and which pertain to the instant invention include ethylene/propylene rubbers and ethylene/propylene/diene termonomer rubbers, polybutadiene rubbers, high ethylene content propylene/ethylene block '7 copolymers, poly (1 butene) (when produced under certain reaction conditions), very low density (low modulus) polyethylenes, i.e., et.hylene butene rubbers or hexene containing terpolymers, ethylene/propylene/ethylidenenorbornene and ethylene/propylene hexadiene terpolymers of low density.
Characteristic of two types of resins which can be produced in U.S. Patent 4,994,534 and which can be produced in the process of the present invention are as follows:
One type of resin is an ethylene/propylene rubber containing 25 to 65 percent, by weight, propylene. This material is sticky to the touch at reactor temperatures of 20C to 40C or higher and has a severe tendency to agglomerate when allowed to settle for pe~ods of more than two to five minutes. Another sticky resin is an ethylene/butene copolymer produced at reactor temperatures of ~0C to 80C at density levels of 880 to 905 kilograms per cubic meter and melt index levels of 1 to 20 and chlorinated or chlorosulfonated after being produced in the fluidized bed reactor.
In general, the inert particulate materials which cause excessive negat*e charges in the reactor are those of the inorganic oxide type. These include for example calcined silica, clays, talc, calcium carbonate and other like materials, commonly referred to as white fluidization aids. Carbon black however does not generate negative statics. Unfo~tunately however and as mentioned previously products made with even low levels of carbon black are completely black and are not satisfactory for application that require colorable products.
The composition which can be added to the polymerization reactor sys$em is a mi~ture OI an alcohol phosphate salt and a quarternary ammonium salt which is dissolved in a suitable solvent such as hexane, isopropanol, isopentane, or ~ixtures thereof. The amount of alcohol phosphate salt contained in the D- l 6982 composition can vary between about 1% to 10% by weight based on the weight of the composition.
The quarternary ammo~ium s~lt can be present in the composition ~n amounts of about 1% to about 1~o by weight, based on the weight of the composition.
The solvent can be present in the composition in amounts of about 8% to about 98% by weight, based on the weight of the compositlon.
A particularly suitable cornposition is available comrnercially under the tradename Statikil which is available from Statikil Inc. Akron, Ohio. This composition contains the following ingredients:
10 wt% Hexane 70 wt% Isopropanol 8.9 wt% Alcohol phosphate salts 11.1 wt% Quarternary Ammonium salt This composition has a specific gravity of 1 and an appro~imate boiling point of about 6~C.
The amount of negative charge reducing composition utilized generally depends on the type of inert material utilized and the type of polymer produced. In general the negat*e static charge reducing composi$ion is employed in amounts of about .05% to 0.~5% based on the weight of the resin pre~erably about 0.1~ to 0.2~o based on the weight of the resin.
The negative charge reducing composition can be added to ~he reaction system in a variety of ways. Thus, the composition can be metered to the reactor using a sight/glass motor valve and orifice ~eeding arrangement at a point above or below the distributor plate.
The following e~amples will further illustrate -the present invention. For each of the e~amples sticky polymer was produced continuously in a gas-phase, fluidized bed reactor according to the procedure disclosed in U.S. Patent 4,994,~34.

i & ~ tl The catalyst was a vanadium-based and supported on silica particles. The catalyst system included a cocatalyst such as tri isobutyl aluminum (TIBA) and a promoter such as chloroform.
Ethylene, hydrogen, and comonomers (combinations of propylene and diene) were continuously fed to the reactor. An inert particulate material fluidization aid such as calcined silica (calcined to remove chemically bound water of hydration and minimize the level of the hydroxyl groups) was also utilized. The calcined silica was fed to the reactor at short intervals to keep an acceptable concentration level of silica in the reactor to pre~rent defluidization or agglomeration.

Example 1 This example demonstrates that although carbon black as the inert material is effective for reducing negative static levels in the reactor, the products produced are black and uncolorable.
The reactor was started under sticky ethylene propylene diene monomer (EPDM) conditions that produced an ethylene-propylene-diene terpolymer using a vanadium catalyst and TIBA/Chloroform catalyst system at 60C. The reactor was operated by initially using carbon as a fluidization aid. As the reaction was stabilized the carbon level was reduced and calcined silica was introduced as a fluidization aid. As the concentration of silica increased to 4 to 5 wt% and the carbon level dropped to 1 to 2 wt%, the static level increased in the bed fi om neutral to -60û
to -700 volts. Skin thermocouples indicated the initiation of bwld-up formation on the reactor wall. To prevent the formation of sheets and skins and reactor shutdown, carbon feed was reestablished intermittently. The sta~c level baseline returned back to neutral.
The resin produced was black and uncolorable. Everytime it was attempted to stop the carbon feed the static level baseline D-16~82 ~jl?.3'~37 became negative and the skin thermocouples indicated the initiation of build-up on the reactor wall.

Examples 2-5 In these examples, a series of antistats and static drivers (an agent which generates an opposite charge to the charge existing in the bed) were tested for effect on reducing statics and allowing the production of colorable EPR product with negligible level of carbon.
In Example 2 the antistatic agent "~tadis 450" was utilized which consists of 6~% by weight toluene9 13.3% by weight 1-decene polysulfone, 13.3% hy weig~t polymeric polyamine and 7.4% by weight dodecylbenzene sulfonic acid. The mixture was added to the reactor in an amount sufficient to achieve the desired concentration of antistatic agent therein.
In Example 3, a known static driver, isopropanol, was tested under conditions similar to E~ample 2.
In Example 4, a further known static driver, acetone, was tested and in Example !j, the antistatic agent "Larostat" was tested. "Larostat" is available commercially from Pittsburg Plate and Glass Co., Inc. and includes diethanolamine.
In Examples 2-5, the reactor was started under conditions similar to Example 1. A~ter stabilizing the reaction using carbon as a fluidization aid, the carbon level was reduced and calcined silica was used as fluidization aid. Carbon was fed intermittently everytime the static baseline dropped and the skin thermocouples indicated the initiation of build-up on the reactor wall.
In all examples 2-5 the static le~el baseline was not controlled unless carbon was fed intermittenly, thus making a black (noncolorable) product.

~3 ~ ~ ~7 These examples demonstrate how an antistatic a~ent and a static driver agent were not effective in reducing negative static charges when producing colorable products.
The reaction process was started under sticky polymer production (EPR) conditions using a vanadium based catalyst and a TIBA/Chloroform system to produce slightly sticky resin with calcined silica as a fluidization aid and with no carbon to control statics. Sodium beta alumina (European Patent Application Al-01330686 to B.F. Goodrich) and PEG (polyethylene glycol) were utilized to bring the static level under control.
However, the reactor was forced down as a result of skins due to negative static charges.
E~m~i!ç Q
This e~ample demonstrates the effect of "Statikil" for controlling negative static charges.
The fluidized bed reactor was started at ~0G using a vanadium catalyst to produce EPDM (ethylene-diene-propylene) product. Calcined silica was used as a colorable fluidization aid.
Carbon was added intermittenly to the r eactor to keep the static activity under control. As the silica concentration in the reactor increased, the statics level appeared to gradually become negative. Carbon was adrninistered every time the static level dropped below -~00 volts to prevent build-up on the reactor wall.
Statikil diluted in isopentane (10wt%) was fed to the reactor in an amount of about 1000 to 2000 ppm (w) of resin production. A few hours following the start of Statikil feed, the static level was gradually diminished and the carbon feed was stopped. The static level remained ~der control with no signs of build-up OIl the reactor wall or skin formation. The static baseline remained close to neutral. Static spikes due to silica shots were neutralized D-l 6982 ~U ~7 ,~

within minutes thus keeping the overall static level under control.
Reactor operation and static activity remained smooth ~or 26 hours with no need to feed carbon for stat;c control. A~ter 26 hours of feeding Statikil, the antistat ~eeding system developed a leak resulting in ~eeding very little Statikil to the reactor. The Statikil feed system was taken out of service. During this time!
the static activity became negative reqwring carbon feed every 1 or 2 hours (from 1 to 2 wt% carbon) to neutralize the static activity.

E2ample 9 The :reactor was started Up under the same conditions as in Example 8. Again calcined silica was used as colorable fluidization aid and shots of carbon were added to the reactor to keep the statics under control. The carhon feed was stopped and Statikil feed was established. The static activity was stabilized three hours after establishing Statikil feed and kept under control without the need of carbon feed. The reactor was operated for about 24 hours without feeding carbon.

E~xample 10 The reactor was restarted under the same EPDM
producing conditions as in Example 8. A few hours after establishing reaction with calcined silica as colorable fluidization aid~ and using carbon to control statics, Statikil feed to the reactor was started. Within 2 hours of feeding Statikil, the static activity subsided and carbon shots were stopped. The static activity remained under control with Statikil feed rate at a concentration in the resin of about 800 to 1200 ppm by weight and without the need of carbon feed. The static activity appeared to be related to the concentration level of Statikil in the bed. The static activity increased as the Statikil concentration dropped below 800 ppm.

D- 1 698~
2 1 ~ 1 7 The reactor operated smoothly without a need for carbon feed and with statics under control using Statikil -for 27 hours. The statics activity increased sharply when the Statikil feed was interrup$ed.
~amp~
The reactor was started up under EPDM production conditions as indicated in Ea~ample 8. After the reaction and Statikil feed rate were stabilized, the statics activity baseline oscillated around neutral level with occasional spikes due to silica shots. It was observed again that the static activity was dependent on the level of Statikil, and the static level basel~ne could be brought back to neutral by increasing or decreasing the level of the Statikil feed rate. The reactor continued to line out smoothly without feeding any car~on for over ~ days with only Statikil to control the static baseline. The resin became white (colorable). Reactor operation appeared to be robust in spite of the silica induced static spikes. Statikil is a moderate positive driver which tends to drive the static activity from negative to positive depending on its concentration in the r~actor and the level of static activity.
As will be discerned from the above examples, the mere utilization of an antistatic agent for co~trolling build-up OI
polymer on the reactor walls is not sufEcient when producing sticky polymers by the fluidized bed tec;tmique. It was surp~singly found however that if the process is conducted in the presence of a composition comprising a mixture of aIl alcohol phosphate sal$ and a quarternary ammonium salt di~solved in a suitable solvent, that any negative charges generated in the reactor coul~ be neutralized.
From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to I~- 1 6982 2 ~ 7 adapt it to various usages and conditions. For example, one skilled in the art can use the process of the present invention to prevent reactor ~ouling in any type of gas phase polymerization process. The broad description of a particular gas phase polymerization process is provided merely to illustrate and facilitate a clear understanding of the process of this invention.

Claims (9)

1. An improvement in the process for producing sticky polymers in a fluidized bed reactor catalyzed by a transition metal catalyst in the presence of an inert particulate material prone to generate excessive negative charges in said reactor, the improvement comprising conducting said process in the presence of a composition comprising a mixture of an alcohol phosphate salt and a quarternary ammonium salt, said mixture being dissolved in a suitable solvent, said mixture being employed in an amount sufficient to substantially neutralize said negative static charge in said reactor.
2. The improvement according to claim 1 wherein said composition is employed in an amount of about 0.05% to about 0.25% based on the weight of resin.
3. The improvement according to claim 1 wherein said composition is employed in an amount of about 0.1% to about 0.2% based on the weight of resin.
4. The improvement according to claim 1 wherein the amount of alcohol phosphate salt present in said composition is about 1% to about 10% based on the weight of the composition.
5. The improvement according to claim 1 wherein the amount of quarternary ammonium salt present in said composition is about 1% to about 15% based on the weight of the composition.
6. The improvement according to claim 1 wherein the amount of solvent present in said composition is about 8% to about 98% based on the weight of the composition.
7. The improvement according to claim 1 wherein said stcky polymers are:
a. ethylene propylene rubbers;
b. ethylene propylene diene termonomer rubbers;
c. polybutadiene rubbers; and d. high ethylene content propylene ethylene block copolymers.
8. The improvement according to claim 7 wherein said ethylene propylene diene termonomers are ethylene/propylene/ethylidenenorbornene termonomers.
9. The improvement according to claim 7 wherein said ethylene propylene diene temonomers are ethylene/propylene/hexadiene termonomers.
CA002101607A 1992-07-30 1993-07-29 Process for producing sticky polymers Abandoned CA2101607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/921,944 US5194526A (en) 1992-07-30 1992-07-30 Process for producing sticky polymers
US7-921,944 1992-07-30

Publications (1)

Publication Number Publication Date
CA2101607A1 true CA2101607A1 (en) 1994-01-31

Family

ID=25446234

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002101607A Abandoned CA2101607A1 (en) 1992-07-30 1993-07-29 Process for producing sticky polymers

Country Status (12)

Country Link
US (1) US5194526A (en)
EP (1) EP0584574B1 (en)
JP (1) JP2811529B2 (en)
KR (1) KR0165133B1 (en)
CN (1) CN1084520A (en)
AT (1) ATE143383T1 (en)
BR (1) BR9303039A (en)
CA (1) CA2101607A1 (en)
DE (1) DE69305033T2 (en)
ES (1) ES2094425T3 (en)
MX (1) MX9304593A (en)
ZA (1) ZA935499B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391657A (en) * 1993-09-27 1995-02-21 Union Carbide Chemicals & Plastics Technology Corporaton Method for reducing sheeting and static charges during polymerization of ethylene polymers
US5733988A (en) * 1994-06-29 1998-03-31 Union Carbide Chemicals & Plastics Technology Corporation Process for reducing polymer build-up in recycle lines and heat exchangers during polymerizations employing butadiene, isoprene, and/or styrene
US5461123A (en) 1994-07-14 1995-10-24 Union Carbide Chemicals & Plastics Technology Corporation Gas phase fluidized bed polyolefin polymerization process using sound waves
US5428118A (en) 1994-07-15 1995-06-27 Union Carbide Chemicals & Plastics Technology Corporation Gas phase fluidized bed polyolefin polymerization process using gas or gas-solids tangential flow
US6140432A (en) * 1995-07-13 2000-10-31 Exxon Chemical Patents Inc. Polymerization catalyst systems, their production and use
US6124230A (en) * 1995-07-13 2000-09-26 Exxon Chemical Patents, Inc. Polymerization catalyst systems, their production and use
AU3456995A (en) 1994-11-02 1996-05-09 Union Carbide Chemicals & Plastics Technology Corporation Process for the production of homogeneous ethylene propylene rubbers using a vanadium catalyst supported on magnesium chloride
DE19835467A1 (en) 1998-08-06 2000-02-17 Elenac Gmbh Solid reactor with antistatic coating for carrying out reactions in the gas phase
US6288181B1 (en) 1999-03-30 2001-09-11 Eastman Chemical Company Process for producing polyolefins
US6313236B1 (en) 1999-03-30 2001-11-06 Eastman Chemical Company Process for producing polyolefins
CN1177869C (en) 1999-03-30 2004-12-01 伊斯曼化学公司 Process for producing polyolefins
US6300432B1 (en) 1999-03-30 2001-10-09 Eastman Chemical Company Process for producing polyolefins
ATE276279T1 (en) * 1999-05-07 2004-10-15 Bp Chem Int Ltd METHOD FOR THE GAS PHASE (CO-)POLYMERIZATION OF OLEFINS IN A FLUID BED REACTOR
US6187879B1 (en) 1999-08-31 2001-02-13 Eastman Chemical Company Process for producing polyolefins
BR9917469B1 (en) 1999-08-31 2008-11-18 process for polymerizing an olefin and / or an olefin and at least one or more other olefins, film, and article.
US6191238B1 (en) 1999-08-31 2001-02-20 Eastman Chemical Company Process for producing polyolefins
WO2001018067A1 (en) * 1999-09-09 2001-03-15 Bp Chemicals Limited Process for the continuous gas-phase (co-)polymerisation of olefins in a fluidised bed reactor
US6359083B1 (en) 2000-05-02 2002-03-19 Eastman Chemical Company Olefin polymerization process
US7238756B2 (en) * 2003-10-15 2007-07-03 Univation Technologies, Llc Polymerization process and control of polymer composition properties
US6828395B1 (en) 2003-10-15 2004-12-07 Univation Technologies, Llc Polymerization process and control of polymer composition properties
US7683140B2 (en) * 2004-05-20 2010-03-23 Univation Technologies, Llc Method for determining temperature value indicative of resin stickiness from data generated by polymerization reaction monitoring
EP1749034A2 (en) * 2004-05-20 2007-02-07 Univation Technologies, LLC Gas olefin polymerization process
US7754830B2 (en) 2004-05-20 2010-07-13 Univation Technologies, Llc Polymerization reaction monitoring with determination of induced condensing agent concentration for preventing discontinuity events
DE102006022256A1 (en) * 2006-05-11 2007-11-15 Basell Polyolefine Gmbh Metering polar, antistatic process aids into a polymerisation reactor in the form of a solution, e.g. in polymerisation of olefin, involves measuring the conductivity of the solution and using it to determine the amount added
DE102006022255A1 (en) * 2006-05-11 2007-11-15 Basell Polyolefine Gmbh Preparation of antistatic agent, useful for olefin polymerization, comprises contacting antistatic active compound containing hydrogen atom bonded with non-metallic heteroatom, with metal alkyl
GB0610668D0 (en) * 2006-05-30 2006-07-12 Nova Chem Int Sa Supported antistatic polymerization catalysts
RU2448981C2 (en) * 2006-09-07 2012-04-27 Юнивейшн Текнолоджиз, Ллк Methods for real-time determination of degree of resin stickiness using model for depression of melt initiation temperature
US8273834B2 (en) * 2006-09-07 2012-09-25 Univation Technologies, Llc Methods for determining temperature value indicative of resin stickiness from data generated by polymerization reaction monitoring

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649128A (en) * 1985-11-21 1987-03-10 National Distillers And Chemical Corporation Deactivator for olefin polymerization catalyst
US5026795A (en) * 1987-02-24 1991-06-25 Phillips Petroleum Co Process for preventing fouling in a gas phase polymerization reactor
US4803251A (en) * 1987-11-04 1989-02-07 Union Carbide Corporation Method for reducing sheeting during polymerization of alpha-olefins
DE3833444A1 (en) * 1988-10-01 1990-04-05 Basf Ag PREVENTION OF COLORED IMPURITIES IN THE PRODUCTION OF ULTRA HIGH-MOLECULAR ETHYLENE POLYMERISATES BY MEANS OF A TITANIUM-CONTAINING CATALYST SYSTEM
US4994534A (en) * 1989-09-28 1991-02-19 Union Carbide Chemicals And Plastics Company Inc. Process for producing sticky polymers
US5037905A (en) * 1989-12-07 1991-08-06 Union Carbide Chemicals And Plastics Technology Corporation Process for reducing polymer build-up in heat exchangers during polymerization of alpha-olefins
FR2660926B1 (en) * 1990-04-11 1992-07-31 Bp Chemicals Snc ALPHA-OLEFIN PREPOLYMER CONTAINING A TRANSITIONAL METAL AND PROCESS FOR THE POLYMERIZATION OF ALPHA-OLEFIN IN THE GAS PHASE USING THE PREPOLYMER.

Also Published As

Publication number Publication date
KR0165133B1 (en) 1999-03-20
ZA935499B (en) 1994-02-28
CN1084520A (en) 1994-03-30
DE69305033D1 (en) 1996-10-31
DE69305033T2 (en) 1997-02-06
US5194526A (en) 1993-03-16
BR9303039A (en) 1994-03-01
ES2094425T3 (en) 1997-01-16
JP2811529B2 (en) 1998-10-15
ATE143383T1 (en) 1996-10-15
JPH06172412A (en) 1994-06-21
KR940002273A (en) 1994-02-17
EP0584574A1 (en) 1994-03-02
MX9304593A (en) 1994-03-31
EP0584574B1 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
CA2101607A1 (en) Process for producing sticky polymers
US5391657A (en) Method for reducing sheeting and static charges during polymerization of ethylene polymers
KR100218863B1 (en) Process for the gas-phase polymerization of olefins
KR100415699B1 (en) Methods for preventing contamination and seating in gas phase reactors
EP0799248B1 (en) Method for preventing fouling in polymerization reactors
US7902300B2 (en) Controlled rheology polypropylene heterophasic copolymers
US7659349B2 (en) Impact strength polypropylene
CA2149374A1 (en) Process for polymerising olefin in gas phase
US7999046B2 (en) Neutralization of deactivated polymerization catalyst using phosphoric or phosphonic acid salts
CA1197657A (en) Process for producing an olefin polymer article
GB1596589A (en) Preparation of solid titanium trichloride and propylene polymers using same
CA1129141A (en) Process for producing propylene-ethylene block copolymers
EP0229461B1 (en) Foamable composition comprising polypropylene, and cellular products thereof
US4452928A (en) Additive-containing polyolefin beads and process for their preparation
KR20010051822A (en) Start-up process for gas phase production of polybutadiene
US5473022A (en) Carboxyl-containing isobutene copolymers
CA1070448A (en) Block copolymer process
JPH04233923A (en) Ethylene/vinyl acetate copolymer having raised freezing point and manufacture thereof
CA1080896A (en) Olefin polymerization catalyst composition
US9469755B2 (en) Process for transitioning
CA2075764A1 (en) Process for the copolymerization of 4-methyl-1-pentene
CN116396418A (en) Method for preparing propenyl polymer
JPH07173335A (en) Polyolefin particle composition
JPH0987448A (en) Production of propylene polymer
SI9200418A (en) Polyvinyl chloride ready for processing and its preparation method

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued