CA2121551A1 - Polyester raw material, and film produced therefrom - Google Patents

Polyester raw material, and film produced therefrom

Info

Publication number
CA2121551A1
CA2121551A1 CA002121551A CA2121551A CA2121551A1 CA 2121551 A1 CA2121551 A1 CA 2121551A1 CA 002121551 A CA002121551 A CA 002121551A CA 2121551 A CA2121551 A CA 2121551A CA 2121551 A1 CA2121551 A1 CA 2121551A1
Authority
CA
Canada
Prior art keywords
particles
film
raw material
particle diameter
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002121551A
Other languages
French (fr)
Inventor
Rainer Kurz
Andreas Ferdinand
Hermann Dallmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6486314&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2121551(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of CA2121551A1 publication Critical patent/CA2121551A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/206Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 inorganic and synthetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/258Alkali metal or alkaline earth metal or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Abstract

Abstract of the Disclosure The invention describes a novel polyester raw material and the production and use of an oriented, single- or multilayer film having an overall thickness of ? 4 µm and a roughness on at least one film surface of Ra < 30 nm, where the surface gas-flow resistance on at least one film surface is t ? a-db [sec], where a = 0 to 10,000 [sec/µm], b = 3.0 to 0, and d (overall film thickness) ? 4 µm. The film contains first (I) and second (II) particles. The first particles are monodisperse and have an aspect ratio of 1.0 - 1.2.

Description

2121~51 ,. --1--POLYESTER RAW MATERIAL, AND FILM PRODUCED THEREFROM

Background of the Invention Field of the Invention The present invention relates to a polyester raw material, and more particularly to a polyethylene terephthalate raw material (PET raw material), which contains finely divided, disperse, inorganic and/or organic particles. The invention further relates to films produced therefrom which have improved winding properties and are therefore more suitable than conventional films for use as capacitor films.
. .
Description of ~elated Art Thinner and smoother films are in demand as dielectrics, particularly for use in capacitors, in order to reduce the physical size of capacitors or to increase the capacitance. However, the processing of ever thinner, conventionally stretched films increasingly causes the problem that irreversible film defects, such as the formation of folds and stretches, occur in the various processing steps, such as winding, metallization, cutting and capacitor winding. In order for the films to be processed without folding and stretching, they require adequate slip, which prevents the films from blocking in the individual process steps, and also a surface topography which enables the air between the individual film layers in the winding to escape sufficiently quickly. Attempted film processing solutions, such as increasing winding tensions, are only of limited practicability in ultra-thin films, since an increase in the winding tension can result in irreversible film defects, such as stretching.
It is known from U.S. Patent No. 3,980,611 that a combination of small, medium-size and large particles can improve film handling, depending on the film thickness.

;., . ~: ~

- -- 21215~1 U.S. Patent No. 3,980,611 achieves this by a combination of large (2.5-10 ~m) particles with medium-size (1-2.5 ~m) and small (< 1 ~m) particles, where the following relationship must be satisfied:

Cl = K /T06 C2 = K~U /T0.6 ,,: ,,:, C3 = ~ / To.6 ~:
..
K = Kb~ + K~ + K~ < 2510 Km~/K ~ o.
T = film thickness (here in the range from 0.1 to 3 ~m) K~ =empirical constants Kb~ 97~500 K~ < 200 K~ 194-2000 C-,2,3 = concentration in parts per million These ultra-thin films have the disadvantage of a relatively high content of large particles having a particle size from 2.5 to 10 ~m. For a film thickness of 3 ~m to 1 ~m or less, these large particles can become nominal breaking points during the production process.
In addition, they represent weak points with regard to electrical insulation. A further disadvantage is regarded as being the fact that the relatively high roughness or the high surface elevations caused by the large particles, causes a low capacitance per unit volume in the capacitor.
It is known from EP-A-0 423 402 that films having a thickness in the range from 0.1 to 4 ~m can be produced by the addition of inert, secondary-agglomerated, ;-inorganic particles having a particle diameter from 0.05 -~
to 5 ~m and a primary, spherical particle (i.e. one having an aspect ratio of from 1.0 to 1.2) having a particle diameter of from 0.05 to 4 ~m. The secondary-,,,.., ~
... , .,,~,,.

2121~1 agglomerated particles are, in contrast to primary particles, smaller particles which group together in the polymer and emulate the action of a larger particle. For secondary-agglomerated particles, the mean particle diameter data is related to the size of the agglomerates and not to the size of the smaller particles. The term inert is taken to mean that the particles do not react with the polymer raw material under the process and processing conditions. Spherical means that the particles come very close to the idealized spherical shape. A measure thereof is the aspect ratio, which is the quotient of the largest and smallest diameters, which is 1 in the case of a perfect sphere.
In the case of either a combination of inert, secondary-agglomerated particles with larger, inert, inorganic or organic particles, or in the case of spherical particles, relatively large particles are employed relative to the desired film thickness of ~
2 ~m. Although the addition of the particles simplifies winding of the films or makes winding possible at all, the large particles in these combinations can again represent nominal breaking points during film production and weak points with respect to electrical insulation.
These spherical particles used in the preparation of raw materials and the production of films is likewise described in EP-A-O 236 948, EP-A-O 262 430 and EP-A-O 257 611. However, these applications do not teach the topography required of an ultra-thin film to allow processing without the stated problems of folding and 30 I stretching.
our own experiments have shown that a reduction in the film thickness for the same raw material formulation, i.e., the same chemical composition, makes winding of films more difficult. This is due to the fact that the air trapped between the film layers, which must escape from the winding in the shortest possible time, causes increased irreversible stretching with decreasing film thickness. This irreversible stretching is due to bubble 2121~51 formation caused by trapped air. A measure of the tendency of the film to form such winding defects i6 the surface gas-flow resistance. This is defined as the time required by air to compensate for a pressure difference S between a film and a glass plate. This parameter allows determination of the speed, and therefore the time, with which the air trapped between the individual film layers can escape from the winding. Our own investigations have shown that, for a constant chemical composition of the film, the surface gas-flow resi6tance depends primarily on the film thickness and film roughness. For example, the surface gas-flow time of a polyethylene terephthalate (PET) raw material containing 1000 ppm of an inert, secondary-agglomerated, inorganic particle having a particle diameter of 0.005 to 4 ~m and 1000 ppm of a further inert, inorganic particle having a particle diameter of 0.05 to 5 ~m, is shown in Table 1 for film thicknesses of 1.8 to 10 ~m. -21215~1 Table 1 . .__ ,,,...~,~,., ¦ FiL~ aa~-flo~ ti o Raughno~ Wind-I thiclc- ~g n~-~
l measur~d calcu- ~ ~ ~2) ¦~11m) ~3ec~lat~d P) ~) ~) l ~c) 1070 ~ 20 64 _ _ +
9 _ 81 _ _ +
8 _ 104 _ _ +
7130 ~ S0 140 _ _ +
I
6180 ~ 50 196 51 ~ 8569 ~ 130 +
5260 ~ 50 292 46 ~ 8515 ~ 130 +
4 _ 475 _ _ +
31,180 + 150889 45 ' 8484 ~ 130 +
2.51,420 ~ 150 1,32439 ~ 8 441 ~ 130 +
I
22,220 ~ 200 2,156 36 ~: 8403 ~ 130 _ 1.82,250 ~ 200 2,713 34 ~ 8384 ~ 130 _ (1) Calculated Gas-flow time t = a-db [sec], where a = 9792 ~sec/~m]
b = -2.18335 d = film thickness t~m]
Parameters (a) and (b) were determined empirically. -:
(2) Winding (+j = films could be wound without folding and stretching (-) = folds and stretching occurred during winding : ,~
It can be seen from Table 1 that the surface gas-flow times increase, i.e. the risk of air inclusions and thus of irreversible stretching increases, with decreasing film thickness.

~ ., . ~ .

The dependence of the surface gas-flow time on the thickness of ultra-thin capacitor films is shown in illustrative terms in Table 2 for some films having thicknesses of 1.2 to 3 ~m (these had different empirical s constants than the thicker films in Table 1).

Table 2 .
¦ Fil~ G~s-flow ti~e Roughn~-~ W~nding tnheisC8k~ I ,, l 11 mea~uredcalcu- ~ ~ l lo L .......................... ~ted (nm) (2) 3900 ~ lS0 898 43 _ 8 468 + 130 +
2.51,050 + 150 1,081 42 + 8 436 ~ 130 +
21,250 ~ 1001,355 36 ~ 8 383 + 130 +
l 11 1.52,000 + 200 1,815 35 + 8 378 ~ 130 + I ~
I . 11 . . . .
11.22,300 + 200 2,276 34 + 8 310 ~ 130 + `

(1) Gas-flow time t = a db tsec], ~;
where a = 2,739 ~sec/~m]
b = -1.01479 d - film thickness t~m]
0 (2) Winding (+) = films could be wound without folding and stretching ) = folds and stretching occurred during winding Given the above-mentioned relationship between film thickness and gas-flow time, it is not surprising that currently commercially available ultra-thin capacitor films such as Lumirror- C60, Nylar- C or Hostaphan- have 2121~1 comparable surface gas-flow times for the same thicknesses (see Table 3a).

Table 3a Film type Film Gas-flow thick- time I ness (~m)measured ~ ~i l (sec) (nm) (nm) Lumirror2.01,200 + 15041 + 8390 + 130 I _ ., ,~ . . .
¦Mylar C 2.0 900 + 150 30 + 8 370 + 130 ~ .
¦Hostaphan 2.0 1,250 + 150 36 + 8 380 + 130 The Hostaphan and Lumirror films which have very ~ .
similar gas flow times also have very similar roughness values (see Table 3a) and peak height distribution value (see Table 3b). When compared with these films, the roughness value for the Nylar film is lower.
',' ~ ~' ':.
Table 3b ' .; .
. ,,, . _ _ ....
15Fll~ typ~ Total ~u~bor Surfac~ ation- ha-~ng a c~rtain I ~-of p~ak- p-ak helght 0.3~ mm2 0.05_0-3 ~m/0.3-0.6 ~m/0.6-1 ~m/
0.36 mm~ 0.36 mm~0.36 mm~ ~
,, ,,, I ,:,.'~,, ',.:: ::. . .:.
Lumirror 15,201 + 200014,636 +513 + 70 52 ~ 20 I -C60 1,970 . l I . ~ .
¦Mylar C7,453 ~ 2000 6,903 + 1,970448 ~ 70 102 ~ 20 ~
I . " .
Ho~taphan11,932 + 2000 11,681 ~204 ~ 70 47 + 20 I 1,970 Nevertheless despite the lower roughness value, the Mylar film is found to have a comparable gas-flow time to 2121~1 , 8 Hostaphan and Lumirror. This time is achieved through a higher proportion of high film elevations ~0.6-1.0 ~m), caused by a correspondingly large particle (see in this respect U.S. Patent No. 3,980,611), than in Hostaphan and Lumirror. However, large particles have the above-mentioned disadvantages of nominal breaking points and electrical defects.
Although films having a thickness of 2 ~m and a mean roughness of 30 nm are known (see Tables 3a and 3b), these films have some high peaks in the surface elevations in the range from 0.6 to 1 ~m, which are disadvantageous. These peaks are caused by particles whose particle diameter is in some cases significantly greater than the thickness of the film. As discussed above, such large particles are disadvantageous in films having a thickness of S 2 ~m since tears occur during film production. Very large particles can also have a disadvantageous effect on the frequency of electrical defects, i.e. they can cause an increased number of dielectric breakdowns. The relatively large number of large film elevations is undoubtedly the reason why the films having a mean roughness of 30 nm also have a satisfactory surface gas-flow resistance and accordingly can be produced and processed further without problems (folds and stretching). However, this is at the expense of a reduced capacitance in the capacitor (larger layer separation in the winding).

Summary of the Invention one ob;ect of the present invention is to keep the film thickness as small as possible ~ultra-thin films) and at the same time to suppress the occurrence of winding defects, such as irreversible stretching to the greatest possible extent. A film of this type should have adequate slip over all the process steps to prevent blocking.

, -~ , g Another object of the present invention is to provide a film raw material which is used to fabricate the defect free ultra-thin films.
In accomplishing the foregoing objects, there has ;
been provided according to one aspect of the present invention, an oriented, single or multilayer film comprising a- film having a total thickness of ~ about 4 ~m, a roughness on at least one film surface of R~ <
about 30 nm, and a surface gas-flow resistance on the at least one film surface that satisfies the relationship :'':
t < a-db tsec], - .:
where a = 0 to 10,000 tsec/~m], b = -3.0 to 0 and d is overall film thickness.
In preferred embodiment, the film contains first particles (I) having an aspect ratio of about 1 to 1.2 and second particles (II) having an aspect ratio of > about 1.2. Preferably, the first particles (I) have a monodisperse distribution.
In another preferred embodiment, the mean particle diameter of the second particles (II) is greater than the particle diameter of the first particles (I).
Another aspect of the present invention provides a film raw material comprising one or more thermoplastic polymers and particulate material, wherein the particulate material comprises first particles (I) having an aspect ratio of about l to 1.2 and second particles (II) having an aspect ratio of > about 1.2. Preferably, the first particles (I) have a monodisperse distribution and the mean particle diameter of the second particles (II) is greater than the particle diameter of the first particles (I).
Further objects, features and advantages of the present invention will become apparent from the detailed description of preferred embodiments which follows.
~'' .
- 2 t l20~

Detailed Description of the Preferred Embodiments The objects of the present invention are achieved by a film having a thickness of about 0.1 to 4 ~m, preferably about 2 ~m or less, and a roughness R~ of <
about 30 nm, where the peak height distribution of the surface elevations causing roughness per 0.36 mm2 has only a minimal number (~ 100) of peak heights from about 0.6 to 1 ~m or larger, or none at all. The film has a surface gas-flow resistance of about t ~ a db where a =
about 0 to 10,000, preferably about 1 to 3000, more preferably about 2700, b = about -3.0 to 0, preferably about -1.5 to -0.5, particularly about -1, and d ~ about 4 ~m.
The ultra-thin films according to the present invention which have roughness values of less than 30 nm and surface gas-flow resistance values t < a db, with the above-mentioned values for a, b and d, can be produced from a film raw material which contains, in addition to the thermoplastic polymer, essentially only primary, spherical and preferably monodisperse first particles (I) and inorganic or organic second particles (II). The particle diameter of the spherical and preferably monodisperse primary particle (I) is smaller than the mean particle diameter of the inorganic or organic particles (II). Films made from a raw material of this type can be processed without folding and stretching.
The particles (I) are spherical, i.e. they have an aspect ratio from about 1 to 1.2. "Aspect ratio" is the I quotient of the largest and smallest particle diameters.
In the ideal case, this is equal to 1. The aspect ratio values are measured on particles in a finished film and accordingly do not relate to the aspect ratio values of the free particles. The particles (I) preferably have a particle diameter of about 0.05 to 2.5 ~m, more preferably from about 0.05 to 1 ~m. "Monodisperse" here means that the particles have a very narrow particle size distribution. In the ideal case there is no 2121~51 distribution. In this ideal case, there is no longer a mean particle size, since all particles have virtually the same diameter. The monodisperse particles (I) preferably employed according to the invention differ from the mean particle size by a maximum of about 0.5 ~m, preferably by a maximum of about 0.1 ~m. Under these prerequisites, the standard deviation over the mean distribution of the particles is < about 0.5 ~m, preferably < about 0.1 ~m. Particles (I) are preferably silicon dioxide particles, silicone particles, calcium carbonate particles, crosslinked polystyrene particles, crosslinked epoxy resin particles or crosslinked acrylate particles. These particles (I) are referred to below as "small particles". The particle diameter of these small particles (I) and the aspect ratio and monodispersity can be determined by measuring electron photomicrographs at a magnification from 3000 to 10,000.
The organic or inorganic particles (II) can be either spherical (aspect ratio about 1 to 1.2) or aspherical (aspect ratio ~ about 1.2) and have a mean particle diameter which is greater than that of the small particles (I), preferably from about 0.05 to 2.5 ~m, more preferably from about 0.5 to 2.5 ~m. The aspect ratio of these particles is preferably > about 1.2, more preferably from about 1.2 to 5. The extent of the particle size distribution of particles (II) is not crucial, but particles having a distribution, i.e. non-monodisperse particles, are preferred. The mean particle diameter of the inorganic or organic particles (II) can be determined by means of a laser light diffraction particle analyzer (for example a Horiba LA 500). The cumulative curve of the particle size distribution allows the mean particle diameter to be determined as the value for which 50% by the weight of the particles are larger and 50% by weight of the particles are smaller.
Particles (II) can be inorganic particles, for example, made from kaolin, aluminum oxide, silicon dioxide, amorphous silicic acid, pyrogenic silicic acid, .. . . .
~ -:

2121~51 or natural or precipitated calcium carbonate. The particles can also be organic particles, for example, made from silicones, acrylates or epoxy resin compounds.
These particles (II) are referred to below as "medium particles". Both the particles (I) and the particles - (II) are commercially available.
"Large" particles having a mean particle diameter of ~ 2.5 ~m are not present in the films or raw materials according to the present invention.
Use of the medium and small particles (I) and (II) enables the film roughness to be reduced, but nevertheless ensures that the films can be processed without folding and stretching. In other words, this means that films having a surface flow resistance t of less than a-db (where a and b are as defined above) can be processed without the problems of the known art.
According to the present invention, the raw material contains from about 0.005 to 5.0 ~ by weight of particles of types (I) and (II) (this figure corresponds to a sum of particles I and II and is based on the cumulative weight of polymer and particles). Preferably, from about 0.01 to 1.0 % by weight of spherical, preferably monodisperse particles (I) and from about 0.01 to 1.0 %
by weight of inorganic or organic particles (II) are employed.
The polymer material used in the present invention can be a polyester raw material. The term polyester raw materials are defined as compositions containing predominantly, i.e. to at least 80 % by weight, preferably at least 90 % by weight, a polymer selected from the group consisting of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly-1,4-dicylcohexanedimethylene terephthalate (PCT), polyethylene naphthalate dibenzoate (PENBB) and blends of these polymers. Preference is given to polyester raw materials containing essentially ethylene terephthalate units and/or up to 30 mol% comonomeric units, where a variation in the glycol and/or acid components of the .`\ 2113215~

comonomer units is possible. The polye6ters can be prepared either by the transesterification process using conventional catalysts, such as Zn, Ca, Li and Mn salts, or by the direct esterification process.
The film according to the present invention is produced from a mixture of the thermoplastic polyester raw material containing the spherical, preferably monodisperse particles (I) and the inorganic or organic particles (II).
The polyester raw material can be prepared by addition of the particles before commencement of the transesterification or after completion of the transesterification. The particles are preferably added in the form of a glycolic suspension before completion of the esterification. Alternatively, the particles can be incorporated after preparation of the polyester raw material by blending, compounding, etc.
The polyester films can be produced by known processes which need not be described in greater detail.
The polyester films can be produced from the above-described raw materials or from a combination of the above polyester raw materials with further raw materials or conventional additives in conventional amounts from about 0.1 to a maximum of about 10 % by weight. The 2S films can either be monofilms or multilayer films. If desired, the multilayer films can be coextruded films having identical or different surfaces. For example, one surface can be pigmented and the other surface can be unpigmented.
30 1 A multistep stretching process with high stretching ratios in both surface directions of the film is preferred. In the production of films having a very high level of mechanical properties, the choice of particles incorporated according to the present invention become particularly important. Stretching processes can include sequences such as longitudinal/transverse/longitudinal str~tching, simultaneous (longitudinal/transverse) . . . ' ..'..:, 21215~1 stretching and multiple stretching in one or both directions.
In the examples below, the particles (I) and (II) were added after completion of the transesterification, and the polycondensation was subsequently carried out in the conventional way for PET, so that the polymer has an SV value of 810.

Example A ~Comparative ex~mple) 4000 ppm of a "small", non-monodisperse, inorganic sio2 particles (manufacturer: Degussa, Hanau) having a mean particle diameter from 0.3 to 0.4 ~m (aspect ratio, measured in the film, > 1.2) and 3000 ppm of "medium"
particle (CaCO3) (manufacturer: Omya, Cologne) having a mean particle diameter of 1.1 ~m were incorporated into polyethylene terephthalate (PET).

Example B
3000 ppm of a "small", spherical (aspect ratio = 1), monodisperse sio2 particle (manufacturer: Nerck, Darmstadt) having a particle diameter of 0.4 ~m and 3000 ppm of a "medium" particle (CaCO3) having a mean particle diameter of 0.99 ~m (aspect ratio > 1.2) where incorporated into polyethylene terephthalate (PET).
The PET chips obtained were dried at 160C to a residual moisture level of 50 ppm and extruded at from 280 to 310C. The molten polymer was taken off via a die (die gap 1 mm) over a take-off roll.
The unstretched film was stretched by a factor of 3.8 in the machine direction at 85 to 135C and then, in a tenter frame, by a factor of 4.2 in the transverse direction at 85 to 145C. The film was subsequently set in a further tenter frame at from 180 to 230C.
The properties of films produced in this way are shown in ~ables 4a and 4b below.

2~21551 Table 4a Example Film Gas-flow Roughness w~n~-thick- time ing ; R~
....
(~m) (sec) (nm) (nm) 2.0 1200 + 200 26 + 5262 + 73 (-) - -2.0 716 + 150 28 + 5268 + 78 (+) Table 4b Exampl~ Total numb~r 8urfac~ ~lev~tion~ ha~ing a c~rtain p~ak Of peak~ height I
0.36 mm20.05-0.3 ~m/0.3-0.6 ~m/ 0.6-l~m/
0.36 mm20.36 mm20.36 mm~
A8926 + 2000 8615 ~ 1970266 ~ 70 45 1 20 I ' ~:
9632 ~ 20008256 ~ 19701300 ~ 70 76 ~ 20 ;

In both examples, exclusively "small" and "medium"
particles were introduced into the raw materials. -However, the use in comparative Example A of only "small"
particles having a size distribution (i.e., non-monodisperse) and an aspect ratio of > 1.2 makes fold~
free winding of the film produced using this raw material 15 1 impossible.
The R, values of the two films are below 30 nm. With respect to the surface elevations, the number of peaks for a peak height class from 0.6 to 1.0 ~Lm is less than 100 for both films. However, the film in. Example A, in 20 contrast to Example B, was impossible to wind without stretching or folding. This is also expressed in the corresponding surface flow resistances, which are 2121~1 significantly lower for the film in Example B than for Example A.
Although the film in Example A satisfies the equation t ~ a db derived from the films in Table l, the roughness of film A was 26 nm. This means that smoother films must have shorter gas-flow times than the above equation derived from Table 1 to enable processing without problems. The corresponding better properties are shown through the example of film B.

Claims (22)

1. An oriented, single or multilayer film comprising a film having a total thickness of ? about 4 µm, a roughness on at least one film surface of Ra < about 30 nm, and a surface gas-flow resistance on the at least one film surface that satisfies the relationship t < a db [sec], where a = about 0 to 10,000 [sec/µm], b = about -3.0 to 0 and d is the overall film thickness.
2. An oriented film as claimed in claim 1, wherein at least one surface of the film contains fewer than 100 surface elevations with a peak height of > about 0.6 µm per 0.36 mm2.
3. An oriented film as claimed in claim 1, further comprising first particles (I) having an aspect ratio of about 1 to 1.2.
4. An oriented film as claimed in claim 3, wherein the first particles (I) have a monodisperse distribution.
5. An oriented film as claimed in claim 3, wherein the particle diameter of the first particles (I) is from about 0.05 to 2.5 µm.
6. An oriented film as claimed in claim 3, further comprising second particles (II) having an aspect ratio of > about 1.2.
7. An oriented film as claimed in claim 6, wherein the second particles (II) have a mean particle diameter from about 0.05 to 2.5 µm.
8. An oriented film as claimed in claim 6, wherein the mean particle diameter of the second particles (II) is greater than the mean particle diameter of the first particles (I).
9. An oriented film as claimed in claim 3, wherein the first particles (I) have a monodisperse distribution and a mean particle diameter of about 0.05 to 2.5 µm; and wherein the second particles (II) have a mean particle diameter of about 0.05 to 2.5 µm.
10. An oriented film as claimed in claim 1, wherein said film has been biaxially oriented.
11. An oriented film as claimed in claim 1, wherein said film has a single layer.
12. An oriented film as claimed in claim 1, wherein both surfaces of the film have the same topography.
13. A film raw material comprising one or more thermoplastic polymers and particulate material, wherein the particulate material comprises first particles (I) having an aspect ratio of about 1 to 1.2 and second particles (II) having an aspect ratio of > about 1.2.
14. A film raw material as claimed in claim 13, wherein the first particles (I) have a monodisperse distribution.
15. A film raw material as claimed in claim 13, wherein the particle diameter of the first particles (I) is from about 0.05 to 2.5 µm.
16. A film raw material as claimed in claim 13, wherein the second particles (II) have a mean particle diameter from about 0.05 to 2.5 µm.
17. A film raw material as claimed in claim 13, wherein the mean particle diameter of the second particles (II) is greater than the particle diameter of the first particles (I).
18. A film raw material as claimed in claim 13, wherein the first particles (I) and the second particles (II) are present in the film raw material in combined amount from about 0.005 to 5 % by weight, based on the weight of the film raw material.
19. A film raw material as claimed in claim 13, wherein the particles (I) are selected from the group consisting of silicon dioxide particles, silicone particles, calcium carbonate particles, crosslinked polystyrene particles, crosslinked epoxy resin particles, crosslinked acrylate particles, and mixtures or blends thereof.
20. A film raw material as claimed in claim 13, wherein the particles (II) are selected from the group consisting of kaolin particles, aluminum oxide particles, silicon dioxide particles, particles of amorphous or pyrogenic silicic acid, particles of natural or precipitated calcium carbonate, organic particles, and mixtures or blends thereof.
21. A film raw material as claimed in claim 13, wherein the thermoplastic polymer is polyester selected from the group consisting of PET, PEN, PCT, PENBB and blends of these polyesters.
22. A film raw material as claimed in claim 13, wherein the first particles (I) have a monodisperse distribution and a mean particle diameter of about 0.05 to 2.5 µm; and wherein the second particles (II) have a mean particle diameter of about 0.05 to 2.5 µm.
CA002121551A 1993-04-24 1994-04-18 Polyester raw material, and film produced therefrom Abandoned CA2121551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4313510.2 1993-04-24
DE4313510A DE4313510A1 (en) 1993-04-24 1993-04-24 Polyester raw material and film made from it

Publications (1)

Publication Number Publication Date
CA2121551A1 true CA2121551A1 (en) 1994-10-25

Family

ID=6486314

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002121551A Abandoned CA2121551A1 (en) 1993-04-24 1994-04-18 Polyester raw material, and film produced therefrom

Country Status (6)

Country Link
US (2) US5478632A (en)
EP (1) EP0622173B1 (en)
JP (1) JPH06312453A (en)
KR (1) KR100316861B1 (en)
CA (1) CA2121551A1 (en)
DE (2) DE4313510A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6106926A (en) * 1995-10-25 2000-08-22 Mitsubishi Polyester Film Gmbh Thermoplastic raw material and film produced therefrom
US5968666A (en) * 1996-03-08 1999-10-19 3M Innovative Properties Company Multilayer polyester film
US5759467A (en) * 1996-03-08 1998-06-02 Minnesota Mining And Manufacturing Company Method for making multilayer polyester film
US5795528A (en) * 1996-03-08 1998-08-18 Minnesota Mining And Manufacturing Company Method for making a multilayer polyester film having a low coefficient of friction
US5783283A (en) * 1996-03-08 1998-07-21 Minnesota Mining And Manufacturing Company Multilayer polyester film with a low coefficient of friction
US6084019A (en) * 1996-12-31 2000-07-04 Eastman Chemical Corporation High I.V. polyester compositions containing platelet particles
US5856023A (en) * 1997-01-07 1999-01-05 Polaroid Corporation Ink jet recording sheet
US6162857A (en) 1997-07-21 2000-12-19 Eastman Chemical Company Process for making polyester/platelet particle compositions displaying improved dispersion
JPH11147377A (en) * 1997-11-18 1999-06-02 Teijin Ltd Biaxially oriented polyester film for heat-sensitive transfer ribbon
DE19751542A1 (en) * 1997-11-20 1999-07-29 Siemens Ag Plastics material with spherical silicon dioxide filler of specific particle size and having negative coefficient of thermal expansion
US6486252B1 (en) 1997-12-22 2002-11-26 Eastman Chemical Company Nanocomposites for high barrier applications
WO1999056952A1 (en) * 1998-05-06 1999-11-11 Teijin Limited Biaxially orientated polyester film laminate
DE19839848A1 (en) * 1998-09-02 2000-04-13 Hoechst Diafoil Gmbh Multilayer, biaxially oriented polyester film, process for its production and its use as a magnetic tape with optimized electromagnetic properties
US6552114B2 (en) 1998-12-07 2003-04-22 University Of South Carolina Research Foundation Process for preparing a high barrier amorphous polyamide-clay nanocomposite
EP1147147A1 (en) 1998-12-07 2001-10-24 Eastman Chemical Company A colorant composition, a polymer nanocomposite comprising the colorant composition and articles produced therefrom
US6548587B1 (en) 1998-12-07 2003-04-15 University Of South Carolina Research Foundation Polyamide composition comprising a layered clay material modified with an alkoxylated onium compound
WO2000034375A1 (en) * 1998-12-07 2000-06-15 Eastman Chemical Company A polymer/clay nanocomposite comprising a clay mixture and a process for making same
US6417262B1 (en) 1998-12-07 2002-07-09 Eastman Chemical Company High barrier amorphous polyamide-clay nanocomposite and a process for preparing same
JP2002531666A (en) * 1998-12-07 2002-09-24 イーストマン ケミカル カンパニー High I.D. developed using oligomer resin precursor V. Method for producing polymer nanocomposites and articles made therefrom
JP2002531667A (en) * 1998-12-07 2002-09-24 イーストマン ケミカル カンパニー Polymer / clay nanocomposite and method for producing the same
DE60034864T2 (en) * 1999-06-08 2008-02-07 Teijin Ltd. COMPOSITE FILM FOR CONDENSER, MANUFACTURING METHOD AND SUPPORT FILM THEREFOR
US6610772B1 (en) 1999-08-10 2003-08-26 Eastman Chemical Company Platelet particle polymer composite with oxygen scavenging organic cations
US6777479B1 (en) 1999-08-10 2004-08-17 Eastman Chemical Company Polyamide nanocomposites with oxygen scavenging capability
MXPA02005457A (en) 1999-12-01 2002-11-29 Univ South Carolina Res Found A polymer clay nanocomposite comprising an amorphous oligomer.
US6486253B1 (en) 1999-12-01 2002-11-26 University Of South Carolina Research Foundation Polymer/clay nanocomposite having improved gas barrier comprising a clay material with a mixture of two or more organic cations and a process for preparing same
US6737464B1 (en) 2000-05-30 2004-05-18 University Of South Carolina Research Foundation Polymer nanocomposite comprising a matrix polymer and a layered clay material having a low quartz content
CA2410429A1 (en) 2000-05-30 2001-12-06 University Of South Carolina Research Foundation A polymer nanocomposite comprising a matrix polymer and a layered clay material having an improved level of extractable material
US6507477B1 (en) 2000-09-11 2003-01-14 John E. Stauffer Electrical capacitor
DE10109216A1 (en) * 2001-02-26 2002-09-05 Mitsubishi Polyester Film Gmbh Multi-layer transparent, biaxially oriented polyester film
DE10109217A1 (en) * 2001-02-26 2002-09-05 Mitsubishi Polyester Film Gmbh Transparent, biaxially oriented polyester film
DE10222357A1 (en) * 2002-05-21 2003-12-04 Mitsubishi Polyester Film Gmbh Thermoplastic raw material containing silicon compounds, process for its production and its use
US20050159526A1 (en) * 2004-01-15 2005-07-21 Bernard Linda G. Polymamide nanocomposites with oxygen scavenging capability
EP1820063B1 (en) * 2004-12-09 2014-09-17 Kolon Industries, Inc. Positive type dry film photoresist
EP1820062B1 (en) * 2004-12-09 2014-11-19 Kolon Industries, Inc. Positive type dry film photoresist
DE102006023293A1 (en) * 2006-05-18 2007-11-22 Mitsubishi Polyester Film Gmbh Biaxially oriented polyester film for sheet lamination
JP5941646B2 (en) 2011-09-29 2016-06-29 住友理工株式会社 Dielectric film manufacturing method
JPWO2015098432A1 (en) * 2013-12-27 2017-03-23 東レ株式会社 Biaxially oriented polyester film
WO2018095515A1 (en) 2016-11-22 2018-05-31 Omya International Ag Surface-treated fillers for biaxially oriented polyester films
ES2764676T3 (en) 2016-12-21 2020-06-04 Omya Int Ag Surface treated fillers for polyester films
EP3572456A1 (en) 2018-05-23 2019-11-27 Omya International AG Surface-treated fillers for polyester films

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980611A (en) * 1970-07-07 1976-09-14 E. I. Du Pont De Nemours And Company Filled thermoplastic films
JPS62207296A (en) * 1986-03-07 1987-09-11 Kitasato Inst:The Novel compound wk-142 and production thereof
EP0479774B1 (en) * 1986-03-07 1996-06-26 Nippon Shokubai Co., Ltd. Method of improving the slipperiness of polyester film
JPS6361028A (en) * 1986-09-01 1988-03-17 Teijin Ltd Biaxially orientated polyester film
DE3752302T2 (en) * 1986-08-27 2000-05-11 Teijin Ltd Biaxially oriented polyester films
EP0257611B1 (en) * 1986-08-29 1994-08-03 Diafoil Hoechst Co., Ltd Polyester compositions, process for preparing the same, polyester films, polyester films for magnetic recording media and films for capacitors produced therefrom
EP0262430A1 (en) * 1986-09-29 1988-04-06 BBC Brown Boveri AG Current transformer device for high-voltage open air installations
JPS63235336A (en) * 1987-03-24 1988-09-30 Teijin Ltd Biaxially oriented polyester film
JPS63238136A (en) * 1987-03-26 1988-10-04 Teijin Ltd Biaxially oriented polyester film
JPH0747645B2 (en) * 1988-04-19 1995-05-24 帝人株式会社 Thermoplastic polymer film

Also Published As

Publication number Publication date
DE4313510A1 (en) 1994-10-27
EP0622173A3 (en) 1994-11-23
US5612138A (en) 1997-03-18
JPH06312453A (en) 1994-11-08
EP0622173A2 (en) 1994-11-02
DE59410085D1 (en) 2002-04-25
EP0622173B1 (en) 2002-03-20
US5478632A (en) 1995-12-26
KR100316861B1 (en) 2002-02-19

Similar Documents

Publication Publication Date Title
US5478632A (en) Polyester raw material, and film produced therefrom
KR20020029856A (en) Coextruded, Biaxially Oriented Polyester Film having at least One Matt Side
KR20020039227A (en) Matt, Coextruded, Biaxially Oriented Polyester Film
KR20020029855A (en) Matt, biaxially oriented polyester film
JPH11255913A (en) Biaxially oriented polyethylene 2,6-naphthalate film
KR101047858B1 (en) Multi-layered biaxially oriented polyester film, method for producing same and use thereof
US6106926A (en) Thermoplastic raw material and film produced therefrom
EP0765912B1 (en) Polyester composition and films produced therefrom
DE10303144A1 (en) Polyester film, useful as flexible packaging for foodstuffs, comprises at least one matt covering layer containing particles and comprising a polyester derived from isophthalic acid
AU671218B2 (en) Polyester films containing glass spheres and calcined china clay
EP0674586A1 (en) A biaxially oriented two-layer copolyester film for capacitor dielectric use
KR100220525B1 (en) Oriented polyester film
JPH05269842A (en) Biaxially oriented laminated film
JP3196895B2 (en) Biaxially stretched aliphatic polyester film
AU680032B2 (en) Polyester films containing precipitated silica particles and calcined china clay
JPS60229732A (en) Thin oriented polyester film having small roughness, manufacture thereof and use thereof in manufacture of magnetic tape
JP4644902B2 (en) White laminated polyester film
JPH0390329A (en) Biaxially oriented thermoplastic resin film
JPH07165946A (en) Biaxially oriented polyester film
JPH11228677A (en) Polyethylene terephthalate and film therefrom
JPH10219005A (en) Biaxially oriented polyester film
JPH03199238A (en) Biaxially oriented polyester film for magnetic recording medium
JP2000204177A (en) Biaxially oriented polyester film
JP3158489B2 (en) Method for producing polyester composition
JP3077245B2 (en) Method for producing polyester composition

Legal Events

Date Code Title Description
FZDE Dead