CA2142907C - Patient fluid collection system - Google Patents

Patient fluid collection system Download PDF

Info

Publication number
CA2142907C
CA2142907C CA002142907A CA2142907A CA2142907C CA 2142907 C CA2142907 C CA 2142907C CA 002142907 A CA002142907 A CA 002142907A CA 2142907 A CA2142907 A CA 2142907A CA 2142907 C CA2142907 C CA 2142907C
Authority
CA
Canada
Prior art keywords
liner
fluid
canister
cavity
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002142907A
Other languages
French (fr)
Other versions
CA2142907A1 (en
Inventor
Charles Cook
Mostafa Zomorodi
Richard C. G. Dark
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allegiance Corp
Original Assignee
Allegiance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allegiance Corp filed Critical Allegiance Corp
Priority to CA002443245A priority Critical patent/CA2443245C/en
Priority to CA002443243A priority patent/CA2443243C/en
Priority to CA002443247A priority patent/CA2443247C/en
Publication of CA2142907A1 publication Critical patent/CA2142907A1/en
Application granted granted Critical
Publication of CA2142907C publication Critical patent/CA2142907C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • A61M39/06Haemostasis valves, i.e. gaskets sealing around a needle, catheter or the like, closing on removal thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/60Containers for suction drainage, adapted to be used with an external suction source
    • A61M1/604Bag or liner in a rigid container, with suction applied to both
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/60Containers for suction drainage, adapted to be used with an external suction source
    • A61M1/62Containers comprising a bag in a rigid low-pressure chamber, with suction applied to the outside surface of the bag
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/64Containers with integrated suction means
    • A61M1/68Containers incorporating a flexible member creating suction
    • A61M1/684Containers incorporating a flexible member creating suction bellows-type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/71Suction drainage systems
    • A61M1/78Means for preventing overflow or contamination of the pumping systems
    • A61M1/782Means for preventing overflow or contamination of the pumping systems using valves with freely moving parts, e.g. float valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/88Draining devices having means for processing the drained fluid, e.g. an absorber
    • A61M1/882Draining devices provided with means for releasing antimicrobial or gelation agents in the drained fluid

Abstract

A patient fluid collection system is disclosed which includes a fluid collection reservoir (48), a cover (62) for the reservoir and a liner (60) within the reservoir comprising an enlargeable or expandable wall portion such that the wall portion (64) may expand if the liner fills with fluid. An anti-reflux system is also disclosed as well as a new tandem tube and a new connector.

Description

PATIENT FLUID COLLECTION SYSTEM
BACKGROUND OF THE INVENTION
Field Of The Invention The present invention relates to non-refluxing suction canister systems and components therefor, and more specifically to such systems having canisters closed by anti-refluxing valves or which have flexible liners.
Related Art During operative surgery and other medical and biological procedures, suction canister systems are used to collect fluids from a patient, including blood, saline, and any other fluids which may accumulate or must be removed and contained during the procedure and disposed of after the procedure. The collection system uses suction canisters and a vacuum source. While a single canister can be and are often used, a multiple canister suction system will be described because the use and operation of a single canister system is apparent from that for a multiple system. Multiple canisters are arranged in tandem with a first canister having a suction tube to collect fluids from a source and to deposit the fluids in the first canister. Downstream canisters are coupled together with their vacuum sources applied in series or in parallel from a vacuum source connected at the end canister.
Typically, a canister unit includes an open-top cylindrical canister closed by a cover or lid to which is sealed an internal liner to be contained in the canister. Vacuum is applied through the canister wall to the space or cavity between the liner and the canister wall to expand the liner outwardly into contact with the canister wall. Vacuum is also applied for each canister to a vacuum port in the lid to develop a subatmospheric pressure or vacuum within the liner, which vacuum then also develops at the collection tube at the desired level.
Tandem tubes connect the interior of the liner of the first canister to the inlet port on the lid of the next succeeding canister so that when the first canister fills, fluid in the first canister thereafter passes to the second canister, and so on.
The lid typically includes several access ports with associated attachment or connection elements. A vacuum port accepts a tube from the vacuum source to apply vacuum internal to the liner. An inlet or patient port accepts one end of the suction tube. A large access port is typically capped until a fluid setting agent such as Isolizer is to be added. An outlet or "ortho" port includes a wider riser portion than the patient port for connection of a suction tube during orthopaedic operations or for connection of a tandem tube for connecting an additional collection canister to the first. The vacuum port of each canister includes a float valve to prevent withdrawal of fluids into the vacuum system.
However, the other ports in the lid which are exposed to the fluids lack any valve and are subject to reflux and may lead to contamination of personnel or a working area.
In situations where one or more canisters become filled before the end of the procedure, fluid may reflux or come out of one or more ports under certain circumstances. For example, if vacuum is removed from the system, the pressure differential between atmosphere on the one hand and the cavity between the canister and the lining one the other, created by the vacuum between the canister and the liner, is removed. Removal of the vacuum allows the liner to collapse somewhat, due to liner elasticity, increasing the internal pressure on the fluid inside the liner. This increased pressure could cause fluid to be pushed out through the suction tube toward the patient or otherwise out the collection tube.
Fluid may also be pushed out the port for the tandem tube toward a secondary canister. When the interconnected canisters are disconnected, fluid may be ejected from the tandem tube, thereby possibly contaminating surfaces or personnel.
As a further result of the increased liner pressure differential, the canister liner may still be sufficiently enlarged or inflated to remain in contact with the walls of the canister, making it difficult to withdraw the lid and liner from the canister, for the similar reason as it is difficult to remove a filled plastic bag ~~4~~~
from a trash can. To remove the lid and liner, personnel often try to manipulate the lid and liner either by grasping the liner or grasping fittings on the lid to gain an advantage in forcibly removing the lid and liner from the canister. Such manipulation often puts pressure on the liner thereby increasing the tendency of the liner to eject fluid, and also places force on the fittings which could cause removal of caps on fittings or breakage of fittings, connections or caps. Each of these could cause contamination through ejection of fluids.
As long as vacuum is applied to the system, equilibrium exists throughout the system. However, once vacuum is removed or once vacuum is removed and personnel attempt to dismantle the system to dispose of the filled liners, the possibility of contamination increases. There exists, therefore, a need for a system which further minimizes the possibility of loss of fluid or contamination in vacuum collection systems.
SUMMARY OF THE INVENTION
The present invention provides a fluid collection system which minimizes the possibility of contamination through fluid reflux of collected fluids, which simplifies assembly of fluid collection systems, improves the integrity of individual fluid collection canisters in a system, and which improves the breakdown procedure for dismantling vacuum canister fluid collection systems for disposal. In accordance with the present invention, a fluid collection system includes a fluid collection reservoir, a cover and a liner within the reservoir comprising an enlargable or expandable wall portion such that the wall portion may expand if the liner fills with fluid. Such a fluid collection system makes a significant use of the pre-existing configuration of a suction canister system, especially a system which has at least one of the canisters filled with fluid, by taking advantage of the pressure characteristics of such a system, both while the vacuum is applied and after vacuum is removed. For example, after a particular liner has become filled, the pressure differential within the liner is increased relative to the canister and to atmospheric pressure when vacuum is removed.
The inherent elasticity of conventional liners maintain that pressure differential, WO 95/01192 ~ PCT/US94/07257 when the s~~t between the lid and the canister is broken and the lid and liner combination removed. By contrast the new liner is allowed to expand, preferably outward of the canister, while still retaining the contained fluid, thereby reducing the pressure differential between the fluid and atmospheric to approximately zero. Thereafter, the fluid inside the liner is no longer "pressurized" and can be handled in accordance with standard procedures. In one particularly beneficial form of the invention, the enlargable or expandable wall portion of the liner is formed from bellows or accordion-type folds or pleats formed in the liner adjacent the cover, so that a given fold extends circumferentially around the liner. Preferably, multiple folds are similarly arranged and distributed with respect to each other axially so that the lid can move upward away from the bottom of the liner as the liner expands.
In a further preferred form of the invention, the seal between the canister and the lid is formed such that the seal is maintained while vacuum is applied between the canister wall and the liner but whereby the connection between the lid and the canister is broken when the liner is full and the vacuum removed, thereby allowing the lid to lift off of the canister and the liner to expand to decrease the pressure differential between the liner and atmosphere.
In one preferred embodiment, the folds or pleats are formed so as to permit approximately one-fifth again as much volume to be created in the liner as the folds expand, compared to its unexpanded volume. Such an arrangement accounts for any additional volume of fluid which might otherwise be expelled in conventional liners due to the pressure differential, as well as any additional material which may be added to the liner for solidifying its contents.
In another form of the present inventions, a fluid suction canister system is provided with a one-way valve in the port for the fluid coming into the canister so as to allow fluid into the canister but to prevent fluid from exiting the canister through the port. Such a one-way valve would prevent reflux, of fluid in the tube, along the collection tube as well as preventing reflux of fluid out of the liner through the port. In one preferred embodiment, the valve is a flapper valve.

D
WO 95/01192 ~ ,~ PCTlLTS94/07257 In a further form of the inventions, a fluid collection system is provided which includes first and second fluid collection reservoirs, a fluid conduit connecting the first and second reservoirs and a one-way valve in the conduit for allowing fluid flow in the conduit, for example when the conduit is attached, and 5 preventing fluid flow out of the conduit when the conduit is removed from one of the reservoirs. Such an arrangement is particularly suited to the tandem tube, so that no fluid is lost from the tandem tube when it is disconnected from one of the canisters. In the preferred embodiment, the tandem tube is to be removed from the downstream canister, and the valve is placed in the tandem tube at the connector with the downstream canister. In a further preferred embodiment, the downstream canister also has a one-way valve, such as that described above, in the lid of the canister. In a still further preferred embodiment of the invention, the opposite end of the tandem tube is non-removable from the first canister so that the tandem tube cannot be removed inadvertently from that canister, and so that a tandem tube remains with a full liner, to be properly disposed.
Alternatively, the tandem tube can include valves at each end of the tube. In a still further preferred form of the invention, the valve at the end of the tandem tube is held open when it is connected to the downstream canister and closes to seal the tandem tube as the tandem tube is being removed for the downstream canister.
In another form of the inventions, a female connector is provided having a sealing element wherein the connector attaches to a male connector portion having a cross-sectional configuration conforming to a portion of the sealing element. The connector includes a connector housing, a female mating portion in the housing having a wall defining an opening for accepting the corresponding male connector portion and wherein the wall begins at an entrance to the connector and terminates at an end wall. A flexible wiper seal is provided internal to the entrance to the connector and includes a wall defining an opening smaller than the dimension of the female portion for engaging and preferably conforming to the outside wall of the male portion when the female portion and the male portion are mated. This connector is particularly suited to the tandem tube connector for the connection with the downstream canister. The flexible wiper seal preferably is formed from a rubber or other flexible material having an opening smaller than the male portion so that the wiper seal contacts and slides along the surface of the male connector portion to minimize the possibility of leaving fluid on the male connector portion, since the male connector portion is exposed after the tandem tube is removed, and prior to being capped.
In another form of the inventions, a non-removable connector is provided for connecting a first element, such as the tandem tube, to a second element, such as the outlet port in the upstream canister lid. The port has a wall defining an opening in the second element into which the connector is to be mounted, wherein the wall includes an external opening and a known length toward the opposite end of the wall from the opening. The connector has a body which includes a proximal stop surface for limiting the distance the connector can pass into the opening. A plurality of legs extend distal of the stop surface to pass into and through the opening when the connector is connected to the second element.
Outwardly extending catches are formed on a plurality of the legs having proximately facing ramp surfaces, such that when the connector is engaged in the opening and a withdrawing force is applied to the connector, the ramps engage the end wall and so that the legs are rammed inwardly into the opening until at least two of the legs contact each other to prevent further withdrawal of the connector. This connector is particularly suited to the tandem tube where it is desired to keep the upstream end of the tandem tube permanently connected to the lid of the upstream canister. In one preferred form of the invention, the mating portion of the connector includes four evenly and circularly distributed legs extending into the opening of the tandem port on the upstream canister.
The outwardly extending catch on each leg engages the end wall to keep the connector from being removed. However, since the legs can be moved inwardly toward each other relative to the wall of the opening, the proximally facing ramp surfaces on the first two oppositely disposed legs are rammed inwardly if a removing force is applied to the connector such that the connector moves slightly outwardly relative to the port. By the ramming action, the first two oppositely -7_ facing legs move inwardly toward each other and, preferably, contact, while still engaging the wall. While in contact, the adjacent second pair of legs cannot move inwardly sufficiently enough to disengage from the wall. As a result, all four outwardly extending catches remain engaged with the wall, preventing -~ removal of the connector from the port. In a further preferred embodiment, the catches on the first, ramped legs extend outwardly somewhat further than the catches on the second legs.
It is therefore an object of an aspect of the present invention to provide an improved vacuum canister fluid collection system which further minimizes the possibility of contamination by collected fluids.
It is a further object of an aspect of the present invention to take advantage of the inherent pressure characteristics of pre-existing systems to improve the integrity of the system and of the individual fluid collection canisters and their components.
It is another object of an aspect of the present invention to provide a vacuum canister fluid collection system having a liner with an enlargeable or expandable wall portion to decrease any possible pressure differential within the liner after vacuum is removed from the system.
It is a still further object of an aspect of the present invention to provide 2o a vacuum canister fluid collection system which minimizes the possibility of reflux or ejection of collected fluids during and after disassembly of the system.
In accordance with an aspect of the present invention, a fluid collection system comprises:
a fluid collection reservoir;
a cover for the reservoir; and a liner within the reservoir comprising an expandable wall portion such that wall portion may expand if the liner fills with fluid.
In accordance with another aspect of the invention, a fluid container 3o system, comprises:
a rigid container defining a first cavity, said container having a wall defining an opening;
a removable lid, normally covering said opening; and ,;r'~

-7a-a flexible liner located in said first cavity, said liner having a first collapsed shape generally conforming to said first cavity when said lid is covering said opening and a second expanded shape extending through said opening when said lid is removed.
In accordance with a further aspect of the invention, fluid collection system comprises:
a fluid collection reservoir having a side wall defining an opening and a bottom;
a liner within the reservoir comprising a flexible wall portion such that the wall portion-may expand, the liner and reservoir defining a cavity;
a vacuum port coupled to the reservoir so as to evacuate the cavity between the reservoir and the liner; and a cover mounted to the reservoir to cover the opening such that a relatively tight seal is formed between the cover and the reservoir sidewall 15 when vacuum is applied to the vacuum port, and such that the seal is broken and the cover moves away from the opening in the reservoir when the liner is full and 'the vacuum is removed from the vacuum port.
In accordance with another aspect of the invention, a device for collecting fluids, comprises:
2o a rigid canister, said canister having side walls and a bottom connected to said side walls to define a first cavity having a first top opening, said canister having a first vacuum port;
a flexible liner, said liner being shaped to generally conform to said first cavity to define a second cavity, said liner having a second top opening, said 25 liner also having expansion means for allowing said liner to expand in a direction toward said top opening;
a lid, said lid being sealed to said second top opening of said liner, and having rneans for releasable sealed engagement with said first top opening of said canister in a configuration to cause sad liner to be disposed within said so first cavity of said canister when said lid is releasably sealed to said first top opening of said canister, said lid having a second vacuum port in fluid communication with said second cavity; and a fluid intake port;
-7 b-collection means attached to said fluid intake port for collecting fluid form an outside source;
a first valve in fluid communication with said collection means to prevent fluid form flowing from said second cavity toward said collection means when said second cavity is filled with fluid;
a second valve in fluid communication with said second vacuum port which closes when said second cavity is filled with fluid;
suction means for temporarily connecting:
a first suction through said first port to said first cavity of said canister when said liner is placed in said cavity;
to cause said lid to be pulled toward said first top opening of said canister to seal said lid against said first top opening, and to subsequently pull said second cavity of said finer against said first cavity of said canister; and a second suction through said second port in said lid to produce suction in said second cavity of said liner which produces suction through fluid inlet port to cause fluid from and outside source to be suctioned into said second cavity, whereby when said second suction is disconnected and said first and 2o second valves are closed, said expansion means will cause said second cavity to expand in a direction toward said second top opening to release said seal between said lid and said first top opening.
In accordance with a further aspect of the invention, a fluid collection system comprises:
25 a first fluid collection reservoir;
a second fluid collection reservoir;
a fluid conduit for connecting the first a second reservoirs; and a one-way valve in the fluid conduit and separate from the first and second reservoirs for allowing fluid flow in the conduit in a first direction and 3o preventing fluid flow in the reverse direction.
In accordance with another aspect of the invention, a female connector having a sealing element in a biological fluid wherein the connector attaches to a male connector portion having a cross-sectional configuration conforming to a portion of the sealing element, the connector comprises:
d~y~6 -7c-a connector housing;
a female mating portion in the housing having a wall defining an opening for accepting the corresponding male connector portion, the wall beginning at an entrance to the connector and terminating at an end wall; and a flexible wiper seal internal to the entrance to the connector and-including a wall defining an opening smaller than the dimension of the opening of the female portion for engaging the outside wall of the male portion when the female portion and the male portion are mated.
In accordance with a further aspect of the invention, a non-removable ~ o connector for connecting a first element to a second element having a wall defining an opening in the second element into which the connector is to be mounted wherein the wall includes an external opening and an end wall opposite the external opening forming a known length between the end wall and the opening, the connector comprises:
a connector body having a proximal portion and a distal portion;
a proximal stop surface on the body for limiting the distance the connector body can pass into the opening;
a plurality of legs on the distal portion to pass into the opening when the connector is connected to the second element; and 20 outwardly extending catches on a plurality of the legs having proximally facing ramps, such that when the connector is engaged in the opening and a withdrawing force is applied to the connector, the ramps engage the end wall and are cammed inwardly into the opening until at least two of the legs contact each other to prevent further withdrawal of the connector while the 25 ramps still engage the end wall.
In accordance with another aspect of the invention, a fluid conduit for connecting first and second fluid collection reservoirs, the fluid conduit comprises:
a fluid flow conduit having first and second ends;
so a non-removable connector coupled to the first end and comprising a connector body having a proximal portion and a distal portion;
a proximal stop surface on the body for limiting the distance the connector body can pass into the opening,-_y 7d a plurality of legs on the distal portion to pass into the opening when the connector is connected to the second element, and outwardly extending catches on a plurality of the legs having proximally facing ramps, such that when the connector is engaged in the opening and a withdrawing force is applied to the connector, the ramps engage the end wall and are caromed inwardly into the opening until at least-two of the legs contact each other to prevent further withdrawal of the connector while the ramps still engage the end wall;
and a female valve and connector combination coupled to the second end, the female valve and connector combination comprising:
a connector housing;
a female mating portion in the housing having a wall defining an opening for accepting the corresponding male connector portion, the wall beginning at an entrance to the connector and terminating at an end wall, and a flexible wiper seal internal to the entrance to the connector and including a wall defining an opening smaller than the dimension of the opening of the female portion for engaging the outside wall of the male portion when the female portion and the male portion are mated.
In accordance with a further aspect of the invention, a patient vacuum fluid collection canister system comprises:
a canister having a bottom and a wall defining a rim for collecting fluids from a patient;
a canister cover for engaging the rim and covering the canister, and having a vacuum port for applying a vacuum interior to the canister, a port for accepting fluid into the canister as a result of a pressure differential caused by the vacuum; and a one-way valve in the port for the fluid coming into the canister so as to allow fluid into the canister and to prevent fluid from exiting the canister through the port when vacuum is removed from the canister.
In accordance with another aspect of the invention, a fluid collection system comprising:
a fluid collection reservoir;

7e a cover for the reservoir; and a liner within the reservoir having a longitudinal length extending from an upper liner portion to a lower liner portion and comprising a substantially longitudinally nonexpandable sidewall portion that remains substantially unexpended when the liner is filled with fluid and wherein the nonexpandable sidewall portion has a length, extending in the same direction as the liner length, which is less than the longitudinal length of the liner and which is substantially the same before and after the liner fills with fluid, and further comprising a substantially longitudinally expandable sidewall portion that may expand if the liner fills with fluid and having a length before the liner fills with fluid that is less than an expanded length after the liner fills with fluid.
In accordance with a further aspect of the invention, a fluid container system, comprising:
a rigid container having a sidewall and a bottom defining a first cavity, said container having a wall defining an opening;
a removable lid, normally covering said opening; and a flexible liner located in said first cavity, said flexible Iiner having a sidewall extending longitudinally and a bottom portion and further having a first relaxed shape wherein the liner sidewall extends to the bottom portion sufficiently so that the bottom portion is adjacent the container bottom portion when said removable lid is covering said opening and so that the bottom portion is longitudinally movable in the bottom of the rigid container, and a second expanded shape extending through said opening when said removable lid is removed.
In accordance with another aspect of the invention, a device for collecting fluids, comprising:
a rigid canister, said canister having sidewalk and a bottom connected to said sidewalls to define a first cavity having a first top opening, said canister having a first vacuum port;
a flexible liner having a longitudinal length extending from an upper liner portion to a lower liner portion and comprising a substantially longitudinally nonexpandable sidewall portion that remains substantially unexpended when the liner is filled with fluid and wherein the nonexpandable sidewall portion has a length, 7f extending in the same direction as the liner length, which is less than the longitudinal length of the liner and which is substantially the same before and after the liner fills with fluid, said liner being shaped to generally conform to said first cavity to define a second cavity, said liner having a second top opening, said liner also having expansion means for allowing said liner to expand in a direction toward said top opening and having a length before the liner fills with fluid that is less than an expanded length after the liner fills with fluid;
a lid, said lid being sealed to said second top opening of said liner, and having clip means for releasable sealed engagement with said first top opening of said canister in a configuration to cause said liner to be disposed within said first cavity of said canister when said lid is releasably sealed to said first top opening of said canister, said lid having a second vacuum port in fluid communication with said second cavity;
a fluid intake port;
collection means attached to said fluid intake port for collecting fluid from an outside source;
a first valve in fluid communication with said collection means to prevent fluid from flowing from said second cavity toward said collection means when said second cavity is filled with fluid;
a second valve in fluid communication with said second vacuum port which closes when said second cavity is filled with fluid; suction means for temporarily connecting:
a first suction through said first vacuum port to said first cavity of said canister when said liner is placed in said first cavity;
to cause said lid to be pulled toward said first top opening of said canister to seal said lid against said first top opening, and to subsequently pull said second cavity of said liner against said first cavity of said canister; and a second suction through said second vacuum port in said lid to produce suction in said second cavity of said liner which produces suction through fluid inlet port to cause fluid from an outside source to be suctioned into said second cavity, 7g whereby when said second suction is disconnected and said first and second valves are closed, said expansion means will cause said second cavity to expand in a direction toward said second top opening to release said lid from said first top opening.
In accordance with a further aspect of the invention, a fluid collection system comprising:
a canister defining an inner cavity and having an opening and a bottom;
a lid covering the opening of the canister; and a liner positioned within the inner cavity of the canister, the liner having a volume capacity for receiving collected fluid and having a sidewall extending longitudinally between the lid and the canister bottom, the sidewall of the liner being formed with a substantially longitudinally nonexpandable lower sidewall portion that remains substantially unexpanded when the liner is filled with fluid and wherein the nonexpandable sidewall portion has a length, extending in the same direction as the 1 S liner length, which is less than the longitudinal length of the liner and which is substantially the same before and after the liner fills with fluid, and a substantially longitudinally expandable upper sidewall portion having a length before the liner fills with fluid that is less than an unexpanded length after the liner fills with fluid that may expand if the liner fills with fluid to increase the volume capacity of the liner and reduce reflux.
These and other objects of aspect of the present inventions will be demonstrated by the drawings and the detailed description of the preferred embodiments, which follow.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is side elevation view of a vacuum canister fluid collection system for use with the present invention.
FIG. 2 is a perspective view of a canister for use with the fluid collection system of the present invention.

~,1 ~
FIG. 3 is a top plan view of a lid for use with a canister such as shown in FIG. 2.
FIG. 4 is a partial vertical section of the lid of FIG. 3 taken along lines 4-4 showing the vacuum port and patient port.
FIG. 5 is a cross-section of a patient valve with the lid in accordance with one aspect of the present invention.
FIG. 6 is a plan view of a flapper valve for use with the patient port.
FIG. 7 is a cross-sectional view of the lid flapper valve of FIG. 6.
FIG. 8 is a cross-sectional view of a retainer for the lid flapper valve of FIG. 6.
FIG. 9 is a view of a tandem tube in accordance with a further aspect of the present invention.
FIG. 10 is a longitudinal cross-section of a tandem tube valve in an exploded configuration.
FIG. 11 is a cross-sectional view of the tandem tube valve of FIG. 10 in assembled form.
FIG. 12 is a tandem tube valve in place on the patient port of a downstream canister with the flapper valve held open by the patient port on the downstream lid.
FIG. 13 is a cross-sectional view similar to that of FIG. 12 showing the tandem tube partially removed from the patient port and showing the flapper valve partially closed and the wiper valve contacting the wall of the port.
FIG. 14 is a cross-sectional view of the tandem tube valve similar to that of FIG. 12 with the valve being further removed and the wiper valve in contact with the mating port.
FIG. 15 is a longitudinal cross-section of a tandem tube connector.
FIG. 16 is a further cross-section of the tandem tube connector rotated about a longitudinal axis approximately 90 degrees from the view shown in FIG. 16.
FIG. 17 is a bottom plan view of the tandem tube connector.

WO 95/01192 ~ ~ ~ PCTIUS94/07257 FIG. 18 is a cross-sectional view of the tandem tube connector attached to a canister lid through a tandem tube port.
FIG. 19 is a cross-sectional view of a pleated liner for a canister in accordance with the present invention.
DETAIEED DESCRIPTION OF THE PREFERRED EMBODIIVViENTS
In accordance with the present invention, a fluid collection system is provided which takes full advantage of pressure differentials created in the fluid collection system to increase the integrity of the system and its component parts, and to reduce the possibility of contamination through fluid loss or reflux.
The system of the present invention provides a more secure system and provides lid and liner combinations which are more easily neutralized and disposed of.
In accordance with the present invention, a vacuum canister fluid collection system 40 (FIGS. 1 and 2), such as may be used for collecting fluids from patients or other sources during operations, medical procedures or other uses, includes a vacuum source such as pump 42 and a collection tube 44 for collecting fluid from the patient or other source. The collection tube is coupled to the patient port 46 in a first vacuum canister 48, described more fully below.
The first canister 48 is fluidly coupled to a second canister 50 through a tandem tube 52. The vacuum pump 42 is also coupled to a vacuum port 54 on the second canister 50 for providing the required pressure differential, as is known to those skilled in the art. Additional suction canisters may be provided as necessary. The vacuum may be applied to the canisters in series or in parallel, as is also known to those skilled in the art. Either arrangement is equally applicable to the present inventions.
In the preferred embodiment, vacuum is also applied to the canister through the canister wall 56 through a vacuum attachment 58 mounted to the outside of the canister wall. Such a configuration is commonly used with the Baxter Medi-Vac CRD flex canister system whereby vacuum is applied to the canister through the vacuum attachment 58 and also to the interior of the liner through the vacuum port 54.

Each canister includes a flexible liner 60 fixedly and fluidly sealed within a circular groove formed in the bottom of the lid 62 so that the lid and the liner form a complete and closed container, except for the ports described more fully below. The liner preferably includes an enlargeable or expandable wall portion 64 which (FIG.
S 19) can expand if the liner fills with fluid such that the effective internal volume of the liner can increase. Referring to Figure 19, the liner 60 within the reservoir has a longitudinal length extending from the upper liner portion 61 to the lower liner portion 63 and comprises a substantially longitudinally nonexpandable sidewall portion 65 that remains substantially unexpanded when the liner 60 is filled with fluid.
10 This nonexpandable sidewall portion 65 has a length, extending in the same direction as the liner length, which is less than the longitudinal length of the liner and which is substantially the same before and after the liner fills with fluid. The liner 60 further comprises a substantially longitudinally expandable sidewall portion 64 that may expand if the liner fills with fluid. This expandable sidewall portion 64 has a length before the liner fills with fluid that is less than an expanded length after the liner fills with fluid. With this configuration, the liner with an unexpanded but expandable section preferably forms the standard volume for receiving fluid, for a given canister size. If the liner fills with fluid to the standard full volume, the expandable portion 64 can then expand to effectively increase the total volume of the liner. The liner 60 is able to initially take a first relaxed shape wherein the liner sidewall extends to the bottom portion sufficiently so that the bottom portion is adjacent the container bottom portion. Then when the removable lid is removed from the container, the liner is able to take a second expanded shape extending through the opening of the container. The increased volume preferably reduces any differential pressure between the interior of the lining and ambient pressure when vacuum is removed from the system. The increased liner volume also permits addition of other fluids or materials, such as solidifying agents for the fluid.
In the preferred embodiment, the expandable wall portion is formed from a series of pleats or bellows. Preferably, each pleat is formed circumferentially around the entire circumference of the liner at a location near or adjacent the lid.
The series of pleats are preferably formed axially with respect to each other so that the wall 10a portion of the liner can expand or enlarge axially or longitudinally to relieve any pressure differential that may exist when the system is dismantled.
Circumferential pleats are preferred over longitudinal pleats because longitudinal pleats may expand even while vacuum is present in the canister and may make it more difficult to remove the liner from the canister.
In the preferred embodiment, for a 3000 ml canister, the enlargeable wall portion may permit addition of 400-600 mls of volume to the liner. It has been found that the pressure differential of conventional liners could result in reflux of approximately 250 ml of fluid at maximum vacuum. By providing about one-fifth or one-sixth again as much additional volume, the additional liner volume may accommodate the pressure differential, as well as accommodate addition of materials for solidifying or otherwise neutralizing the fluid.

Preferably, the pleats are uniform and extend completely around the circumference of the liner, for each pleat. The pleats preferably have a wave length of approximately 0.166 inch, each crest having a preferred radius of approximately 0.015 inch and each trough, extending inward relative to the liner, having a preferred radius of approximately 0.030 inch for a typical liner wall thickness of 0.010 inch.
In operation, vacuum is applied to the cavity or spacing between the canister wall and the liner, and the lid is held in place on the rim of the canister to form an appropriate seal, as is known to those skilled in the art. With the evacuation of the cavity between the liner and the canister walls, the wall of the liner expands flexibly outward into contact with the canister wall to provide a portion of the vacuum for suction and to preclude collapse of the liner wall, as is also known to those skilled in the art. The vacuum system pulls fluid into the interior of the liner through the patient port 46 (FIGS. 3 and 4) and into the volume defined by the liner (FIG. 2). When the liner is full, a conventional float valve 70 attached to the bottom of the vacuum port 54 closes, removing vacuum to the interior of the liner from that port. Thereafter, continued suction results from vacuum applied to the liner in the second canister, which then brings fluid from the liner in the first canister out through the tandem port 72 through the tandem tube 52 and into the liner of the second vacuum canister 50 (FIG. 1) through its respective patient port 74.
When the operation or procedure is complete, the tandem tube is removed from the second canister 50, the vacuum tube is removed from the vacuum port on the lid 62, and also from the vacuum attachment 58. The vacuum port and the other ports on the lid 62 are capped (not shown), as is the free end of the tandem tube. Upon removal of a vacuum from the vacuum attachment 58, the pressure differential between the liner and the canister walls approaches zero, in other words the pressure in the cavity approaches ambient pressure. Because of the earlier vacuum, and influx of fluid into the liner, the fluid pressure within the liner exceeds ambient pressure. This resulting pressure differential exerts an expansive force on the liner and lid. Any expansive forces in the radial or downward direction are retained or contained by the canister wall and bottom surface. However, the only element containing the pressure against the lid is any seal or interference snap fit which may exist between the lid and the rim of the canister after vacuum is removed. _ The pressure differential is sufficient to break the lid-rim connection, and the internal fluid pressure within the liner presses against the lid and creates a force expanding the pleats, with a resultant increase in liner volume, which is accommodated by movement of the lid upward away from the rim of the canister. Expansion continues until the internal pressure of the fluid is counterbalanced by the return force provided by the flexible material of the liner. It has been found that the internal liner pressure is sufficient after removal of the vacuum to force the lid off of the rim of the canister to allow the liner to continue to expand upwardly. It has also been found that the conventional lid design was sufficient to permit the lid to lift off of the rim, without redesign. However, it was also found that the ftve clips or bumps evenly distributed about the internal circumferential wall of the lid needed to be moved downward, as viewed in FIG. 4, because repeated flexing of the original lid with vacuum caused the clips to gradually walk up the rim of the canister.
The clips were also enhanced to give more of a snap action.
In the preferred embodiment, the patient port on the lid 62 is preferably enlarged to be approximately the same size as the preexisting "ortho" port used with orthopaedic surgical applications. The patient port well 76 is also enlarged to accommodate the larger port cone or riser and connectors, as necessary. The patient port riser may accommodate elbow adaptors and other connectors, as is known to those skilled in the art.
The patient port, in accordance with a further aspect of the present invention, includes a one-way valve 78 mounted to the underside of the lid 62 to allow fluid into the liner and to prevent fluid from exiting the liner through the patient port (FIGS. 5-8).
As shown in FIG. 5, the patient port is slightly tapered to a narrower opening for accepting the collection tube 44, in the case of the first collection canister, or for accepting the tandem tube valve in the case of the second or WO 95/01192 ~ PCT/US94/07257 other vacuum canisters. A circular wall 80 extends downwardly from the underside of the lid to the interior of the Iiner for accepting, on the outside thereof, a flapper valve housing 82 and for accepting, within the interior thereof, a flapper valve 84. The flapper valve (FIGS. 6 and 7) is preferably a unitary polyisoprene material having an outer ring 86 surrounding an inner moveable valve element 88 substantially in the shape of a circle except for a web 90 connecting the valve element 88 to the outer ring 86. The outer dimension of the valve element 88 is less than the inner dimension of the outer ring 86 so as to form a space for permitting movement of the valve element and fluid flow through the outer ring 86.
The flapper valve housing 82 (FIG. 8) is preferably cup-shaped with a circular opening 92 through which the valve element 88 can extend to permit fluid flow through the flapper valve and into the interior of the liner. The housing 82 fits over and around the downwardly extending wall 80. The fit is facilitated by a chamfer. The radial portion of the housing includes a weld ring 96 extending upwardly toward the circular wall 80.
The flapper valve prevents reflux of fluid from interior to the liner along the passageway of the collection tube 44. Additionally, the flapper valve inhibits fluid flow through the collection tube when the valve is closed, such as after the vacuum has been removed. As a result, reflux of fluid from the open end of the collection tube is minimized. The wider patient port permits use of the fluid collection system in orthopaedic as well as other surgical and medical uses without having to go to another system. The larger port permits easy passage of particulate material which may be passing through the collection tube 44.
In the preferred embodiment, the other side of the patient port includes an annular groove 98 having an inside wall equal to or slightly smaller than the outer dimension of the moveable valve element 88, to ensure proper seating of the valve element against its seat.
In the use of a single suction canister, the tandem port is securely capped to prevent any fluid leakage out the tandem port. What was conventionally the orthopaedic port has been modified to form the tandem port, approximately the same diameter as the inlet or patient port, but having a shorter tapered cone than was ordinarily used with the orthopaedic port. The inside diameter of the port is slightly larger to accept the tandem connector, when used, to fix the tandem tube 52 to the lid. The opposite end of the tandem tube is mounted with the tandem valve, described more fully below.
The tandem tube 52 includes a flexible tube 100 mounted to the tandem connector 102 through an interference fit over ribs 104 (FIGS. 15 and 16). The interference fit is sufficient to prevent removal of the tube from the connector by hand. The tandem connector 102 includes wings 106 to serve as a stop to prevent the connector from being inserted into the tandem port further than the stop and also to provide a surface for applying pressure on the connector to press it into the tandem port. The tandem tube connector has a body 108 preferably cylindrical in general outline with one or more circumferential ridges or coupler rings 110 to form a seal between the tandem connector body and the interior wall of the tandem port when the connector is fully seated in the port. The lower portion of each ridge 110 slants upwardly and outwardly from the body to a flat circumferential wall 114 which engages the interior wall of the port. Each ring terminates at a flat surface 116 extending from the circumferential wall 114 back to the body 108. The distal-most ring includes an outwardly extending flange 117 extending circumferentially around the proximal-most portion of the wall 114. Below the lower-most ring 110, a semicircular ring 118 for strength.
The distal or innermost portion of the tandem connector body 108 terminates in a plurality of legs 120 for passing through the tandem port when the connector is connected to the tandem port. Preferably, four equally, circumferentially spaced legs are positioned around and form the inside terminal end of the tandem connector. Each leg has a preferably uniform wall thickness except for outwardly extending catches or locks, the first two of which locks are shown in FIG. 15 on the first pair of legs and the second two of which locks 124 are shown in FIG. 16 on the second pair of legs. The locks 122 and 124 extend outwardly to engage the inner-most rim of the tandem port, which rim 106 extends downwardly from the underside of the lid 62 (FIG. 18).

Each lock includes a guide surface 128 for pushing the legs inward through the action of the outer rim of the tandem port when the tandem connector is first inserted into the tandem port. Each guide 128 terminates in a radially inwardly extending locking surface. The locking surface for the first ramp locks 122 are 5 tamping or ramming surfaces 130 extending radially inwardly and downwardly toward the body of the tandem connector. The locking surfaces for the straight locks 124 extend straight radially inwardly toward the tandem connector body.
Once installed, the tandem connector 102 is effectively fixed in the tandem port. If any removal force is applied to the tandem tube or connector, the 10 caroming surfaces 130 will bear against the lower rim of the tandem port, thereby caroming the corresponding first pair of legs 120 inwardly until the two legs in the pair meet. Because of the angled surfaces 130, the first pair of legs 120 are bent inwardly before the second pair of legs 120 begin to bend inwardly through any action of the rim of the tandem port. Moreover, any 15 bending of the second pair of legs 120 will cause them to contact the other pair of legs, preventing any further inward bending of the legs. The tamped locks 122 are dimensioned so that the outer edges of the camped locks will still engage the rim of the tandem port even when the innermost points of the first pair of legs 120 would be touching along the center line, because of bending at the bending points 134. Additionally, the guides for the straight locks 124 are dimensioned so that they still engage the rim of the tandem port even when they are bent inwardly to contact the first pair of legs. As a result, no amount of force will unlock the legs from the rim of the tandem port, without destroying the connector itself. It should be noted that the connector can still be inserted into the tandem port and locked since the bending upon such insertion takes place at the point where the legs join the rest of the tandem connector body 108 rather than solely at the point where the tamped locks 122 and straight locks 124 join the connector legs.
In the preferred embodiment, a tandem tube connector having an internal radius at the legs of approximately 0.323 inches and an internal radius at the opposite end of approximately 0.290 inches has a thickness for the legs of WO 95!01192 PCT/US94107257 '~~~~~ 16 approximately 0.400 inches and an outside diameter at the points of the ramped locks 122 of 0.573 inches and an outside diameter at the straight locks 124 of approximately 0.543 inches. The distance from the distal side of the rim 106 to the proximal-most point on the ramped locks 122 is preferably about 0.790, which is the same as the distance to the proximally-facing surfaces on the straight locks. Tolerances should be made to ensure proper seal between the tandem connector body and the port while still allowing the movement of the legs to maintain a stable lock. An alternative lock has the body extend completely to the end of the locking elements (filling the openings between the legs to form a complete cylinder) and reducing the radial size of the locks while still ensuring a stable lock and easy installation of the connector in the port while ensuring a proper seal.
The tandem tube valve 136 (FIGS. 10-14) permits two way fluid flow through the tandem tube when the tandem tube valve 136 is mounted to a patient port on a canister, but prevents fluid flow out of the valve when the valve is disconnected. The tandem tube valve substantially minimizes the possibility of contamination when tandem-connected canisters are disconnected, and while any given liner-lid combination is being disposed. The tandem valve is preferably placed in the portion of the tandem tube which is to be connected to a secondary canister since the habit of most technicians is to disconnect tandem tubes from the secondary canisters rather than from the primary canister. However, it should be understood that suitable valves can be placed at either end of the tandem tube to achieve the same purpose, especially if both ends of the tandem tube can be disconnected from their respective ports.
The tandem valve preferably includes a tandem valve housing top 138 and a bottom 140. The housing positions and retains a flapper valve 142 and a wiper valve 144, having a wall 145 defining an opening for the riser portion of the patient port, separated by a valve spacer 146. These elements will be described more fully below.
The housing top 138 includes one or more ribs 148 for frictionally engaging the other end of the tandem tube 100. The ribbed portion of the housing defines a passageway 150 through which fluid may pass from the tandem tube into the secondary canister. The passageway terminates in the interior of the housing top 138. In longitudinal cross-section, the interior of the housing is substantially trapezoidal in shape with the narrower portion adjacent the passageway 150 and the wider portion at an opening 154 for the housing top. A
plurality of supporting ribs 156, preferably eight, are uniformly distributed around the inside circumference of the trapezoidal housing portion and diverge slightly from the narrow portion of the housing to the opening 154. The ends 158 of the supporting ribs are spaced from the adjacent wall to form recesses 160 for receiving an outer circumferential wall 162 on the flapper valve 142 (FIG. 11). The spaced ends 158 engage a support surface 164 on the flapper valve interior to the wall 162 and exterior to the moveable valve element 166 of the flapper valve. The trapezoidal housing portion provides sufficient space for the moveable valve element 166 to move into the housing to permit fluid flow past the flapper valve from the tandem tube into the secondary canister.
The flapper valve fits within a bore 168 in the opening 154 and is held in place by the spacer 146 (FIG. 11). The wiper valve 144 fits against the opposite side of the spacer 146 and is sandwiched in place by the bottom portion 140 of the tandem valve housing.
The spacer fits into a counterbore 170 in the opening 154 of the top housing. The counterbore 170 is formed in an end wall 172 of the top housing which is angled to accept the mating bottom housing portion 140. The outer circumferential wall 174 of the bottom housing portion 140 engages a circular channel 176 formed outside of the end wall 172 so that the top and bottom housing portions may be welded or otherwise bonded and sealed.
The flapper valve 142 is preferably substantially symmetrical about a plane intersecting the central axis of the flapper valve thereby forming a plane to which the central axis is normal. The wall portion 162 is part of a short cylindrical outer wall 178 surrounding a ring portion 180. The supporting surface 164 on one side of the ring portion engages the ends 158 on the WO 95/01192 ~ A 21 ~- 2 9 0 7 PCT~S94/07257 '18 blades lib. On the opposite side, surface 182 and surface 184 engage mating portions 186 of the spacer 146. Flapper valve 142 is thereby sandwiched between the spacer 146 and the top housing 138.
The moveable valve element 166 is coupled to and supported by the ring portion 180 by a primary web 190.
Spacer 146 (FIG. 10) is also preferably symmetrical about a plane to which the center axis of the spacer is normal. The spacer preferably has a wall 194 defining an opening 196 through which the cone or riser of the patient port of the secondary canister is inserted to engage and open the valve element of the flapper valve in the valve housing. On the flapper valve side of the spacer, an inner groove 200 as well as the wall 194 define the valve seat 202 against which the valve element 166 seats when the tandem tube valve is removed from the mating port.
On the wiper valve side of the spacer, the spacer again has a first outer groove 204 for engaging a corresponding circular ridge 206 in the inside of the bottom housing 140. The inward adjacent circular ridge 208 on the spacer engages the groove 210 to sandwich the wiper valve 144 between circular ridge 212 on the spacer and circular ridge 214 on the bottom housing.
Preferably, the groove 210 and the corresponding ridge 208 capture part of the wiper valve to hold it in place.
FIGS. 12-14 demonstrate the operation of the tandem valve. In FIG. 12, the tandem valve is fully seated on its corresponding patient port so that the riser of the patient port holds the moveable valve element of the flapper valve open permitting fluid flow from the tandem tube into the canister in accordance with the proper pressure differential. Additionally, the opening 145 in the wiper valve 144 elastically surrounds the riser. In FIG. 13, the tandem valve is partially removed from its corresponding riser and the moveable valve element of the flapper valve follows the top of the riser as the riser is removed from the tandem valve housing. The opening in the wiper valve 144 slides along the riser as the riser is removed wiping any fluid in front of it. Finally, in FIG. 14, the moveable valve element of the flapper valve is seated on the. valve seat 202 and the wiper valve is almost completely removed from the riser.
With the tandem valve, further flow of fluid from the tandem tube outward of the tandem valve is prevented once the tandem tube is disconnected from its associated tandem port. Any fluid within the tube is retained therein or falls back into its primary canister. The valve operates regardless of whether or not removal of the tandem tube valve is intentional or accidental.
A tandem tube valve cap 216 (not shown) is retained on the tandem tube so that the opening on the tandem tube valve housing can be capped at any time.
After being capped, the tandem tube is fully sealed between the cap and the liner of the lid-liner combination to which the tandem tube is connected.
In the preferred embodiment, the canister lid, connectors and ports are formed from high density polyethylene. The liner is preferably formed from low density polyethylene and the tandem tube connector is preferably formed from a polypropylene homopolymer. The port caps such as the tandem tube valve cap are preferably formed from low density polyethylene. The valve housing is preferably formed from styrene, as is the tandem valve spacer, while the flapper valve is preferably formed from natural or synthetic polyisoprene and the wiper valve is preferably formed from natural pure gum rubber. The opening 145 in the wiper valve 144 is preferably 0.125 inch for a minimum outside patient port diameter of 0.361 inch.
A vacuum canister fluid collection system and its components have been described and which will minimize the possibility of reflux or loss of fluid upon removal of vacuum, thereby minimizing the possibility of contamination or injury. Additionally, the possibility of contamination through accidental removal of caps on ports or loss of vacuum is also minimized. The system is designed so that full canisters will have their lids unsealed and disengaged from the canister upon removal of vacuum to minimize any possible pressure differential between the liner and atmospheric pressure. Preexisting pressure differentials and components are beneficially used to accomplish this result.

Although the present invention has been described in detail with reference only to the presently preferred embodiments, it will be appreciated by those of ordinary skill in the art that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by S the following claims.

Claims (31)

WHAT IS CLAIMED IS:
1. A fluid collection system comprising:
a fluid collection reservoir;
a cover for the reservoir; and a liner within the reservoir having a longitudinal length extending from an upper liner portion to a lower liner portion and comprising a substantially longitudinally nonexpandable sidewall portion that remains substantially unexpanded when the liner is filled with fluid and wherein the nonexpandable sidewall portion has a length, extending in the same direction as the liner length, which is less than the longitudinal length of the liner and which is substantially the same before and after the liner fills with fluid, and further comprising a substantially longitudinally expandable sidewall portion that may expand if the liner fills with fluid and having a length before the liner fills with fluid that is less than an expanded length after the liner fills with fluid.
2. The system of claim 1 wherein the liner includes a surface forming a seal with the cover.
3. The system of claim 1 wherein the liner has an expanded volume and an unexpanded volume, and wherein the substantially expandable sidewall portion of the liner includes at least one circumferentially disposed pleat.
4. The system of claim 3 wherein the fluid collection reservoir includes a bottom and wherein the at least one circumferentially disposed pleat is positioned closer to the cover than to the bottom of the fluid collection reservoir.
5. The system of claim 4 wherein the at least one pleat is permit an expanded volume approximately the size of the unexpanded volume.
6. The system of claim 1 wherein the substantially expandable sidewall portion includes a plurality of circumferential pleats arranged axially relative to one another.
7. The fluid collection system of claim 1 further comprising an inlet port in the cover and a one-way valve for the inlet port for allowing fluid flow into the liner but substantially preventing fluid flow out of the liner.
8. The system of claim 7 wherein the one-way value includes a flapper valve.
9. The system of claim 1 wherein said fluid collection reservoir defines a first fluid collection reservoir, and further comprising a second fluid collection reservoir, having a liner within the second reservoir, and a fluid conduit fluidly connecting the liner of the first fluid collection reservoir with the liner of the second collection reservoir.
10. The system of claim 9 wherein the fluid conduit is locked in place on the cover for the first fluid collection reservoir.
11. The system of claim 9 further comprising a closeable valve between the first and second fluid collection reservoirs.
12. The system of claim 11 wherein the closeable valve is positioned in the fluid conduit between the first and second reservoirs.
13. The system of claim 12 wherein the closeable valve is held open while the fluid conduit is connected between the first and second reservoirs.
14. The system of claim 12 wherein the closeable valve includes a flapper valve.
15. The system of claim 12 further comprising a wiper valve for substantially preventing loss of fluid upon disconnection of the fluid conduit.
16. The system of claim 15 wherein the second fluid collection reservoir includes a connection riser to which the fluid conduit is connected, a connection housing to enclose the connection riser and part of the fluid conduit, wherein the flapper valve and wiper valve are retained within the connection housing, the flapper valve is held open when the housing and riser are connected, and wherein the wiper valve is positioned between the flapper valve and the exposed end of the housing such that, when the fluid conduit is connected to the second fluid collection reservoir, the wiper valve is positioned between the flapper valve and the second fluid collection reservoir.
17. A fluid container system, comprising:
a rigid container having a sidewall and a bottom defining a first cavity, said container having a wall defining an opening;
a removable lid, normally covering said opening; and a flexible liner located in said first cavity, said flexible liner having a sidewall extending longitudinally and a bottom portion and further having a first relaxed shape wherein the liner sidewall extends to the bottom portion sufficiently so that the bottom portion is adjacent the container bottom portion when said removable lid is covering said opening and so that the bottom portion is longitudinally movable in the bottom of the rigid container, and a second expanded shape extending through said opening when said removable lid is removed.
18. A fluid containment system, as set forth in claim 17, wherein said liner further comprises:

a bellows portion to allow said liner to expand from said relaxed shape to said expanded shape.
19. The system of claim 17 wherein the rigid container is substantially cylindrical having a substantially circular rim defining the opening and wherein the flexible liner is fluidly and hermetically sealed to the removable lid.
20. The fluid container system of claim 17 wherein the liner has a second expanded shape that provides between approximately 400-600 milliliters of additional volume relative to the first collapsed shape of the liner.
21. The system of claim 18 wherein the bellows portion comprises a plurality of pleats wherein each pleat is oriented circumferentially about the liner and is oriented axially relative to adjacent pleats.
22. The system of claim 21 wherein the expanded shape is at least 1.2 times the volume of the relaxed shape.
23. The system of claim 17 wherein the liner includes an expandable pleated portion to permit expansion of the liner when the liner has become substantially full.
24. A device for collecting fluids, comprising:
a rigid canister, said canister having sidewalls and a bottom connected to said sidewalls to define a first cavity having a first top opening, said canister having a first vacuum port;

a flexible liner having a longitudinal length extending from an upper liner portion to a lower liner portion and comprising a substantially longitudinally nonexpandable sidewall portion that remains substantially unexpended when the liner is filled with fluid and wherein the nonexpandable sidewall portion has a length, extending in the same direction as the liner length, which is less than the longitudinal length of the liner and which is substantially the same before and after the liner fills with fluid, said liner being shaped to generally conform to said first cavity to define a second cavity, said liner having a second top opening, said liner also having expansion means for allowing said liner to expand in a direction toward said top opening and having a length before the liner fills with fluid that is less than an expanded length after the liner fills with fluid;

a lid, said lid being sealed to said second top opening of said liner, and having clip means for releasable sealed engagement with said first top opening of said canister in a configuration to cause said liner to be disposed within said first cavity of said canister when said lid is releasably sealed to said first top opening of said canister, said lid having a second vacuum port in fluid communication with said second cavity;

a fluid intake port;

collection means attached to said fluid intake port for collecting fluid from an outside source;

a first valve in fluid communication with said collection means to prevent fluid from flowing from said second cavity toward said collection means when said second cavity is filled with fluid;
a second valve in fluid communication with said second vacuum port which closes when said second cavity is filled with fluid; suction means for temporarily connecting:
a first suction through said first vacuum port to said first cavity of said canister when said liner is placed in said first cavity;
to cause said lid to be pulled toward said first top opening of said canister to seal said lid against said first top opening, and to subsequently pull said second cavity of said liner against said first cavity of said canister; and a second suction through said second vacuum port in said lid to produce suction in said second cavity of said liner which produces suction through fluid inlet port to cause fluid from an outside source to be suctioned into said second cavity, whereby when said second suction is disconnected and said first and second valves are closed, said expansion means will cause said second cavity to expand in a direction toward said second top opening to release said lid from said first top opening.
25. A fluid collection system comprising:
a canister defining an inner cavity and having an opening and a bottom;
a lid covering the opening of the canister; and a liner positioned within the inner cavity of the canister, the liner having a volume capacity for receiving collected fluid and having a sidewall extending longitudinally between the lid and the canister bottom, the sidewall of the liner being formed with a substantially longitudinally nonexpandable lower sidewall portion that remains substantially unexpanded when the liner is filled with fluid and wherein the nonexpandable sidewall portion has a length, extending in the same direction as the liner length, which is less than the longitudinal length of the liner and which is substantially the same before and after the liner fills with fluid, and a substantially longitudinally expandable upper sidewall portion having a length before the liner fills with fluid that is less than an unexpanded length after the liner fills with fluid that may expand if the liner fills with fluid to increase the volume capacity of the liner and reduce reflux.
26. The fluid collection system of claim 25 wherein the substantially expandable upper portion of the sidewall portion of the liner includes at least one circumferentially disposed pleat.
27. The fluid collection system of claim 26 wherein the at least one circumferentially disposed pleat has an unexpanded longitudinal dimension of approximately 0.166 inch.
28. The fluid collection system of claim 27 wherein the at least one circumferentially disposed pleat has a crest radius of approximately 0.015 inch and a trough radius extending inward relative to the liner 0.030 inch.
29. The fluid collection system of claim 25 wherein the liner with a volume capacity has a wall thickness of approximately 0.010 inch.
30. The fluid container system of claim 25 wherein the liner has an upper and a lower half and wherein the expandable upper portion is positioned in the upper half of the liner.
31. The fluid container system of claim 30 wherein the upper half of the liner further includes a substantially nonexpandable portion.
CA002142907A 1993-07-01 1994-06-28 Patient fluid collection system Expired - Lifetime CA2142907C (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002443245A CA2443245C (en) 1993-07-01 1994-06-28 Patient fluid collection system connector
CA002443243A CA2443243C (en) 1993-07-01 1994-06-28 Non-removable connector for patient fluid collection system
CA002443247A CA2443247C (en) 1993-07-01 1994-06-28 Patient vacuum fluid collection canister system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/086,782 1993-07-01
US08/086,782 US5470324A (en) 1993-07-01 1993-07-01 Non-refluxing suction canister system and components therefor
PCT/US1994/007257 WO1995001192A2 (en) 1993-07-01 1994-06-28 Patient fluid collection system

Related Child Applications (3)

Application Number Title Priority Date Filing Date
CA002443243A Division CA2443243C (en) 1993-07-01 1994-06-28 Non-removable connector for patient fluid collection system
CA002443245A Division CA2443245C (en) 1993-07-01 1994-06-28 Patient fluid collection system connector
CA002443247A Division CA2443247C (en) 1993-07-01 1994-06-28 Patient vacuum fluid collection canister system

Publications (2)

Publication Number Publication Date
CA2142907A1 CA2142907A1 (en) 1995-01-12
CA2142907C true CA2142907C (en) 2004-03-30

Family

ID=22200881

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002142907A Expired - Lifetime CA2142907C (en) 1993-07-01 1994-06-28 Patient fluid collection system

Country Status (12)

Country Link
US (2) US5470324A (en)
EP (1) EP0659090B1 (en)
JP (1) JPH08500763A (en)
AT (1) ATE176870T1 (en)
AU (1) AU692785B2 (en)
CA (1) CA2142907C (en)
DE (1) DE69416651T2 (en)
ES (1) ES2131202T3 (en)
IL (1) IL110059A (en)
TW (1) TW267941B (en)
WO (1) WO1995001192A2 (en)
ZA (1) ZA944545B (en)

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807359A (en) 1993-06-08 1998-09-15 Bemis Manufacturing Company Medical suction system
US5725516A (en) * 1993-07-01 1998-03-10 Allegiance Healthcare Corp. Suction canister system
US5713879A (en) * 1994-02-26 1998-02-03 Metec A. Schneider Gmbh Device for collecting and filtering blood
IT1286624B1 (en) * 1996-05-10 1998-07-15 Mattioli Eng Srl EQUIPMENT WITH STERILE DISPOSABLE COMPONENTS, FOR DERMOABRASION TREATMENTS THROUGH JETS OF REDUCING SUBSTANCES
US5620428A (en) * 1994-12-29 1997-04-15 Bemis Manufacturing Company Suction canister apparatus and method
US6358232B1 (en) 1994-12-29 2002-03-19 Bemis Manufacturing Company Method and apparatus for removing and disposing of body fluids
US6244311B1 (en) 1994-12-29 2001-06-12 Bemis Manufacturing Company Method and apparatus for removing and disposing of body fluids
US6652495B1 (en) * 1995-04-10 2003-11-25 Kenneth Gordon Walker System for disposal of fluids
US7207966B2 (en) 1995-11-01 2007-04-24 Ethicon, Inc. System for fluid retention management
US5904676A (en) * 1996-10-10 1999-05-18 Medtronic, Inc. Gasketless seal for rotatable blood reservoir connector
US5902341A (en) * 1996-10-30 1999-05-11 Scientific-Atlanta, Inc. Method and apparatus to automatically generate a train manifest
US6238366B1 (en) 1996-10-31 2001-05-29 Ethicon, Inc. System for fluid retention management
DE19700677C2 (en) * 1997-01-10 2003-04-24 Eberhard Dally Isotonic whey drink
ATE288769T1 (en) * 1997-02-26 2005-02-15 Medela Ag DEVICE FOR SUCTION OF LIQUIDS
US6152902A (en) * 1997-06-03 2000-11-28 Ethicon, Inc. Method and apparatus for collecting surgical fluids
DE19723197C2 (en) * 1997-06-03 1999-07-29 Braun Melsungen Ag Suction device for body fluids
GB2333459B (en) * 1998-06-24 1999-12-15 Vacsax Ltd Medical disposable liner
US6458109B1 (en) * 1998-08-07 2002-10-01 Hill-Rom Services, Inc. Wound treatment apparatus
US6093230A (en) * 1998-10-12 2000-07-25 Allegiance Corporation Filter assembly comprising two filter elements separated by a hydrophobic foam
US6447491B1 (en) * 1999-06-18 2002-09-10 Genzyme Corporation Rolling seal suction pressure regulator, apparatus and system for draining a body cavity and methods related thereto
DE19953910C2 (en) * 1999-11-10 2003-07-03 Hans-Dieter Koch Medical drainage device
US7674248B2 (en) 2000-03-28 2010-03-09 Bemis Manufacturing Company Medical suction apparatus and methods for draining same
WO2001072350A1 (en) 2000-03-28 2001-10-04 Bemis Manufacturing Company Medical suction apparatus and methods for draining same
US7585292B2 (en) * 2000-03-28 2009-09-08 Bemis Manufacturing Company Medical suction apparatus and draining of same
US20010043943A1 (en) 2000-05-22 2001-11-22 Coffey Arthur C. Combination SIS and vacuum bandage and method
JP4627353B2 (en) * 2000-06-19 2011-02-09 株式会社群馬コイケ Multiple liquid waste treatment equipment
WO2002038032A2 (en) * 2000-11-13 2002-05-16 Atossa Healthcare, Inc. Methods and devices for collecting and processing mammary fluid
US6855135B2 (en) 2000-11-29 2005-02-15 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US6685681B2 (en) 2000-11-29 2004-02-03 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
EP1219282A1 (en) * 2000-12-21 2002-07-03 Nutrichem Diät + Pharma GmbH Connecting pipe element of a bag for delivery of substances to the human or animal body
WO2002055134A2 (en) 2001-01-12 2002-07-18 Bemis Mfg Co Method and apparatus for disposing of bodily fluids from a container
ATE387919T1 (en) * 2001-12-26 2008-03-15 Hill Rom Services Inc VACUUM BAND PACKAGING
US20040087918A1 (en) * 2002-11-04 2004-05-06 Johnson H.R. Buster Gaskets suction canister valve
US20050002810A1 (en) * 2002-11-26 2005-01-06 William Gould Portable vacuum system
WO2004052730A2 (en) * 2002-12-11 2004-06-24 Medindica-Pak, Inc Method and apparatus for converting supplies and reducing waste
DK174883B1 (en) * 2003-02-27 2004-01-19 Unomedical As Disposable urine bag for collecting urine
US20050101922A1 (en) * 2003-11-07 2005-05-12 Bemis Manufacturing Company Suction canister and drainage of same
US20050171495A1 (en) * 2004-01-29 2005-08-04 Austin Timothy W. Waste collection unit with manifold interface assembly
US7153294B1 (en) 2004-06-16 2006-12-26 H2Or, Inc. Surgical vacuum canister
AU2013201838B2 (en) * 2005-12-14 2016-03-10 Stryker Corporation Manifold for connection to a medical/surgical waste collection unit
US7615037B2 (en) 2005-12-14 2009-11-10 Stryker Corporation Removable inlet manifold for a medical/surgical waste collection system, the manifold including a driver for actuating a valve integral with the waste collection system
CA2930748C (en) 2005-12-14 2017-12-05 Stryker Corporation Medical/surgical waste collection portable rover capable of zero setting the float used to measure the volume of liquid in the rover waste container
CA2640497A1 (en) * 2006-01-27 2007-08-02 Medela Holding Ag Fastening device for a drainage container
WO2007116386A1 (en) * 2006-04-07 2007-10-18 Avonmed Healthcare Limited A device for connection to a tubular element
US20070294858A1 (en) * 2006-06-23 2007-12-27 Murphy Jerry A Portable Vacuum Canister and Method of Waste Disposal Therefrom
US20080045912A1 (en) * 2006-08-18 2008-02-21 Orwig Steven J Sealing overflow safety trap
US8025173B2 (en) 2006-09-07 2011-09-27 Allegiance Corporation Collapsible canister liner for medical fluid collection
AU2008232361B2 (en) * 2007-03-23 2013-05-16 Allegiance Corporation Fluid collection and disposal system and related methods
US9889239B2 (en) 2007-03-23 2018-02-13 Allegiance Corporation Fluid collection and disposal system and related methods
EP3231458B1 (en) 2007-10-04 2020-01-15 Dornoch Medical Systems, Inc. Lid for a canister of a medical waste fluid collection and disposal system
DE202008005027U1 (en) 2008-04-11 2008-06-26 Medela Holding Ag Drainage tank with integrated attachment
DE202008005025U1 (en) 2008-04-11 2008-06-26 Medela Holding Ag Fastening device for a drainage container
US8216197B2 (en) * 2008-10-29 2012-07-10 Kci Licensing, Inc Medical canister connectors
AU2015202016B2 (en) * 2008-10-29 2017-03-16 3M Innovative Properties Company Medical canister connectors
US9332969B2 (en) * 2009-01-06 2016-05-10 Carefusion 207, Inc. Fluid flow control apparatus and patient fluid sampling method
WO2011008961A1 (en) 2009-07-15 2011-01-20 Allegiance Corporation Fluid collection and disposal system and related methods
US8303555B2 (en) 2010-08-31 2012-11-06 Apex Medical Corp. Soft collector for a negative pressure wound therapy system and its combination
GB2483292B (en) * 2010-09-03 2012-07-11 Apex Medical Corp Collector for a negative pressure wound therapy system and its combination
US8870756B2 (en) 2010-10-08 2014-10-28 ERBE-USA, Inc. Hybrid apparatus for fluid supply for endoscopic irrigation and lens cleaning
US8764642B2 (en) 2010-10-14 2014-07-01 Medivators Inc. Combined irrigation and rinsing tube set
US9392929B2 (en) 2010-10-14 2016-07-19 Medivators Inc. Connector comprising backflow valve for a tube set
ES2725204T3 (en) 2010-10-14 2019-09-20 Medivators Inc Universal cover
US8777931B2 (en) 2011-08-19 2014-07-15 Alcon Research, Ltd. Retractable luer lock fittings
US9457135B2 (en) 2012-12-03 2016-10-04 Devilbiss Healthcare Llc Suction canister having a replaceable filter cartridge
US8920394B2 (en) 2012-12-19 2014-12-30 Dornoch Medical Systems, Inc. Suction canister liner and system
US9474837B2 (en) 2013-07-03 2016-10-25 Dornoch Medical Systems, Inc. Fluid level sensor cover for a medical waste fluid collection and disposal system
USD750235S1 (en) 2014-03-19 2016-02-23 ERBE-USA, Inc. Endoscope connector
CN104225692A (en) * 2014-09-25 2014-12-24 内蒙古力丰医疗科技有限公司 Waste liquid negative pressure collection device
WO2017004449A1 (en) * 2015-06-30 2017-01-05 Ecomed Solutions Llc Blood collection canister assembly
WO2017042801A1 (en) * 2015-09-07 2017-03-16 Avrech Ronen Storage device
US10596305B2 (en) 2016-01-25 2020-03-24 Medline Industries, Inc. Suction canister and corresponding systems and methods
US10688226B2 (en) 2016-01-25 2020-06-23 Medline Industries, Inc. Canister lid and corresponding systems and methods
US10398807B2 (en) 2016-01-25 2019-09-03 Medline Industries, Inc. Canister lid and corresponding systems and methods
US10814047B2 (en) 2016-04-25 2020-10-27 Allegiance Corporation Fluid collection systems and methods of use
DE102017007701A1 (en) * 2016-08-18 2018-02-22 Drägerwerk AG & Co. KGaA System and device for collecting liquid
CN109689150B (en) * 2016-08-29 2022-02-18 阿利吉安斯公司 Port connector for medical waste container and method of use
US10758649B2 (en) 2017-03-23 2020-09-01 Zimmer, Inc. High flow manifold
WO2018213705A2 (en) 2017-05-18 2018-11-22 Medline Industries, Inc. Removable inlet manifold for a medical waste collection system
FI129046B (en) * 2019-03-29 2021-05-31 Serres Oy Suction bag for medical or surgical use, and suction bag arrangement
US11318242B2 (en) 2019-04-12 2022-05-03 Stryker Corporation Manifold for a medical waste collection system
US10471188B1 (en) 2019-04-12 2019-11-12 Stryker Corporation Manifold for filtering medical waste being drawn under vacuum into a medical waste collection system
WO2020264084A1 (en) 2019-06-27 2020-12-30 Boston Scientific Scimed, Inc. Detection of an endoscope to a fluid management system
DE102019005532A1 (en) * 2019-08-07 2021-02-11 Drägerwerk AG & Co. KGaA Arrangement and method with a non-return valve for collecting suctioned secretion
USD919799S1 (en) 2019-11-11 2021-05-18 Stryker Corporation Manifold housing for a medical waste collection device
USD956967S1 (en) 2019-11-11 2022-07-05 Stryker Corporation Manifold housing for a medical waste collection device
USD996640S1 (en) 2019-11-11 2023-08-22 Stryker Corporation Specimen collection tray
US20210401528A1 (en) * 2020-06-29 2021-12-30 Angela K. Wilson Canister Caps
WO2023129076A2 (en) * 2021-12-29 2023-07-06 Alpler Medikal Ve Saglik Ticaret Ltd. Sti. A lid structure for use in suction bags

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3913780A (en) * 1969-11-13 1975-10-21 Medical Dev Corp Vacuum-operated fluid bottle and system
US3863664A (en) * 1969-11-13 1975-02-04 Medical Dev Corp Vacuum-operated fluid bottles in serial flow system
US3938540A (en) * 1971-10-07 1976-02-17 Medical Development Corporation Vacuum-operated fluid bottle for tandem systems
US3809085A (en) * 1972-05-23 1974-05-07 Deknatel Inc Surgical drainage system
US4013076A (en) * 1975-06-17 1977-03-22 Diemolding Corporation Aspirator jar
US4275732A (en) * 1977-08-19 1981-06-30 Gereg Gordon A Suction canister with membrane shut-off valve
US4259952A (en) * 1978-06-22 1981-04-07 Avoy Donald R Blood diluting method and apparatus
US4430084A (en) * 1980-01-21 1984-02-07 American Hospital Supply Corp. Method for pre-use storage of a medical receptacle
US4379455A (en) * 1980-01-21 1983-04-12 Deaton David W Medical receptacle with disposable liner assembly
US4681571A (en) * 1981-04-23 1987-07-21 C. R. Bard, Inc. Suction canister with disposable liner and check valve
US4397643A (en) * 1981-05-04 1983-08-09 Sherwood Medical Company Drainage collection device with disposable liner
US4384580A (en) * 1981-07-29 1983-05-24 Becton, Dickinson And Company Suction canister system and adapter for serial collection of fluids
US4388922A (en) * 1981-07-29 1983-06-21 Becton, Dickinson And Company Suction canister system for serial collection of fluids
DE3150500A1 (en) * 1981-12-21 1983-06-30 Friedrich Gerd 5000 Köln Lauterjung SUCTION BOTTLE FOR MEDICAL PURPOSES
US4465483A (en) * 1982-06-08 1984-08-14 Snyder Laboratories, Inc. Modular drainage apparatus
US4475904A (en) * 1982-12-29 1984-10-09 Medical Instrument Dev. Labs., Inc. Fast response vacuum aspiration collection system
US4642105A (en) * 1984-02-21 1987-02-10 Toter Kimberly A M Gastric drainage system
SE446656B (en) * 1985-01-08 1986-09-29 Astra Meditec Ab VALVED CLUTCH DEVICE
US5045077A (en) * 1985-11-25 1991-09-03 Blake Joseph W Iii Body cavity drainage implement
US5353837A (en) * 1986-03-04 1994-10-11 Deka Products Limited Partnership Quick-disconnect valve
GB8612048D0 (en) * 1986-05-17 1986-06-25 Smiths Industries Plc Surgical drainage containers
US5141504A (en) * 1987-03-02 1992-08-25 Atrium Medical Corporation Fluid recovery system with stopcock suction control
WO1989000424A1 (en) * 1987-07-22 1989-01-26 Leo Pharmaceutical Products B.V. Fusidic acid useful in the treatment of aids
JPH0623825Y2 (en) * 1987-10-20 1994-06-22 和男 矢野 Pipe fitting device
ATE105195T1 (en) * 1989-03-30 1994-05-15 Abbott Lab SUCTION DEVICE WITH AN INFECTION PREVENTION DEVICE.
US4986292A (en) * 1989-04-19 1991-01-22 Diversey Corporation Bulk storage and handling system
GB2245833A (en) * 1990-06-26 1992-01-15 Femcare Ltd Mucus extractor
US5011470A (en) * 1990-08-29 1991-04-30 Bioresearch, Inc. Combined surgical drainage and autotransfusion apparatus
US5149325A (en) * 1991-02-25 1992-09-22 Baxter International Inc. Vacuum system for auto transfusion device
GB9219457D0 (en) * 1992-09-15 1992-10-28 Fisons Plc Reducing interferences in plasma source mass spectrometers

Also Published As

Publication number Publication date
DE69416651T2 (en) 1999-09-23
US5624417A (en) 1997-04-29
TW267941B (en) 1996-01-11
ATE176870T1 (en) 1999-03-15
WO1995001192A2 (en) 1995-01-12
US5470324A (en) 1995-11-28
JPH08500763A (en) 1996-01-30
ES2131202T3 (en) 1999-07-16
ZA944545B (en) 1995-02-17
CA2142907A1 (en) 1995-01-12
EP0659090B1 (en) 1999-02-24
AU692785B2 (en) 1998-06-18
WO1995001192A3 (en) 1995-02-23
IL110059A0 (en) 1994-10-07
AU7214194A (en) 1995-01-24
DE69416651D1 (en) 1999-04-01
EP0659090A1 (en) 1995-06-28
IL110059A (en) 1998-02-08

Similar Documents

Publication Publication Date Title
CA2142907C (en) Patient fluid collection system
US5725516A (en) Suction canister system
CN109689150B (en) Port connector for medical waste container and method of use
US8088291B2 (en) Method of collecting medical waste in a waste collection unit using disposable manifold with staged waste filtering/processing
EP1297861B1 (en) Connector assemblies, fluid systems
CN102500000B (en) Manifold for connection to a medical or surgical waste collection unit
WO1994014045A1 (en) An apparatus for collecting a fluid sample from a patient and container for storing the same
GB2040379A (en) Connector for tubing
CA2443247C (en) Patient vacuum fluid collection canister system
EP0080379A1 (en) Connector assembly for liquid flow systems
US7802824B2 (en) Connecting piece for a tubing

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20140630