CA2120370A1 - Method for genetically modifying bone marrow cells of primates, and useful cells therefor that produce recombinant retroviral vectors - Google Patents

Method for genetically modifying bone marrow cells of primates, and useful cells therefor that produce recombinant retroviral vectors

Info

Publication number
CA2120370A1
CA2120370A1 CA002120370A CA2120370A CA2120370A1 CA 2120370 A1 CA2120370 A1 CA 2120370A1 CA 002120370 A CA002120370 A CA 002120370A CA 2120370 A CA2120370 A CA 2120370A CA 2120370 A1 CA2120370 A1 CA 2120370A1
Authority
CA
Canada
Prior art keywords
cells
bone marrow
mulv
recombinant
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002120370A
Other languages
French (fr)
Inventor
Domenico Valerio
Victor W. Van Beusechem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Vaccines and Prevention BV
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2120370A1 publication Critical patent/CA2120370A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/13011Gammaretrovirus, e.g. murine leukeamia virus
    • C12N2740/13041Use of virus, viral particle or viral elements as a vector
    • C12N2740/13045Special targeting system for viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6045RNA rev transcr viruses
    • C12N2810/6054Retroviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/80Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates
    • C12N2810/85Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian
    • C12N2810/855Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian from receptors; from cell surface antigens; from cell surface determinants

Abstract

A method for genetically modifying bone marrow cells of primates, comprising isolating bone marrow cells from a primate and, by means of cocultivation, exposing the isolated bone marrow cells to cells that produce a recombinant amphotropic retrovirus with a genome based on a retroviral vector that contains the genetic information to be introduced into the bone marrow cells. Recombinant amphotropic retrovirus-producing cells, suitable for use in this method.

Description

'-'093/07281 2 12 0 3 7 0 PCT/NL92/00177 Title: Method for genetically modifying bone marrow cells of primates, and useful cells therefor that produce recombinant retroviral vectors.

Field of the invention The invention concerns the field of gene therapy and more particularly relates to a method for genetically modifying bone marrow cells of primates, and to cells that produce recombinant retroviral vectors that can be used in such a method.

Prior art Introduction Developments in the field of molecular biology have led to a better understanding of the genetic basis underlying the development of a large numbers of disorders. It is expected that the genes which are associated with the diseases that occur most frequently will have been identified, cloned and characterized before the end of this century.
So far, molecular genetics has contributed to medicine by the development of diagnostic tools and methods and the biotechnological production of pharmaceuticals. It may be expected, however, that it will also be possible to use the increasing knowledge of genetics for an essentially new therapeutic treatment, the so-called gene therapy. The purpose of gene therapy is to treat disorders by genetically modifying somatic cells of patients. The uses of gene therapy are not U ~

WO93/07281 PCT/NL92/0017~

limited to hereditary disorders; the treatment of acquired diseases is also considered to be one of the possibilities.
Although this field of study is still in a preliminary stage and must be developed, therapeutic possibilities are in the distance which can drastically improve medicine in the future (1-3).
An important cell type for gene therapy purposes is the so-called haemopoietic stem cell which is situated in the bone marrow and is the precursor cell of all circulating blood cells. This stem cell can also multiply itself without losing its differentiating ability. The underlying idea of a gene therapy directed to these cells is that gene transfer to (a limited number of) stem cells may already be sufficient to replace the entire blood-forming tissue with genetically modified cells for a lifetime ~4). This would enable treatment not only of diseases that are caused by a ~hereditary) defect of blood cells, but also of diseases that are based on the inability to make a certain protein: the modified blood ~forming) system could be a constant source of the protein, which could do its work at the places where necessary. It is also possible, with the introduction of genetic material into the blood system, to obtain resistance against infectious agents or even to overcome a predisposition to chronic diseases, such as rheumatism or diabetes.
Finally, it can be noted that in the treatment of some diseases it is to be preferred or necessary that the gene transfer to stem cells is performed on bone marrow cell populations from which certain cell types have been removed.
One could for instance consider the use of gene therapy in the 'O 93/07281 2 1 2 0 3 7 0 PC~r/NL92/00177 treatment of leukemia, in which case there should not occur any gene transfer to the leukemic cells.

Retroviral vectors S One of the conditions for the realization of such a bone marrow gene therapy protocol is a technique by which genes can be incorporated into the chromosomes of target cells, in such a manner that those genes are also passed on to the daugther cells and that the desired protein product is produced in ,10 those cells.
In the invention described here, for this purpose use is made of recombinant retroviruses that carry with them the genes to be introduced and are capable of delivering them in mammalian cells. They make use of the natural characteristic of lS retroviruses to integrate efficiently and stably into the genome of the infected cell, but cannot themselves cause any productive infection anymore because they are replication-defective and are not contaminated with wild-~ype viruses (5, 6).
The recombinant retroviruses which are used within the framework of the present invention are all based on murine leukemia viruses ~MuLV; 7). For gene therapy in humans, use will be made of so-called amphotropic retroviruses which have a broad host-specificity and can infect primate cells, in addition to murine cells.
For the production of recombinant retroviruses, two elements are re~uired:
a) the so-called retroviral vector, which, in addition to the gene ~or genes) to be introduced, contains all DNA

2l2037a elements of a retrovirus that are necessary for packaging the viral genome and the integration into the host genome, and b) the so-called packaging cell line which produces the S viral proteins that are necessary for building up an infectious recombinant retrovirus (8).
As the presence of replication-competent vixuses in a gene therapy protocol is considered highly undes:irable, most modern packaging cell lines are so constructed that the risk , 10 of recombination events whereby a replication-competent virus is generated, is minimized. This is effected by physically .
separating into two parts the parts of the virus genome that code for viral proteins and introducing them into the cell line separately (9-ll).
As the presence of both constructs is essential to the functioning of the packaging cell line and chromosomal instability occurs regularly, it is of great importance for the routine use of such cells in gene therapy procedures that by means of a selection medium selection for the presence of the constructs can be provided for. Therefore these constructs are often introduced by means of a so-called cotransfection whereby both viral constructs are transfected together with a dominant selection marker. The possibility of selection thus provided is certainly not a trivial requirement, considering for instance the observation that we and various other research groups made, that virus-producing cells based on the packaging cell line ~CRIP (9) are not stable. That is to say that they are no longer resistant to the relevant selection media and during cultivation lose their capacity to produce -'093/07281 2 1 2 0 3 7 0 PCT/NL92/00177 retroviruses. One example, of importance for the present invention, is the so-called POC-l cell line which was produced by us on the basis of ~CRIP cells ~12~ and on account of its instability cannot be used for gene therapy on a routine basis. Therefore, in the invention described here, use is made of packaging cells which, by means of a dominant selection culture, will continue to produce stable virus.

Genetic modification of the haemo~oieti~_system ~l0 Studies in mice have demonstrated that using amphotropic retroviral vectors, bone marrow stem cells can be provided : with a new gene. After transplantation of these modified cells into lethally irradiated mice, the new gene could also be demonstrated for long periods in many different blood cell types of the transplanted animals (12).
Previous problems with regard to the non-expression of the newly introduced genes were solved by us by using a retro~iral vector in which the expression of the gene of choice, is driven by a retroviral promoter whose expression-specificity has been changed by means of a replacement of theso-called enhancer (12, 13). In the present invention, these vectors are called LgXL~oMo+PyFl0l), wherein X represents the code of a gene yet to be filled in.

Preclinical studies in nonhuman Drimates Before the results obtained from research into gene transfer into the blood-forming organ of mice can be translated into an eventual use of gene therapy in the clinic, a number of essential questions must be answered by studying a -212037~
W093/0728l PCT/NL92/0017-relevant preclinical model. First of all, it will have to be demonstrated that efficient gene transfer is also possible to blood-forming stem cells of higher mammals, in particular primates. Moreover, genetic modification coupled with autologous bone marrow transplantation in primates requires complex logistics which cannot be studied in mice. The organization of the blood-forming organs of mice and humans can only be compared to a certain extent and it will be clear that the sizes of the two species, and hence the numbers of , 10 cells involved in transplantation, differ considerably.
The experimental animal model that is eminently suitable for preclinical gene therapy studies is the nonhuman primate, in particular the rhesus monkey, partly because the current bone marrow transplantation protocols in the clinic are principally based on data obtained from experiments with bone marrow from the rhesus monkey. Gene therapy procedures using bone marrow cells can be tested in this animal model by taking bone marrow, modifying this genetically by means of recombinant retroviruses and subsequently transplanting it back autologously ~i.e. into the same monkey) after the endogenous bone marrow cells have been eradicated by means of irradiation.
To date, such experiments have met with little success with regard to:
a) the haemopoietic regeneration that could be effected with the infected bone marrow, and b) the in vivo stability of the genetic modification.

re a): For an efficient gene transfer by means of retroviral vectors, a direct exposure of the bone marrow cells `'093/07281 2 12 0 3 7 ~ PCT/NL92/00177 to be infected to the virus-producing cells is required. This occurs by means of a so-called cocultivation wherein the virus-producing cells are adhered to the bottom of a culture bottle and the bone marrow cells are seeded on top thereof.
Following cocultivation, the non-adherent bone marrow cells are subsequently harvested and used as transplants.
In the data published to date, this so-called cocultivation of the two cell types has always been associated with a drastic loss of in vivo regenerating capacity of the , 10 bone marrow cells ~14-16), so that a clinical application is precluded.
The present invention shows in an example that under controlled conditions, with the virus-producing cells described here a cocultivation can occur without such a regenera~ion loss.
re b): None of the studies published to date are sufficiently interpretable as regards genetic modification, since they invariably involved the use of virus preparations in which replication-competent virus was present. Via a so-called "rescue", this may lead to a spread of the recombinantvirus genome af~er the cells have been transplanted, so that it remains unclear whether the modified cells are offspring of infected bone marrow cells.
In thè first reported study ~14, 15), in 19 monkeys an autologous transplantation was performed with bone marrow cells infected with different retroviral vectors containing the gene for neomycin resistance (neor~ or dihydrofolate reductase (DHFR), or with a virus in which D~Qr and the gene 21~0370 W093/07~81 PCT/NL92/00177-for adenosine deaminase (ADA) are located together, produced by cells that also produce replication-competent virus.
Two gene transfer procedures were utilized, the cocultivation procedure described under re a) or an infection with virus supernatant that can be harvested from the virus-producing cells. The cocultivation was associated with the inability to arrive at a haemopoietic regeneration after -~
autologous transplantation. As a result, only three out of the 13 monkeys survived this procedure. None of the surviving .l0 monkeys showed any signs of genetic modification in vivo.
Complete haemopoietic reconstitution could be obtained in the six monkeys that received supernatant-infected bone marrow and in four of these animals the gene could be demonstrated.
However, genetic modification remained low and transient. Nor could it be precluded that the observed modification had occurred in long-living T-cells which did not generate from the bone marrow cultured in vitro, but were already present as contaminations in the infected bone marrow.
In the second study ~16) bone marrow from rhesus monkeys was cocultivated with cell lines that produce nçQr-containing viruses. In this study, two, only the provirus could be demonstrated in vivo after infection by means of a virus-producing cell line that produce contaminatory helper viruses.
In this setting, no long-term studies could be performed because again the bone marrow proved incapable of reconstituting the haemopoietic system.
Our invention shows in an example that bone marrow cells cocultivated with the virus-producing cells described here are capable of qenetically modifying the haemopoietic system of `'093/07281 2 12 0 3 7 0 PCT/NL92/~177 primates after autolo~ous transplantation. This modification was observed for a prolonged period in several blood cell types including granulocytes, which have a very short li~etime (approximately 8 hours). With the method described by us, these results can also be obtained when the bone marrow has previously been enriched for haemopoietic stem cells by removal of most other ~riper) bone marrow cells. These data demonstrate our capacity to infect very primitive cells and show that it is possible to carry out gene therapy using such , 10 modified bone marrow cells.

Brief description of the essence of the invention , .
-The invention provides a method for genetically modifying bone marrow cells of primates, comprising isolating bone marrow cells from a primate and, by means of a cocultivation, exposing the isolated bone marrow cells to cells that produce a recombinant amphotropic retrovirus with a genome based on a retroviral vector which contains the genetic information to be introduced into the bone marrow cells. It is here preferred that the genome of the recombinant amphotropic retrovirus is based on a retroviral vector which is derived from a viral MuLV vector.
The term "primates" is understood to mean all primates, including man. Preferably, the gene therapy concerns man.
According to the invention, it is preferred that the ~ ` retroviral vector comprises two LTRs (long terminal repeats) ;~ ~ derived from a viEal MuLV vector and the S' part of the g~g gene of a MuLV~ The MuLV sequences are preferably derived from 212~37Q
WO93/07281 PCT/NL92/0017' the viral Mo-MuLV vector ~Moloney Murine Leukemia Virus), while ~t least the 3l-LTR is a hybrid LTR which contains the PyFlOl enhancer instead of the Mo-MuLV enhancer. To this end, preferably the retroviral vector pLgXL(~Mo~PyFlOl) is used, wherein X represents the genetic information to be introduced into the bone marrow cells.
According to the invention, the cells that produce the recombinant amphotropic retrovirus are preferably recombinant mammalian cells which contain and express the gaa, ~Ql and env genes of MuLV. The env gene is preferably derived from an amphotropic MuLV. The g~, ~Ql and env genes of MuLV in the recombinant mammalian cells are preferably distributed over at least two different eukaryotic expression vectors. Further, it is preferred that each packaging construct is associated with lS a selectable marker gene. Preferably, as recombinant mammalian cells GP+gnyAM12 cells are used, while it is further preferred that the cells that produce a recombinant amphotropic retrovirus contain several'copies of the retroviral vector.
According to the invention, it is further preferred that the cocultivation of bone marrow cells with cells that produce amphotropic retrovirus occurs in the presence of serum and at least one haemopoietic growth factor. After the cocultivation, the non-adherent bone marrow cells are preferably harvested together with adherent bone marrow cells. In some cases it is preferred that bone marrow cell populations are used which have been priorly enriched for haemopoietic stem cells.
The invention further provides cells that produce a recombinant amphotropic retrovirus with a genome based on a retroviral vector, preferably one which is derived from a "'~93/07281 2 12 0 3 7 0 PCT/NL92/00177 viral MuLV vector, which contains genetic information that is suitable to be introduced into bone marrow cells of a primate according to the method described herein.

Detailed description of the invention The invention removes the above-mentioned drawbacks with regard to the required stability of the virus-producing cells by providing cells that can be selected for the presence of ~10 the viral constructs and produce a recombinant amphotropic retrovirus whose genome is composed of the recombinant retroviral vector pLgXL(~Mo~PyF101) wherein X represents an inserted gene coding for a protein which is of importance for gene therapy.
The invention further provides a method for introducing a gene X into bone marrow cells, whereby bone marrow cells of a primate are brought together in a cocultivation with the aforementioned selectable virus-producing cells that produce a recombinant amphotropic retrovirus whose genome is composed of the recombinant retroviral vector pLgXL~Mo+PyF101) with gene X inserted therein.
The invention is comprised of a number of essential componellts:
a) the recombinant retroviral vector pLgXL(~Mo+PyF101), b) the virus-producin~ cell line, and c) the method by which bone marrow cells or purified stem cells of a primate can be provided with gene X.

re a) Recombinant retroviL~L vector ~LqXL~oMo+PvFl0l) The recombinant retroviral vector is comprised of a number of essential components, viz.:
i) plasmid sequences necessary for propagation of the vector in E. ~Qli bacteria such as for instance pBR322 (17) or a vector from the pVC series (18); on these, both an origin of `
replication and a selectable gene (for instance for ampicillin of tetracyclin resistance) must be present.
ii) DNA elements originating from a MuLV which are necessary in cis for the packag~ng, reverse transcription and integration of the retroviral genome; these include two so-called Lons Terminal Repeats (LTR) and the so-called packaging sequences. In the LTR a modification has been provided by replacing the enhancer originating from MuLV with the enhancer of the polyoma virus strain PyFl0l (l9). In the plasmid construct, it is not necessary that this modification is present in both LTRs; only the 3' LTR must be provided therewith since that portion of the LTR ends up in both LTRs after a viral infection (12, 13).
iii) the 5' part of the MuLV aaa-encoding sequences such as present in the vector N2 (20), so as to effect a higher viral titre. Optionally, herein the ATG initiation codon of ~aa can be mutated by means of site-directed mutagenesis, in such a manner that no translation start can occur thereon anymore.
iv) the encoding sequences of gene X. These are genes that code for proteins which can be of importance for gene therapy, i.e., all genes associated with hereditary disorders wherein a therapeutic effect can be achieved by introducing an intact `~093/07281 2 12 ~ 3 7 ~ PCT~NL92/00177 version of the gene into somatic cells. Most of them are documented in:
- McKusick, V.A. Mendelian inheritance in man, catalogs of autosomal dominant, autosomal recessive, and X-linked pheno-types. Eighth edition. John Hopkins University Press (1988). -~- Stanbury, J.B., Wyngaarden, J.B., Frederickson, D.S., Goldstein, J.L. and Brown, M.S. The metabolic basis of inherited disease. Fifth edition. McGraw-Hill ~1983).
Examples include:
genes associated with diseases of the carbohydrate metabolism such as for:
- fructose-l-phosphate aldolase - fructose-1,6-diphosphatase - glucose-6-phosphatase - lysosomal a-1,4-glucosidase - amylo-1,6-glucosidase - amylo-(1,4:1,6)-transglucosidase - muscular phosphorylase - liver phosphorylase - muscular phosphofructokinase - phosphorylase-b-kinase - galactose-l-phosphate uridyl transferase - galactokinase - all enzymes of the pyruvate dehydro~enase complex - pyruvate carboxylase - 2-oxoglutarate glyoxylate carboligase - D-glycerate dehydrogenase W093/07ZXl PCT/NL92/00177 genes associated with diseases of the amino acid metabolism such as for:
- phenylalanine hydroxylase - dihydrobiopterin synthetase - tyrosine aminotransferase - tyrosinase - histidase - fumarylacetoacetase - glutathione synthetase - ~glutamylcysteine synthetase - ornithine-~-aminotransferase - carbamoylphosphate synthetase - ornithine carbamyltransferase ; - argininosuccinate synthetase - argininosuccinate lyase - arginase - L-lysine dehydrogenase - L-lysine ketoglutarate reductase - valine transaminase - leucine isoleucine transaminase - "branched chain" 2-keto acid decarboxylase - isovaleryl CoA dehydrogenase - acyl-CoA dehydrogenase - -~-hydroxy-3-methyl~lutaryl CoA lyase - acetoacetyl CoA 3-ketothiolase - propionyl CoA carboxylase - methylmalonyl CoA mutase - ATP:cobalamine adenosyltransferase - dihydrofolate reductase UvO 93/07281 212 0 3 7 0 PC~r/N L92/00177 - methylene tetrahydrofolate reductase - cystathionine ~-synthase - sarcosine dehydrogenase complex - proteins belonging to the glycine cleavage system - ~-alanine transaminase - serum carnosinase - cerebral homocarnosinase genes associated with diseases of fat and fatty acid metabolisms such as for:
- lipoprotein lipase - âpolipoprotein C-II
- apolipoprotein E
- other apolipoproteins - lecithin cholesterol acyltransferase - LDL receptor.
- liver sterol hydroxylase - "Phytanic acid" ~-hydroxylase genes associated with lysosomal defects such as for:
lysosomal ~-L-iduronidase lysosomal iduronate sulphatase - lysosomal heparan N-sulphatase - lysosomal N-acetyl-~-D-glucosaminidase - lysosomal acetyl CoA:~-glucosaminide N-acetyltransferase - lysosomal N-acetyl-~-D-glucosaminide 6-sulphatase - lysosomal galactosamine 6-sulphate sulphatase - lysosomal ~-galactosidase - lysosomal arylsulphatase B

- lysosomal ~-glucuronidase - N-acetylglucosaminylphosphotransferase - lysosomal a-D-mannosidase - lysosomal ~-neuraminidase - lysosomal aspartylglycosaminidase - lysosomal ~-L-fucosidase - lysosomal acid lipase - lysosomal acid ceramidase - lysosomal sphingomyelinase - lysosomal glucocerebrosidase - lysosomal galactosylceramidase - ~lysosomal arylsulphatase A
- ~-galactosidase A
- lysosomal acid ~-galactosidase - -chain of the lysosomal hexosaminidase A

genes associated with diseases of the steroid metabolism such as for:
- 21-hydroxylase - 11~-hydroxylase - androgen receptor - steroid 5-reductase - steroid sulphatase genes associated with diseases of the purine and pyrimidine metabolism such as for:
- phosphoribosylpyrophosphate synthetase - hypoxanthine guanine phosphoribosyltransferase - adenine phosphoribosyltransferase `~093/07281 2 12 0 3 7 0 PCT/NL92/00177 - adenosine deaminase - purine nucleoside phosphorylase - AMP deaminase - xanthine oxidase - orotate phosphoribosyltransferase - orotidine 5'-phosphate decarboxylase - DNA repair enzymes genes associated with diseases of the porphirine and haemal metabolism such as for:
- uroporphyrinogene III cosynthase - ferrochelatase - porphobilinogene deaminase - coproporphyrinogene oxidase - proporphyrinogene oxidase - uroporphyrinogene III synthase - uroporphyrinogene decarboxylase - bilirubine U~P-glucuronylt:ransferase - catalase genes associated with diseases of the connective tissue, muscles and bone such as for:
- lysyl hydroxylase - procollagen peptidase - ~l-antitrypsine - dystrophine - alkaline phosphatase - guanosine nucleotide regulatory protein of the adenyl cyclase complex 2l2037a 1~

genes associated with diseases of the blood and blood-forming organs such as for:
- blood coagulation factor V
- blood coagulation factor VII
- blood coagulation factor VIII
- blood coagulation factor IX
- blood coagulation factor X
- blood coagulation factor XII
- blood coagulation factor XIII
- all other blood coagulation factors - âll genes associated with osteopetrosis such as for:
"carbonic anhydrase II"
- thrombocytes membrane glycoprotein Ib - thrombocytes membrane glycoprotein IIb-IIIa - spectrin - pyruvate kinase - glucose-6-phosphate dehydrogenase NADH cytochrome bs reductase - ~-globin - ~-globin genes associated with diseases of transport systems such as for:
- lactase - sucrase-~-dextrinase "'093/07281 2 12 ~ 3 7 ~ PCT/NL92/00177 - 25-hydroxyvitamin D3-l-hydroxylase - cystic fibrosis transport regulator genes associated with congenital immunodeficiencies such as 5 for:
the proteins of the complement system including B, Clq, Clr, C2, C-~, C4, C5, C7, C8 and C10 - the inhibitor of C1, a component of the complement system ,10 - the inactivator of C3b, a component of the complement system the genes for X bound immunodeficiencies such as for:
- one of the enzymes of the NADPH oxidase complex - myeloperoxidase - the syndrome of Wiscott Aldrich and Ataxia Telangiectasia genes coding for hormones as well as the genes coding for their receptors such ~s for instance for:
- growth hormone Gene X also includes genes which (to date) have not been associated with a hereditary defect but with which gene therapy can be practised in some manner.
These include:

the gene for tyrosine hydroxylase drug resistance genes such as for instance:
- the P-glycoprotein Pl70 (the so-called multi drug resistance gene mdrl) - mdr 3 - dihydrofolate reductase (DHFR) and methotrexate resistant isotypes thereof - metallothioneine - aldehyde dehydrogenase (ALDH) - glutathione transferase genes coding for all cytokins including for instance all interlèukins and all interferons genes coding for all growth factors genes coding for all growth factor receptors genes coding for all transplantation antigens such as for instance the r.~ajor and minor histocompatibility antigens genes capable of affording resistance against infectious organisms, such as for instance TAR decoys ~2l) genes of infectious organisms which can be used for vaccination purposes such as for instance the envelope gene of HIV

genes which can be used for neg~tive selection such as for instance the thymidine kinase gene of the Herpes simplex virus ~vog3/07281 2 1 2 0 3 7 0 PCT/NL92~00177 against which selection can be effected with substrates such as for instance gancyclovir or acyclovir (22, 42j.

In order to obtain a stable, selectable virus-producing cell line which produces the amphotropic recombinant retrovirus, pLgXL~Mo+PyFl0l) will have to be introduced into an amphotropic packaging cell line that can be selected for the presence of the DNA sequences which are of importance for the production of the viral proteins. One example of such a cell line is GP+envAml2 (ll). It has been demonstrated, on the other hand, that ~CRIP is not selectable and unstable with respect to the virus production (9).
The selectable packaging cell line is based on mammalian cells and produces all viral proteins that are coded by the ~5~ EQl and env genes of MulV. The env gene must originate from an amphotropic MuLV. In order to obtain expression of the aforementioned viral genes, they, while cloned in a eukaryotic expression vector, must be under control of a promoter active in the host, preferably a RNA polymerase II promoter, and be followed by a polyadenylation signal. On these so-called packaging constructs, all three viral genes may be present simultaneously as for instance described by Miller (23), but the genes may also occur separately on two expression vectors as described by ~arkowitz ~ This last is to be preferred because it reduces the chances of recombination events leading to helper virus formation.

As stated, an essential characteristic of the packaging cell line to be used for this invention is the possibility it 212~370 provides of selecting for the presence of the above-mentioned packaging constructs. This can be achieved by effecting a physical association of the packaging constructs with a selectable marker gene. This association can be achieved by combining them in one vector ~as done with pGag-PolGPT in reference (lO)) or by means of a so-called cotransfection ~review in for instance (24)). The successfully transfected cells can then be isolated by selecting for the marker gene.
Since the cotransfected DNA fragments mostly end up ligated to each other at one place in the genome of the transfected cell (24)), the thus selected cells will mostly contain the packagi~ng construct as well. In view of the fact that ~CRIP
; ~ cells have been made in this way and, nevertheless, are not selectable, the last procedure is not always successful and the construction of vectors with the marker gene cloned into it is to be preferred.
As marker gene, genes coding for a large number of different proteins can be used. Widely used and preferred marker genes are: the neomycin resistance gene (25), the hygromycin resistance gene ~26), the ~. coli xanthine-guanine phosphoribosyl transferase ~ pt) gene (27), the histidinol gene (28), the herpes simplex virus thymidine kinase gene ~29) and the methotrexate resistant isotype of dihydrofolate reductase ~30). These genes must also be under control of a suitable promoter, in particular a RNA polymerase II promoter, and be followed by a polyadenylation signal.
The introduction of pLgXL(~Mo+PyFlOl) can be effected by means of various physical techniques such as calcium-phosphate precipitation, electroporation or lipo~ection ~31-35). If the -"093/07281 2 12 0 3 7 0 PCT/NL92/OOt77 packaging cells cannot be selected for the presence of pLgXL~Mo+PyFlOl), use will be made of a selectable marker such as for înstance an expression vector of the neomycin resistance gene which is transfected together~with pLgXL~Mo+PyFlOl). The successfully transfected cells can then be selected by selecting for the marker gene. Since the DNA
fragments mostly end up ligated to each other in one place in the genome of the transfected cell, the thus selected cells will mostly contain the retroviral vector as well.
A preferred procedure is the introduction of pLgXL~Mo+PyFlOl) via an infection. Since amphotropic viruses are not capable of infecting amphotropic packaging cells, use must be made of an ecotropic version of the recombinant retrovirus which is obtained by introducing the DNA initially via a physical technique into ecotropic packaging cells.
Ecotropic virus produced by such cells can be used to t nfect amphotropic packaging cells whereafter the infected cells can be cloned and subsequently tested for their ability to produce virus.
Further, it is possible to obtain cell lines producing a higher titre of the virus by introducing several copies of the retroviral vector into the packaging cells using the so-called 1'ping-pong11 method (36, 37). In this methad, an ecotropic virus-producing cell line is cocultivated with amphotropic packaging cells, which can give rise to repeated infections.
In order to enable the amphotropic cells to be cloned back after this cocultivation, they must be selectable with selective media in which the ecotropic packaging cells do not survive. By plating the cells in such medium, the proper virus-producing clones can be isolated and subsequently analysed for their capacity to produce the recombinant virus.

,r~ c! Method by which bone marrow cells of a primate can be ~rovided with aene X, in ~uch a mann~r that the rea~neration capacity of the bone marrow is main~ained and a~toloaous transplantation o~ the bone marrow cells aives risQ_~o a The above-mentioned recombinant retroviral vector~ can be ~lO used for the efficient introduction of gene X into bone marrow cells of primates by exposing the last-mentioned cells to the virus-producing cells via a cocultivation. In the preferred method, this takes place for three to four days in the presence serum and one or more haemopoietic growth factors s~ch as for instance interleukin ~ (IL-3~. The method can further be used after the bone marrow has ~een enriched for haemopoietic stem cells, which is to be preferred in some cases. Following cocultivation, both the non-adherent and the adherent cells are harvested from the culture (the last-mentioned cells can be obtained by means of trypsinisation)and used as bcne marrow transplant.

"093/07~1 2 1 2 0 3 7 0 PCT/NL92/00177 Practical example _ _ Droducina cells In the practical example, use was made of the retroviral vector construct pLgAL(~Mo+PyFl0l) ~12), wherein A represents the human cDNA gene coding for adenosine deaminase ~ADA~.
Twenty micrograms of this construct were transfected to the ecotropic packaging cell line GP+E-86 ~l0), according to the method described by Chen and Okayama (38)~ Prior to the transfection, the GP+E-86 cells had been cultured in medium containing 15 ~g~ml hypoxanthine, 250 ~g~ml xanthine and 25 ~g/ml mycophenolic acid, s~ as to select for the preservation of the DNA sequences responsible for the production of the viral proteins. Transfectants that produced a functional human ADA enzyme were isolated by means of a selective culture in medium with a combination of 4 ~M xylofuranosyl-adenine (Xyl-A) and l0 nM deoxycoformycin (dCF) (12).
Then, with the thus obtained cells a ping-pong culture as described by Kozak and Kabat ~37) was initiated. To that endt 5 x 103 transfectants were mixed with an equal amount of GP+envAml2 amphotropic packaging cells (ll) and cultured together in a-modified DMEM (Dulbecco's Modified Eagle's Medium) with l0~ FCS (Fetal Calf Serum) and 8 ~g/ml polybrene.
The amphotropic packaging cells were also selected prior to use, for the pxeservation of the DNA sequences coding for the viral proteins ~in the medium as described for GP+E-86 cells, with 200 ~g/ml hygromycin B added thereto). The culture was expanded for two weeks, whereafter the amphotropic virus-212037~
W O 93/07281 PC~r/N L92/0017~-producing cells were recovered using tne resistance of the~e cells against hy~romycin B. Individual GP+envAml2 clones that express functional human ADA and produce the viral proteins, were obtained by culturing limited cell numbers in medium containing all above-mentioned components in the amounts mentioned. In all, 12 of such clones were isolated and tested.
DNA analysis demonstrated that the clones contained several copies of the retroviral vector. The titre of the virus supernatants produced by the 12 clones was measured by , 10 exposing murine fibroblasts to dilutions of these supernatants and subsequently determining the number of fibroblasts that had acquired resistance against Xyl-A/dCF as a result hereof.
The different clones produced between 3 x 103 and 2 x 105 infective virus particles per milliliter supernatant. The best clones produced 100 x more virus than t.he best amphotropic LgAL~Mo+PyFlO1) virus-producing cell line to date, which had been obtained via a single infection with ecotropic virus.
In order to obtain some idea about the most promising clone with regard to the use in bone marrow gene therapy procedures, rhesus monkey bone marrow was cocultivated for three days with each of the 12 virus-producing cell lines.
Subsequently, the preservation of the capacity of the bone marrow to form haemopoietic colonies in vitro and the infection efficiency regarding the haemopoietic precursor cells, which are at the origin of these colonies, were determined. With some of the clones, infection efficiencies of up to 40-45% Xyl-A/dCF resistant precursor cells could be achieved, while none of the clones showed a clear toxicity towards ~hese bone marrow cells.

~"0 93/07281 27 PC~r/N L92/00177 On the basis of all aforementioned criteria, a cell line was chosen, which was called POAM-Pl. This cell line was used to demonstrate in the practical example described under b the usefulness o~ the thus obtained virus procedures for the genetic modification of the blood forming organ of primates.

b) Preclinical test of a bone marrow aene thera~y ~rQcedure in rhesus;mQnk~ys with th~ c~ll line POAM-Pl described unde~ a~
Rhesus monkey bone marrow was taken by puncturing the , 10 upper legs and suspended in HBSS/Hepes with 100 units heparin and 100 ~g/ml DNase I. Cells having a density lower than 1.064 g/ml were obtained by succe~sively performing a Ficoll separation and a BSA-density gradient centrifugation ~39).
These operations resulted in an enrichment of the cell population for haemopoietic stem cells by a factor of 10-20.
The thus obtained bone marrow cells were introduced, in a concentration of 106 cells per ml, into high glucose (4.5 g/liter) ~-modified DMEM, containing 5% heat-inactivated monkey serum, 15 mg/ml BSA (Bovine Serum Albumin), 1.25 x 10-5 M Na2SeO3, 0.6 mg/ml iron-saturated human transferrin, 1 ~g/ml of each of the following nucleosides: adenosine, 2'-deoxyadenosine, guanosine, 2'-deoxyguanosine, cytidine, 2'-deoxycytidine, thym~dine and uridine, 1.5 x 10-5 M linoleic acid, 1.5 x 10-5 M cholesterol, 1 x 10-4 M ~-mercaptoethanol, 0.4 ~g/ml polybrene, 100 ~g/ml streptomycin, 100 U/ml penicillin and 50 ng/ml of the recombinant rhesus monkey haemopoietic growth factor IL-3 ~40). The thus obtained cell suspension was seeded at a concentration of 2 x 105 cells per cm2 onto a 70-80% confluent monocellular layer of POAM-Pl - 212037~

cells, which had shortly before been exposed to 20 Gray ~radiation. The bone marrow was cocultivated with the BOAM-Pl cells for 90 h at 37C in a moisture-saturated atmosphere of 10% CO2 in air.
For the duration of the cocultivation, the rhesus monkey that had donated the bone marrow was conditioned for the autologous reception of the cocultivated bone marrow by means of total body irradiation with l0 Gray X-rays, divided over two equal fractions at an interval of 24 h, performed, respectively, 2 days and l day prior to the transplantation.
On the day of the transplantation, the cocultivated bone marrow was harvested from the culture, including the bone marrow cells that had adhered to the POAM-Pl cells or to the plastic of the culture bottle during cultivation. The cells mentioned last were obtained by means of a trypsinisation. A
monocellular cell suspension was prepared in a physiological salt solution with l0 ~g/ml DNase I and infused into a peripheral vein.
In order to determine the in vivo regeneration capacity of the cocultivated bone marrow, use was made of the semi-quantitative assay described by Gerritsen et al. ~41). This method is based on the observation that the rate at which circulating red and white blood cells regenerate after transplantation of autologous bone marrow cells in lethally irradiated rhesus monkeys depends on the size of the transplant. In particular the kinetics of the appearance of the precursors of red blood cells (reticulocytes) is a good standard in this connection. By determining haematological values in the blood system of the monkeys at regular intervals -'093/07281 2 12 0 3 7 0 PCT/NL92/00177 after the transplantation, it could be established (using the relation described by Gerritsen) that the modified bone marrow had preserved sufficient regenerative capacity and the cocultivation therefore had no toxic side effect.
Analysis at DNA level made it clear that long periods (up to more than a year) after the transplantation, the introduced provirus could be traced in various blood cell types (mononuclear cells and granulocytes). Especially the presence of the introduced gene in the granulocytes is considered of , 10 great importance. Since granulocytes, after being generated in the bone marrow, remain in the blood stream only a few hours before being broken down, the presence of the human ADA in these cells demonstrates that a year after transplantation the bone marrow still contains very primitive cells that give rise to the formation of ripe blood cells. Also, functional expression of the introduced human ADA gene in ripe blood cells could be demonstrated. These results constitute clear proof of the fact that through the invention described here stable genetic modification of the haemopoietic system of primates can be obtained.

c) Preclinical test of a ~one marrow ~ene theraDy ~rocedure in rhesus monkey~ which utilizes Durified haemopoie~ic stem cells cl) Enrichment of primate bone marrow CD34+CDllb-stem cells Rhesus monkey bone marrow having a density lower than 1.064 g/ml was obtained as described under b). This cell population was successively depleted for cells carrying the monocytes/granulocytes-marker CDllb and enriched for cells 212037~
WO93/07281 PCT/NL92/0017' carrying the stem cell/precursor cell-marker CD34. This was performed using immunomagnetic beads, which has been made as follows: first of all tosyl-activated polystyrene magnetic beads (Dynabeads M-450; Dynal, Oslo) were incubated for 24 h in a 0.5 M borate solution pH 9.5 with l.25 ~g protein A
(Pharmacia, Uppsala~ per 106 beads. After frequent washing in PBS containing 0.1% BSA, to the beads, now protein A-coupled, saturating concentrations of monoclonal antibodies ~anti-CDllb: Mol, Coulter Clone, Hialeah, Fl; anti-CD34: ICH3, 43) ,l0 were bound by incubating for 30 min at room temperature.
Finally, the beads were frequently washed in HBSS/Hepes and stored at 4C until use. The bone marrow cells were incubated for 20 min at 4C with 7 anti-CDllb beads per cell in a ` concentration of 5 x 107 cells/ml at a maximum. Unbound CDllb-negative cells were stripped from beads and CDllb-positive cells bound thereto, using a magnetic particle collector (MPC;
Dynal) and washed in HBSStHepes. The thus obtained cells were incubated for 20 min at 4C with 5 anti-CD34 beads per cell again in a concentration of 5 x 107 cells/ml at a maximum.
After removal of the CD34-negative cells using the MPC, the bound CD39-positive cells were recovered by means of a competitive elution with an excess of immunoglobulins. To that end, the beads with CD34-positive cells were incubated for l h at 37C in HBSS/Hepes with 25% bovine plasma (Gibco, Paisley) ~5 and 500 U/ml heparin.

~'093/07281 212 0 3 7 0 PCT/NL92/00177 c2) Introduction of the construct pLaAL(~Mo+PyFlOl) d~cribed under a) into rhesus monkey CD~4~Dllb-stem cells The introduction of the human ADA gene into rhesus monkey CD34+CDllb- stem cells and the autologous transplantation procedure were performed as described under b), the only difference being that the cocultivation was performed with the previously described cell line POC-l (12). As noted, this cell line is unstable and not very suitable for large-scale use.
For this present experiment, use could still be made of an , l0 early passage which does not have a reduced titre.
After transplantation all blood cell types regenerated completêly, which demonstrates that the gene transfer procedure can also be performed on CD34+CDll~stem cells without toxic side effects. The presence of the provirus in lS mononuclear blood cells and in granulocytes could also be demonstrated in these monkeys during the entire experimental period ~at this point 266 days and 280 days after transplantation in two monkéys) which is still in progress.
Expression of the functional human ADA enzyme could also be demonstrated in blood cells of these monkeys. The enrichment for haemopoietic stem cells prior to the gene transfer did not have any demonstrable effect on the efficiency of the gene transfer to stem cells. This experiment therefore demonstrates that the results as described under b) can also be achieved when the bone marrow has been stripped from most riper cell types, which is preferred in some uses of genetic modification of bone marrow cells.

Referenties 1. Anderson, W.F., 1984, Prospects for human gene therapy, Science 226: 401.
2. Belmont, J.W. and C.T. Caskey, 1986, Developments leading to human gene therapy, In Gene transfer, R. Kucherlapati, eds.
Plenum press, New York and London, 411.
3. Williamson, B., 1982, Gene therapy, Nature 2~8: 416.
4. Williams, D.A., 1990, Expression of introduced genetic ~10 sequences in hematopoietic cells following retroviral-mediated gene transfer, Hum. Gene Ther. 1: 229.
5. Temin, H.M., 1986, Retrovirus vectoxs for gene transfer:
efficient integration into and expression of exogenous DNA in vertebrate cell genomes, In Gene Transfer, R. Kucherlapati, eds. Plenum Press, New York, 149.
6. Temin, H.M., 1990, Safety considerations in somatic gene therapy of human disease with retrovirus vectors, Hum. Gene Ther. 1: 111.
?. Weiss, R., N. Teich, H. Varmus and J. Coffin, 1984, RNA
tumor ~iruses, New York.
8. Miller, A.D., 1990, Retrovirus packaging cells, Hum. Gene Ther. 1: 5.
9. Dano~, O. and R.C. Mulligan, 1988, Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges, Proc. Natl. Acad. Sci. U.S.A. 85: 6460.
10. Markowitz, D., S. Goff and A. Bank, 1988, A safe packaging line for gene transfer: separating viral genes on two different plasmids, J. Virol. 62: 1120.

093/0728l 2 1 2 0 3 7 0 PCT/NL92/00177 11. Markowitz, D., S. Goff and A. Bank, 1988, Construction and use of a safe and efficient amphotropic packaging cell line, Virology 167: 400.
12. Van Beusechem, V.W., A. Kukler, M.P.W. Einerhand, T.A.
Bakx, A.J. Van der Eb, D.W. Van Bekkum and D. Valerio, 1990, Expression of human adenosine deaminase in mice transplanted with hemopoietic stem cells infected with amphotropic retroviruses, J. Exp. Med. 172: 729.
13. Valerio, D., M.P.W. Einerhand, P.M. Wamsley, T.A. Bakx, , 10 C.L. Li and I.M. Verma, 1989, Retrovirus-mediated gene transfer into embryonal carcinoma cells and hemopoietic stem cells: Expression from a hybrid long terminal repeat, Gene 84:
419.
14. Anderson, W.F., P. Kantoff, M. Eglitis, J. McLachlin, E.
Karson, J. Zwiebel, A. Nienhuis, S. Karlsson, R.M. Blaese, D.
Kohn, E. ~ilboa, D. Armentano, E.D. Zanjani, A. Flake, M.R.
Harrison, A. Gillio, C. Bordignon and R. O'Reilly, 1986, Gene transfer and expression in nonhuman primates using retroviral vectors, In Cold Spring Harbor Symposia on Quantitative Biology, Volume LI, eds. Cold Spring Harbor Laboratory, New York, 1073.
15. Kantoff, P.W., A.P. Gillio, J.R. McLachlin, C. Bordignon, M.A. Eglitis, N.A. Kernan, R.C. Moen, D.B. Kohn, S. Yu, E.
Karson, S. Rarlsson, J.A. Zwiebel, E. Gilboa, R.M. Blaese, A.
Nienhuis, R.J. O'Reilly and W.F. Anderson, 1987, Expression of human adenosine deaminase in nonhuman primates after retrovirus-mediated gene transfer, J. Exp. Med. 166: 219.
16. Bodine, D.M., K.T. McDonagh, S.J. Brandt, P.A. Ney, B.
Agricola, E. Byrne and A.W. Nienhuis, 1990, Development of a 212 ~ 3 1 0 high-titer retrovirus producer cell line capable of gene transfer into rhesus monkey hematopoietic stem cells, Proc.
Natl. Acad. Sci. U.S.A. 87: 3738.
17. Bolivax, F., R.L. Rodrigues, P.J. Greene, M.C. Betlach, H.L. Heynecker, H.W. Boyer, J.H. Crosa and S. Falkow, 1977, Construction and characterization of of new cloning vehicles, II, A multipurpose cloning system, Gene 2: 95.
18. Vieira, J. and J. Messing, 1982, The pUC plas~ids, an M13mp7-derived system for insertion mutagenesis anld sequencing ,10 with synthetic universal primers, Gene 19: 259.
19. Linney, E., B. Davis, J. Overhauser, E. Chao and H. Fan, 1984, Non-function of a Moloney Murine Leukaemia Virus regula-tory sequence in F9 embryonal carcinoma cells, Nature 308:
470.
20. Armentano, D., S.F. Yu, P.W. Kantoff, T. Von Ruden, W.F.
Anderson and E. Gilboa, 1987, Effect of internal viral sequences on the utility of retroviral vectors, J. Virol. 61:
1647.
21. Sullenger, B.A.~ H.F. Gallardo, G.E. Ungers and E.
Gilboa, 1990, Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication, Cell 63: 601.
22. Borelli, E., R. Heyman, M. Hsi and R.M. Evans, 1988, Targeting of an inducible toxic phenotype in animal cells, Proc. Natl. Acad. Sci. U.S.A. 85: 7572.
23. Miller, A.D. and C. Buttimore, 1986, Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production, Mol. Cell. Biol. 6: 2895.

`'O 93/07281 2 1 2 0 3 7 0 PCr/NL92/û0177 24. Pellicer, A., D. Robins, B. Wold, R. Sweet, J. Jackson, I. Lowy, J.M. Roberts, G.K. Sim, S. Silverstein and R. Axel, 1980, Altering genotype and phenotype by DNA mediated gene transfer, Science 209: 1414.
25. Southern, P.J. and P. Berg, 1982, Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter, J. Mol. Appl.
Genet. 1: 327.
26. Blochlinger, K. and H. Diggelman, 1984, Hygromycin B
, 10 phosphatransferase as a selectable marker for DNA transfer experiments with higher eucaryotic cells, Mol. Cell. Biol. 4:
2929.
27. Mulligan, R.C. and P. Berg, 1980, Expression of a bacterial gene in mammalian cells, Science 209: 1422.
28. ~artman, S.C. and R.C. Mulligan, 1988, Two dominant acting selectable markers for gene transfer studies in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 85: 8047.
29. Colbère-Garapin, F., S. Chousterman, F. Horodniceanu, P.
Kourilsky and A. Garapin, 1979, Cloning of the active thymidine kinase gene of herpes simplex virus type I in Escherichia coli K-12, Proc. Natl. Acad. Sci. U.S.A. 76: 3755.
30~ Simonsen, C.C. and A.D. Levinson, 1983, Isolation and expression of an altered mouse dihydrofolate reductase cDNA, Proc. Natl. Acad. Sci. U.S.A. 80: 2495.
31. Graham, F.L. and A.J. Van der Eb, 1973, A new technique for the assay of infectivity of human adenovirus 5 DNA, Virology 52: 456.

~' WO 93/07281 PCJ/NL92/00177 32. Chu, G., H. Hayakawa and P. Berg, 1987, Electroporation for the efficient transfection of mammalian cells with DNA, Nucl. Acids Res. 15: 1311.
33. Potter, H., L. Weir and P. Leder, 1984, Enhancer-5 dependent expression of human k immunoglobulin genesintroduced into mouse pre-B lymphocytes by electroporation, Proc. Natl. Acad. Sci. U.S.A. 81: 7161.
34. Felgner, P.L. and G.M. Ringold, 1989, Cationic liposome-mediated transfection, Nature 337: 387.
~10 35. Felgner, P.L., T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, G.M. Ringold and M. Danielsen, 1987, Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure, Proc. Natl. Acad. Sci. U.S.A. 84:
7413.
36. Bestwick, R.K., S.L. Kozak and D. Kabat, 1988, Overcoming interference to retroviral superinfection results in amplified expression and transmission of cloned genes, Proc. Natl. Acad.
Sci. U.S.A. 85: 5404.
37. Kozak, S.L. and D. Kabat, 1990, Ping-pong amplification of a retroviral vector achieves high-level gene expression:
human growth hormone production, J. Virol. 64: 3500.
38. Chen, C. and H. Okayama, 1987, High-efficiency transformation of mammalian cells by plasmid DNA, Mol. Cell.
Biol. 7: 2745.
39. Dicke, X.A., G. Tridente and D.W. Van Bekkum, 1969, The selective elimination of immunologically competent cells from bone marrow and lymphocyte cell mixtures, III, In vitro test for the detection of immunocompetent cells in fractionated '`'093/07281 2 1 2 ~ 3 7 ~ PCT/NL92/~()177 mouse spleen cell suspensions and primate bone marrow suspensions, Transplantation 8: 422.
40. Burger, H., R.W. Van Leen, L.C.J. Dorssers, N.L.M.
Persoon, P.J. Lemson and G. Wagemaker, 1990, Species specificity of human interleukin-3 demonstrated by cloning and expression of the homologous rhesus monkey (Macaca mulatta) gene, Blood ?6: 222g.
41. Gerritsen, W.R., G. Wagemaker, M. Jonker, M.J.H. Kenter, J.J. Wielenga, G. Hale, H. Waldmann and D.W. Van Bekkum, 1988, The repopulation capacity of bone marrow grafts following pretreatment with monoclonal antibodies against T lymphocytes in rhesus monkeys, Transplantation 45: 301.
42. Mansour, S.L., K.R. Thomas and M.R. Capecchi, 1988, Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes, Nature 336: 348.
43. Watt, S.M., K. Gatter, A.J.W. Furley, F.E. Katz, L.E.
Healy, L.J. Atass, N.J. Bradley, D.R. Sutherland, R.J.
Levinsky and M.F. Greaves, 1987, Distribution and epitope analysis of the cell membrane glycoprotein (HPCA-l) associated with human hemopoietic progenitor cells, Leukemia 1: 417.

Claims (25)

New Claim 1
1. A method for genetically modifying bone marrow cells of primates comprising isolating bone marrow cells from a primate, exposing the isolated bone marrow cells in a cocultivation to cells that produce a recombinant amphotropic retrovirus with a genome based on a retroviral vector that contains the genetic information to be introduced into the bone marrow cells, and harvesting non-adherent bone marrow cells together with adherent bone marrow cells.
2. A method according to claim 1, wherein the genome of the recombinant anphotropic retrovirus is based on a retroviral vector that is derived from a viral MuLV vector.
3. A method according to claim 2, wherein the retroviral vector comprises two LYRs derived from a viral MuLV vector and the 5' part of the gag gene of a MuLV.
4. A method according to claim 3, wherein the MuLV sequences are derived from the viral Mo-MuLV vector and at least the 3' LTR is a hybrid LTR that contains the PyF101 enchancer instead of the Mo-MuLV enhancer.
5. A method according to claim 4, wherein the retroviral vector pLGXL (.DELTA.Mo+PyF101) is used, where X represents the genetic information to be introduced into the bone marrow cells.
6. A method according to any one of claims 1-5, wherein the cells that produce the recombinant amphotropic retrovirus are recombinant mammalian cells that contain and express the gag pol and env genes of MuLV.
7. A method according to claim 6, wherein the env gene is derived from an amphotropic MuLV.
8. A method according to claim 6 or 7, wherein the gag, pol and env genes of MuLV in the recombinant mammalian cells are distributed over at least two different eukaryotic expression vectors.
9. A method according to any one of claims 6-8, wherein each packaging construct is associated with a selectable marker gene.
10. A method according to any one of claims 6-9, wherein as recombinant mammalian cells GP+envAM12 cells are used.
11. A method according to any one of claims 1-10, wherein the cells that produce a recombinant amphotropic retrovirus contain several copies of the retroviral vector.
12. A method according to any one of claims 1-11, wherein the cocultivation of bone marrow cells with cells that produce amphotropic retrovirus occurs in the presence of serum and at least one haemopoietic growth factor.
13. A method according to any one of claims 1-12, wherein following the cocultivation the non-adherent bone marrow cells are harvested together with adherent bone marrow cells.
14. A method according to any one of claims 1-13, wherein the isolated bone marrow cells are enriched for haemopoietic stem cells before being brought into cocultivation with the retrovirus-producing cells.
15. Cells that produce a recombinant amphotropic retrovirus with a genome based on a retroviral vector that contains genetic information that is suitable to be introduced into bone marrow cells of a primate according to the method of one of claims 1-14.
16. Cells according to claim 15, wherein the genome of the recombinant amphotropic retrovirus is based on a retroviral vector that is derived from a viral MuLV vector.
17. Cells according to claim 16, wherein the retroviral vector comprises two LTRs derived from a viral MuLV vector and the 5' part of the gag gene of a MuLV.
18. Cells according to claim 17, wherein the MuLV sequences are derived from the viral Mo-MuLV vector and at least the 3' LTR is a hybrid LTR that contains the PyF101 enhancer instead of the Mo-MuLV enhancer.
19. Cells according to claim 18, wherein the retroviral vector pLgXL(.DELTA.Mo+PyF101) is used, where X represents the genetic information to be introduced into the bone marrow cells.
20. Cells according to any one of claims 15-19, wherein the cells that produce the recombinant amphotropic retrovirus are recombinant mammalian cells that contain and express the gag, pol and env genes of MuLV.
21. Cells according to claim 20, wherein the env gene is derived from an amphotropic MuLV.
22. Cells according to claim 20 or 21, wherein the gag, and env genes of MuLV in the recombinant mammalian cells are distributed over at least two different eukaryotic expression vectors.
23. Cells according to any one of claims 20-22, wherein each packaging construct is associated with a selectable marker gene.
24. Cells according to any one of claims 20-23, wherein as recombinant mammalian cells GP+envAM12 cells are used.
25. Cells according to any one of claims 15-24, wherein the cells that produce a recombinant amphotropic retrovirus contain several copies of the retroviral vector.
CA002120370A 1991-10-04 1992-10-05 Method for genetically modifying bone marrow cells of primates, and useful cells therefor that produce recombinant retroviral vectors Abandoned CA2120370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL9101680A NL9101680A (en) 1991-10-04 1991-10-04 METHOD FOR GENETICALLY MODIFYING PRIMATE BONE MARROW CELLS AND USE CELLS PRODUCING RECOMBINANT RETROVIRAL VECTORS.
NL9101680 1991-10-04

Publications (1)

Publication Number Publication Date
CA2120370A1 true CA2120370A1 (en) 1993-04-15

Family

ID=19859782

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002120370A Abandoned CA2120370A1 (en) 1991-10-04 1992-10-05 Method for genetically modifying bone marrow cells of primates, and useful cells therefor that produce recombinant retroviral vectors

Country Status (10)

Country Link
US (3) US5612206A (en)
EP (1) EP0606376B1 (en)
JP (1) JPH07501690A (en)
AT (1) ATE166109T1 (en)
AU (1) AU2768992A (en)
CA (1) CA2120370A1 (en)
DE (1) DE69225489T2 (en)
ES (1) ES2118140T3 (en)
NL (1) NL9101680A (en)
WO (1) WO1993007281A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399493A (en) * 1989-06-15 1995-03-21 The Regents Of The University Of Michigan Methods and compositions for the optimization of human hematopoietic progenitor cell cultures
NL9101680A (en) * 1991-10-04 1993-05-03 Tno METHOD FOR GENETICALLY MODIFYING PRIMATE BONE MARROW CELLS AND USE CELLS PRODUCING RECOMBINANT RETROVIRAL VECTORS.
US6051427A (en) * 1993-06-11 2000-04-18 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
CA2168202A1 (en) * 1993-07-30 1995-03-16 Joseph Dougherty Efficient gene transfer into primary lymphocytes
WO1996035798A1 (en) * 1995-05-10 1996-11-14 Introgene B.V. Improved retroviral vectors, especially suitable for gene therapy
AU6424498A (en) * 1997-03-18 1998-10-12 Introgene B.V. Methods and compositions for genetically modifying primate bone marrow cells
DE69840361D1 (en) 1997-07-30 2009-01-29 Univ Emory NEW BONE MINERALIZATION PROTEINS, DNA, VECTORS, EXPRESSION SYSTEMS
US7923250B2 (en) 1997-07-30 2011-04-12 Warsaw Orthopedic, Inc. Methods of expressing LIM mineralization protein in non-osseous cells
US6787359B1 (en) * 1998-07-01 2004-09-07 Takara Shuzo Co., Ltd. Gene transfer methods
AU764686B2 (en) * 1998-08-28 2003-08-28 Duke University Adenoviruses deleted in the IVa2, 100K, polymerase and/or preterminal protein sequences
AU778787B2 (en) 1999-05-10 2004-12-23 Chugai Seiyaku Kabushiki Kaisha Method of cell cultivation
US6770468B1 (en) 1999-09-14 2004-08-03 Genzyme Glycobiology Research Institute, Inc. Phosphodiester-α-GlcNAcase of the lysosomal targeting pathway
US6534300B1 (en) * 1999-09-14 2003-03-18 Genzyme Glycobiology Research Institute, Inc. Methods for producing highly phosphorylated lysosomal hydrolases
US20030124652A1 (en) * 2001-12-21 2003-07-03 Novazyme Pharmaceuticals, Inc. Methods of producing high mannose glycoproteins in complex carbohydrate deficient cells
US6905856B2 (en) 2001-12-21 2005-06-14 Genzyme Glycobiology Research Institute, Inc. Soluble GlcNAc phosphotransferase
US6800472B2 (en) * 2001-12-21 2004-10-05 Genzyme Glycobiology Research Institute, Inc. Expression of lysosomal hydrolase in cells expressing pro-N-acetylglucosamine-1-phosphodiester α-N-acetyl glucosimanidase
ES2198216B1 (en) * 2002-07-02 2005-04-16 Juan Carlos Instituto Cientifico Y Tecnologico De Navarra, S.A.(67%). MEANS OF CULTURE OF MOTHER-PROGENITORS CELLS HUMAN AND ITS APPLICATIONS.
US20050048041A1 (en) * 2003-01-13 2005-03-03 Rao Mahendra S. Persistent expression of candidate molecule in proliferating stem and progenitor cells for delivery of therapeutic products
EP3652296A1 (en) * 2017-09-20 2020-05-20 The Charles Stark Draper Laboratory Inc. Apparatus for efficient genetic modification of cells

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198423A (en) 1989-05-26 1993-03-30 Takara Shuzo Co., Ltd. Functional polypeptide containing a cell binding domain and a heparin binding domain of fibronectin
US5399493A (en) * 1989-06-15 1995-03-21 The Regents Of The University Of Michigan Methods and compositions for the optimization of human hematopoietic progenitor cell cultures
US5061620A (en) * 1990-03-30 1991-10-29 Systemix, Inc. Human hematopoietic stem cell
NL9101680A (en) * 1991-10-04 1993-05-03 Tno METHOD FOR GENETICALLY MODIFYING PRIMATE BONE MARROW CELLS AND USE CELLS PRODUCING RECOMBINANT RETROVIRAL VECTORS.
US5834256A (en) 1993-06-11 1998-11-10 Cell Genesys, Inc. Method for production of high titer virus and high efficiency retroviral mediated transduction of mammalian cells
US5534423A (en) * 1993-10-08 1996-07-09 Regents Of The University Of Michigan Methods of increasing rates of infection by directing motion of vectors
US5686278A (en) 1994-03-25 1997-11-11 Indiana University Foundation Methods for enhanced retrovirus-mediated gene transfer
US5811274A (en) 1994-12-09 1998-09-22 The Regents Of The University Of Michigan Methods, compositions and apparatus for cell transfection
SI1445322T2 (en) 1995-06-15 2012-10-30 Crucell Holland Bv Packaging systems for human recombinant adenovirus to be used in gene therapy

Also Published As

Publication number Publication date
DE69225489T2 (en) 1999-01-07
ATE166109T1 (en) 1998-05-15
AU2768992A (en) 1993-05-03
JPH07501690A (en) 1995-02-23
EP0606376B1 (en) 1998-05-13
US5612206A (en) 1997-03-18
US20030166285A1 (en) 2003-09-04
EP0606376A1 (en) 1994-07-20
DE69225489D1 (en) 1998-06-18
NL9101680A (en) 1993-05-03
WO1993007281A1 (en) 1993-04-15
US6472212B1 (en) 2002-10-29
ES2118140T3 (en) 1998-09-16

Similar Documents

Publication Publication Date Title
US5612206A (en) Retrovirus infecting primate bone marrow cells and harvesting both non-adherent and adherent cells
Kwok et al. Retroviral transfer of genes into canine hemopoietic progenitor cells in culture: a model for human gene therapy.
RU2174846C2 (en) Virus-mediated enhanced transfer of dna
Moritz et al. Human cord blood cells as targets for gene transfer: potential use in genetic therapies of severe combined immunodeficiency disease.
US8889419B2 (en) Methods for enhanced virus-mediated DNA transfer using molecules with virus- and cell-binding domains
Malech Progress in gene therapy for chronic granulomatous disease
Havenga et al. Retroviral stem cell gene therapy
US7759467B2 (en) Enhanced mediated DNA transfer
Banerjee et al. Gene therapy utilizing drug resistance genes: a review
US20030157070A1 (en) High efficiency ex vivo transduction of cells by high titer recombinant retroviral preparations
US6033907A (en) Enhanced virus-mediated DNA transfer
Chu et al. Retrovirus-mediated gene transfer into human hematopoietic stem cells
NZ300795A (en) Retroviral Plasmid Vectors (enhancer region of LTR replaced, primer binding site replaced or mutated), packaging/transduced cells, use for gene therapy
EP0821740A1 (en) High efficiency ex vivo transduction of hematopoietic stem cells by recombinant retroviral preparations
Kantoff et al. Prospects for gene therapy for immunodeficiency diseases
EP0871756A2 (en) High efficiency ex vivo transduction of cells by high titer recombinant retroviral preparations
CA2283641A1 (en) Methods and compositions for genetically modifying primate bone marrow cells
Eglitis et al. Gene therapy: efforts at developing large animal models for autologous bone marrow transplant and gene transfer with retroviral vectors
Lee et al. Cellular gene therapy
US6984379B1 (en) Gene therapy by administration of genetically engineered CD34+ cells obtained from cord blood
Schuening et al. Retroviral transfer of genes into canine hematopoietic progenitor cells
KIM et al. Update on the Use of Genetically Modified Hematopoietic Stem Cells for Cancer Therapy
Ekhterae In utero gene transfer and expression in sheep and monkeys
MXPA96004240A (en) Improved transfer of dna mediated by vi

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued