CA2133977A1 - Vertical-cavity surface-emitting laser array display system - Google Patents

Vertical-cavity surface-emitting laser array display system

Info

Publication number
CA2133977A1
CA2133977A1 CA002133977A CA2133977A CA2133977A1 CA 2133977 A1 CA2133977 A1 CA 2133977A1 CA 002133977 A CA002133977 A CA 002133977A CA 2133977 A CA2133977 A CA 2133977A CA 2133977 A1 CA2133977 A1 CA 2133977A1
Authority
CA
Canada
Prior art keywords
emitting
image
display system
visual display
emitting lasers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002133977A
Other languages
French (fr)
Inventor
Jack L. Jewell
Gregory R. Olbright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonics Research Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2133977A1 publication Critical patent/CA2133977A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18388Lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A visual display system is disclosed which utilizes one- and/or two-dimensional arrays of visible emitting vertical-cavity surface-emitting lasers (VCSELs) (200) in order to provide a desired visual display within an observer's field of view (220). Sweep and subscanning techniques are employed, individually or in combination, to create a full M x N image from 1 x L or K x L arrays of VCSELs, where M and N are multiple integers of K and L, respectively. Preferably, the VCSELs (200) are contained within a display housing which may be attached to the head of the user by an attachment mechanism or may alternatively be hand held or mounted to a surface. The circular symmetry and low divergence of the emitted VCSEL radiation as well as the availability of multiple wavelengths, particularly, red, blue, and green, allow high resolution monochrome or color images to be generated.

Description

~ WO93/216732 1 3 3 9 7 7 P~T/US93/03738 VERTICAL-CAVITY SURFACE-EMITTING
LASER ARRAY DISPLAY SYSTEM

~ROSS-REF~RENCE TO ~ELATXD APPLICATION
5This application is related to our co-pending application serial No. 07/790,964 entitled "Visible Light Surface Emitting Semiconductor ~aser"
filed on November 7, l99l, which is incorporated herein by reference.

FIELD OF THE INVENTION
The present invention relates to the fie'Ld of miniature visual display~ and, more particularly, to miniature visual displays that utilize visible emitting vertical-cavity surface-emitting lasers ~-(VCSELs) to project a display within an observer's field of view. :

BACKGROUND OF T~E INVENTION
Because of the human visual sensory system's enormous capacity to absorb and process information, visual displays are extremely effective in displaying a variety of information formats, such as, for example, moving sceneries, alphanumeric characters, ~5 maps, graphs, and targeting data, all of which may b superimposed on an ohserver's normal field of vision.
Particularly, tactical military operations requiring highly complex series of tasks to be performed in unpredictable environments greatly benefit from the 30 use of miniature visual displays, such as head-up, direct view, or helmet-mounted displays. For instance, tactical aircraft personnel are now being equipped with helmet-_ounted displays (HMDs) which allow a miniature visual display system to be held on 35 the head of the observer so as to project a display 2 1 3 :~ 9 ~ 7 PCr/US93/0373~

within the observer's field of vision. In the commercial sector, high-resolution HMDs can provide a "virtual reality" for entertainment and education.
In the last decade, a va~t amount of effort 5 has been expended to develop compact, lightweight visual displays, such as HMDs. Desirably, miniature visual displays should efficiently`~eliver an image generated from the display devic~` typically a cathode ray tube (CRT), to the observer's field of view with 10 minimal or no distortion. Unfortunately, the progress made to date in the miniature visual display and, more particularly, the HMD technology has been primaril'y in the classical or holographic-optics used in the imaging or relaying of the image. See, for examplle, 15 J. R. Burley et al., "A Full-Color Wide-Field-of-View Holographic ~elmet Mcunted Display for Pilot/Vehicle Interface Development and Human Factors Studies,"
Proceedinas of the SPIE, Vol. 1290, pp. ~-15 (1990).
Very little progress has, in fact, been made 20 in developing compact, high brightness, high contrast, low power CRTs. Accordingly, the lack of suitable compact CRTs severely limited the applicability of miniature visual displays, leading to the development of miniature display systems which utilized other 25 suitable display devices.
One such display system is disclosed in U.S.
Patent No. 5,003,330, which is incorporated herein by reference. This display system utilizes a diode array fixed within a helmet-visor structure. Although these 30 diode arrays perform acceptably in the helmet, they -- have not been completely satisfactory for displaying high resolution and/or color display images. Linear diode axrays and even diode laser arrays required to achieve such improvements are either not availa~le at 35 the desired visible wavelengths for color display ... -.;~.. ... . ..... ....... . ..... .. ..

W~93~21673 PCT/US~3/03738 _ 3 æ 1 3 3 9 7 7 images or not available in the array sizes required for color or high resolution miniature visual display applications.
Further, prior art lasers are not suitable 5 for two-dimensional array fabrication or micro-optic integration which is preferred for today's scanning, printing and display applications. This is due to the astigmatic beam quality of conventional semiconductor lasers as well their high divergence whirh make it 10 prohibitively difficult to project high resolution imagPs within the field of view of the observer without the use of relatively expensive and bulky optics.
Other display dev~ces which have also been 15 d~velop~d in an effort to replace the dominant image display deYice, include, for example, liquid crystal di~plays (LCDs), AC and DC plasma dis!?lays, thin film electro-luminescence displays, and vacuum fluorescent displays. Each of these alternative technologies, 20 however, has fundamental shortcomings, particularly for addressing HMD applications. LCDs, for example, have a very low ~fici~ncy in generating, modulating, and transmitting light . See, for example, D.L. Jose et al., "An Avionic Grey-Scale Color Head Down 25 Display,'C Proceedinqs of the 5PIE, Vol. l289, pp. 74-98 (l9g0). ~lasma displays, on the other hand, require on the order of approximately l00 volts or more, while the other alternative display devices are difficult to scale down to sizes achievable with 30 either the diode or laser array (approximately 20-40 ~m2 per element) technology necessary to achieve miniaturization.
To date, therefore, the size, nature and/or availability of wavelengths for display devices have W O 93/21673 .Pt~r~US93/03738 .
213~977 - 4 ~

limited the practicality and utility o~ miniature visual displays.
It is therefore an object ~f the present invention to provide a visual display system that 5 utilizes compact, solid state, high efficient, high brightness, and high contrast display devices for providing monochrome as well as full color displays to an observer's field of view. -It is a further object of the presentinvention to provide a miniature visual display system that provides a high resolution color image of visual i~formation and is suitable for a broad range of consumer, industrial, busine~s, medical and military applications.
It is still a further objeet of the present invention to provide a miniature visual display system or technology that is compatible with the existing classical and holographic optics and which utilizes a display device that is superior to the prior art 20 display devices to achieve a higher resolution.

SUMM~RY OF THE INV~ENI'ION
These and other objects are achieved in accordance wit~ the invention in a miniature visual 25 display 5yste~ ~hat utilizes visible laser diode arrays (VLDAs) and, more preferably, that utilizes one- and/or two-dimensional arrays of visible emitting vertical-cavity surface-emittiny lasers (VCSELs) in order to provide a desired visual display within an 30 observer's field of view.
In preferred embodiments, sweep and sub-scanning techniques, individually or in combination, are employed to create a full M x M image from l x N
or N x N arrays of VCSELs, where M is a multiple 35 integer of N. Such scanning techniques advantageously W093/2~673 2 1 ~ 3 9 7 7 PCT/US93/0373X

further increase the resolution of the displayed image for a given number of VCSELs by displacing the image of the VCSELs within the field of view of the observer ~-as the VCSELs are simultaneously modulated with the 5 information ~o be displayed.
Preferably, the VCSELs are contained within a display housing which may be attached to the head of the user by an attachment mechanism or alternatively may be hand held or mounted. Advantageously, the 10 circular symmetry and low divergence of the emitted VCSEL radiation as well as ~he availability of multiple wavelengths, particularly, red, blue and green, allow high resolutio~ monochrome or color images to be generated. Addressing individual VCSELs within two-dimen~ional arrays is achieved by utilizing matrix addressing techniques, such as by the use of a row/column addresæing geometryO

BRIEF DES~RIPTION_OF THE DRAWING
A more complete understanding of the invention may be obtained by reading the following description in conjunction with the appended drawings in which:
Fig. l is a cross-sectional view of a 25 visible emitting vertical-cavity surface-emitting laser ~VCSEL);
Fig. 2 is an exemplary VCSEL array display system in accordance with the principles of the inventlon;
Fig. 3 is another exemplary VCSEL array display system illustrating the use of full-sweep scanning;
Fig. 4 is an illustration of the effective beam positions seen by an observer viewing into the 35 VCSE~ array display system of Fig. 3;
3 ~ PCT~US93J0373X
2133977 - 6 ,. ~

Fig. 5 is a cross-sectional view of a monolithically integrated VCSEL array and micro-lenslets used in the practice of the present VCSEL
array display 8y8tem;
Fig. 6 is an illustra~ion of the effective beam positions seen by an obserYer viewing into a VCSEL array display system utilizing sub-scanning which improves the image resolution;
Fig. 7 is an illustration of the use 10 multiple micro-lenslets with sub-scanning to increase the effPctive resolution of the display system of the present invention;
Fig. 8 is a top vi~w of a staggered linear array of VCSELs with electronic drivers fabricated on 15 a different substrate;
Fig. 9 is illustration of the effective beam positions s~an by an observer viewing into a one-dimensional VCSEL array system utilizing jump scanning;
Fig. lO is an illustration of the effective beam positions seen by an observer viewing into a VCSE~ array display system utilizing ~weep scanning in conjunction with sub-scanning;
Fig. ll is a top view of Zl ultra-wide field-25 of-view helmet mounted display in accordance with the invention; and Fig. 12 is a side view of the helmet mounted display of Fig. ll.

DETAILED DESCRIPTIQN
The present invention is based on utilizing visible emitting yertical-cavity surface emitting asers (VCSELs) to develop a high brightness, high efficient, compact display technology and, more 35 specifically, a VCSEL array display system.

WO93/21673 2 1 ~ 3 9 7 7 PCT/~S93/03738 Particularly, the size, structure and nearly-ideal beam qualities of the VCSEL~ afford high resolution monochrome or color display images, real or virtual, to be placed within an observer's field of view.
VCSELs are a new class of semiconductor -lasers which unlike conventional edge-emitting laser diodes emit laser radiation in a direction perpendicular to the plane of the p-n junction formed therein. As disclosed in our co-pending application 10 serial No. 07/790,964, VCSELs may now ~e fabricated to emit visible laser radiation in the range between 0.4 and 0.7 ~m by utilizing an active quantum well reg:ion llO comprising alternating l~yers of, for example, GaInP and Al~Ga~InP which are sandwiched between two distributed Bragg reflectors (DBRs) or mirrors 120 and 130, as illustrated in Fig. l.
In operation, injection current is typically confined within active region llO by the use of annular shaped proton implanted regions 140 to achieve 20 stimulated emission. Importantly, VCSELs may be fabricated in one- and/or two-dimensional arrays and may be integrated with micro-optics~ With the appropriate s~lection of materials, each VCSEL can be made to emit laser radiation in different portions of 25 the visible re~ion of the electromagnetic spectrum.
The operation and fabrication of these VCSELs are discussed in de~ail in the above-identified related application and will not be described in detail here for the sake of brevity.
The basic concept of the VCSEL array display system is illustrated in Fig. 2. Tt is to be understood, however, that the VCSEL array display system depicted in Fig. 2 is for the purpose of illustration only and not for the purpose of 35 limitation. The VCSEL array display system, which is ."~
'~13397~ - 8 -typically positioned about the observer~s head, such as for use as a HMD, comprises an array of VCSELs 200, a lens system 210, and, preferably, a partially transmittin~ faceplate 220, such as a dichroic filter 5 or mirror. Lens system 210 isjpl~ced approximately an effective focal length away from VCSEL array 200 so as to collimate the visible radiation emitted from VCSEL
array 200 in order to produce a virtual image of VCSEL
array 200 in accordance with well-known optical 10 theoxy. At any instant in time, an observer looking into faceplate 220 sees simultaneously a virtual image of VCSEL array 200 as well as external visual information that is directe~ toward faceplate 220.
In displaying the desired image to the 15 observer, each laser within VCSEL array 200 may be individually addrecsed and modulated with the appropriate chroma or monochrome information by driver electronics ~30. The necessary electrical signals to address and generate the desired light intensity have 20 very low drive currents and voltagès that are compatible with analog or digital integrated CMOS and TTL electronic circuits.
Additionally, three~dimensional virtual imag~s can be produced by translating VCSEL array 200 25 or, alternatively, lens system 210 alnng the optical axis of the system to sw~ep the virtual image location from infinity to a distance close to the observer.
Such translation may be readily accomplished by a translation driver 240 that utilizes mechanical servos 30 or piezoelectric transducers to physically move the array or lens.
It is anticipated that the space occupied by VCSEL array 200 will be approximately the same as that occupied by the phosphor screens of prior art 35 miniature CRTs, which typically have a dimension of ~. .
_ 9 _ approximately 20 x 20 mm. Accordingly, critical parameters such as the HMD's field of ~iew (FOY) and packaging known in the prior art will remain s~bsti~ntially unaffected by utilizing VCSEL array 200 5 rather than the conventional CRT or other well known display devices. Moreover, those skilled in the art will know of optical designs and packing means which would further facilitate the use of VCSEL array 200 as a display system suitable for attachment to the head 10 of an observer or for hand-held use. For example, see U.S. Patent Nos. S,023,905 and 5,048,077 which are incorporated hersin by reference. For instance, the VCSEL array display of the present invention may be packaged in a disp'ay unit having an opening through which the image may be ~iewed and may be attached to a sidewall of a user's helmet, or a user's eyeglasses.
Alternatively, the display system may be attached to a user's belt, with remote display information pro~ided from a computer, pocket calculator, or radio wa~e 20 transmitter.
In one embodiment, VCSEL array 200 comprises a two-dimensional M x M array of individually addressable VCSELs. VCSELs within the M x M array may be f abricated to lase either at one predetermined 25 wavelength or at several wavelengths, such as blue, green and red, to produce monochrome or full color images, respectively, in arcordance with well known colorimetry theory.
The VCSEL array is fabricated using 30 conventional planar large scale lntegration (LSI) - processing techniques, such as _olecular beam epitaxy (MBE), wet chemical etching and the like. More particularly, the two-dimensional array is fabricated by first depositing epitaxially the semiconductor 35 layers of the VCSEL structure and then defining, for 213397~

example, by optical photolithography and etching a plurality of columns, each a separably addres~able VCSEL. Contacts to the VCSELs are formed by conventional deposition techni~es wherein, for 5 example, common row and colu~n.~us contacts may be formed to individually address each VCSEL, as disclosed in our co-pending application serial No.
07/823,496 entitled "Integra~ion of Transistors With Vertical Cavity Surface Emitting Lasers" filed on 10 January 21, 1992, which is incorporated herein by reference.
The number of VCSELs in the two-dimensional array will, of course, be dependent on the required resolution as well as the width and length of the displayed image projected to the observer.
In comparison to edge-emitting lasers, which are a few hundred microns long by 10 ~m, each VCSEL is approximately 10 ~m in ~iameter, affording more than twenty-five ~imes more display elements per unit area 20 than prior art display devices. Importantly, the emitted radiation has a circular symmetry as well as a low divergence which allow low numerical aperture lens system to be employed in generating an enlarged virtual image of the VCSELs. Also, since the VCSELs 25 have no inherent astigmatism and can be fabricated as closely-spaced, individually electrically addressable display elements, it will be apparent to those skilled in the art that an enhanced resolution may be achieved.
Information is applied to the VCSELs by individually addressing each VCSEL through the use of, for example, a matrix or row/column addressing contacts similar to those used for charged coupled device (CCD) arrays. Fully addressing a M x M array 35 of display devices electronically requires M2 leads, W093~21673 2 1 3 ~ 9 7 7 PCT/US93/03738 which is prohibitively impractical at array sizes much larger than 16 x 16 (256 leads). Accordingly, information is applied to the VCSELs by individually addressing each of the VCSELs through the use of the 5 matrix or row/column addressing geometry, reducing the number of leads from M2 to 2M. See, for example, M.
Orenstein et al., "Matrix-Addressable Vertical Cavity Surface Emitting Laser Array," Electronic Letters Vol. 27, pp.437-438 (1g91), which is incorporated 1O herein by reference. Associated driver electronic.s 230, including, for example, shift registers, transistors, and the like, used for addressing and modulating the intensity of~the emitted radiation may be integrated on the chip or substrate containing the 15 VCSEL array rather than being located external to the display unit. Such integration further reduces the number of leads, allowing large arrays, e.g., 512 x 512, to be readily fabricated. ~
If the number of elements in the VCSEL array -?O matches the required resolution of the displayed image, no scanning other than the electronic addressing is necessary. However, to increase the resolution for given number of VCSELs or to reduce the number of VCSELs needed to achieve a desired 25 resolution, various scann-ng techniques may be employed. More particularly, those skilled in the art will appreciate that scanning allows a full page display to be created from a much smaller number of display devices than is necessary to generate the full 30 page display, whether for a real or virtual image.
For example, a M x M display image may be generated from a 1 x M VCSEL array by utilizing a technique known as full-sweep scanning. The full page display is achieved by scanning along one axis the 35 VCSEL's virtual-image position perceived by the W093/21673 2~3~97~ PCT/Us93/0377`

observer. In this type of scanning, the VCSEL array comprises a plurality of linearly-aligned VCSELs having an individual VCSEL or ç ement for each resolution element along one~àxis~ Resolution 5 elements along the other axi's are provided by the scanning mechanism discussèd in more detail below.
Referring to both Figs. 3 and 4, a VCSEL
array 300 comprises a single vertical column of VCSELs represented by the black dots on the left hand side of 10 Fig. 4. Gollimated light output from the array is directed by a lens 310 to, for example, a vibrating mirror 320 of an electro-mechanical scanner 330.
Electro-mechanical scanner 330 may be of type disclosed in ~.S. Patent No. 4,902,083, which is incorporated herein by reference, in which mirror 320 is vibrated in accordance with control signals from a s~anner electronics 350. By selectively illuminating various lasers within VCSEL array 300 at various points during the vibration of mirror ~20, successive 20 columns of pixels or picture elements, i.e., display points, will be caused to appear within the field of view of the observer. These display points are represented in Fig. 4 by the entire two-dimensional array of dots, in which the black dots also represent ~5 the image position of radiation from the VCSELs in the absence of scanning and the stippled dots represent the additional display points achieved by scanning.
At any instance in time, the observer sees only one column or vertical line of VCSEL array 300, but 30 because mirror 320 is repetitively oscillated or scanned in the horizontal direction 50 as to sweep the apparent location of the vertical line of VCSEL array 300 from one edge of the observer's field of view to the other, the observer's eye perceives a full screen 35 of information, as depicted in Fig. 4.

WO93/21673 2 1 3 3 g 7 7 PCT/U~93/03738 - -~

Typically, mirror 320 is oscillating at approximately 100 Hz so as to create the illusion of a continuous full pagë or M x M image generated ~rom a 1 x M array.
Of course, the vertical line or column~-of VCSEL array 300 is appropriately modulated or electrically excited to selectively emit light for each column within the desired display image. Such driver electronics may be integrated with the VCSELs.
10 Electronic timing ensures that the proper VCSEL for each column or vertical line is illuminated at the correct time during scanning. One example of a miniature visual display an~, more particularly, a HMD
which utilizes full-sweep scanning is disclosed in 15 ~.S. Patent No. 4,~34,773, which is incorporated -herein by reference.
The number of VCSELs in the linear array will be dependent on, for example, the width of the desired image to be displayed to the-obæerver. In one 20 preferred embodim~nt, for a 1024 x 1024 display, VCSEL array 300 would ~vntain 1024 linearly-aligned VCSELs. VCSELs contemplated for use in this embodiment are approximately 10 ~m in diameter with approximately a 10 ~m space between each VCSEL.
2~ It is also possible to use sweep scanning with a VCSEL array which is not linear, such as, for example, with a quasi-linear or staggered array.
Those skilled in the art will know how to modify the electronic driver signals to compensate, in this case, 30 for the altered positions of the VCSELs.
Other scanning techniques which may be more stable are also contemplated. These techniques, for example, involve the use of micro-optics which is readily integrated with the VCSEL array. The 35 formation of sub-millimeter diameter lenslets as well WO93/21673 2 l 3397 ~ PCT/US93/03738 as the formation of waveguides on the substrate containing the VCSEL array, for example, i~prove the performance, light efficiency, surface scattering, wavelength sensitivity and beam divergence of the 5 display, all of which decre,a~es the size, weight, and complexity of the imaging ~ystems. Fig. 5 depicts an exemplary monolithic integration of a VCSEL array 510 and micro-lenslets 520 which may be used in the practice of the present invention to facilitate the 10 use of various other scanning techniques, such as electro-optic scanning techniques that employ acousto-optic _odulators (AOMs). Those skilled in the art will particularly note that~micro-lenslets 520 direct the propagation of the radiation emitted by the 15 VCSELs, performing some, if not all, of the imaging functionality of optical lens 310. For instance, micxo-lenslets 520 can decrease the beam divergence of the emitted radiation so that lower numerical aperture optical systems can be used for displaying a desired 20 image within the field of view of the ob~erver.
Alternatively, they can increase the beam divergence to increase image resolution.
In another embodiment, a noYel sub-scanning technique is employed to create a full ~ x M display 25 image from a N x N array of VCSELs, where M is a multiple integer of N. Sub-scanning, in contrast to sweep scanning, is the real or virtual movement of the VCSEL array within the field of view of the observer by a distance smaller than the inter-element or VCSE~
30 spacing. Referring to Fig. 6, the solid black dots indicate the position of the image elements of the VCSELs when directly imaged to the observer. When each image element displayed to the observer is scanned along horizontal and vertical axes 610 and 35 620, respectively, the image elements are perceived to be located at those locations represented by the stippled dots to create the illusion that a full page is being displayed. As with sweep scanning, the radiation from the VCSELs is approprîately modulated 5 during the scanning ~f the VCSEL array. The scanning can also ba accomplished by a real image displacement using, for example, piezoelectric transducers.
Typically, the inter-spacing distance, l, between each VCSEL is an integer multiple of the 10 spacing, d, between the generated sub-elements or the factor by which the resolution has been improved. It is contemplated that sub-scanning may be achieved by the use of other means, such-as piezoelectric transducers, mechanical scanners, acousto-optic modulators and the like.
These scanning techniques may also benefit from the use of micro-~ptics as well as benefit from their integration with the VCSEL array. For example, typically the ratio o~ the inter-element spacing to 20 its beam diameter is approximately 2:1. The utilization of micro-lenslets, such as illustrated in Fig. 5, to focus the radiation output or beamlet from each VCSEL to a reduced spot size increases the inter-element spacing to beam diameter ratio.
25 Advantageously, sub-scanning could then be usPd to increase the effective resolution by generating sub-pixels between adjacent VCSELs as discussed above. In contrast, the beam fr~m a light emitting diode cannot be focused effectively to a reduced spot size.
Rather than utilizing micro-lenslets, larger lenslets which collect light from multiple VCSELs can be used in conjunction with the above sub-scanning techniques. As shown in Fig. 7, lenslet pairs 710 and 720 focus emitted radiation from multiple VCSELs 730a-35 d to a reduced spot size. Whereas the spacing between WO93/21673 P~T/~S93/0373~
2~339~ - 16 - ~`

VCSEL pairs 73Qa-b and 730c-d is originally a distance, a, the spacing after the beamlets traverse through the lenslets pairs is a much smaller distance, b. Sub-scanning may now be used to generate sub-5 pixels between the imaged VCSELs, which sub-pixels are indicated by the stippled dots. Note that the demagnification factor realized by lenslet pairs 730a-b and 730c-d ~hould be an integer number equal to the number of sub-pixels required to fill the field of 10 view of the observer or the sp~ce between the imaged VCSEL points. Utilization of a single macro-lens, in contrast, does not increase the effective resolution.
Although the macro-lens would decrease the spot size, it would also decrease the inter-element spacing by 15 the same factor. That is, the ratio of the inter-element spacing to spot diameter remains unchanged.
Utilization-of sub-scanning cannot therefore be used to increase the resolution to its maximum po~sible extent where a single micro-lens is employed.
It is to be understood for the above sub-scanning tec~nique that the scanning le~gths along each axis do not have to be symmetric. By utilizing different scanning lengths it is possible ~o generate in general a M x N array display image from a K x L
25 VCSEL array, where M and N are multiple integers of K
and L, respectively.
As an example of a sub-scanning system, a 128 x 128 VCSEL array with a 40 ~m inter-element spacing may be scanned in increments of 5 ~m up to the 30 maximum distance of 35 ~m in both axes to achieve a 1024 x 1024 image (7 sub-positions in each axis between adjacent VCSEL elements).
In the above embodiments, it is contemplated that the information to be displayed may initially be -35 stored in a data storage device such as RAM, ROM, WO93/21673 2 1 3 ~ 9 7 7 PCT/US93/03738 `

EPROM and the like, which are well known in the art, when a limited set of information needs to be selectively provided to the observer. Otherwise, and for most applications requiring information which 5 varies with time, new information to be displayed may be applied to the VCSELs during the end of a frame, such as at the end of a scan.
New information to be displayed may also be directly applied to each VCSEL to create a full 10 display as discussed above by individually addressing each VCSEL without the use of matrix addressing.
Furthermore, the N x N VCSEL array may alternatively comprise rows of VCSELs whic~ are staggered in order to compensate for gaps between the devices. Fig. 8 15 depicts a portion of a staggered linear array of ~CSELs 810 having wirebonds to electronic drivers 820 which may be fabricated on a different substrate. The VCSEL arr~y and electronic drivers may alternatively be fabricated on the same substrate to eliminate the 20 need for wire bonding as disclosed in our pending application serial No. 07/823,496. Driver electronics 820 include transistors, such as FETs, bipolar ~~-~
transistors, and the like. In general, the structures disclosed in the above-identified application may be 25 used in the practice of the present invention.
In one example, one-dimensional sub-scanning may be utillzed for laser printing applications, such as a 3600 dots-~er-inch (dpi) printer covering a 20 x 75 inch area. A 20 inch linear VCSEL array having 300 30 VCSELs per inch can be sub-scanned in one dimension such that each VCSEL controls the illumination at 12 points (pixels) in a line to achieve the desired 3600 dpi resolution. Advancing the printing material in the other dimension allows printing in that dimension.

W O 93/21673 PC~r/VS93/0373~ ~
213~7 - 18 -An alternative to one-dimensional sub-scanning is to translate a one-dimensional array of VLDAs, such as of the VCSEL type, by a distance equal to a multiple integer length of the array size plus 5 one inter-pixel distance. As shd~n in Fig. 9, a VCSEL
array 850 comprising three gro~ps 860a-c of a 1 x 4 VCSEL sub-arrays is scanne~ by stepping the arrays through the image in multiple illumination phases. In the first phase, the arrays control the illumination 10 of display points 870a-c. For the second phase, radiation from arrays 860a-c is translated, such as by electro-mechanical means, to the positions indicated by stippled dots 870a'-c', respectively. The VCSELs are accordingly modulated with appropriate monochrome or chroma information corresponding to their translated positions to generate new effective re~olution elements or pixels. Then, in the third phase, radiation from arrays 860a-c is stepped or translated to positions 870a"-c", respectively. This 20 stepping or "jump" technique effectively produces 4 additionally pixels for each translation or step.
Here, 8 additional pixels are produced for each of sub-arrays 860a-c. This particular type of scanning, referred to as "jump" scanning, may also be used for 25 laser printing applications. For example, if 6000 lasers on 60 chips of 100 lasers each would be required to ac~ieve a desired resolution, then the same task could be done using 10 chips of 100 lasers each by performing 6 "jumps" or repeated translations.
Two-dimensional display images may also be generated by combining both sweep ~canning and sub-scanning techniques. Referring to Fig. 10, a 16 x 16 display image may be generated from 1 x 4 VCSEL array by sweep scanning along a horizontal axis 910 and sub-35 scanning along a vertical axis 920. The inter-element WO93/21673 ? 1 3 3 9 7 7 PCT/US93/037~ ~

spacing, y, between VCSELs is such that 3 sub-positions are generated therebetween by displacing the virtual image of the VCSELs in repeated increments.
Along horizontal axis 9lO the virtual image perceived 5 by the ob~erver is displaced in increments corresponding to the desired sub-positi.on spacing, x, up to a distance corresponding to l~ pixels. Along vertical axis 920, however, the virtual image is displaced in increments of the desired sub-position 10 spacing, x, but only up to a distance corresponding to the inter-element VCSEL spacing, y~
A unique aspect of the present invention is the ability to generate a ful~ color display. In or~e embodiment of a full-color display, three different 15 types of VCSELs are needed in a single array, each of which types emits light at a different wavelength such as a green, blue and red, in order to provide color visual images. Illustratively, each row of VCSELs in the array comprises VCSELs of only one type and the 20 colors emitted by such rows alternate in regular fashion. The rows themselves may be staggered to eliminate the gaps between each VCSEL.
Under the control of timing and control circuitry, the appropriate chroma data is applied to 25 each row of VCSETs, but at slightly different time intervals. As a result, the output from each set of three adjacent rows of different color VCSELs is imaged to the same line within the virtual image so as to produce a color display in accordance with well 3~ known colorimetry theory.
Approximate ranges for the green, red and blue wavelengths are 6lO-630 nm, 514-554 nm, and 440-470 nm, respectively. These wavelength ranges satisfactorily provide the full color spectrum and are 35 within the operating range of the VCSELs disclosed in 21339~7 - 20 -our co-pending application serial No. 07/790,964.
More specifically, alternating layers of GaInP and Al~Gal~InP within the active region may be used to generate radiation in the red region; alternating 5 layers of GaInP and Al~Gal~P within the active region may be used to generate radiation in the green region;
and alternating layers of AlyGal~N and Al~Ga~N within the active region may be used to generate radiation in the blue region.
Preferably, 605 nm, 554 nm and 460 nm will be used as the wavelengths for the red, green, and blue radiation, respectively, because these wavelengths provide the highest efficiency for producing white light. Utilizing longer wavelengths above 605 nm as the red source requires greater red light intensity 'n order to maintain the same irradiance.
Partially transmissive reflectors may further be used to direct the color display image ~0 within thR field of view of the observer. These reflectors may be fabricated with enhanced reflectivities at the radiation wavelengths of the VCSELs to minimize the required optical power.
Moreover, the reflectivities elsewhere may be 25 minimized (i.e., high transmissivity) to maximize ou~side ~iewing of external information.
In accordance with the principles of the invention, VCSELs may be also integrated with, or even replaced by, other display devices, such as visible 30 diode lasers or superluminescent light emitting diodes (SLEDs~ to further au~ment and/or complement the applicability of the present inventive VCSEL array display system. Those skilled in the art will know that a SL~D is a light emitting diode (LED) whose efficiency and emission directionality are enhanced by the addition of a partial cavity. SLEDs can be constructed very similarly to VCSE~s using standard planar LSI proc~ssing techniques. In accordanc~ with the principles of inventions, it is cvntemplated that 5 VCSELs will be integrated with SLED and/or LEDs.
In another embodiment, sweep scanning in conjunction with sub-scanning may further be utilized to realize a HMD having a ultra-wide field-of-view~
More specifically, the sweep scanning is implemented 10 by using a rotating polygonal mirror to achieve fields of view near 180 degrees. Rotating polygonal mirro:rs are advantageously more robust than vibrating mirro:rs and, moreover, afford one the capability to exploit the nearly circular symmetry field-of-view of HMDs.
Shown in Figs. ll and 12 are top and side views, respectively, of a ultra-wide field-of-view HMD
which u~ilizes the principles of the present invention. Polygonal mirror 920 rotates about a vertical axis ~o sweep the apparent location of a 20 ~CSEL array 9lO from one edge of the observer's field of view to the other/ as previously illustrated in Fiy. 4. A 180 degree field-of-view ~ay be achieved by a 90-l20 degree rotation of polygonal mirror 920 with the appropriate number of sides. For this arrangement 25 the VCSEL array advantageously is a linear array oriented in a vertical direction so that it is parallel to the axis of rotation of mirror 920. A
cylindrical lens 930 located near the upper portion of the HMD or forehead of the observer expands the 30 emitted radiation from VCSEL array 9lO along the horizontal axis. The beam expansion is sufficient to fill the pupil aperture of both eyes of the observer to achieve full binocular display. Either an appropriate horizontal curvature on polygonal mirror 35 920, as shown in Fig. 12, or a multiplicity of W~93/21673 PCT/US~3/03738 213397~ - 22 -, ~

cylindrical lenses may, however, be used to replace single cylindrical lens 930.
It is believed that a vertical expansion of only 15-~0 ~m need be achieved to account for the 5 observer's head motion. Pre~erably, for binocular displays, horizontal beam widths of 100 mm or more are contemplated. A concave partial reflector 940, which is preferably 50-75 mm from the observer' pupil~, produces a virtual image of VCSEL array 910 within the 10 field of view of the observer in accordance with well known optical theory. Appropriately addressing and modulating each individual VCSEL in conjunction with ~-sweep scanning then presents~a full panorama display to the observer.
Note that since radiation from each VCSEL
-traverses through only a small portion of the system, the system components do not introduce any substantial optical aberrations. Thus, resolution better than one cycle per mrad may be accomplished over the entire 20 field-of-view with only a small number of optical components.
Those skilled in the art will readily note that the vertical Goncavity of both polygonal mirror 920 and partial reflector 940 is used to tailor the 25 vertical beam characteristics of the emitted radiation. Cylindrical lens 930 and the horizontal curvature of concave partial reflector 940, on the other hand, tailor the horizontal ~hape or beam characteristics of the emitted radiation. In this 30 manner, the emitted radiation can be properly directed into, for example, 180 degree fîeld-of-view.
Multiple VCSEL arrays, each array emitting radiation at a different wavelength can further be employed to produce color image~. For example, VCSEL
35 arrays 910, 950 and 960 may be placed at different ~_ WO93/21673 2 1 3 3 9 7 7 PCT/US93/03738 t positions around rotating mirror 920, where array 910 emits red radiation, array 950 emits gr~en radiation and array 960 emits blue radiation. Radiation from each array, of course, would be synchronized to 5 generate a color image in accordance with well known colorimetry theory.
Each side of rotating mirror 920 further could be tilted vertically with respect to each other so that each side sweeps out a unique set of 10 horizontal pixels~ For example, with a 4 sided rotating mirror, each side having a slight vertical tilt, sub-scanning as described hereinabove may be realized in the vertical direction to effectively increase the vertical resolution by a factor of four.
15 Hence, a display resolution of 1024 elements in the vertical direction could be accomplished by utilizing a ~ingle array haYing only 256 VCSELs. Note that this latter scheme effectively combines sub-scanning and sweep scanning techniques to produce extremely high 20 resolution display images over a ultra-wide field-of-view with a minimum number of VCSELs.
It should be understood that various other modifications will be readily apparent to those skilled in the art without departing from the scope 25 and spirit of the invention. For example, head-down displays fox cockpit environments may also be constructed utilizing the principles of the invention in which a real image is projected from the VCSEL
array onto a screen for viewing by an observer.
30 Moreover, simulators may also be constructed employing a combination of ~irtual-image and real-image displays.
Accordingly, it is not intended that the scope of the claims appended hereto be limited to the 35 description set forth therein, but rather that the WO93/21673 PCT~US93/03738 213~77 - 24 ~

claims be construed as encompassing all the features of patentable novelty ~hat raside in the present invention, including all features that would be treated as equivalents thereof~b~ those skilled in the 5 art to which this inventio~pertains.

1o ,:

Claims (59)

What is claimed is:
1. A visual display system comprising:
a plurality of visible emitting vertical-cavity surface-emitting lasers, each of said lasers emitting radiation; and means for displaying an image of said plurality of visible emitting vertical-cavity surface-emitting lasers within the field of view of an observer.
2. The visual display system of claim 1 having a size suitable for headgear-mounted use.
3. The visual display system of claim 2 wherein said means for displaying includes means for creating a virtual image of said plurality of visible emitting vertical-cavity surface-emitting lasers, and a rotating mirror for displacing said virtual image over a desired field-of-view.
4. The visual display system of claim 1 further comprising means for selectively modulating the intensity of the radiation from each of said plurality of visible emitting vertical-cavity surface-emitting lasers so that said image substantially represents a predetermined visual display.
5. The visual display system of claim 1 wherein said plurality of visible emitting vertical-cavity surface-emitting lasers emit radiation at a predetermined wavelength so that said image is monochrome.
6. The visual display system of claim 1 wherein said plurality of visible emitting vertical-cavity surface-emitting lasers emit radiation at a plurality of wavelengths so that said image is in color.
7. The visual display system of claim 6 wherein said plurality of visible emitting vertical-cavity surface-emitting lasers are aligned in sets of three lines, said vertical-cavity surface-emitting lasers in each line emitting radiation at a different predetermined wavelength.
8. The visual display system of claim 7 wherein vertical-cavity surface-emitting lasers in a first line of said sets emit in the visible red region of the electromagnetic spectrum, vertical-cavity surface emitting lasers in a second line of said sets emit in the visible green region of the electromagnetic spectrum, and vertical-cavity surface-emitting lasers in a third line of said sets emit in the visible blue region of the electromagnetic spectrum.
9. The visual display system of claim 8 wherein said vertical-cavity surface-emitting lasers in said first, second and third lines are staggered with respect to each other.
10. The visual display system of claim 1 wherein said plurality of visible emitting vertical-cavity surface-emitting lasers are aligned in a substantially one-dimensional array.
11. The visual display system of claim 1 wherein said plurality of visible emitting vertical-cavity surface-emitting lasers are aligned in a substantially two-dimensional array.
12. The visual display system of claim 1 wherein said means for displaying comprises imaging means for creating a virtual image of said plurality of visible emitting vertical-cavity surface-emitting lasers, and means for reflecting said virtual image into the field of view of the observer.
13. The visual display system of claim 12 wherein said means for reflecting includes a mirror.
14. The visual display system of claim 12 wherein said means for reflecting includes a partially transmissive, partially reflective faceplate such that the observer can simultaneously view the image of said plurality of visible emitting vertical-cavity surface-emitting lasers and external visual information directed to the observer.
15. The visual display system of claim 12 further comprising means for adjusting the location of said virtual image from infinity to a distance close to the observer.
16. The visual display system of claim 15 wherein said means for adjusting includes a mechanical servo for displacing said plurality of vertical-cavity surface emitting lasers.
17. The visual display system of claim 1 further comprising micro-lenslets for directing the propagation of the radiation from said plurality of vertical-cavity surface-emitting lasers.
18. A visual display system for displaying an image having M x N picture elements within the field of view of an observer, said visual display system comprising:
a plurality of visible emitting vertical-cavity surface-emitting lasers aligned substantially in at least a first 1 x N array, said lasers emitting radiation;
means for creating an image of said plurality of visible emitting vertical-cavity surface-emitting lasers;
means for repetitively displacing the position of said image within the field of view of the observer; and means for selectively controlling the intensity of the radiation emitted from each of said plurality of vertical-cavity surface-emitting lasers as the position of said image is displaced to create the desired M x N image.
19. The visual display system of claim 18 wherein said image is a virtual image.
20. The visual display system of claim 18 wherein said plurality of visible emitting vertical-cavity surface-emitting lasers emit radiation at a predetermined wavelength so that said M x N image is monochrome.
21. The visual display system of claim 18 wherein said plurality of visible emitting vertical-cavity surface emitting lasers emit radiation at a plurality of wavelengths so that said image is in color.
22. The visual display system of claim 21 wherein said plurality of visible emitting vertical-cavity surface-emitting lasers are aligned in three lines of 1 x N arrays, said vertical-cavity surface-emitting lasers in each line emitting radiation at a different predetermined wavelength.
23. The visual display system of claim 22 wherein vertical-cavity surface-emitting lasers in a first line of said 1 x N arrays emit in the visible red region of the electromagnetic spectrum, vertical-cavity surface emitting lasers in a second line of said 1 x N arrays emit in the visible green region of the electromagnetic spectrum, and vertical-cavity surface-emitting lasers in a third line of said 1 x N
arrays emit in the visible blue region of the electromagnetic spectrum.
24. The visual display system of claim 18 further comprising micro-lenslets for directing the propagation of the radiation from said plurality of vertical-cavity surface-emitting lasers.
25. The visual display system of claim 18 wherein vertical-cavity surface-emitting lasers within said 1 x N arrays are staggered with respect to one another.
26. A visual display system for displaying an image having M x N picture elements within the field of view of an observer, said visual display system comprising:
a plurality of visible emitting lasers aligned substantially in a K x L array, said lasers emitting radiation;
means for creating an image of said plurality of visible emitting vertical-cavity surface-emitting lasers;
means for repetitively displacing the position of said image within the field of view of the observer; and means for selectively controlling the intensity of the radiation emitted from each of said plurality of vertical-cavity surface-emitting lasers as the position of said image is displaced to create the desired M x N image, where M and N are greater than K and L, respectively.
27. The visual display system of claim 26 wherein said visible emitting lasers are vertical-cavity surface-emitting lasers.
28. The visual display system of claim 26 wherein said visible emitting lasers are light emitting diodes.
29. The visual display system of claim 26 wherein said visible emitting lasers are edge-emitting laser diodes.
30. The visual display system of claim 26 wherein said image is a virtual image.
31. The visual display system of claim 26 wherein said plurality of visible emitting lasers emit radiation at a predetermined wavelength so that said M
x N image is monochrome.
32. The visual display system of claim 26 wherein said plurality of visible emitting lasers emit radiation at a plurality of wavelengths so that said image is in color.
33. The visual display system of claim 26 wherein 1 x L arrays of said K x L arrays of said plurality of visible emitting lasers are aligned in three lines, said visible emitting lasers in each line emitting radiation at a different predetermined wavelength.
34. The visual display system of claim 33 wherein visible emitting lasers within said 1 x L
arrays are staggered with respect to one another.
35. The visual display system of claim 33 wherein said visible emitting lasers in a first line of said 1 x L arrays emit in the visible red region of the electromagnetic spectrum, vertical-cavity surface emitting lasers in a second line of said 1 x L arrays emit in the visible green region of the electro-magnetic spectrum, and vertical-cavity surface-emitting lasers in a third line of the said 1 x L
arrays emit in the visible blue region of the electromagnetic spectrum.
36. The visual display system of claim 26 further comprising micro-lenslets for directing the propagation of the radiation from said plurality of visible emitting lasers.
37. A visual display system for displaying a desired image within the field of view of an observer, said visual display system comprising:
a laser array including a plurality of vertical-cavity surface-emitting lasers and light emitting diodes, said vertical-cavity surface-emitting lasers and light emitting diodes emitting radiation in the visible electromagnetic spectrum;
means for creating an optical image of said laser array;
means for repetitively displacing the position of said optical image within the field of view of the observer; and means for selectively controlling the intensity of the radiation emitted from said laser array as the position of said optical image is displaced to create the desired image.
38. A visual display system for displaying a desired image having M x N picture elements within the field of view of an observer, said visual display system comprising a plurality of surface-emitting lasers aligned substantially in K 1 x L arrays, said 1 x L
arrays being arranged in groups of two or more lasers;
a plurality of lenslet pairs having an optical axis substantially collinear with the direction of propagation of radiation emitted from said lasers, each lenslet pair for imaging lasers within a group to corresponding groups of reduced image size such that the inter-group spacing for the groups of reduced image size is greater than that for said groups of lasers;
means for creating an image of said groups of reduced image size;
means for repetitively displacing the position of said image within the field of view of the observer so as to generate sub-picture elements between the groups of reduced image size; and means for selectively controlling the intensity of the radiation emitted from each of said plurality of surface-emitting lasers as the position of said image is displaced to create the desired M x N
image, where M and N are greater than K and L, respectively.
39. The visual display system of claim 38 wherein said surface-emitting lasers are vertical-cavity surface-emitting lasers.
40. The visual display system of claim 38 wherein said surface-emitting lasers are light emitting diodes.
41. The vidual display system of claim 38 wherein said surface-emitting lasers are edge-emitting laser diodes.
42. A visual display system for displaying a desired image having M x N picture elements within the field of view of an observer, said visual display system comprising:
a plurality of surface-emitting lasers aligned substantially in a 1 x L array, said 1 x L
array being arranged in groups of two or more lasers;

a plurality of lenslet pairs having an optical axis substantially collinear with the direction of propagation of radiation emitted from said lasers, each lenslet pair for imaging lasers within a group to corresponding groups of reduced image size such that the inter-group spacing for the groups of reduced image size is greater than that for said groups of lasers;
means for creating an image of said groups of reduced image size;
means for repetitively displacing the position of said image within the field of view of the observer so as to generate sub-picture elements between the groups of reduced image size and picture elements along first and second directions, respectively, of said image; and means for selectively controlling the intensity of the radiation emitted from each of said plurality of surface-emitting lasers as the position of said image is displaced to create the desired M x N
image, where M and N are greater than K and L, respectively.
43. The visual display system of claim 42 wherein said surface-emitting lasers are vertical-cavity surface-emitting lasers.
44. The visual display system of claim 42 wherein said surface-emitting lasers are light emitting diodes.
45. The visual display system of claim 42 wherein said surface-emitting lasers are edge-emitting laser diodes.
46. A scanning configuration comprising:
a plurality of surface-emitting lasers substantially aligned in at least a 1 x N array along a first direction, said 1 x N array having an inter-element spacing, d, and each of said lasers corresponding to a picture element;
means for creating an image of said plurality of surface-emitting lasers; and means for repetitively displacing the image of said plurality of surface-emitting lasers by a distance less than the inter-element spacing, d, along said first direction so as to generate sub-picture elements between the images of adjacent lasers.
47. The scanning configuration of claim 4?
wherein said surface emitting lasers are vertical-cavity surface-emitting lasers.
48. The scanning configuration of claim 46 wherein said surface emitting lasers are light emitting diodes.
49. The scanning configuration of claim 46 wherein said surface emitting laser are edge-emitting laser diodes.
50. The scanning configuration of claim 46 wherein surface-emitting lasers within said 1 x N
array are staggered with respect to one another.
51. The scanning configuration of claim 46 further comprising means for respective ? displaying the image of said plurality of surface-emitting lasers along a second direction, said second direction substantially perpendicular to said first direction.
52. The scanning configuration of claim 51 wherein said plurality of surface-emitting lasers emit radiation at a plurality of wavelengths so that said image is in color.
53. The scanning configuration of claim 51 wherein said plurality of surface-emitting lasers are aligned in three lines of 1 x N arrays, said surface-emitting lasers in each line emitting radiation at a different predetermined wavelength.
54. The scanning configuration of claim 53 wherein surface-emitting lasers in a first line of said 1 x N arrays emit in the visible red region of the electromagnetic spectrum, surface-emitting lasers in a second line of said 1 x N arrays emit in the visible green region of the electromagnetic spectrum, and surface emitting lasers in a third line of said 1 x N arrays emit in the visible blue region of the electromagnetic spectrum.
55. The scanning configuration of claim 46 further comprising micro-lenslets for directing the propagation for radiation from said plurality of surface-emitting lasers.
56. The scanning configuration of claim 46 wherein said means for creating an image includes an optical lens system.
57. The scanning configuration of claim 46 wherein said means for repetitively displacing said image includes a resonating mirror.
58. The scanning configuration of claim 46 wherein said means for repetitively displacing said image includes a rotating mirror.
59. The scanning configuration of claim 58 wherein said rotating mirror has N sides, each side having a vertical tilt with respect to each other.
CA002133977A 1992-04-21 1993-04-20 Vertical-cavity surface-emitting laser array display system Abandoned CA2133977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US871,461 1992-04-21
US07/871,461 US5325386A (en) 1992-04-21 1992-04-21 Vertical-cavity surface emitting laser assay display system

Publications (1)

Publication Number Publication Date
CA2133977A1 true CA2133977A1 (en) 1993-10-28

Family

ID=25357489

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002133977A Abandoned CA2133977A1 (en) 1992-04-21 1993-04-20 Vertical-cavity surface-emitting laser array display system

Country Status (7)

Country Link
US (1) US5325386A (en)
EP (1) EP0637409A1 (en)
JP (1) JPH07506220A (en)
CN (1) CN1082228A (en)
AU (1) AU4291593A (en)
CA (1) CA2133977A1 (en)
WO (1) WO1993021673A1 (en)

Families Citing this family (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102509A (en) * 1992-06-17 1994-04-15 Xerox Corp Full-color display device having optical coupling lens array
US5670935A (en) 1993-02-26 1997-09-23 Donnelly Corporation Rearview vision system for vehicle including panoramic view
US5877897A (en) 1993-02-26 1999-03-02 Donnelly Corporation Automatic rearview mirror, vehicle lighting control and vehicle interior monitoring system using a photosensor array
US6822563B2 (en) 1997-09-22 2004-11-23 Donnelly Corporation Vehicle imaging system with accessory control
US6498620B2 (en) 1993-02-26 2002-12-24 Donnelly Corporation Vision system for a vehicle including an image capture device and a display system having a long focal length
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
EP0644701B1 (en) * 1993-09-20 1999-12-01 Canon Kabushiki Kaisha Image taking and/or displaying system
US5546209A (en) * 1994-03-11 1996-08-13 University Of Southern California One-to-many simultaneous and reconfigurable optical two-dimensional plane interconnections using multiple wavelength, vertical cavity, surface-emitting lasers and wavelength-dependent detector planes
US5412680A (en) * 1994-03-18 1995-05-02 Photonics Research Incorporated Linear polarization of semiconductor laser
US5668663A (en) 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
DE4429582C2 (en) * 1994-08-19 1998-02-26 Draegerwerk Ag Radiation source for a measuring system
US5790086A (en) * 1995-01-04 1998-08-04 Visualabs Inc. 3-D imaging system
US5557627A (en) * 1995-05-19 1996-09-17 Sandia Corporation Visible-wavelength semiconductor lasers and arrays
US6891563B2 (en) 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US5781671A (en) * 1995-10-04 1998-07-14 Nec Research Institute, Inc. Free-space angle-multiplexed optical interconnect network
US5657165A (en) * 1995-10-11 1997-08-12 Reflection Technology, Inc. Apparatus and method for generating full-color images using two light sources
US5978401A (en) * 1995-10-25 1999-11-02 Honeywell Inc. Monolithic vertical cavity surface emitting laser and resonant cavity photodetector transceiver
US5707139A (en) * 1995-11-01 1998-01-13 Hewlett-Packard Company Vertical cavity surface emitting laser arrays for illumination
JP3279464B2 (en) * 1995-11-08 2002-04-30 富士ゼロックス株式会社 Two-dimensional surface emitting laser array, and method and device for driving the same
US7330494B1 (en) * 1995-12-18 2008-02-12 Jds Uniphase Corporation Conductive element with lateral oxidation barrier
US6144685A (en) * 1996-01-23 2000-11-07 Fuji Xerox Co., Ltd. Two-dimensional surface emitting laser array, two-dimensional surface emitting laser beam scanner, two-dimensional surface emitting laser beam recorder, and two-dimensional surface emitting laser beam recording method
JP3198909B2 (en) * 1996-01-23 2001-08-13 富士ゼロックス株式会社 Two-dimensional surface emitting laser beam scanner and laser beam recording device
US5742421A (en) * 1996-03-01 1998-04-21 Reflection Technology, Inc. Split lens video display system
US7655894B2 (en) 1996-03-25 2010-02-02 Donnelly Corporation Vehicular image sensing system
US5959780A (en) * 1996-04-15 1999-09-28 Olympus Optical Co., Ltd. Head-mounted display apparatus comprising a rotationally asymmetric surface
JP2000512772A (en) * 1996-05-09 2000-09-26 ヴィーア・インコーポレイテッド Small display device and system
JP2001501318A (en) * 1996-08-28 2001-01-30 リフレクション・テクノロジー・インコーポレーテッド Compact image generator with dual line illuminant array
JP3013886B2 (en) * 1996-09-27 2000-02-28 富士ゼロックス株式会社 Two-dimensional element array, two-dimensional surface emitting laser array, and image forming apparatus
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
US6023372A (en) * 1997-10-30 2000-02-08 The Microoptical Corporation Light weight, compact remountable electronic display device for eyeglasses or other head-borne eyewear frames
US5886822A (en) * 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US5774487A (en) * 1996-10-16 1998-06-30 Honeywell Inc. Filamented multi-wavelength vertical-cavity surface emitting laser
KR100195137B1 (en) * 1996-10-24 1999-06-15 윤종용 Compatible optical pickup
US6243407B1 (en) 1997-03-21 2001-06-05 Novalux, Inc. High power laser devices
US6057966A (en) * 1997-05-09 2000-05-02 Via, Inc. Body-carryable display devices and systems using E.G. coherent fiber optic conduit
US5971547A (en) * 1997-07-22 1999-10-26 Reilley; Peter Astigmatic lenticular projector system
GB9716689D0 (en) * 1997-08-07 1997-10-15 Isis Innovation Three dimensional image display
US6172613B1 (en) 1998-02-18 2001-01-09 Donnelly Corporation Rearview mirror assembly incorporating vehicle information display
US8294975B2 (en) 1997-08-25 2012-10-23 Donnelly Corporation Automotive rearview mirror assembly
US6124886A (en) 1997-08-25 2000-09-26 Donnelly Corporation Modular rearview mirror assembly
US6326613B1 (en) 1998-01-07 2001-12-04 Donnelly Corporation Vehicle interior mirror assembly adapted for containing a rain sensor
WO1999023524A1 (en) * 1997-10-30 1999-05-14 The Microoptical Corporation Eyeglass interface system
US6195135B1 (en) * 1997-11-13 2001-02-27 Peter J. Wilk Thin video display with superluminescent or laser diodes
US6121603A (en) * 1997-12-01 2000-09-19 Hang; Zhijiang Optical confocal device having a common light directing means
US6191759B1 (en) * 1997-12-02 2001-02-20 Gregory J. Kintz Virtual reality system with a static light emitting surface and magnifying optical system
US6118414A (en) * 1997-12-02 2000-09-12 Kintz; Gregory J. Virtual reality system and method
US6445287B1 (en) 2000-02-28 2002-09-03 Donnelly Corporation Tire inflation assistance monitoring system
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6051848A (en) * 1998-03-02 2000-04-18 Motorola, Inc. Optical device packages containing an optical transmitter die
FR2776881B1 (en) * 1998-03-24 2001-11-16 Thomson Csf THREE-DIMENSIONAL VIEWING DEVICE
US6329925B1 (en) 1999-11-24 2001-12-11 Donnelly Corporation Rearview mirror assembly with added feature modular display
US6477464B2 (en) 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
ATE231969T1 (en) * 1998-04-10 2003-02-15 Datasensor Spa METHOD AND DEVICE FOR DISTINGUISHING SURFACE COLORS
US6084697A (en) * 1998-07-20 2000-07-04 Motorola, Inc. Integrated electro-optical package
US6097528A (en) * 1998-07-20 2000-08-01 Motorola, Inc. Microscanner for portable laser diode displays
US6229503B1 (en) * 1998-08-25 2001-05-08 Robert Mays, Jr. Miniature personal display
SE516881C2 (en) 1999-05-31 2002-03-19 Saabtech Electronics Ab Method and apparatus for superimposing an image onto a direct external image to be presented to an observer
JP2003502711A (en) 1999-06-21 2003-01-21 ザ マイクロオプティカル コーポレイション Eyepiece display lens system using off-axis optical design
EP1196809B1 (en) 1999-06-21 2003-11-12 The Microoptical Corporation Display device with eyepiece assembly, display and illumination means on opto-mechanical support
US6724354B1 (en) 1999-06-21 2004-04-20 The Microoptical Corporation Illumination systems for eyeglass and facemask display systems
US7158096B1 (en) 1999-06-21 2007-01-02 The Microoptical Corporation Compact, head-mountable display device with suspended eyepiece assembly
US8111401B2 (en) 1999-11-05 2012-02-07 Robert Magnusson Guided-mode resonance sensors employing angular, spectral, modal, and polarization diversity for high-precision sensing in compact formats
US7167615B1 (en) * 1999-11-05 2007-01-23 Board Of Regents, The University Of Texas System Resonant waveguide-grating filters and sensors and methods for making and using same
US7167796B2 (en) 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
AU2001243285A1 (en) 2000-03-02 2001-09-12 Donnelly Corporation Video mirror systems incorporating an accessory module
WO2007053710A2 (en) 2005-11-01 2007-05-10 Donnelly Corporation Interior rearview mirror with display
US7370983B2 (en) 2000-03-02 2008-05-13 Donnelly Corporation Interior mirror assembly with display
US6396408B2 (en) 2000-03-31 2002-05-28 Donnelly Corporation Digital electrochromic circuit with a vehicle network
US7099590B2 (en) 2000-08-25 2006-08-29 R&Dm Foundation Filtering technique for free space interconnects
US7082267B1 (en) 2000-08-25 2006-07-25 R& Dm Foundation Shared multi-channel parallel optical interface
US6680788B1 (en) * 2000-10-12 2004-01-20 Mcnc Scanning apparatus and associated method
JP2004522986A (en) * 2000-10-30 2004-07-29 サンター コーポレイション Tunable controlled laser array
US7065124B2 (en) * 2000-11-28 2006-06-20 Finlsar Corporation Electron affinity engineered VCSELs
US6905900B1 (en) * 2000-11-28 2005-06-14 Finisar Corporation Versatile method and system for single mode VCSELs
US6990135B2 (en) * 2002-10-28 2006-01-24 Finisar Corporation Distributed bragg reflector for optoelectronic device
US6556349B2 (en) 2000-12-27 2003-04-29 Honeywell International Inc. Variable focal length micro lens array field curvature corrector
US6909554B2 (en) 2000-12-27 2005-06-21 Finisar Corporation Wafer integration of micro-optics
US6782027B2 (en) 2000-12-29 2004-08-24 Finisar Corporation Resonant reflector for use with optoelectronic devices
TWI227799B (en) * 2000-12-29 2005-02-11 Honeywell Int Inc Resonant reflector for increased wavelength and polarization control
US6836501B2 (en) * 2000-12-29 2004-12-28 Finisar Corporation Resonant reflector for increased wavelength and polarization control
US6727520B2 (en) * 2000-12-29 2004-04-27 Honeywell International Inc. Spatially modulated reflector for an optoelectronic device
ES2287266T3 (en) 2001-01-23 2007-12-16 Donnelly Corporation IMPROVED VEHICLE LIGHTING SYSTEM.
US7255451B2 (en) 2002-09-20 2007-08-14 Donnelly Corporation Electro-optic mirror cell
US7581859B2 (en) 2005-09-14 2009-09-01 Donnelly Corp. Display device for exterior rearview mirror
US6853812B2 (en) 2001-05-09 2005-02-08 Robert Mays, Jr. Polarized-holographic filtering providing improved extinction ratio
US20020191598A1 (en) * 2001-06-19 2002-12-19 Robert Mays Network switch employing free-space optical switching technique
US20020191254A1 (en) * 2001-06-19 2002-12-19 Robert Mays Network routing employing free-space optical broadcasting
US7697027B2 (en) 2001-07-31 2010-04-13 Donnelly Corporation Vehicular video system
US6882287B2 (en) 2001-07-31 2005-04-19 Donnelly Corporation Automotive lane change aid
WO2003015225A2 (en) * 2001-08-08 2003-02-20 Santur Corporation Method and system for selecting an output of a dbr array
WO2003015226A2 (en) * 2001-08-08 2003-02-20 Santur Corporation Method and system for selecting an output of a vcsel array
US20030090439A1 (en) * 2001-09-07 2003-05-15 Spitzer Mark B. Light weight, compact, remountable face-supported electronic display
US7313246B2 (en) * 2001-10-06 2007-12-25 Stryker Corporation Information system using eyewear for communication
US6606199B2 (en) 2001-10-10 2003-08-12 Honeywell International Inc. Graded thickness optical element and method of manufacture therefor
US6910780B2 (en) * 2002-04-01 2005-06-28 Santur Corporation Laser and laser signal combiner
US6918674B2 (en) 2002-05-03 2005-07-19 Donnelly Corporation Vehicle rearview mirror system
EP1504276B1 (en) 2002-05-03 2012-08-08 Donnelly Corporation Object detection system for vehicle
US7329013B2 (en) 2002-06-06 2008-02-12 Donnelly Corporation Interior rearview mirror system with compass
WO2003105099A1 (en) 2002-06-06 2003-12-18 Donnelly Corporation Interior rearview mirror system with compass
US6965626B2 (en) * 2002-09-03 2005-11-15 Finisar Corporation Single mode VCSEL
WO2004103772A2 (en) 2003-05-19 2004-12-02 Donnelly Corporation Mirror assembly for vehicle
AU2003278863A1 (en) 2002-09-20 2004-04-08 Donnelly Corporation Mirror reflective element assembly
US7310177B2 (en) 2002-09-20 2007-12-18 Donnelly Corporation Electro-optic reflective element assembly
US6845114B2 (en) * 2002-10-16 2005-01-18 Eastman Kodak Company Organic laser that is attachable to an external pump beam light source
US6813293B2 (en) * 2002-11-21 2004-11-02 Finisar Corporation Long wavelength VCSEL with tunnel junction, and implant
US6947459B2 (en) * 2002-11-25 2005-09-20 Eastman Kodak Company Organic vertical cavity laser and imaging system
US6950454B2 (en) * 2003-03-24 2005-09-27 Eastman Kodak Company Electronic imaging system using organic laser array illuminating an area light valve
US20040222363A1 (en) * 2003-05-07 2004-11-11 Honeywell International Inc. Connectorized optical component misalignment detection system
US20040247250A1 (en) * 2003-06-03 2004-12-09 Honeywell International Inc. Integrated sleeve pluggable package
US7298942B2 (en) 2003-06-06 2007-11-20 Finisar Corporation Pluggable optical optic system having a lens fiber stop
US7433381B2 (en) 2003-06-25 2008-10-07 Finisar Corporation InP based long wavelength VCSEL
US7054345B2 (en) 2003-06-27 2006-05-30 Finisar Corporation Enhanced lateral oxidation
US7277461B2 (en) * 2003-06-27 2007-10-02 Finisar Corporation Dielectric VCSEL gain guide
US7075962B2 (en) * 2003-06-27 2006-07-11 Finisar Corporation VCSEL having thermal management
US6961489B2 (en) * 2003-06-30 2005-11-01 Finisar Corporation High speed optical system
US7149383B2 (en) * 2003-06-30 2006-12-12 Finisar Corporation Optical system with reduced back reflection
US20060056762A1 (en) * 2003-07-02 2006-03-16 Honeywell International Inc. Lens optical coupler
US20050013542A1 (en) * 2003-07-16 2005-01-20 Honeywell International Inc. Coupler having reduction of reflections to light source
US7210857B2 (en) * 2003-07-16 2007-05-01 Finisar Corporation Optical coupling system
US20050013539A1 (en) * 2003-07-17 2005-01-20 Honeywell International Inc. Optical coupling system
US6887801B2 (en) * 2003-07-18 2005-05-03 Finisar Corporation Edge bead control method and apparatus
DE60333632D1 (en) * 2003-09-01 2010-09-16 Avalon Photonics Ag High-energy top emitter VCSEL
US7446924B2 (en) 2003-10-02 2008-11-04 Donnelly Corporation Mirror reflective element assembly including electronic component
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
US7031363B2 (en) * 2003-10-29 2006-04-18 Finisar Corporation Long wavelength VCSEL device processing
US20050151828A1 (en) * 2004-01-14 2005-07-14 Xerox Corporation. Xerographic printing system with VCSEL-micro-optic laser printbar
DE102004004296A1 (en) * 2004-01-28 2005-08-25 Siemens Ag Device for generating a view with a spatial impression of a spatial object
US7526103B2 (en) 2004-04-15 2009-04-28 Donnelly Corporation Imaging system for vehicle
US7724210B2 (en) * 2004-05-07 2010-05-25 Microvision, Inc. Scanned light display system using large numerical aperture light source, method of using same, and method of making scanning mirror assemblies
US7829912B2 (en) * 2006-07-31 2010-11-09 Finisar Corporation Efficient carrier injection in a semiconductor device
US7596165B2 (en) * 2004-08-31 2009-09-29 Finisar Corporation Distributed Bragg Reflector for optoelectronic device
US7920612B2 (en) * 2004-08-31 2011-04-05 Finisar Corporation Light emitting semiconductor device having an electrical confinement barrier near the active region
US20060061846A1 (en) * 2004-09-17 2006-03-23 Microvision, Inc. Scanned light display system using array of collimating elements in conjunction with large numerical aperture light emitter array
US7881496B2 (en) 2004-09-30 2011-02-01 Donnelly Corporation Vision system for vehicle
US7720580B2 (en) 2004-12-23 2010-05-18 Donnelly Corporation Object detection system for vehicle
DE102005008992B3 (en) * 2005-02-28 2006-08-31 Rößner, Max Image projecting device, has arrays of light emitting optoelectronic units, in which light of central projection lamp is absorbed or reflected at dark region of image or pixels of arrays are switched off to represent black region of image
EP1883855B1 (en) 2005-05-16 2011-07-20 Donnelly Corporation Vehicle mirror assembly with indicia at reflective element
US7972045B2 (en) 2006-08-11 2011-07-05 Donnelly Corporation Automatic headlamp control system
US20080043487A1 (en) * 2006-08-21 2008-02-21 Sprague Randall B Light bar structure having light conduits and scanned light display system employing same
DE102006045626A1 (en) * 2006-09-27 2008-04-03 Giesecke & Devrient Gmbh Device and method for the optical examination of value documents
EP3624086A1 (en) 2007-01-25 2020-03-18 Magna Electronics Inc. Radar sensing system for vehicle
US8031752B1 (en) 2007-04-16 2011-10-04 Finisar Corporation VCSEL optimized for high speed data
DE102007034958A1 (en) * 2007-04-30 2008-11-06 Osram Opto Semiconductors Gmbh Beam combiner for a multicolored laser display
US7914187B2 (en) 2007-07-12 2011-03-29 Magna Electronics Inc. Automatic lighting system with adaptive alignment function
US8017898B2 (en) 2007-08-17 2011-09-13 Magna Electronics Inc. Vehicular imaging system in an automatic headlamp control system
WO2009036176A1 (en) 2007-09-11 2009-03-19 Magna Electronics Imaging system for vehicle
US8446470B2 (en) 2007-10-04 2013-05-21 Magna Electronics, Inc. Combined RGB and IR imaging sensor
JP5274038B2 (en) * 2008-02-06 2013-08-28 キヤノン株式会社 Manufacturing method of vertical cavity surface emitting laser and manufacturing method of laser array
US8154418B2 (en) 2008-03-31 2012-04-10 Magna Mirrors Of America, Inc. Interior rearview mirror system
US20100020170A1 (en) 2008-07-24 2010-01-28 Higgins-Luthman Michael J Vehicle Imaging System
US9487144B2 (en) 2008-10-16 2016-11-08 Magna Mirrors Of America, Inc. Interior mirror assembly with display
FR2938908B1 (en) * 2008-11-24 2011-01-21 Commissariat Energie Atomique DEVICE AND METHOD FOR MEASURING THE POSITION OF AT LEAST ONE MOVING OBJECT IN A THREE-DIMENSIONAL MARK
US10244181B2 (en) 2009-02-17 2019-03-26 Trilumina Corp. Compact multi-zone infrared laser illuminator
US7949024B2 (en) 2009-02-17 2011-05-24 Trilumina Corporation Multibeam arrays of optoelectronic devices for high frequency operation
US8995485B2 (en) 2009-02-17 2015-03-31 Trilumina Corp. High brightness pulsed VCSEL sources
US20130223846A1 (en) 2009-02-17 2013-08-29 Trilumina Corporation High speed free-space optical communications
US10038304B2 (en) 2009-02-17 2018-07-31 Trilumina Corp. Laser arrays for variable optical properties
US8995493B2 (en) 2009-02-17 2015-03-31 Trilumina Corp. Microlenses for multibeam arrays of optoelectronic devices for high frequency operation
US9126525B2 (en) 2009-02-27 2015-09-08 Magna Electronics Inc. Alert system for vehicle
US8376595B2 (en) 2009-05-15 2013-02-19 Magna Electronics, Inc. Automatic headlamp control
US9495876B2 (en) 2009-07-27 2016-11-15 Magna Electronics Inc. Vehicular camera with on-board microcontroller
CN102481874B (en) 2009-07-27 2015-08-05 马格纳电子系统公司 Parking assistance system
EP2473871B1 (en) 2009-09-01 2015-03-11 Magna Mirrors Of America, Inc. Imaging and display system for vehicle
CA2784958C (en) * 2009-12-19 2014-12-02 Trilumina Corp. System and method for combining laser arrays for digital outputs
US8979338B2 (en) 2009-12-19 2015-03-17 Trilumina Corp. System for combining laser array outputs into a single beam carrying digital data
US9740019B2 (en) 2010-02-02 2017-08-22 Apple Inc. Integrated structured-light projector
US20110187878A1 (en) * 2010-02-02 2011-08-04 Primesense Ltd. Synchronization of projected illumination with rolling shutter of image sensor
US8890955B2 (en) 2010-02-10 2014-11-18 Magna Mirrors Of America, Inc. Adaptable wireless vehicle vision system based on wireless communication error
US9117123B2 (en) 2010-07-05 2015-08-25 Magna Electronics Inc. Vehicular rear view camera display system with lifecheck function
US10359545B2 (en) 2010-10-21 2019-07-23 Lockheed Martin Corporation Fresnel lens with reduced draft facet visibility
US8781794B2 (en) 2010-10-21 2014-07-15 Lockheed Martin Corporation Methods and systems for creating free space reflective optical surfaces
US9632315B2 (en) 2010-10-21 2017-04-25 Lockheed Martin Corporation Head-mounted display apparatus employing one or more fresnel lenses
US8625200B2 (en) 2010-10-21 2014-01-07 Lockheed Martin Corporation Head-mounted display apparatus employing one or more reflective optical surfaces
WO2012068331A1 (en) 2010-11-19 2012-05-24 Magna Electronics Inc. Lane keeping system and lane centering system
WO2012075250A1 (en) 2010-12-01 2012-06-07 Magna Electronics Inc. System and method of establishing a multi-camera image using pixel remapping
MX2013006722A (en) 2010-12-16 2014-01-31 Lockheed Corp Collimating display with pixel lenses.
US9264672B2 (en) 2010-12-22 2016-02-16 Magna Mirrors Of America, Inc. Vision display system for vehicle
CN103261944A (en) * 2010-12-28 2013-08-21 洛克希德马丁公司 Head-mounted display apparatus employing one or more reflective optical surfaces
US9085261B2 (en) 2011-01-26 2015-07-21 Magna Electronics Inc. Rear vision system with trailer angle detection
US9194943B2 (en) 2011-04-12 2015-11-24 Magna Electronics Inc. Step filter for estimating distance in a time-of-flight ranging system
US9547795B2 (en) 2011-04-25 2017-01-17 Magna Electronics Inc. Image processing method for detecting objects using relative motion
WO2013016409A1 (en) 2011-07-26 2013-01-31 Magna Electronics Inc. Vision system for vehicle
US10054430B2 (en) 2011-08-09 2018-08-21 Apple Inc. Overlapping pattern projector
US8749796B2 (en) 2011-08-09 2014-06-10 Primesense Ltd. Projectors of structured light
US11095365B2 (en) 2011-08-26 2021-08-17 Lumentum Operations Llc Wide-angle illuminator module
US20140218535A1 (en) 2011-09-21 2014-08-07 Magna Electronics Inc. Vehicle vision system using image data transmission and power supply via a coaxial cable
US9681062B2 (en) 2011-09-26 2017-06-13 Magna Electronics Inc. Vehicle camera image quality improvement in poor visibility conditions by contrast amplification
US9146898B2 (en) 2011-10-27 2015-09-29 Magna Electronics Inc. Driver assist system with algorithm switching
DE102011085978A1 (en) * 2011-11-09 2013-05-16 Osram Gmbh LASER FLASH DEVICE WITH LASER ARRAY
WO2013081985A1 (en) 2011-11-28 2013-06-06 Magna Electronics, Inc. Vision system for vehicle
TWI559034B (en) * 2011-12-26 2016-11-21 洛伊馬汀公司 Head-mounted display apparatus employing one or more reflective optical surfaces
US9329080B2 (en) 2012-02-15 2016-05-03 Aplle Inc. Modular optics for scanning engine having beam combining optics with a prism intercepted by both beam axis and collection axis
US9651417B2 (en) 2012-02-15 2017-05-16 Apple Inc. Scanning depth engine
JP5919885B2 (en) * 2012-02-28 2016-05-18 セイコーエプソン株式会社 Virtual image display device
US8694224B2 (en) 2012-03-01 2014-04-08 Magna Electronics Inc. Vehicle yaw rate correction
US10609335B2 (en) 2012-03-23 2020-03-31 Magna Electronics Inc. Vehicle vision system with accelerated object confirmation
WO2013158592A2 (en) 2012-04-16 2013-10-24 Magna Electronics, Inc. Vehicle vision system with reduced image color data processing by use of dithering
EP3000157B1 (en) * 2012-04-20 2018-12-12 Trilumina Corporation Microlenses for multibeam arrays of optoelectronic devices for high frequency operation
US10089537B2 (en) 2012-05-18 2018-10-02 Magna Electronics Inc. Vehicle vision system with front and rear camera integration
US9340227B2 (en) 2012-08-14 2016-05-17 Magna Electronics Inc. Vehicle lane keep assist system
DE102013217430A1 (en) 2012-09-04 2014-03-06 Magna Electronics, Inc. Driver assistance system for a motor vehicle
US9558409B2 (en) 2012-09-26 2017-01-31 Magna Electronics Inc. Vehicle vision system with trailer angle detection
US9446713B2 (en) 2012-09-26 2016-09-20 Magna Electronics Inc. Trailer angle detection system
US9743002B2 (en) 2012-11-19 2017-08-22 Magna Electronics Inc. Vehicle vision system with enhanced display functions
US9090234B2 (en) 2012-11-19 2015-07-28 Magna Electronics Inc. Braking control system for vehicle
US10025994B2 (en) 2012-12-04 2018-07-17 Magna Electronics Inc. Vehicle vision system utilizing corner detection
US9481301B2 (en) 2012-12-05 2016-11-01 Magna Electronics Inc. Vehicle vision system utilizing camera synchronization
US20140218529A1 (en) 2013-02-04 2014-08-07 Magna Electronics Inc. Vehicle data recording system
US9092986B2 (en) 2013-02-04 2015-07-28 Magna Electronics Inc. Vehicular vision system
US10027930B2 (en) 2013-03-29 2018-07-17 Magna Electronics Inc. Spectral filtering for vehicular driver assistance systems
US9327693B2 (en) 2013-04-10 2016-05-03 Magna Electronics Inc. Rear collision avoidance system for vehicle
US10232797B2 (en) 2013-04-29 2019-03-19 Magna Electronics Inc. Rear vision system for vehicle with dual purpose signal lines
US9508014B2 (en) 2013-05-06 2016-11-29 Magna Electronics Inc. Vehicular multi-camera vision system
US10567705B2 (en) 2013-06-10 2020-02-18 Magna Electronics Inc. Coaxial cable with bidirectional data transmission
US9260095B2 (en) 2013-06-19 2016-02-16 Magna Electronics Inc. Vehicle vision system with collision mitigation
US20140375476A1 (en) 2013-06-24 2014-12-25 Magna Electronics Inc. Vehicle alert system
US10326969B2 (en) 2013-08-12 2019-06-18 Magna Electronics Inc. Vehicle vision system with reduction of temporal noise in images
US9038883B2 (en) 2013-09-11 2015-05-26 Princeton Optronics Inc. VCSEL packaging
US9988047B2 (en) 2013-12-12 2018-06-05 Magna Electronics Inc. Vehicle control system with traffic driving control
US10160382B2 (en) 2014-02-04 2018-12-25 Magna Electronics Inc. Trailer backup assist system
US9623878B2 (en) 2014-04-02 2017-04-18 Magna Electronics Inc. Personalized driver assistance system for vehicle
US20160072258A1 (en) * 2014-09-10 2016-03-10 Princeton Optronics Inc. High Resolution Structured Light Source
US10684476B2 (en) 2014-10-17 2020-06-16 Lockheed Martin Corporation Head-wearable ultra-wide field of view display device
US9553423B2 (en) * 2015-02-27 2017-01-24 Princeton Optronics Inc. Miniature structured light illuminator
US9939650B2 (en) 2015-03-02 2018-04-10 Lockheed Martin Corporation Wearable display system
US10819943B2 (en) 2015-05-07 2020-10-27 Magna Electronics Inc. Vehicle vision system with incident recording function
US10078789B2 (en) 2015-07-17 2018-09-18 Magna Electronics Inc. Vehicle parking assist system with vision-based parking space detection
US10086870B2 (en) 2015-08-18 2018-10-02 Magna Electronics Inc. Trailer parking assist system for vehicle
US10754156B2 (en) 2015-10-20 2020-08-25 Lockheed Martin Corporation Multiple-eye, single-display, ultrawide-field-of-view optical see-through augmented reality system
CN108604053B (en) 2015-10-21 2021-11-02 普林斯顿光电子股份有限公司 Coding pattern projector
US10875403B2 (en) 2015-10-27 2020-12-29 Magna Electronics Inc. Vehicle vision system with enhanced night vision
EP3168641B1 (en) * 2015-11-11 2020-06-03 Ibeo Automotive Systems GmbH Method and device for optically measuring distances
US11277558B2 (en) 2016-02-01 2022-03-15 Magna Electronics Inc. Vehicle vision system with master-slave camera configuration
US11433809B2 (en) 2016-02-02 2022-09-06 Magna Electronics Inc. Vehicle vision system with smart camera video output
US10132971B2 (en) 2016-03-04 2018-11-20 Magna Electronics Inc. Vehicle camera with multiple spectral filters
US10055651B2 (en) 2016-03-08 2018-08-21 Magna Electronics Inc. Vehicle vision system with enhanced lane tracking
US9995936B1 (en) 2016-04-29 2018-06-12 Lockheed Martin Corporation Augmented reality systems having a virtual image overlaying an infrared portion of a live scene
JP6268224B2 (en) * 2016-05-31 2018-01-24 トリルミナ コーポレーション System and method for combining laser arrays for digital output
CN109923468A (en) * 2016-12-05 2019-06-21 歌尔股份有限公司 Micro- laser diode display device and electronic equipment
EP3580820B1 (en) * 2017-02-08 2022-03-30 Princeton Optronics, Inc. Vcsel illuminator package including an optical structure integrated in the encapsulant
CN110520784A (en) * 2017-03-31 2019-11-29 根特大学 Integrated near-eye display
US10153614B1 (en) * 2017-08-31 2018-12-11 Apple Inc. Creating arbitrary patterns on a 2-D uniform grid VCSEL array
TWI818941B (en) * 2017-12-28 2023-10-21 美商普林斯頓光電公司 Structured light projection system including narrow beam divergence semiconductor sources
US11002969B2 (en) * 2018-01-25 2021-05-11 Facebook Technologies, Llc Light projection system including an optical assembly for correction of differential distortion
US10168537B1 (en) * 2018-03-16 2019-01-01 Facebook Technologies, Llc Single chip superluminous light emitting diode array for waveguide displays
US11056032B2 (en) 2018-09-14 2021-07-06 Apple Inc. Scanning display systems with photonic integrated circuits
CN111045210B (en) * 2018-10-15 2022-04-26 中强光电股份有限公司 Near-to-eye display device
US10852532B2 (en) 2018-11-21 2020-12-01 Microsoft Technology Licensing, Llc VCSEL array scanning display
JPWO2021140752A1 (en) * 2020-01-10 2021-07-15
US11968639B2 (en) 2020-11-11 2024-04-23 Magna Electronics Inc. Vehicular control system with synchronized communication between control units
JP2024511001A (en) 2021-03-24 2024-03-12 シナジア メディカル Active implantable medical devices (AIMDs) with in-situ optimization of power consumption
US20230056905A1 (en) * 2021-08-23 2023-02-23 Palo Alto Research Center Incorporated Independently-addressable high power surface-emitting laser array with tight-pitch packing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4934773A (en) * 1987-07-27 1990-06-19 Reflection Technology, Inc. Miniature video display system
US5003300A (en) * 1987-07-27 1991-03-26 Reflection Technology, Inc. Head mounted display for miniature video display system
US5009473A (en) * 1988-05-31 1991-04-23 Reflection Technology, Inc. Low vibration resonant scanning unit for miniature optical display apparatus
US4902083A (en) * 1988-05-31 1990-02-20 Reflection Technology, Inc. Low vibration resonant scanning unit for miniature optical display apparatus
US5023905A (en) * 1988-07-25 1991-06-11 Reflection Technology, Inc. Pocket data receiver with full page visual display
US5048077A (en) * 1988-07-25 1991-09-10 Reflection Technology, Inc. Telephone handset with full-page visual display
US4897715A (en) * 1988-10-31 1990-01-30 General Electric Company Helmet display
US4991179A (en) * 1989-04-26 1991-02-05 At&T Bell Laboratories Electrically pumped vertical cavity laser
US5034344A (en) * 1989-07-17 1991-07-23 Bell Communications Research, Inc. Method of making a surface emitting semiconductor laser
US4949350A (en) * 1989-07-17 1990-08-14 Bell Communications Research, Inc. Surface emitting semiconductor laser
US5028802A (en) * 1990-01-11 1991-07-02 Eye Research Institute Of Retina Foundation Imaging apparatus and methods utilizing scannable microlaser source
US5031187A (en) * 1990-02-14 1991-07-09 Bell Communications Research, Inc. Planar array of vertical-cavity, surface-emitting lasers

Also Published As

Publication number Publication date
JPH07506220A (en) 1995-07-06
AU4291593A (en) 1993-11-18
EP0637409A1 (en) 1995-02-08
EP0637409A4 (en) 1994-12-14
US5325386A (en) 1994-06-28
WO1993021673A1 (en) 1993-10-28
CN1082228A (en) 1994-02-16

Similar Documents

Publication Publication Date Title
US5325386A (en) Vertical-cavity surface emitting laser assay display system
CA2220283C (en) Virtual retinal display with fiber optic point source
US7471706B2 (en) High resolution, full color, high brightness fully integrated light emitting devices and displays
CA2147634C (en) Virtual retinal display
US6967986B2 (en) Light modulation apparatus using a VCSEL array with an electromechanical grating device
US4934773A (en) Miniature video display system
US6839042B2 (en) Light beam display with interlaced light beam scanning
US6204832B1 (en) Image display with lens array scanning relative to light source array
US20170301270A1 (en) Imaging Structure Emitter Configurations
KR0181726B1 (en) A color helmet mountable display
US6154259A (en) Multi-beam laser scanning display system with speckle elimination
US6639570B2 (en) Retinal display scanning of image with plurality of image sectors
US5657165A (en) Apparatus and method for generating full-color images using two light sources
EP1377074A2 (en) Image display apparatus having optical scanner
WO1994009472A9 (en) Virtual retinal display
KR20010080069A (en) Light Beam Display
JPH10133620A (en) Visual display system having display resolution improved
US10957235B1 (en) Color shift correction for display device
US6084697A (en) Integrated electro-optical package
US11056037B1 (en) Hybrid pulse width modulation for display device
US6097528A (en) Microscanner for portable laser diode displays
CN112567286B (en) Scanning display with increased uniformity
JPH11174985A (en) Linear display device
Kent et al. Lightweight helmet-mounted night vision and FLIR imagery display systems
US11764331B1 (en) Display with replacement electrodes within pixel array for enhanced current spread

Legal Events

Date Code Title Description
FZDE Dead