CA2148913A1 - Nanocomposites of gamma phase polymers - Google Patents

Nanocomposites of gamma phase polymers

Info

Publication number
CA2148913A1
CA2148913A1 CA 2148913 CA2148913A CA2148913A1 CA 2148913 A1 CA2148913 A1 CA 2148913A1 CA 2148913 CA2148913 CA 2148913 CA 2148913 A CA2148913 A CA 2148913A CA 2148913 A1 CA2148913 A1 CA 2148913A1
Authority
CA
Canada
Prior art keywords
nylon
composite according
polyamide
layered
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2148913
Other languages
French (fr)
Inventor
Macrae Maxfield
Brian R. Christiani
Sanjeeva N. Murthy
Harold Tuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2148913A1 publication Critical patent/CA2148913A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31739Nylon type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31765Inorganic-containing or next to inorganic-containing

Abstract

2148913 9411430 PCTABScor01 This invention is directed to a composite formed from a gamma phase polyamide such as nylon (6) having dispersed therein a particulate material such as a phyllosilicate as for example montmorillonite.

Description

~i 21~8913 .

. .

BAC*~U~ OF IN~NTION

;. S 1 . ~'i o 1 d .r tl~e 1 nve~
Thi s inve~tion relat~s t~ a co3nposite ~a~e~c~ rising a polymer m.at~-ix having dispersed the~eln anlsotropic nanome-ter 5iZ2 particles sucr as Grgano~ilic :~?la~elet par~icles deriv~d ~r~m swel¦lab~ e 13 t n~erc~lated layered mate~ials and inc~rqanic fibr!illar ~,! ' r~ac~rials, and to artic' es of manu~acture ~rmed !f om t;~e cor~lposit~ rna~erial of this in-~enti3n. More . partic~alarly, ~h~ s invention ~elates ~o suc~ corQp~site !r~a e~ials and c~ os~ tes whar~ pol~er matrix ~ s E~r~ed 1~ o~ a pclymer in the ga;~ma pnase.
. 20 Prior Ar~
Polyamides rnay exist in v~rious c-ystall~ ne ~ orms .
Two ~r~ncipal crystalLirle fcrms o~ nylcn 6, aiF~ ~nc ~amma, have ~een c~a~ c_2rized st~-ucturally a~d .~, 20 ~`~er~nodynaznically ~see, ~,r exar~ple, Poly~e~
Colrununicati~ns, i951, 301 anc~ references citsd t'ner~in~ .
Various addl ~i~res have he~n us~d to rQGd~ ~ Ny lcn 6 ~nLch increasea t~e ra_~ o~ c~Ysta;liz~tl on to th~
25 alpha or garn~a ro~. See, ~c:r axa~p ~ e~ US Pate~t: ~o~ .
~,39,,~79 and 4,230,~35 and Japanesa ~a~er~t 55-14~346~. :
Polyami~es, such as nvlon ~,: co~.~pr sing a d~ spe~sion af particles, der~ ved ~'r~m organophili ~
~; 30 phyl~silicate3 arLd ha~ing a thickness or about 0. ~ 5 : ~) to a~out 1.2 n~ (12 ~) ! ha~re been re~orted ~n ,~:ne literature~ See ror exa~;pt~ U.S. Patent Nos. 4,73 3,0~7 and 4, 310, 754, and Ko~kai Publicatiorl ~o. lCag~8/ 1~.

p~ )E~ S~EE~

. _ .

;J r . iJ ~ J L r~J~ ~ r t.~ .J.J r-r~J~ t ~) ~ ~'., , ' i ```.` ' 21~8~1 3 . - 2 -SV~Y OF T~; IN~NTION
. ~, Thls invention relates to a c~mposite corn~ri~ g a pol~mer mGtrix cGmprisinG at least one garun~ ~nas~
polyam~ de whe~ei~ at lea~- abcut one weight perceht or 5 said Folyarrude based on t;~e tot~l mcles o~ saLd pol~mide ~s ~n the gærruna phase, said po'ymer mat lix h~ring dis~ersed therein up to less than aDc~t O . 5~; by wt. cf the ~atr x ~f a namometer-s~ale p~rticulate ~a erial se1 ected r~o~.~ t'~e ~rc~p cGr.sist ng cf 1 i!yered 10 rr~a~rial :~a~ing a ~ickness eauai ~^ cr cS5 tha;ll, abou_ 20 nm ~200 A) and ri~rill~x :materi21s havin~ a diameter ~! equal to o- less than about 10 n~ (1'JO A). AnC-her aspect - f t~ls ir ver_ion rela.~s to an a~ticle of' .anufacture compr~sing a ~dy all c~ a portion o.~, wh-ch . 15 is formed of t~;e cor~posits or Ihis inve~Lt~cn, The com7~osite cf this inr~ntion exhibits s-~e~al ber.e~icial properties . Fcr 2xamp' e, in ~he ~or~l7~o~ite that portion c~ ~he po1~e~ in the g~La phc ~e crystall ne form is resis~ant to ccnvers_cr~ t~ the 20 a_pha crvs~alline form. Mcreo~rer, ~ n ~hcse i~.stanc~s ~r~ere the qa3m prase polymer ~ s a polya~de cuch~ as ~ly~epcllon-caprolactarn) (ny7On o) r the CC~pO;7 ti~r~ -exhi~its improved ri~idl t~i and ~r/ate~ reslst~c~
s~7rengt~ D63~ and ~S~M 37g0), while 25 _vbstanti lly retainin~ other propertie3 s~lc~h as toughness ~:ASTM D256), surfacf~ glos3 (ASIM ~523~ ¦and a~rasion resistar~c~ (AST~ ~1044).
DE:SC~IPTION OF T~ P~:FERRE;D ~I~E~T~ !
The cor~posi~e o~ this i~erLticn i ncludes t~c, 30 essential coD~ponents . One esse~tial compa~e7~t is ' a poLy~ner n~atrix comprisinc; a gzr~ p:~ase ~slyamide ~ her2 at lea t about 1 ~1~re ght ?e~cer~.~ or said polyamide ji5 ir.
the g~a cry~talli~le phase. As u~ed her~in a ~g l a AJ~E~lDED Sl I~ET

..

t v~ r~ J ~ J~t ~ J:J-t r~ . ,t }
21~83~ 3 ,` . I

phasa ~c' yaI~lide" is a se.rni-cr ,fst-lline po' ya~ni de ~3 , :!

.
";
:' .~ :
,~1 ~ ' .

, ~.
/

.`

, :
AMNQED SHEET

,`
.~

~ W094/11430 21 ~ 8 ~ 1 3 PCT/US93/10819 .~ . I

~ 3 -,~ capable of forming two or more crystalline phases, and ~ comprising at least one of the less stable crystalline ~-',,3j phases as determined by x-ray diffraction (XRD), i,~ infrared spectro~copy (IR), differential scanning calorimetry ~(DSC)~ and nucl~ar magnetic resonance (NM~), as described in N.5. Murthy and H. Minor, ~QlYmer ,pp. 996-1002 (l990). For example, nylon 6 is a gamma phase polyamide capable of forming two crystalline forms. The nylon S chain has a directionality so that adjacent chain segments in a crystalline phase can either be parallel or anti-par~lle}. In the more stab}e alpha pha~e, hydrogen bonds for~ between anti-parallel chanin segments, while in the les~ ~tabl~ gamma phase, hydrogen ~ond~ form between p~rall~l se~ments. ~y contrast, nylon 6,6 i8 not a ga~ma pha~ polymer and is capable of forming a ~ingle cystalline pha~e 3ince its chain has no directionality.
Polya~ides for use in th~ process of thia invention m~y vary wid~ly, the only raquirem~nt i~ tha~ they are capa~l~ of gamm~ phase crys~allinity and arQ preferably m~lt proc~sibl~. As used hersin, a "polya~iden is a ; subatanc~ composed of ten or more r~curring carbonamide ~onomeric un~t~ which may be th~ 9a~8 or diffQr~nto I:n ~ the pr~exr~d e~bodimentsi of the invention, the ! 2s polya~ide ~nclude~ at least thirty recurring ~ono~eric unit The upper limit to th~ nu~ker of recurring monomeric unit~ i8 not critical, provid@d that the ~elt index of ~he polymer under use conditionfi is such that Ir~;
th~ polymamide ~form~ a compo~ite ~aterial which can be 30 proce~ed into article~ of thi invention. ~or~ ~
preferab}y, th~ polya~ide include~ at least fro~ about ~--30 to ~bout lOO;recurring ~onomeri~ units. In the most preferred -~bodi~ents of thi~ invention, the number of r~curring units i~ such that the polya~ide h~ a ~elt indPx of from about O.Ol to about 12 grams per lO

.

E~A ~ll,i\;~HL:.~ 01 : 8~ 94 : C): '~ : `'V ~ 4 5~ ~ + ~ J~ t ~i;,: ~ 5 ~__ .
` -` 21~8~ 3 ` ` I !

~, minutes, prererably Lrom about 0.01 tG about iO l ¦
grams~O ~inutes and more.prefera~ly rom about 0,.5 to about 10 ~ramsJ10 mir.utes as m~asured by .~M Teslt No.
"`' D-1238 2t ~ load o~ lOOQ grams at ~he px~-essi r c te~peratu-e.
~ llLustrative of usefuL ~olyamidec apa~le o~lgam~.a t, phast2 crystalli~ity ar2 those ,cr~ed fro~ he polvmer~zatior of ami~.o a~ds and cer~va_i~es t.he~eof as ~o~ example l~cta~s. Suc~ ~cl~a~. des include n~lo~
10 4, ~.ylon ~, nylcn 11, nylo~ o, nyl-n 17, nylo~ ryion 10, nylon 18 and the llke.: P~efe~_e~ g~a ph~se `~ po~yam des ar2 those ~or~ed Dy reac~i~n e,~ a~'no ac~
or de~i~ativ~s there~L such as lac~a~s. Mc~e ~Ferred ~;t ga~ma p:nase polyamides are nylo~ 11, Lnylcr 6 an~ ny~on 12, and ~ost pref~rred arè nY10LL 6 a~d r.ylor 12. INylsn is the ~ ~ a ~ha~e poly~er or choice, eapeciall~
where the nylon 6 has a ~elt incex Lrom about ~.Cl to a3c~t lC g~ams~iO m.in.utes, and pre~~r2~1y fr~-~ abou~
O.g t_ æoout 10 gra~s~LO mi."utes ~s m~aslred b~ AS~
;.,,, I
: ZO Test No. ~-1238 ~t a load of 1000 ~a~ a~ 23SC.' . The fraction OL ~he poiyam de ~.~'Ji-~ ~mma ~has2 ; crystallinity ~ay ~ary ~idelv. I~. ~ene~a_, ~h~ a~c_n~
~~ th~ ~olyamide _n the ga~ma phase _s at leas. a~au. 1 we~ht 3 based o~ the to~l we~ht of the pclyam~de.
~! 25 The amount of polyamiae h~vins ga~a pnase c~ystallini~y is pre~erably a~ 15~st about 1~ wei~ht ~ t 1, 1 : ; ~
mcsre, pre'er~ Ly ~ro~ ~bout 10 t3 abcSur 5C we ght.~ o~ :;
the ~oiyam~de and ~.ost pr~ferably ~rom a~ou~ 2~ t~
about 5~ weight ~ sn the ~f~re~e~tion~d basis. I~ the ~i 30 em~odiments cf choice, tne amaunt of pol~ami~es i~ the ' gam~a phase is ~rom a~out sO to about 50 weigL- ~rcent .1 bas~d on the total weight of ~he polya~ld~.

A~NOEOS~E~ I
,, . I
- !
_ . . . ..
;

'A . II.;,~( ~IE~ 1 1- .3~ : o: ~ 'u~ +*~3 ~'-3 ';iJ'3~ J
2 1 4 8 9 1 3 1 ~

As a sec3~d essential L. g~ ecLi-nt, t~ C;:)rrpGs_t~ CI: ~`
this in~ren~i~n inc' ud~s dispersec p~rticles se' ec.tec frcm the grcl:~ consistin~ o lavered and fib_lilar ~.
', `.
' `~'f ~ ' ' .

.. .
1 .
~' i!
~ .

.~ , , AME~IDE~ ~HEET

`i :``:; 21~8~13 `

.~
.`~ . . ,.
.~ ~ 5~
irorgar~i~ r~aterial~ . I,sefu~ ino~2r.~ c fibrillar ma~erials mai- va~y ~iAely. and are t~.ose havina av~ra~
'~ diameters eaual t~ or iess thar~ ~bou~ 10 mr.(' Q ~¦ ~ith a maxi~num dia~r.e~r CL~ 20 n~n~200 A), px~fer~bly fr~
:~ i abaut } 0 to ~out 10 nrr ~lOQ ~ h a m~ximum ~ te~
of 20 nm(2'00 A), r~ore pre.2rably rro~n about 1.0 ~(10~) ~ to abo~~ 5.0 7lm~0 Ai wl t~ a maxir.~.lLm ~iameter of io.o i:~, nm~ 0 Al, an~ :nost p~far, ly t rom 2bout ~ .0 ~io .
o about 2.C nr;l~ O ~ lt~ a ma.Yim~urn diaIr~et~r ^~ $ o 10 nm (50 ~! . T:~e ~ erage ler.g~h o~ us~ft~l brillar I
~na ~ria' s may ~lar~t~ ~idel~ a~d is usu~ ~ ly equal ~G I Cr less tha~. a~cut 200 nnL~2, ~0 .~) w~ t~ a maxi.~. let~gth OI abc~ut 1,00~ n(l^,030 A), pxaferaol~ ~om a^ou~¦20 il ~m(~OO ~ tG abou~ GOC nm~2, 000 A) wi~ a m.ax ~.u~ ¦
15 li~ngth ~f about 500 rm(i~ 000 .~) ~ ~ore preîe~ablv ~o.n .;~ about 30 nmt300 A! to a~u.t 200 rLrn~2,000 ~ i-h 1 ~axim~u~r. ler~gth o~ 20~ n(2000 A~ anc~ ~ost prafer~41y ~. fro~r~ æ~,o~t 40 r~m~ "GO A! .o a~u~ O, rlm(i, 000 A` ~ith a ;~ ma~'ml~ ngt~ OL ~bau_ 2Ca ~Lrn(2~ COC ~-! . I11ui~tra,.i~
'! 20 ~ useul fi~ri~ lar materlals a~ ogo:it~ and ~i~r.d ,~, cxi~
Useful 1 ayarcd r_terials are ~hcse ~ n whic~ iayers 3 }~a~e an aver~g2 t~ ~ ck~ess ~auai ~o o~ l~ss than ~aut .1 ~.5 nm~S A) w~h a max~mum thic~ness c~ 10 r~n(lûa A~, 2_ preferably f~om abo~l~ 0.5 ~m~5 ~) to ~out 2.5 ~25 A) '~ with a mLaximum th~ ck-ess ~r 7 . 5 r~n (75 A), more Fr_~~ra~ G~. ai~cu~ O.S nm~_ A) Lo _~c~ ~ 2. û .~( 2C ~) .
with a ~;Laximum thic.Ynes3 af 5. 0 ~(50 A), and mcre 3-f;~-prefer~bl~ rcm a~aut 0.7 nm~7 A1 ~o a~ou. ~,5 nm~ 25 A) 30 w~tr a ;r~aximllsr~ thil~kness of 2.5 r~(2_ A). .
Layered m2t~ials for use in this }~vention ~a ~ .
va~ wic~ely an~ includs p~rllo~l llca.es. Il~us ra~ e cf such mat~xials are smectite clay mire-als such ~s A~QF~ ET

~.. .

E~IE.~, 01 : 8~ o: ~'f~ .75 2()"1-- +4c~ s~f i ~ i44~j5: "~ 8 `` 2148913 .,j.,..~.

5,~
hectorit~, saponite, sausor~ite, A~n2gadii~ anc kenyaite; ~rmic~;liLe; and ~_~e li1.~e. ~the~ ~Asefu~
layerec~ Arnaterials incl~1de illite r~ neral~ such as j~ ledikite ar~.d ~dmixt:~res o-F 1.11.i._es with the c' ay S mAinerals named a~ove. Ctr er use~ul lay~red m,.-ter~ als, ' ~, :""
i.;

!`t, ~. .1~
.
~,,"

!,` ~ .
~.:
''''i i 1 '~:
~' ! ~

'~' :' ;;`

'',j , .', .

i~ ~ ''.

NOC~ Sr~E

: i .~

` W094/l1430 ~1 ~ 8 9 1 3 PCT/US93/10819 ~:

-.;
` particularly useful with anionic polymers, are the .
layered double hydroxid~s, such as Mg~13~(OH) la ~(C03) 1 7 H2Q (see ~. T~ Reich.le, J~ Catal., 9~ 985) 547), which have po3itively charged layers and exchangeable 5 anions in the interlayer spaces. Other layered materials having little or no charge on the layers may ~ be u~eful in this inve.ntion provided they can be t intercalated with swelling agent~ which expand their interlayer spacing. Such ~aterial~ include chlorides 10 such a~ ReCl3 and FeOCl, chalcogenides uch as TiS2, MoS2, and MoS3, cyanides such a~ Ni(CN) 2~ and oxides such a~ H25i2O~, Y6Ol3, HTiNbO" ~ro.sVosS2, W02V28~, cr303, ,, MoO3 (0~1) 2~ VOPO~-2H20, CaPO"C~I3-H20, PI~IA~O"-H20, ~ Ag~Mol0O33, and the lik~. Pr~ferred ~w~llabl~ layered 'i 15 mat~rial~ arQ phyllo~ilicat~ of the 2:1 type ha~ing a n~gativ~ charge on the layers ranging ~rom about 0.25 to about 0.9 charg~# per for~ula unit and a ~1~ comm~n~urate n ~ er of exchangeable cations in the '~ interlayer sp~ce~. Most pr~ferred layered materials are ~ectite clay minerals ~uch as ~ont~orillonite, nontrGnitet beid~llite, bvlkons~oite, hectorite, ~aponit~, 3auconite, magadiite; and k~nyait~.
Th~ ~ount o~ layered or ~irill~r m~terial included in th~ co~positQ ~aterial, that i~ ~ufficient to result in ~ ni~icant increa~e in the gam~a eontent of a ga~a pha~a poly~r, is a~ littl~ ~ about 5 pp~ by wQight- ,~
The ~ount of layered and ~ibrillar ~at~rial included in ~h~ ~o~po~it~ ~ateri~ y va~y widely 30 dapendiny on the intended u~e of th~ co~po~it@ ~ -provided tha~ th~ a~ount is les th~n ~bout 0.5~ by w~ight of th~ matrix. The low~r a~ount i8 not critical provided th~t the a~ount i~ suf~cient to provide the advantages o~ thi~ invention. For ~xample, the amount of such material~ may be as low a~ about 5 ppm.

F.P.~ MlE.~ 8 ~ o: "~ ~ ''t) ' l ~ t ~g 89 ~a5?9~ 6.~

~`i ` 21~8913 1::

7: --:~ ~rereral~ly the alr.ou-t ~Jr layer2d ~r ibr llar ~c~erial - I
inc~ uded is eaual to or ~r~a~er th~. abou~. 1 0 ~m~ mo~e ~;
pref~ab' y equal to ~r greate~ than about 23 ppm and .. eclu~l to o~ ~e~s t:~an ab~ut O . ~ y w.ei~ht, anc n~st , ~ preferablv e~ual to cr ~e~ter tha~. ab~u_ ~ ~0 p~, ard ~`' equal to or 1 ess t~;an â~;Ol~t O . ~s by weig.~
;,i The la~ferea anc f i~ri ' lar materia;s a~3 su~stant~ all~ ~cmoger.e~o-~s- v dis~ers-d i~ he g~ tn~
~ J
~ phase polym3r ma t-~ix. n the case o~ 1~yered .~ IO m~t~rial3, the layerSd ~at~ria` s c~s~erse~i as platelet ~a~~icles. .~s used `nerein telet .~ par~cl 3Sr~ ?a~ les ~avi~g t~o -ela l~el~ 'at ~p~osit~ f2ces w~.e~ein ;he thickness o~~N:r~^_h i~ ~h~
distance betwee~ .he races, ~hich is rel-_ voly ~all 15 ~cmpa-ed to the s'ze o~ t:n~ f2ce3. T:~e plate~t pa~tlcles dispersed in mat~ix ?cl~e~ ~ay '~v~ t:~e thichne~s o~ t~e ~n~ idual Laye-s, or small ~.u~ Les ` . less t'-.a.r. about lV,:p_ef~rably less t~ a~oat S and mor~ preferably less tha~ `a~c~lt 3 ~f ~:~e l~y~rs, ar.
20 s~ill more proferabl~J or 2 ~ye~s. ~'~e v~.~o_ di~enslcns ~r tke pl~tel~ pa~tic ~ mcy ~ra~y gre~ "
t ~n the case o_ ~rticle3 de~-v~d ~rcm clay ~ineralc, ~he particle ~ac~s zre ~o~g~ly rcund or oblonq h~v-ng a~erago d_~meters bet~2er a~o~t 1,Q~C
25 n~10,~00 ~) and aDou~ -~.C nm~0 ~i, such ~;~at th~
i aspect r2tio le~th~thickness ~a;ge~ ~om abou~ 5 t~
` ahout 1 ~cr the -~-~o~e`~ c~ '~e ~esent inven~~n, the averaqe diameter is de~ ned a~ t~.e di~ere- o~ z ~ c~rc~e having an area eqyal to t'~e surrace area ~ cn~ :
j 3a brcad surface ~ace o_ th~ p~ate~e~ s:~aped ~ticl~. i ~I The a~erag~ d~am~e~ i~ d~ter~.lned fr~m par~icl~ l `
!
surface area as ~easured with. a Lei-z T~x-u~e ~r~aly-ze~
Sys~em in a fully computerized and 2ut~ma~ed ~o~e., 'n A~AEN~0 S~IEET

, ____ .
,".,~,~ .... .. .. . .

E~A .~ CHI~ 0 1 : 8 ~ 94 ~ ~Z~ 5-~ `)CZ~7 1-- +q CZ ~39 '~:3~;Z944ZJ~ ZZ I O

! " 2 1 4 8 ~ ~ 3 the p~eferrecl er,oodiments o~ 'he irvent~on, the 2~,-efa~e ~, thir~ness o~ the plat~Zle_ particles is equal t~ oZr les~ Z
i , ,.

.. . .

,,~ l `,,1 P!

' ;Z

.
.~ZZ

. ' '',.
s i Z, ~`
..~

.

:

,.,,, ~

~'?~ A ~ HE,~ 8~ G , ~ n5 ~ _ +~ 1)94~

,!,.( 8 than zbo~t 2 nrn ~20 A~ r~i-h -~ ma~i num thic~ ss cf ~ - I
~I' nm ( 50 ~ ) and the ~ ~er~ce di2.~ r is be~r,~fe~n 50C , ¦
`l nm(~,COG A) and 15 nrrl'100 A) with 2 r~aYi~nu~t. a~.. e~er ~f OCO nr~ l lO, OOC ~) . Mor~ pr- araDlt,r, the a~eras~
J 5 t}~ickness is e~ual t~ or i~ss ab~ut 1. 5 nm ( lS ~ J ;~it.~ 2 m2ximu~ ~hickness o~ 2~5 ~m~25 A) ~?~d th~ a~e~agei `~ diarneter is fr~m abou~_ 200 n~ 2, 0~ C A? te c.~out 2~
nrn~2ûO .~) w~th a ~xi~m diaxe~r ~ 500 rIrn(5,~,0'~).
~ost prefera~ ,h~ ~e-~ge hi~ r ess ~ :~; ro~ -~o~ t lC G . 5 nm ~ S ~) to ~bou. 1 . S ~ h ~ mt2~
~hick~ess of 2 . 5 n~;L '25 A? er~ t~.e ~ Qrac~ dia~r~e er ~ s ~, from about 2CO ~.m~2~0~ A) tv a~Gut 20 nm("OGA) ~ h maxi~um di~aete~ o~ _CO ~.n(S, ~OC ~ ! . I
The a~7eraqe interp2~-icle s~acir~.g ~et~2en 1 a~ers o lS the 1 a~erecl ~ateric ls and ~i~r_l= o~ _r.e fibri' lar .j ~a~eri~ls may v~ry widel~r depsn~ ~g on ~he conc~r.t~ation o~ ~a~erials . In g~n~r~l, t~ e h- ghe~ ~he con~ent~at ~r. a~ ~a_er 1 al ~ the ~o' v~ rnc tr~ x t~e ~mal l er ~he inter~a~ spacin~r, a~r~c~ con~erse 1~ e 20 lowe~ t~e concent~atio- ~ rna~ 9rial, tr~e la-~r t~e inte-par~ spacl~. Ir. g~n~ral, interpa~~ cl~
spacirg i~ equal to o~ ~r~at:~r t:ra.r a~out 1 . 5 n~ ( 15 A~
-O 3bout 40, 000 nm.~O ~ r~r~ a ~n,~r~a-t~c_~ ~
s~zcl~.g is p~efer3bly ecua1 to or g~cater than 2~ut ~ I
~5 rm~30 ~) to abou~ 20, ~00 rm~2~ rons), mor~ ~ ¦
3 pr~ferably eaual to cr-ate- ~ n --bout 5 nrn ~ 50 A) to u~ 5, C~0 ~L~5 ~aicr~n), ~nà ~.~st 7~-~ ~sr~D ~ e~ t~
or greater tha~ ab~ut 10 nm( 1~0 i) to about 1, ~05 i~
icrcn).
3~ ~.s used herein "urifoE~.ly c- spers~d" ~ s def~ r~ed as -~1 ~ a degree o~ dispers~ o~ c~ t~.e particles ;~a~ins a 1,~ starldard de~riation in -~a~tislQ d~rai~y, down t~ a . 3 J, sa~npling ~ Gf ~ l3 ~LS de!iaxm~.ed ~ ILss-or f~ S~IEET
:. I

. _ .

,~iJ~ slk~i U~ +1~ d~l ');3/~ 3~ ;r~ fi~

` 2148~13 !~i .

- 8A - I ¦
electron ~icroscopv.iLhe degree or dispersi~n 1 sl ~ ~
pre~era~ly less tha~ abou' 50~ G' ~ he mean, m~,re ' , .
pre,~era~ly less than al~out 30% or the mear., ar~d ~ost pre~er2~1y less t~n ahout 20~ o~ the mea~.
iThe composite ma~erial of this irlvention ~v, incl1~de ~arious optic~nal cornpo~.enrs which are adi ~ VeS
~,S , ., ~, ,, . ~ .
. . " ~ ' .

.... .

;i~ .
.
: :
.
.,'.
~.~

: : .
i`3 ,`,i ~.
,.
.
i-'.~.
' 1 .

AMENDo SHEEr ~ .
, ~ ` WO 94/11430 2 1 ~ 8 ~ 1 3 PCI`/US93/10819 _ g _ _ ~
commonly employe~ with polyamides. Such optional omponent~: include nucleating agents, f illers, plasticizer~:, impact modif lers, chain extenders, plasticizers, colorant3, uv stabilizers, thermal 5 stabilizers, mold relea ie lubricant~, antista~ic agent~, pigment~3, f ire retardants, and the 1 ike . These c~ptional component~; and appropriate aD~ounts are well known to thos~ of skill in the art, accordingly, only the pref erred optional component~ will be described herein in detail.
The composite of this inventi~n carl be for~d by any suitable procei~ for forming the composite o~ this invention. For example, the composite of this inv~ntion can b~ conveniently prepared by in reactor blending proaei~ses 3~ t21e typ~ de~¢ribed in U. S.
Patent No~. 4, 739, 007 and 5, 810, 734 in which ~ ~onoDoer pr~scur~or o~ th~ polya~id~ ~uch a~ ~ lacta~ i~
polymerized using so~e suitabl~3 tQchniqueis a~ f or exampl~, condens~tion poly~erization, anionic poly3~leri2ation, hydrol~ic poly~erization and the li~ce, in the pr~anc~ o~ a ~wollen and compatibilized p~rticulat~ m~terial. For eacampl~, in on~ ~uch procedurQ ~ontmorillonite intercalated with protonate~
11~ ino~dscarloi:: ac:id i~ combine~ with caprolactam ~nd a~inoc2~proic acid, in a ratio of 4 ~ 9S l by w~ightO
Th~ D~ixtur~ tirr~d at 2S5 - C f~r tk~ree h Ur3 in an inert ~ao~pher~ ~ during whicbL ti~na th~ caprolact~ and a~aino aci~ rQa~:t ~ tantially to yi~ld ~ polyamide. ~ .
P}atQlet particle~ compri~ing on~ or a few l~yer~ of $.
l~ 30 ~sontmorillonit~ ara di ps~r~ed through th~ polya3~ide.
.i Th~ co~posi1:e of thi~ inv~ntiorl i~ pr~ferably prepzred via a ~elt blending proc~s~ in which one or laore ga~ma ~, phase polyaDIide~ ~nd one or mor~ compatibili2ed particulate ~aterials are sheared in th~ ~elt at a ~`.: 35 te~nperature 2qual to or greater than the D~elting point :
`
;

WO 94/11430 PCl`/US93/1081g; ~ ``
21~18913 ~`
` : ; !
c - lo`- L
~i !
of at least one polyamide in the mixture until th~ ', ~, particulate materials exfoliate and disperse to th~ ,~
j~ desired extent. For example, a suitable polyamide such ` a~ pellets of nylon 6 and the desired amount of a !; 5 particulate matexial such as montmorillionite is heated ~. to a temperature sufficient to form a polyamide melt ,;. which is then sheared by some suitable means. In the ', preferred embodiment~ of the invention, mechanical ~hearing methods are employed such as by extruders, injection moldinq machineq, Banbury~ type mixers, ~ 8rabender~ typa mixeri and the lik~. In the ~ore ,3 pref~rred embodi~ents of the inv~ntion, ~hearing is achieved by introducing the poly~er ~elt a~ one end of an extruder (3~ngle or dou~le screw) and rec~iving the . , ~- 15 sh~ared polymer at the other en~ of the extruder. The . te~perature o~ the po}ym~r melt, re~idence time of the ~elt in thR extrud~r an~ th~ de~ign of the extruder (singla ~cr~w, twin scr~w, nu~b~r o~ f}ight~ per unit length, chann~l ~epth, flight clearance, ~ixing zone 2~ etc.) ar~ s~ver~l variabl~ which control the amount of sh~ar to be applied~
The malt of the swellable int~rcal~ted material and th~ polya~id~ ubjected to ~h~ar mixing until the ~1~ d~s~ired a~ount of mat~rial exfoliates to the d~ssired ~ 25 ~xt~,nt. In g-n~r~l, at l~a8t a~o,ut 80~ by weight, j pr~@r~bly at 1~ about 85~ by weight, more pr~sf~r~bly a~ 1~a~t a~out 90~ by w~ig~t and ~ost ii pr~ferably a~ t abc,ut 95~ by weight o~ th~ ~aterial d~la~in~t~ to form f:ibrils or platel@t p~rticl~
30 ~u~tan~ially ho~cgensou~ly di~p~r~d in the polymer i-.
matrix.
In either the in-reactor blending proc~ or the ~ ,alt blending proce,ss, u~eful layered ~nd fibrill~r ;.~ înorganic material~ are preferably tho~e which hav~e, ~. 35 been: swollen~and intercalat~ed between l~yers or fibrils ~. .

~ WO94/]1430 2 1 ~ 8 ~ ~ 3 PCT/~S93/10819 with an organophilic intercalant which weaken the interlayer cohesive energy between layers and fibrils by sw~lling th2 int2rlayer or interfibril distanca~.
i In the preferred embo~iments of the invention, the ~ 5 intercalant or intercalants increas~ the compatibility j and bonding of the layers or fibrils with the polyamide ~ melt by having attractive interac~ions with both the J surfaces of the ~ibril~ or lay~rs and the polyamide.
¦ Intercalants which function to sw~ nterlayer or lO interfi~ril distances are hereinafter referred to as "~welling agents", intercalants which function to increase thQ co~patibility and ~onding of the layers or fibril~ with th~ polyamide melt ara hereinafter . re~erred to a~ ~co~patibilizir~ agent~ and 15 intercalant~ which function a~ ~welling ~gent~ a~d co~patibilizing ~gent~ are hereina~ter referred to as ~sw~lling/co~patibilizing agent~
Swellabl~ ~atsrials are material~ comprising planar lay~r~ arrayed in ~ coh~rent, coplanar structure or 20 fibril~, whera the bonding within th~ layers or ¦ fibril~ stronger than the bondin~ between the layers or P~bril~ ~uch that ~he ~r~teri~ xhibit incr~a~d int~rlay~r or interfibril ~p~cing in their i intQrcalation o~pounds. Th~ neutral or ionic 'I 25 ~O1QCU1~R~ called Nintercal~nt~ ay be introduc~d into th~ interlay~r or interfibril ~p~c~s by ~ither 1 in~ertion, in th~ ca~ o~ neutral ~olecules, or ion 11 ~xchang~, in th~ ca~e o~ ions~ The intercal~nts ~ay be introduced in thQ for~ o~ a solid, liquid, g~, or '-: 30 ~olute. Th~ intercalant~ ~ay b~ intr~duced into the ~pac~ b~tw~n ~vary layer or ~ibril, ~arly ~V~Ey layer or fibril, or a large fraction of the lay~r~ or fibril~ o~ thQ ~aterial uch that tho re~ulting pa~ticl~ co~pri less than about lO layer~ in 35 thic~ne~s or fibrils in dia~eter. The particle~ are Y U~ lk~ 4 _, 7 ~ 1 ~ +~9 8(~ 4~
~,""~
" - 21 ~ 8 ~
.

- 17 _ ___ i :-h~ pr~feri ~' y less ' han 2~:)0'~t ~3 lay~rs i n thickr~e~s or~ .
about 8 ~i~rils in di.~met~r, ~or~ _re ~rably less. th~
about 5 layers ir t~icl;ness or a~cl_t S ,-i~rils in.
i d' a.neter, and ~os~ pre~era~ly, abc~ 1 cr 2 layerls irl :
5 thickness or a}~cu_ ror or t~o ~i~ri~ s in diarr~2~er~.
S~e' lable layered or ~ l mte~ al i~, sucr ~s t~e pre~e~re~ smectite ~lay rn~teri.~ls, qer~.~ra~lv r_qu~e jJ$ t ~at~ent by ~r.e or r~.~r~ ercalcnts 'CG pr~-ide ~`n_ raqulred _nterlay~r G_ inrè~_lbri ' sWel 1 l nC ar.~o~
LO polymer compa~ ty. The r~s~:l ting i;~_~rla~e~ c_ ~, fibril spaclnc ~ s cri tlral to ~h~ parror;~ian-~ c~ t:re i~ ca~ted layer~d ~r~ate~iaL i- the practi~s~ ~~ th s invention. As used herei~} the "~ r-laver cr intarfi`D~il spaci~g" r2fars to t~e ci~tanc~ e_n ~a li faces o~ the layers or t~.e di~ a~ce betwe~n fibri~ as they are asse~ led in the i~t~-cal~t~d ~atar al ~r~r~
an~ dela~inati~n ~Gr exf~liarion) t~kes ~la~e. The preferr2d clay m~terials genera~ .clude i~_~rl~ r ~r exchan~eable c2t~cn~ such G~ ~at, C~", K-, M~ nd ~0 t~e like. In this st-~e, these ~at3r 1- c~ not del~mir~ate t n h~s ~ polymer ~elt3 ~2a_~1ess c~~ mixi~, ~1: because thei~ i~t~rla~e~ or in~arf ~r~' s~acir~s ~re `~ usu~llv equal .~ or 1~s3 thar abcut O . ~ n~
~ nsequen~ly the.i~terla~er or in~e~ibrll ~chesi~Je '~ 25 Pner~y is rela~i~ely.s~rong. Mo~o~ler, t;~e ~etal cations do not aid co~pati~ y '~et~ee~. la-~Jer3 a~d rils a~d the po ~ r ~elt. In h~ pr~ r embadiments~ the~e layered ~a~er~ ar~ lntercalate~
~i¦ by swelli~g agen~ts of suf~Icient si~e to L-C-e~S~
inte~layer or i~terri~ril distances to ~.e d~cir~
ex~ent. In generaL, ~h~ interla~e- or i-t~rt_kr~l .~ dlstance should be a~ least about ~.4 ~x~(4 A), asi determlned by x-~y di~ra-ti~n, in o~d3r tc f~ci~itat~

.
AMENDED SHE'T
~, .

CIIt~ V I ~ J~I : 0: ~7 : 20 1 ~ V'~ 1- +~3 89 ~3~9'~

:` ', ' ' . ......
2148~1~ 3 1 1 't ' _ 1 2~
de`~ 3~inatiorl CL th~ ia~e~d r:lat~rial or fibril m~er ~1 1 ;t at the nanoscale. In the: pre~erred em~odirQents o~f Lr.e ¦
in~erlticn, the: , ~y , :

,., ,1 .

., '' ' :
. .
'.
j ..
.~ ~

.. . .
`'1 ~,,.
. ;. ~
., ~, ~, .

~, .
~ "
AMEND'D SHEET
.. j '.~t ',` t .,,~ ' .,' r~ C.`HE\I ()l : 8~ - ''01 ~ii.............. -S ~o~ t lI.i-~ 1-;`: 21~8~13 i! _ } 3 _ , ., ) `,j interl~yer or interfibril dis~ance is ~t least aacu~
O . 8 nm ' 8 A) and ~r.ore pre 'e~ed int~rla~Jer ~e-~jl inte~_ik~il dis~a~ces are at l~s~ about .5 nm(l5 A) .
I~ these pre-erred e~n~bodimer~t3, t:~e swell i ~Lg agent ~ s ~' 5 a r~e~tral organic mo ~ ecul~ ~r ar ioni~ s~e-ies ~,~hic:~L s ,, c~p~bl e or~ excha~}ging wi~n t~.e ir~terla~er ~ :
interfibril cat~ons such as Li, I~Ta~, Y~ , a~d Ca-. anc1 is of suf~icien- siz~ t;) provi~e the re~rlir^d lr.terL~yer or int~rfib~il sp3cing. S~lch ionic ~i~e~l~s 10 include ~çtt Al-3, Cu~, Fe~, NH;~ RlR~ R3~, ~JRI~i.2i~i.3~, whe~ ~he Rl, R ,R3 and R~ ~re ~he s~..e ~r ~- f--e~e~-~t ancl are orgcn.~ c s~l~stitl.~nts, ~ he li~
In c~der to further tac~ litat3 de~ aticn c~
layeted or ~i~ri` materials is~to pla~ele~ ~a-t~ s or 1~ fibri!s, and pre~ent -eaggragation oL. the ?a~ t_cles, these layers and ri~rils ar~ ~r2 er~b7 y ~oi;,~Ler-,i co~n~atible. In ca~es where t~e po!~ner rnel- ' s r.c ;~ co.~npati~le with 'cha l~yers, tne s~e labl- l~ye~e~
matcrial or rir~ril m~terial is i~.~2rca' - ted ~y ~¦ , 20 compat ~ilizinq agen'~ which consist of a por~iorL ~ ich bonc:s to the sur 'ac~ cf t'r 2 la {ers and ~noth~r ?~r- o~
:! wh~ ch bcnds or intcracts f3vcra~ y with t'r.e ~cl~e~.
., In so~ne in.stanc2s, i ~ t~rcalants ~e used whi_h a re sw~ll in~;fcosLpatibili7 ng aq2~s w;~ ch --~'''Ji:~ bo~h t-.6 ~5 swellin~ ~unctlon and the c~mpatikili22tion fu~.~tLcn~
. . Su~h agents pref~ra~ly t ~cluce a ~o ~ty cr ;noie~ies ~! ' whic:rl in.~2~ac~ wi~h ~ s~_ac2 ~~ he layer~
~:~ displacing, tQtal ly or ir. parL, the or~g_n~' ~etal i^n~
~,'!; and which bonds to the surl'ace of the laye~s, 30 incl~des a m~iety or ~noieti es whose c~'~.e.ci~t~ t r~er~ es are suf~iclen~ly Ciml lar o ~ha~ cr the pol~,~cer t~at the ~ur~ace of the pLa~elets is m~de m~re ce~p~t ~ e ith ~h~ polymer, ~.ere~y e~har.cir.g the hcm~er~eity ~ f ', ^;~ N[~)ED SHEET

... .. , .. ... , .. ... . . . ~ .... ... . ... . ... ...

~?~'.L' ~ L~ +~9 ~J ";3g5~.. ,fi~i ~
"`.'``` 21~8913 1, ~'''' ''' i ~
~ 3 A - ~ I
the d~ sp~rsiori in th~ polyr~Ler~ c mat~ix. .~s us~c herei~ J
"~ompatible" rere~s to the extent -o which the ~dl~ner . ' '.
. , ~( . i .
~, .
~'1 .

,~
`;.

'i! ~

~ AMENDED SHEET
.~

21~8~13 _ 14 _ I
, matrix and the su~ace c^atirg cr. the platelet particles (the com~a 1bilizi~g age-~t) hat7e a fa~orable i nter_c~ion which p~omotes t.~P ~ nterm~ngli~g of ~,he ~ :
rn~trix poly~Elq~. and ~he surr~ce 1 ai~-r ~ n the in~ce~2has2 5 regi^r. C~mpat~bilLty derlves fr3m cr.e or more af ~he follow~ng ~ ri~: si~ilar c~hesive e~ergy densi l es rGr ~he pol~ner a~r~d t~e ceriva_i~C~ ~latelets, si~t.i' ~r or _omplimen~a~y capaci~ es fe,~ dis~ersiv~, poL~ r hyd~oge~ ~ondin~ int~ract~ons, o~ c.:~e~ Sp2C f~-0 _nt2ractions, SUC~ 25 acl~2se ~r _ewis-3cid~L~w_s-ase lr~teractio~n~. Cor.~ati'3il iza~ion wiL1 lead ~ an i nF~o~red dispe~sicn o- the plat~ _ _ pcr i~les in th_ ma~~ix and ar~. ~p~o-~-~d percenta~e o_ delaminatqc~.
~latelet~ wlth a t~ict.~ness cf Less than 5 nrtL~SO A~ .
The na ur.~ o_ the swellir.gJc~lr.pati~ilizing ~e~t, 3~el l~ ng agenr/cornpatiki~ i7ing a~e~ Will ~ ry ~ el~i dependi~g o" the pa~,icu' ar polvmer and the p~rticul~
layered materi 1. Fcr ex2mple, ~.ere the swellai~lG
lay2rec ~at~riaL is ~ pryllosiii~a ~ ~s 'or ex~mp~e z 20 sme~tits clay a~d the pcl~ m de ls ^ ~ y ~ lacta~n) su~h as ~cl~r;ca~rolac~a~a?, ~well ing~c~ tihilizi-g ag~nts are pra~erably ~ ~e~lcnLc ard ~ ~nic sur~act~-L ~ype moL-c~l es, and mcst p~îer~bly n_utr~l c~~ar c mc~lecules cr zwitt~ioric and cati~nic suxfactant tyFe ~5 m~olecules. Use, ul neut~al. organic ~r.olecules include polar ~nolecule:s such as a~nid~s, ~ste~s, lact~ms, . '.
nit~il ' es ure~s, ca~bGna,2s, _hcs~h2~s, ~c _s~hor~a -s, sulfates, sulforLates, nitr~ compcunds, a~d t~e li)~
~ Preferred ;~eu~raLs ~r~an~ c~s a! 2 ~onolQ~s or oli~or~ers o 3~ t~.e na;rix l~olyme~. ~;seful ca,.ior.ic surf~crants ' incll:de cnium spec:ies such as zm~Lor.~ ri~y, secardary, tertiary, and quate~nar~ ), phcspr.an~ r ~uL~oniu~ d~rlvatit7es of aliphatic, a_omztt c or '.

Al`hE~!DED SHEET

21, _. . .

0~: El 'A ~ c~E~l l : 8 ~ a~ 3~9~ 6-~

-:.``. 21483.~ 3 ' .
, . : ~`
I
,i `` ` ` ! .
_ L4A .
.~ , .
arylalip'~atic am nes phospni~es ar~d cul~ides. ~ ~

.~ .

,t~

~ , ~1 .
,~
'~' ' ,;~ ;
~''' ' '.
` I , .
.1 ! I

' .

, , .:

.~ ~
,~

AMEND~D SHEET
,' `.`

~.~ ' `` 2148913 , ~

~, , s Illust~a_ive o~ suc~r. ~aterials a~e o~;oni~m c~mpouF,ld3 o ;; t!2e fcrm~la ~

X -- R~ '.
where X~ is ~n ammonium, sùlfcnium or p~osphonium 5 radical such ~s -NH3~, -N (~ ) 3l~ -N (CH~) ~ (CEI~CH3) ~, I
S (C~3) 2', -~P (C:~'3~ 1, pyridirium~ a~d t'~.e like and ?.~, s an crganic ~dlcal as far example s~b~ti.~_.ed or unsu~stit~1~ed all~.yl, cyclc:alk~nyl, cycloa' ~yl, ~r~l, or ;~ alkyl~ryl, e' ther ~s~ti~5ut~à c_ su~stituted w, '~h ^ G a~i~a~ al}cylamir.G, dial~VlaminG, nitrG~ a7 'do, al}~nyl, . .
alkoxy, cycloalk~, cycloalke~yl, ~ anoyl, alkyl~l~ o, ~iXyl, aryloxy, ar~-~lalkyla~- nc, ai'xy ~ ~Lir.o, a~yla~ ~o, d al :Yylamino~ diaryla}nLnc, a~y1t al~ylsul~ rl~
. aryloxy, all;vlsul~inyl, alkylsu~ onyl, aryl tl~lo, ' :
15 arylsulI'invl, alkox~carbon~l, a~yl~ulf~nyl, and alkyLsi~ ane.
Iliust_at~ ~e c: f useru~ a?s zre hyd~~gen, -l'cyl, such as ~.ethyl, et~yl, oc~yl, noryl, te~t~ uryl, N
~eopentyl, iscprcpyl, ~ec~ u~yl, doclecyl and the l,ike;
20 alkenyl s~ch cs 1-propenyl, 1-bu~ yl, 1-pe~t=~LyL, l-hexenyl, 1-heptany~ octan~1 and the l~ ke; al~ox~l~
such as pr~poxy, ~utoxy, me~hoxy, isopropcxv, p~n~oxy, nanoxy, e-hy~oxy, octoxy, and the ~ ike; cyclo~ cn~fii : such as cyclohexenyl, cyclopentenyl and the like;
5 alkanoyLaikyl ;,uch as 's~ut2r.c~1 octad~yl, pe-.~ar~o~1 -.cnac~cyl, cc~ncyl pent~decy~ hano~l ur.d ~ropanorl hexadecyl and the l~ ke; arnino;
a t kyl aminoal kyl, s uch a s i '-~`:

AI~ENO~D SHEET
;~ ~
~__.

~V~ rr:! ~t~ \,U~ J~ o--?~ ol '~5:~ "0`~1, +~'J ~;19 ');i39~1l4~5-t~''0 :.. , j 1 `` 2~48913 _16_ I !
methylatlino octader~yl, etnylamino p~ntadecyl, buty'~æ~no nona~ecyl and t:~e li~:~; dialkyla~inoal.kyl, suc~ ~s di~ethyla.~ino oct2decyl, ~.~thyle~hylamin~
r.cnadecyl ant~ th~ likei aryl~ alkyl su~ s 5 phenyl~ o octadec~l, ~ p-~ethYlphenylaminc n?ra~e~yl 5r~d the ii~e;
r,, d~Grylaminoalk~l, such a~ dipheny:~inQ p~ntadec~l, !' p-ni~rG~henyl-p'-methylphenyla~i-o c~tadecyl and t'~e like; alk~ylary`~ ~inoalkyl, suc:h as 10 2-henyl-4-methylæ~in~ pentadec~ Q the lik~, alkyls~_lr~nyi, alkyls~or~ll, alk~_rh~ arytthio~
arylsul~'i~yl, and ~r~lsul~onyl suc'~ as buty'~h~o , oct~decyl, necpentylthio pent~aec~,~l, methyls-~lrinyl nonadecyl, ~enzyls~lf~ny~ pentadecyl, ~henylsulri~y' 15 octadecyl, propyl~:~ ooctaaecyl, octylthi~ pe~_a~e:cyl, ~onylsul~cnt!l nonadecyl, octylsu`~r~nyl hexadec~
~thvL~hio ncncaecyl, isopropylthi~ ~ctadecyl, pher.ylsu~fonyl ~entadecyl" ~ethy'suL~yl nonadecy , nonylthiG p~n~a~ecyl, phenyl~ c o~t~decyl, ethyltnio 2G ncnadec~Il, ben~ylthio ~n~ecyl, ph~e~hylthio p~e-,nt~decyl, sec-kutyl~hio;octadecvl, na~h~hylt:~.io undecyl ar.d ~he li~2; ~lkox~ca~~ylal~rl s_ch as me~hoxyca~bonyl, etho~ycarbanvl, h~toY.yca-bonyl and ~.a like, cyclaalkyl sucn as cyclohexyl, cyclopentvl,~
25 cyclo-oc~yl, cycToheFty~ and t'~.e like, al~oxy~lkyh su-h as ~ethcxy-methyL, ~t~.~xy~e~h~fl, ~utoxymethy~
prc~axy~ hy!, per.to~ybut~l and ~he ~ ; 2~yl ~xi'2ix~l and a~yloxyaryl suc~ as phenox~,~kenyl, p~enoxy~6t~yl ~-anà the like; aryl~rya~ky~ such 2S phenox~decyl, 30 phe~oxy~ctyl and th~ l~ke, arylal'<yl s-~ch as ~enz~
pr.~nethyl, 8-phe~yloc~yl, 13-phen.~ldecyl ard th~ ~ ke;
alkylaryl such as 3-dec~ henyl, 4-cctylphen~ , 4, nonylphenyl and the ltke; and poly~ropylene gly~oL anc "i ' AME~'~E~ SHEET

~t~ '3 ~ G.~ )() > 1 - ~ J );39'~ . h ) 1 ~
s ~; 2 1 ~ 8 ~ 1 3 : ; i !
_ 16A
polyet~.y~le~e glycol ~erminated witn substl tusnls ~sucn a~ e~h-~yl, propyl, `c:utyl, phenyl, b~n~;l, to ~ styryl, p-phenylmethyl c~'' oride~ c~tyl, dodecyl, " ~ct~de~:yl , ~eth~xy-~thy ~, ,~

.,~ ` '.
.~s , .
..

.

:~ .
i~, ' ~1 ~ ~.

~a:
AMEN~ SHEEl ~ ,.
. .
,; . ~ .. ... .

~J.`. L~ U~ : U:"'J: "()~ 9 a~ 99q1~ "'' .-.
~.
`` 2148913 l ~1 - !
~r.oieries o~ ths ~or~La -C3~ococH~ H oCOOh.~ -C7H~CaO~, ~J -C.~ CCOU., -^gH~gC30~ -C iH22COGH, -CI~H26rOCH, -Clj.',cCOO~
;i a~.d -'-~7H~COCH arld -C~=C (C~;3) COOC~ C~ nd th~ i}ce.
,j '~ Such ~noni~, sulforiium 2~d phc~hon~ um L-ad_-2l s are wel 1 kr.own in th~ art and ca~ be derived from h~
-or-es-oGnding 2m` n~s, phocphines, and sul fides .
U~ef~ll s~el}ing~c3rQpa~ibil ~ ~g 5sents also lnc~. ud~
3 neutr_l compoun.ds. r~or e~-m~le use~ul swel~l ing~ccrn~2tib~ a~ents _~.~lude n~u~ral ami~e, 10 pn~sph ne, and su' ~ide ror~Ls cf t:te a~o~ re~^r~r.cec OXOIl~ ur.r. c~Jn-.pou~.As whic:rl hydr~gen r~nd t~ ~he ` ~e~s.
In this c~se, the origina metal c2t_0ns are not r~laced .
ar~ot;~ar c ~ss or s~le li~g/cor~2tib 1~zin~ ~g~nts 15 ra ~hos~ whic:~ or~ co~a'en.; boncs ~o the l~y2rs.
IllustrGt~e cf such asents use ~l in thP p~^c~ice of t.~is i~vention ar~ sil~ne coupling a~e~ ~ of the . fo.~ula:
~ 9)3R
: 2!~ ~n2re ~ is th_ s~me o- difre~ at ea_h occurr~.~ce and _s ~ yi, ~!koxy c~ ~x~-3ilan~ ~rov~ded at le~s~ one i3 al~ox~, and ~a is s~ ct~d _rc~ the ~3U~ c3.sis_i~g cf organic ~._dicals ~hich.ara cs~p~tib 2 ~ _h~
Fol~er f~.in~ the ~omFosite; ex-~ 2S 0~ SUC~ agen~s 25 i~clude alkoxysiLane compounds a~ ror exa,~ple cctadecyltr~e~hoxysiLane:, gamma-~minopropyl-` 1 , : , t~i~.hoxysi i~-L~ g~mz- ~i~oF~cpy7tri~ Gx~siian~, ga~-a~nopropylphen~ldimethoxysil~ne, g~mma-glyciaoxyp~p~l tripropox.ysilane, 3,3-~C epcx-lcyclohexyl6thyl trime~hoxysila~e, ga~a-p~o~iora~ida trethoxysilane, N-trime~hoxysilylp~cpyl-N~beta-a~i~ethyL; am~ne, t~imet:~oxysilylundec~ he, ;:'1 ! :
' trimethoxy silyl-2-chlor~methylp~.enylethane, . .
~f~A I~lnsD SHEET
:`
.
. ~ .... .. . . ..

~'?~ c~ 8~ 5.~ +~13 8~ ~a~J9~f~;> ~ a 1 `
..

~ `` ^` 21~8~1 ~ r~ ~
, i ," . . I
t 7 ~ -tri~.e~hoxysil yl-ethyl~henyls~lforL~ri-2ide, N-tri~nethoxysilyl?ropyl-~,~,N-t~ im~thyla~monium chl~ri~e, - t '~iner~ox~s~ lylpropyll -N-meth~ J, N-ciallylam~oni~m -~ chl~e, ~rlL~e,~hoxysylilprcpylci;lr.~ ate, 3-~3 .
'' 1.

-.
1~ .

.
,"
~, . .
'~
'.

~ ` .

' ' 1~ , .

;"~' ` :

A vlENDED SH~ET

;~j ~ ..... ......... ....

o~; El','~ iC~ 01 : 8~ '3~ '9 : ~()1 4 .~ u ~ 3 8~ 3'S') ~ 4 2:1~8~13 , ~``

1 ~erca~cpro~yL tri~erhoxys~ane, 3-isocyanatcpropy'- 1 triethoxysila3e, ~n~ t~ liX~. ~ r ~ In o~her ins,ances, _t is c~r.ven-ent to use a ~.
!,j, co~patib~l~ 77n~ ase~ tha~ 's dirf~r~rlt ~r~ tr.e, S swelling '7gent. '~ exam~le, ai`.~ la~.onium ca~ions ~.ay be used to replacQ the ~.e~a~ cat_o~J of a s~e~- t2 m~neral, and be p3rtlally repiac_d, i~ ~urn, 7y silane coupling a~e~t. I~ rhis -ase, ~he alkvla!~moni~
catio~ func~ions a~ a ~e-.e~al clr~3~ swel~ir~ a7e~7 ~C ~hile t:^e silan~i can .un~t_cr ~-, a c-~a~îbili7 ~g a~e~.t t:!at is hi5hl~y s~eciric to a selec_ed pcl~er , sy~tem.
1~ ~hs pre~r~d e.~b~_~en~s 5- ~hs i~var.ti^~., the swellins a~e~t, c~mpati~ ing agen~ a~dlor 1~ swellinq~co~c~tl~iliz~n~ agen.t wll irc~ude 2 mci~ry wh~c~ bonds to the s~r~ac~ c, t~.e ' _~rcd ~a~2~i~1 a~
will not be react~-e w-th ~~e p~ J~er. P-ef~r_b~y the.
agent wili ~lso i~lude a ~.oiety which dees n~ ~cnc ~ith t:e layered mat ri-~l and ~ni~h is _ompa i~le ~i,h t:~,e cly~er. -n tke pref~r_ed e~ ~C~7~rlts oC ~ S
. i~ e~ n, ~weili~glc~m~â'_ i~iz~ ag6nts are empl~ye~, espe~i~lly cni~1~ age. s and .i' an~ a~en;s.
In ~he pre~er~e~ em~c~i~ents o the in~ rtion lipop~ c sweLl'n~ ~-nd ~ompatik li~ing ~ents are ~5 ~lse~. Such agents will ~erer~bl~J incl~de a li~op~ilic S
~o~ticn as for exa~pl~ a long c:~ai- a~ y', a'.~enyi o~
.i clky'aryl grcup (~r~2~ y 0~ ~r_ t-ar a~c~_~ 9 aliphatic carbor~at~ms!. aUCn ~se~s a~e w~ wn i.
`.! ~he art and incLude silan~i compo~nds and the arlm~.GniurQ, . -.. . ~0 ~ul for~ um and phcs~honiu~n :der~ Jes ~f oc~adecylami~e~ ~ic~a~ecylphosphire, ~r~6;hyl dodecyl sulfid~, octadecylsul-ide, cimathtilc~dodec~-l a~ire, ':^ ' ' ', .!
Ar~ E~) SHEET

;:^ W094/11430 PCT/US93110819 i~`-2148~13 .

I octadecylamine, dioctylphosphine, methylocladecylamine, dioclysulfide, decylsulfide and the like.
The amount of swelling age~t/compatibilizing agent ~ and swelling~compatibilizing agents intercalated into 3 ~ swellable material5 ugeful in thi~ inYention may vary substantially provided that the ~mount i8 ~ffective to swell and, preferably to compatibilize ~he layers or fibrils of the intercalated material to th~ extent required ~o provide the decired ~ub~antially uniform 10 dispersion. In the preferred embodiments of the invention where ~welling/co~patibilizing ~gent~ are employed~ a~ounts o~ agents employed will preferably range from about lO mmol~/lOO g of material to about lOOO ~o}e/lOO g of ~aterial. More preferred amounts ar~ fro~ about 20 m~ole/lOO g to about 200 mmole/lOO g.
In the casa o~ th~ preferred ~ectits lay ~inerals, the more pref~rred amounts ara fro~ a~out 80 ~mole/lOO
g to about 120 m~ole/lOO g o~ layered ~ateria~.
Swell~bl~ and poly~er;-compatible intercalated . 20 msterial can ~8 ~or~ed by any ~Qth ~. Preferably ~uch m~terial~ ar~ foroed by int~rcalation o~ ~uitable agent or ~g~nts ir~ in~erl~yer or int~rf ibril 3pace~ of . t:h~ swellabl~ ~aterial by zlny ~ui~abl~ laethod. The ~w~lling/co~patibilizing agent~ are introduced into the int~rl~yer or int~rfib~il spac~ of ths swellable t~rial b~ any ~uitabl~ ~th~d a~, for ex~mpl~, by either in~ertion of neutral ~ol~cul~ or by ion exchangQ with ionic fflol~cul~ u9ing conventional proc~dur~8. In ~r~io~ of neutral ~ol~cul~s ~ay be .-i 30 performed by ~Xpo8~g fin@ly divid~d ~aterial to .:! : int realant~ in ~he form of a g~, neat liquid, finely ;~1 di~ided ~olid, or~s~te in a solvent which, preerably sw~ the material. Insertion is g~rally aided by - exposure of the ~ixture of intexcalant and layere~
;~ 35 materia~ t~ sh~ar, heat, ultra~onic eavi ation, or ~,~
.;.

WO94/11430 PCT/US93/1081~
21~8~13 microwaves. Ion exchange by ionic molecules may be performed by suspendlng the material in a relati~ely volatile liquid which is capable of both exfoliating and dispersinq the layers or fibril~ and dissol~ing a -salt of the ionic intercalant as well a the resultingsalt of the ion displaced from the material (e~g., Na , Mg2, Ca 2~, adding the alt of the ionic intercalant, and r~moving the material (now complexed with the new intercalant) fro~ the liquid (now containing the dissolved salt of the displaced ion). For example !
swellable layered mineral~ such ~s montmorillonite and hectorite (having primarily Na cations in the interlayer space~ intercalate water to ths point that the layer~ ars exfoliated and disper~ed uniformly in l water~ Di~persion in water i~ generally aided by mixing with rslativaly high ~hear. A ~1itable ~walling/compatibilization agent such a~ the hydrochlorid~ salt of di~ethyld~d~cylamin~ i~ then added in the d~ired amount after which the layers complexed with th~ am~onium catîon are separated from the d~p~r~ion, wa~hed og residu~} NaCl, and dried. In the preferred ~mb~diment. of the invention, the swella~l~ lay~red ma~erial is intercalated by ion exchangaO For ~x~mple, a su~pen~ion o~ a montorillonit~ or ~ saponite in water, ~ay be heat~d to about B0-C and ~tirred using a high ~peed ho~og~nizer ~ix~r, in a conc~ntration low enough to yield a 1sw ~i~co~ty di~p~r~ion fro~ which non-di~p~r~iblg particle~ can b~ ~eparated by sedi~ent~tion (~ineral ~f concentr~tion of about 2~ by w~ight, OE 5~ to 15% with addition of a peptizing agent such ~ sodi~
~exa~etaphosphate)O The dispersion i~ com~ined wit~ a soluti~n of a suitable swelling/co~patibilizing agent ~uch a~ an a~moniu~ salt (a3, for ex~ple the hydrochlorides of -octad~cylamine, ll a~inound~canoic ~ WO94/11430 PCT/US93/10819 `
21~8~13 acid, dioctylamine, dimethyldodecylamine, mekhyloctadecylamine, dimethyldidodecylamine, and the like) such that the mole ratio of ammonium salt to exchangeable ions in:the mineral is between 0.5 and 5 The amine-complexed layer5 may be separated from the solution by ~ome suitable method such as filtration or centrifugation, followed by rinsinq in fresh water, rough drying, and ball milling to about l00 mesh powder. The powder may be rigorously dried a l00-C to 160-C in vacuu~ ~or 8 to 24 h in the presence o~ a drying agent such a5 phosphorous pentoxide, to provide the desired swellable/poly~er compatible intercalated layered ma~erial. -Intercalated layered materials int~rcalated with 15 ~ilane~ may b~ ~orm~d by treating a ~wellable and poly~er co~patibl~ intercalated layered material I alr~dy int~rcalat~d with an onium cation with a silane coupling ag~nt in a swellin~ liquid, ~uch as dioxane, I' glyme, digly~e, dimethyl3ulfoxide, m~thylethylketone, ¦ 20 and the lik~, or by treating an aqueou~ suspen~ion of a ¦ layQred ~terial with wat~r-soluble ~ilane coupling ag~nts 3uch a~ trialko~y~ilan~. In th~ pref~rred ~mbodi~ents, ~ n~ intercalated swellable/polymer co~patibl~ intercalated layered material is ~orm~d a 25 ~ollowg~: Onium-int~rc~lated layered m~terial~, prs~rably prep~r~d a~ de~crib~d above are ~uspended and swollen in a swelling orga~ liquid and ~reated with a tria}koxysilane. For ex~mpl@, ~ont~orillonit~ p intercal~t~d with octadecyl~mmoniuD~ cation, at a~out ~0 3 0 mIaole o~ a~oniu~a eation/ lû0 g ~ineral, i~ co~bin~d ~j~
with dioxane~ to ~or~ a 5~ by wei~ht ~u~pension which is h~at~d to 60 - C and co~in~d with a dioxana solu~ion of aminoethyla~inopropyl trimethQxy~ n~, su ::h tha~ the ratio o silan~ ~o min~ral i about 20 ~mole/100 g.
The silan~ displaces the ammonium cation quantitatively L'.!'-~ ,`tl(,i~,CI7!E.~ 0 1 : 8 ~ 0: ;30 : ~ ) ' L-- + ~ '';3'J9~ ;5 ~

2 1 4 ~ r9 ~ 3 1 1 t~ fo~m a mixes 7 ntercalct2c I ~ered matarial ha~ g a~out 60 mm~ole c~ a;~umcni~lm cation ar~d 2~ lnmo' e o~
silane ~e~ laO g cf ~.ineral 7 ayers . ¦
~ ;n t;~e prefer~ ~d c~bodime~.tâ of ~ inve~ ?.., swel la~le and pol~cr-com?at~le inte~calared la~ered c;~m~aunds i:~cl~lde m~n~mor~ llo~!ite ~Gel~hit~ Hh~
Southern Cla~I Prod~t- ! co~r~pl~xc~ ~ith cctdecyl~ on~
cat cn ~lao rnrco~eJiO0 ~ r~l), mont;~c-lllo~it~
compiexed ~olcla~ T~.er- _an C-llo~ d~ Com~y) ~It:r 10 ~,~ ;d ~thyioct~decylacrmc~ m cc tior. ( 00 ~L012~ 50 ~), synthetic hectorite (T al:)orlite S, Lapar~e lràu~tr~es j coclplexed w~ th d ;~eth~,~ld_oct~ ~rLcnium catior. ' 8~
~nmole/100 g), comme-c_al y av~ organoclav ¦ -(Clay~one APA', South~n Cl~y ~roductsl, 15 ~nont~orillonite compl~xed w- th octadec~Jla.~l~.orlt ~ C5t~
~about 80 mmoleig~ and deri~r~.t~ zed w~ ~h ~inoethylar~ opr~ylr-~:~ethaxysilane (20 ~c~ 00 ~), ard t}~.e 1i!c~, ~ pre~erred use in :for~r~ r~g na~oc~mposlt~s, I t:~
20 swel~ in~co~pa~ibil ~i~g ager~.~ ls selectG~Y 50 hlt ~,~rhe~
sub~ ac ~d t3: the ~rc ess n~ ~ærn~erat~r~ c . t'n~ t- x poiymer (s~, it dces r.-t ~Jol~e decc~L3031tion~ ~rl ducts which c~n c~use chair. sci ~si~n o'r cthe~ cecrad~tic~
the ma~rix polymers . Special ca~e mus~ ~;e ta~:en! ~he~
75 polyrr.ers which ~ecuir,t high p~cess' ng empe~a~ es ara used. For exa~r.?' e, qua.ernary aK~cniurt~ cations ctart ~o thermall~ ciec~pos~ ~t a~cut 52~ ?~O~C ~ ~.t I .
al3carles and ami~es. ~n t~e Dasis o$ t~te~mal stait~il i ty, ~ :
silanes and onil:~ ca~icn3, that carnot IL1-dergc b~ta- ~-30 eliminatic~ are pre~e-r~d, e.g., a~r.onium ~ation or ~.the ~or~ula: ¦ .
[ ~ C (R') ~ C ~' L ) ] -I
AMENn~D SHEET
~` . I
!

. ... . . . ~ ... . _ _ /~ ~r ~ k;\i u I u l ~ - J l ' U ~0 ` ~i L } ~ T ~ ,_t, ~, 216~8913 ll f``- ;`

-''2,~
~here Rl~ is ~ryroger. or cn o~gani~ .~Loiet~, R is' ~n orqa~.ic ~oiety a,~d R - ~ s the sam~ or difre~er.~ at ~ach , .
occurrence and LS ar. organlc radic21. :

. ~,' 'r ~

` ' A~E~ EI~ S~'EEI

`~`W094/11430 2148~13 PCT/US93/10819 1~
Il .

: - I

~ The nanocomposite compositions according to the 1~
i - invention are thermoplastic materials from which molded r . article~ of manufacture hav.ing valuable properties can , ~ be produced by conventional shaping processes, such ~s ¦ 5 melt spinning, casting, vacuum molding, sheet molding, ~ injection molding and extruding. Example~ of s3uch 3 molded articles are com~onent8 for techni~al equipment, apparatus ~astings, household equipment, sport~
~quipment, bottles, containQr~, co~ponents for the 10 electrical and electronic5 ind~stries, car components, Ci~CUit8, fi~ers, se~i-fini3h~d prod~cts which can be shaped by ~achining and the like~ The u3e of the ~materia}~ for coating article~ by mean~ of powder coating proc~se~ is~ al~o po~ssible, as i~ their use as lS hot-melt adh~siv~. Th~ ~old~ng co~position~ according to the inv~nt~on ~r~ out~t~ndingly suitable for pecific applic~tions af all type~ ~ince th~ir s~pectrum o~ propertie~ can be m~dified in th~ de ired direction ~.1 in manifo}d way ;1~ 20 Th~ co~po~it~ons o~ thi~ invention which include di persed pl~telet particle5 are ~pecially useful for f abrication og ~xtruded f il~ and f il~ laminate~, as or exampl~, film~ for use in food p~c~;aging. Such film~ can b~ f~bricated using conventional film ~xtrusion t~chniqu~. The ~ilms ~re pr~erably from a~ut 10 to zlbout 10~ ~icrorls, more prefsrably from about 20 to ~bout 100 DliC~ron~ and ~ao~t prefera~ly fro~a 3 ~bout 2 5 to ~out 7 5 ~icron~ in th~ ckne~s . In ~he f i}EI~ the ~ajor plan~ o~ the platel~t ~ r~ is sub~t~ntially par~llel to th~ mz~or pl~n~ of the ~ilm.
The eXtQnt e~f p~rallelis~ of particle~ and f il~ can be d~ermined by X-ray analysis. X-ray analysis is a useful way to de~cribed the cry~t~}linity and orientation of polymer crystals and th~ orientation of platelet particles. A convenient method of X-ray ? ~ ~

W094/11430 PCT/US93/10819'~............................................ f ~ ~:
2-:14X~l~

analysis is that described in X-ray Diffraction Methods ;~
in Polymer Science, L.E. Alexander, Wiley, NY, pp. 137- '-229 (1969), hereby incorporated by reference.
For the purpose of the present invention Op, the platelet orientation factor, i~ an indication of the platelet particle orientation in the film. The Op was d~termined by m~king azimuthal scan~ from densitometer tracings of the X-ray photogràph~ which were obtained by ~xposing the edge of the film to the incident X-ray The angle is the angle between the re~erencedirection, the normal to the film, and the normal to the plane of int~rest, th~ major plane of the platelet.
Th~ Op values were calculated as the aYerage cosine square (<co~2t~ ~ where ~ is the angle between platelet nor~al and th~ ~ilm normal) for th~ nor~al to the flat face~ o~ th~ platelet particle~. An Op of l.0 indicate~ that th~ face~ of the platelQts are complets}y paralleI to the plane of the ~ilm. An Op of O.O indicates that ~hQ ~aces of the platelets are perpendicular to th~ plane of th~ film. The Op of the platelets in th~ fil~ o~ t~e pre~ent in~ention i~
pro~@rably frQm about 0.70 to about l.0, ~ore pr~rably ~rom about 0.90 to about l.0 and most pra~r~bly fro~ a~out 0.95 to about lØ Such pr~rr~d orisntation of pl~let partic~e~ resul~ in ~hanced barri~r propertie and increa~ed tare ~tr~n~th.
Th~ ho~ogen~ou~ly distributed platelat particl~s and poly~er ar~ f or~ed into a ~il~ by ~uitable ~ilm . ~-~0 for~in~ mQthods. Typically, th~ co~po~ition i~ ~elt~d i and forced through a film for~ing di~. The die can be a flat di~ or ~ circular di~. A typic.l ~lat di is a -h~nger sh~ped die, and a typica} eircular die is a tubular ~ die.

.

~ ` WO94/11430 214~13 PCT/US93/]0819 :~

.

.

- 25 - ;
The film of the nanocomposi~e of the present invention may go through steps to cause the platelets 1-to ~e further oriented so th~.major planes through the platelets are substantia}ly parallel to the major plane through the film. A method to do thi5 i5 to biaxially stretch the ~ilm. ~or example, the film i~ stretched in the axial or machine direction by ten~ion rollers pulling the ~ilm as it is extruded fro~ the die. The film i~ simultaneously stretched in the transverse direction by clamping the edge5 of the fil~ and drawing the~ apart. Alternativ~ly, the film i~ ~tretched in.
the transverse direction by using a tu~ular film die and blowing the fi1m up a~ it passe~ ~rom the tubular film die. The films of thi~ invention may exhib~t one or more o~ the following benefit~: increa d ~odulus, wet ~tr~ngth, and dimensional stability, and decreased moi5ture abaorption and permesbility to ga~e~ such as oxygen and liquid~ such a~ water, alcohols and other 501v~nt~
The following exa~ples are presented to ~ore particular illu~trate the invention and should not be con~trued~a~ li~itation thereon.

Dilut~ nanoco~poYites a~ organoclay in nylon 6 we~e pr~p~r~d by e ~ ruder eompounding, and characterized by ~ :
xr~y di~fraction, ~ , og th~ exkrud~te and ~echanical properti@~ of their ~njection mold~d t~t ~a~ples.
Th~ dilut~ nanoco~pa~ite~ w~re prep~red ~ro~ a dry 30 ~iXtUrQ 0~ (1) Bentone 34~ ~owd~r (a ~ont~orillonite who~ native int~rlayer cation~ w~xe ion exch~n~ed ~or . :
dimethyldio~tadecyla~onium cation, obt~ined from Rh~ox~ IncO ) and (2) unfill~d nylon ~ pellets (capron 8209F, obtained fro~ Allied-Sig~al); by co~pounding the ~:~ 35 mixture using~a twinser~w extruder equippad with WO94/11430 PCT/US93/1081``~ ~
2 1 4 8 ~ 3 3 r i g~ner 1 purpose mixing screws. Prior to compoundiny, the Bentone 34 powder was vacuum dried at 60~C to a detectable moisture level o~ le,ss than about 0.2%, and the nylon pallets were vacuu~ oven dried at 80C to a 5 moisture level Qf less than about 0.1%. The mixture of ~:
Bentone 34 powder and nylon pellets was firs~
compounded into a masterbatch which wa~ determined by its ash content to be about 0.2% by weight inorganic, presumed to ~e aluminosilicat~ from the Bentone 34.
10 Portions of this masterbatch were compounded with additional nylon 6 p~llet~ to yield extrudate having ealculated miner~l concentrat1ons of about 0.1, 0~05, and 0.01~ by wei~ht.
After vacuum drying, the final extrudate~ were 15 analyzed by XRD and found to be, in general, about 65%
amorphou8, 30% in a~ga~a cry~talline pha~e, and 5~ in an alpha crystallin~ phase. The variou~ nanocomposites plu~ an unfilled nylon 6 control were injectinn molded into te~t 3a~ple~ using and Arburgh in~Qction molder, 2 0 and a portion of set o~ samples wa~ immer~ed in water f or 21 day~ at a te~peratur~ of about 2 0 c . The f l~xural al~d t~n~ile propertie~ of th~se ~amples, both dry ~nd w~t, wQr~ dete~ined according to the procedur~s o~ ASM D790 and AS$~ D638, r~pectively.
25 Th~ notc:h~d ~mpact: strength~ of th~ dry sample~ were d~e~r~ined a~cording to th~ pr~c~dur~ o~ ASTPS D2 5 6, and th~ir a~r~rAg~a v~lues ~re ~e'c f o~th in T~ble 3 . The flQxur~l ~nd tQnsile propertie~ are . ~t ~orth in Tables 1 through 4., ~ W O 94/11430 21~8~13 PC~/~S93/10819 T~la l. DRY lUB ~O~DED FLB~nU~ PROP ~ TI~ ~lL3T~ D79 (Inj~c~on rnold~d sampi~) _= ~_ ~-- - ~ _ nylon a~Lllinrty n~xural rno4ulu~, ~ changn in ~xur~ tron~ ~ chan~ootganoday^ ~ alph~ / p~ MP~ flsxur~l to S~ ~ in, p~ in fl-xur~
% ~mrn- rnodulu~ in (MP~) ~r-n~
n ~ to r~l~ to unflii~ nyton I-nfili-d _ ~ _~ ~ _ ~ _ ny~n W: 20 / ~ 401.000 t2,T70) O 15,700 (108) O
unfil~ ___ ~ _ _ ¦ _ _ .
: 0.01% ~5 1 30 ~,000 (3.070) 111~ ¦ 17,300 (120) 10~ ¦
L~ ~5 ! 3o 453000 (3~130) 13~ 118,000 (124) ~5% I
0.1~% ~s / 30 ~58.0~0 ~3.1~01 1~ 18,0Q0 ~124) 15~ .
~--- - - - - - - =, :
~: 20 U~ 0 (3.~0) O 17,~00 (t18) . O
Iur~ d_ _ . ... __ ... - . :_ . . , _ . .
¦ : 0.01% 20 __ ~,OOD 13.~X) 1% _ ¦ 17,~00 (1~0) _ 2% :.
L: : 0.015% 20 _ ~51.040 (3,120) 1% ¦ 17,~ t120) _ 2% -.
o lo~20 ~ 0 (3 1~) 3~ 17,4~ ) L~;~ t p~3rco ;~;3~ ed from 3en one 34 (~ontmorillonite co~plexed with quat~rn~ry ammonium : cation) . .
2 0 ~ 2 . llA~ TIIIIAT~D: IL----DV~ RROPg~ 8 ~npe~on mo~d sami~ bnm~d 3 w~ in wsb~s _ ~ ~
nybn: c~lty lbxùr~l % elw~ in fl-x~ 2ro~ to # ch~
2 5 ~ ~ ~ / modu!u~, isd fll~xw~l ~ ~n, psi in fl~xu~a~l ~ U pAP-) rno~ ~8) r~ O
~bd ~ nylon , .-_ __ _ __ , ...
N~: 3~`t ~ ~ 1t) 2~ ~ , L~ .~,, _ __ ~ ............. -:
L~ ~ 30 .~oo s~7) . ~ 22~ 310D 122) 24%
L~ 1~/ 30 79,~X ~5~0) 32~ _ 3.~ 33S
3 0~ 17 / 3S n.o~o~so ~1~ 3,~X ~O 3J~
: ~: 100;~DO (ISI~O) 4,0tlO ~8~ . t `
~d ~ _ . ~--. :oo1~ ;Iw~O ~ o~ 3.9X ~7) 01 0 03~ 101.~0 ~7a3) 2% _ 4,030 ~ 1 _ ___ _ .
3S :o10~ ~ ........ 1~XO ~ 2~ ~,030 P~) 1~ ^.

:

W094/~1430 PCT/US93/1081~
21~8913 aO weight percent clay mineral derived from Bent~ne 34 (montmorillonite complexed with quaternary ammonium cation).

T~bl- 3. DRY AB ~O~D~D ~ D P~OPER~8 (A8T~ D638) ~ml~ m~d S~TIph~) _ e ~ c n~n: t-n~ib ybld % d~ in n~ch-d ~hn~t~on to org~ y str~ t~n~ib y~ld imp~ br~
(MP~) ~r~ ro~a~ to tt.lb~/lnch un~ d nylon (J/m) _ , ~ ~__ ~ ~.,. ~-10~ unfllld 11,200 ~ - . 1.~ (~) 2~0%
: 0.01~ 12,000 (83) 7 '$ _ 1.2 (6~) 1S0 :O.OS% 12,~ ) 11~ 1.2 (6~) 90 .
_ - _ _ _ _ _ ~ - . _ I
L~ ~2.3Q0~ # ~ 5) 100 12,2~0 (~) ._ 1.1 (S8) _ 20 I5I :o.o1~ 12d~ ~) o%_ 1.0 (~)_ 20 . I :_o.~_ 12.~ o~ o.~ o .
~; ~ !: ~%- .~ , ,.~ o~,~, ~o : ~ ' ~5LL~L~ T~ 8AT~aAr~D ~8S~ PROP~RTIE8 ~A8TX D63~'3 ~In,o~on rndd d wnpb~ imrn~ in ~r 3 ~) :
_ ~ _1 : nybn: t~db yldd ~ ~ ~n ib; _ 2 5 o~ P~l (~) yb~ ~ to b~.
: unfil~i ny~on %
. I _,_ _ _l " ~
_: untill d_ 3,tC~ ~1? _ 300% _ : ~:QOt~ 3.900 ~ 2~ 260 ; ~ ` : 0.05S ~ 1~ ~ Z~
0~01~ 4,~ 270 ~` ' 30 N~:un~ i ~ _ 300 _ : O.O~S ~,11110 ~ 0 ~ _ . 2~0 _ ! ~ o~ 5.~ (~!: _ . _~ x4 : ~.10% 5.~ 1) 2 % 2~0 ~: _ ~__ , ...
;'~ 35 T~e ~trength and stiffnes~ of dry nylon 6 are increa~edby at least l0 ~ by the addition of dispersed ~ organoclay~at concen~ration~ a low a~ 0.0l % ~y c,~ weight(or about 0.005 % by volume). At the same time, ., ~::
:~ :

~, WO94/11430 2 1 4 8 ~ 1 ~ PCT/U593/10819 : - 29 - :
the toughness of dry nylon 6 (as suggested by the ultimate elongation and notched impact strength) is o~ly sligh~ly reduced by the addition of low -concentra~ion~ of dispersed organoclay. At high moisture content; the strength and stiffness of nylon 6 are increased by at least 22 S by the addition of dispersed orgaDoclay.

o~D~
Dilute nanoc~mposites of organoclay ~Bentone 34, ,-.
obtained from Rheox, Inc~) in nylon 66 (~ytel lOl, obtained from DuPont) w2re prepared, injeotion molded, and characterized according to th~ proc~dures described in Example l t and the re~ult~ ~re et forth in Tables l 1~ ; 15~ through 4. According to th~ir XRD patt~rn~, the~e ¦~ nylon 66 nanoco~posite~ ~xhibited cry~tallinity that wa~ substantially tha sa~e as unfilled nylon 66 which I~ wa~ about 20% in its alpha crystallin~ ph~e and which doe~ not form a gamma cry~tallin- phasQ.
Unlik~ tho~ of nylon 6, the ~trength and stiffness of nylon 66 (both dry and water~o~ked) were in~reas~d by only about 1% to~ 3% by the addition of di~persed ~; : org~nocl~y ~t concentr~tion3 of 00 05% by w~ight or . Tha ~:oug~ne~s of dry nylon: 66 (a~ indicat~d by 2 5 ulti~t~ elo3~gatio~ and notched i~pact stre~sgth) , r~in~d l:ow compared to nylon 6.
: 1 : A ~lxtur~ of organoc~y ~l2ytone APA , a -montmorillonite compl~xed with a tetra~lkyla~onium catlo~, obt~ined from 50uthern Clay Product~, Inc.) and A~
; nylon 6 tCapron 8209F, o~tained~from Allied-Signal, Inc.~ wa ~t N ded and injection molded into tsst `~ ~asple~ who~ Drop W~ight I~pact Strength w~.
detenmined~8cco~dlng to the p~oeedure3 of ASTM D30Z9.

" :

U ~ ", I.~V _"~ ~ r ~-_J_~~J ' )'J.J r tr~.> . ;t ~ I

;``` 2148~t3 ,o i :.
The T~.,neral c~ten~ cr the e;~trucat-, e~t~ .atec ~ its ash co~tent, was ~Gu~ ~. 0 ' ~ ~ b~ eiG~t `~he o~g~ncclay and ny' ~n ~ we~ epa~ed and extr~lceG
accordirlg t~ the ?rGce~r~s -~sG~i~ed 1~ E.ca~.plel 1.
The r2sults of t:~e r)r~p Welg,`~ act te-~ ~ a'l cr.7 w~
th~s~ or flaxural ar.d te~s~ a ~es~s, ~re S5_ fcrth ' n Tabl~ 5.
A~ ding ro ~~s .C~J ~a-te~, th~ 1G~ crsanocl~ -compos ` te ex_ru~a~e w~s 4()~ c~ ~s -1~ n_ a-. r~ cn O ~ammc-Dhas~ c. ys~al " t~s .

T~lo 5. 5~-RICH vs ALPE~-RIC~ ~YL-ON 6~:
F!sxu~, Tensll~, and Drop W~ignt !mpsct P~petti~s ~drv ~s ~ntJldt~
. . . _ _= `~ ~--~ _ t711er cys~lru~i~ f~l n~u~u~" ~un~ 5t~S to I u~ dr~p ffl~gnt alphal* ,~d (MPa) 5~, a~in' K&sl I ~atit~n. impscl ~arnma (MPa~ ~ ~, stren~h, N rn . _ . ~ ~- ,~ 'i1 _ ~2/2~ ~t3,0~ 1 18 ~1~,4) L i 1s7~ll6) 020%~ 22~ 3 ~a40) 17 (11l) ~ 87~64?
I Mio~onnt~ ~ . ~:
--~ - ~
a. C rystalll'nity t~f ext~uda~ e dPterm~he~ x-~a~
dif~r_ct~ ~n.
'2 0'~ ,t~ tup .

0 COMPAR~TIv~ EXA~P~
, ~ mixture or^ ~r.iorcfin~ t~lc ~3~T-2 CO, s`r~~i~ed fr~m P, i~r~ 2nd nyi~n 6 ~ Pr_n ~O~F~ wa;, ex ~_d~d ar~d in~ec~ion moL~ed into t-st s,~ pl~ hose ~
We~ght Impact i,tre~gt:e w.~s cet~ r~.~ ne~ acc::r~ .g t~ ~e 5 p r ~ c 2 aur ~ s ~ T 2 ~ r t ~ e ~, ex~udat2r esti~atPd b~ its ash c3nt~nt, wc s a~o~ ~J .18 by we~ ght .
EXP~E 3 A Se-ies of ~ery dih.~e ryLon v~o~g2r.c;:La~ ' 30 nanocompositeS was ~repa~e~ ~y ri~st co~cunc~ s, Clayton A~?A with nylor, 6 (C~p~ on ~2C~-) --~.1' GwLn~, -h~
.
: AM~N~ S~EtT

,:

'r~C~ . VO~ 'A ~ c~lE\I 01 ~-1 1-94 : ~ : "() I 4~ ' 1 ; +~ 89 '>3~;1'y4~

,, .
li~` 21~18~

., , _ 3 1 _ ' ~r~cedures d~scrlbed in r.xample 1 to proa~lce a ~ i masterbatch, and then re-ext-uding po~'ion;, of ~e masterba ~ch ~ith unf illed a20~F nylon 5 . The ~.iner21 content o~ the ~esL~ltirl~ na-noc~mpcsit~s, as caLcu7ât ~`1; . S based on the ash conterlt -of t:r~e mas~e-~atr~ (0 . oi~ ~y `~ ~eight), were ~.00~, 0.0~36~, ana 0.0~ by we~aht.
~nJ ~ction molded sæ~pl~s ~ ~he dilu~e com~osite~, unfilled 8~0~F nylon 6, 3~d ~ke talc-nucle~ted n~lon r ol CorrLparative Exam~le 2 were chara~~rlzed ~y ~RD and 10 tested ~'or the~ ~ rnech~nical pro~er i~s i~ccord~.~g to rhe procedure~ of ~ST~ D ,go ~n~d ~or t:~lei~ ater u~ta~2 .!j dllring prolonged i~nmersion. T`~e res_lts o- the~e .-sts a~e set forth in Tab' e 6 .i 15 TABLE 6, DILUTE N6~0RGP~NOCL~Y COMPOSITES (AST~,~790~3 r--__ ~ __ ~
clayc~rt~, cy~ii~ ~exuralmodulu;, I ~ai~5to5~ wa~up~ by I
pp~n b~ j ~6 alph~ ~amma K~ UPa) I nra~, ~psi SMPa) wo~hPI I
~ (~,~ ) _____. _ _ O~111 ~0.4nm) (64A) ~ ,770) 15.7 (108) ~.t ; . _ _ ~ __ ._ ' 18O I ~g t~,5n~ 438 ~3,030) 17.9 (lZ4) 5.~ 1 __ . ~ -- _ . -~, 360138 (i 1nm~ OA) 439 (3,t~0~ 17 ~ ~123) 5.~ i .~ _ __ so O ~ lOn~) tl o~A) 439 ~3~30) l, .~ (123) 5.
I _ . _ . _ ~ .--I
',~ 180 014;~ m) (12QA) 43g (3,030) 17.7 ~? 4.3 ¦
"~ . ~ ... ~ _ . ~_=
-1 2,000 tak _ 440 (3,040) ¦ l 7.0 ~117) ¦ 6.;
~1 ~ . . ~.

f a. Mineral cc)ntent deri~e~ from Clavtc:ne ~A~
`~ b. Crystallini~y of 1~4 inch molded sar~p~ es, ~ased on , i 20 X~D analysis c. Iqe~sured aft-~ t~o we~ks 5f~ mersion i r wzt~r 2~ C.

All o~ the dilute n~:~n ~/~_ganocl ay compos1lt2s 25 exhiblted greater stif~nes3 and s;rength t'nan unl~illed nylon 6 and grea~er re~1stance to water absc~pti~n thcn the talc-contain~ rg nylor~ 6 of Comparati~e Ex~ple 2 .
The ~nolded sa~ples chara.ct~ri~ed by XRI: were founa to i i A~AE~E~ S~.EET

.` 1 .
... .

~C\/ ~o,\~ C~ 8~ 9~ 0~ '701 ~ 0'~ +'1`9 8';3 ')~994~6.~ >~ ~

.~. :`.. ~ .
`~` ` ` 21~8~13 'I
.` I .
.
. ~ !
_ 3 ~ _ .
consist c_ a~out ~S to 42~ camma c~stalline ~.ylon 6 and 1~ th~ about 2 ~ ~f t~e al ~ha fv~n . ;n cor~tr s a s~ple cf urLfilled ~20~ nylon 6, ~Lolc~ed under' t:ra same condi~ions, wa.s fcu~;d to ha~2 com~arable t~tal S crystalli~ity (~0~ but wit:~ ~n alpha to gar;una ratio of 72 to 28. The ai'~' ard perIecticn cf the il crystallites ircreas~c. wlt~. ~ ncr~asir~s cla~ cor.t6~t .

,.
~X~iP~: 4 A nylon 6~org~no~:' ay c~poslte hav_ng a~:cut '0 ~27Ss clay ~ine~al was pr~parec: ky compou~ding ~ mi~c~ur~ o~
pow~ered montmo~illonite, comp ~ exed with ~rotona,~ed 11~
ami~au~decano~-acil, wi~h nylGn 6 ,,elle~3 ;Ca~ron 8207F) accor~ing t~ the prcc2dures descrir~d ~ n E~ample 15 ~
The orga~oc' ay powc~r w~s prapared b~l C~ N-r~ a 4~ ~isperslcn c~ ~ontmo_llior.~ te (Gelwhi~e ~F, obtained frorn Southexn Cl ~.y Pr~ducts) w~ ~h ~n aqueous solutio~. o~ æ~.inounceca~cicaci~-HCl ~100 nL~o1:~/ 100 c 20 cl y) at about 80 C und~r h~ ~;h-shear mi~
1Oc_ul~tad produc~ ra~ f~ red, ~ashiad 4; i:nes. wi.h hot wa~er, dri2d at 60C in v;~cuum, tu~bled ln baL' mill, and p~ssed ~hrou~h a 200 mesh scree~.
Pellets o~ nyl^n 6l0rg3noclay compo~ite a~d als~l 25 pellets o~ ~ co~nmercial ~a~rna-rich nyl cn ~ ~ iO17~, obtained from Toray) wer~ anneal ed ~or 2 hou~s ~t various tempe~^aturas, a~d wer- c.~ar~c~rize-~ ~y ~;~^ r X~D patterns. ~rh~ c-ysta~ .ities cf the s~pl~s a~-ex `, anneaLi ng are set fort~ in ~a~le I .
.~ ' i.

, ~ .
.1, !
.~ I
`1 AMENDE3 S~!EET
i ... .... .. . _ I~C~ . ~'O~ El~ ;CHEI~l O I ~ 9~ 0: 31 : 2~1 465 :20'>1~ +4 ~3 8~ 239~ 8 l .-~., ' ' ``- 2148~13 3 ~
.
TA~ 7 . GAM~ CRYS~INI TY OF A ~ 6/OR~O~:L~Y
~ANOCO~IPOSIT~ 3R A~ G E~R IrWO HO~ et~x;n~ ne~
by X-~ay l:)if fraction) ~.- ,_ ~ _ i F~ '-NT OF TOTAL (~RYSTALLIN~Y I N GAMMA F! IAS~' ¦
'i ~Tlph - ~ ~ __ ~ , ' . ~
b~t~e anne;~ 195 C 2~0 C ~05 C ¦
' ~ . . __ , 0.27%c~ 88% 42q~ 4C~ 33~ , ~ Tor~y 1017K ' ~5% ~4~ _ 1 131~ ¦
3 l . __ ~_ _~ . _ _ _ _ 5 a 'rc~21 -rystallin t~ cr e~ CiarQ~le ~a i a~ou- 5~ t-~
3 ~iC~

1 0 ~LE S
A~. immiscible blend o_ nyl^r 6, ct nta_-i..g 1~
~, dispersed organoclay, and a r~er racdifie~ exhi~i~s ~ ncreased flexural strength and ~nodulus, rel2ti~e -G
si~niiar blend contain~ na r.c organoclay, w~ile r~,tainin~
1~ its im~act strerlgth . Th:e blend i s p~par~d l~y ~11 J
compoundin~ nylon 6 with ~r,ontmorill~ni e c~mp e~ed protar.ated di?entyla a~m~nium ~ati~n in a t.,finsdr2w extnld~ r such that the ~;om~c s i t e comp r l 3 e s abcu _ C 2 `3 mineral by we1 g:rLt, ard t2) co~-oaundlna the nylol:~
~, ~0 6/ara~clay c~m~?osite wit~:~ a Z~ iono~er c~ i poly (ethyle~e-~o-methacry~ acid~ (Su~l yn ~slo,~
obtained ~rom ~uPont ) such ~hat tne blend c~r.r.or~ses a~out 20~ by weight Surl~ The re:;ul~ing '~lend exhibits predtaminGntly gamma c2:ystallini~y ir i~s ~y~o.
25 6 ~raction, while the b~ e~d a_ Su~lyn ar. ~ylc-~ ' o ~; ho~polymer t_xhi}:)its predo~sLinantly al::~ha crystalLlirllty ~! ir its nylon fraction.

:!1, 30 P~ dilute com~:osit6 o~ ny'~go~ 6 and part~ c1 es, o~
~i _ dispersed clt plateletst c~rising no or.ium o~
.: j , . ¦
AMEN~ED Si lEET
.
''I . .

~C~ C`HE~I 01 : 8-11-94 : 0: 31 : '7~ 1)'71- +~9 L7~ ~.39~
~; 21~8~13 1 :~

.
-- 4~
orga~rlic grou~s covalently Dcnded to tAe cl~y, exhi~its lncrezsed strength ar~d ri~ ty, and p~edo.~_nar,t~ y gamma crystallinity. Th.~ _omposite is ~re~ared ~y (1) ~ix~ ng, at ~.igh shear, m~nt~.or~ llonit~ e~ala ed 5 ~ith Na~ ca' ions with mcl t2r. caprolactam a~d wat~r ' n a ratio o ~ a~out 1: 3 ~ 2 3 r~mo~in~ WZ.ter ~-om a I
powdered t~r~ of the ~ixtu~ y v~ cuum. d~y_n.$, ~) compourldin~ the mixtu~e with n~lon 6, in an extrt~d~, an~ ~ 4 ) 1 eaching the caoxolzc ~ rom th~ extrudate O with '~c)iling ~ater.

' A composite o~ nylon 6, or~anoclay, an~_ ~ cs's _ib~r ~nd ali other non-nucleat' n~ ers ~no~ r~all y lJ8 15 in-h in lenslth), ir} a ra~i~, of ~k~ut 8~ O . 2 ; 15 by ~eishtr eixhi~i~s high~r s~reng~h and stifr.ess rrlati-~Je to a si~.ilar cc}nposi ~e cor~t ~ ir~ing nG organccl~y . I Tne co~pcsi~a also exhi~its ~ir~dor~inant1~ ~a~
crysta1 inity in its n ~rlcn ~iract~ on. The ccm~oslLte ~ s 20 pre~are~ ~y com~ound_r.~; nv'' C.L ~ ~ectcrit~ ccm~lex2d ith protohated ocwac2cv1ar~.onium _~tl ~L;~ ænd t~
, ci~imp~unding this ~anocc~Lpos ~ it~. ~laas ~ik~r .

.

~, .

i ' ~,~

~~ AMÉ~I~E~ SHE~
J

Claims (11)

WHAT IS CLAIMED IS:
1. A composite material comprising a polymer matrix comprising a gamma phase polyamide, wherein at least about 1 weight percent of said polyamide based on the total weight of said polyamide is in the gamma phase, having dispersed therein less than about 0.5% by wgt. of the matrix of an organophilic particulate material selected from the group consisting of layered materials having a thickness equal to or less than about 20 nm(200 .ANG.) and fibrillar materials having an average diameter equal to or less than about 10 nm(100 .ANG.).
2. A composite according to claim 1 wherein the amount of dispersed particulate material is equal to or greater than 5 parts of material per million of matrix (ppr.).
3. A composite according to claim 2 wherein said amount is equal to or greater to or greater than about 10 ppm.
4. A composite according to claim 3 wherein said amount is equal to or greater than about 20 ppm.
5. A composite according to claim 4 wherein said amount is equal to or greater than about 100 ppm.
6. A composite according to claim 2 wherein said particulate material is a layered material.
7. A composite according to claim 6 wherein said layered material is a phyllosilicate.
8. A composite according to claim 7 wherein said polymer is selected from the group consisting of polyamides formed by the polymerization of an amino acid or a derivative thereof.
9. A composite according to claim 8 wherein said polyamide is nylon 6 or nylon 12.
10. A composite according to claim 9 wherein said polyamide is nylon 6.
11. Articles of manufacture formed from said composite material of claim 1.
CA 2148913 1992-11-16 1993-11-09 Nanocomposites of gamma phase polymers Abandoned CA2148913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/976,600 1992-11-16
US07/976,600 US5385776A (en) 1992-11-16 1992-11-16 Nanocomposites of gamma phase polymers containing inorganic particulate material

Publications (1)

Publication Number Publication Date
CA2148913A1 true CA2148913A1 (en) 1994-05-26

Family

ID=25524264

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2148913 Abandoned CA2148913A1 (en) 1992-11-16 1993-11-09 Nanocomposites of gamma phase polymers

Country Status (5)

Country Link
US (1) US5385776A (en)
EP (1) EP0668888A1 (en)
JP (1) JPH08503250A (en)
CA (1) CA2148913A1 (en)
WO (1) WO1994011430A1 (en)

Families Citing this family (225)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700560A (en) * 1992-07-29 1997-12-23 Sumitomo Chemical Company, Limited Gas barrier resin composition and its film and process for producing the same
WO1995006090A1 (en) * 1993-08-23 1995-03-02 Alliedsignal Inc. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates and organo zirconates dispersed therein and process of preparing same
US5955535A (en) 1993-11-29 1999-09-21 Cornell Research Foundation, Inc. Method for preparing silicate-polymer composite
US5530052A (en) * 1995-04-03 1996-06-25 General Electric Company Layered minerals and compositions comprising the same
US5578672A (en) * 1995-06-07 1996-11-26 Amcol International Corporation Intercalates; exfoliates; process for manufacturing intercalates and exfoliates and composite materials containing same
US5849830A (en) * 1995-06-07 1998-12-15 Amcol International Corporation Intercalates and exfoliates formed with N-alkenyl amides and/or acrylate-functional pyrrolidone and allylic monomers, oligomers and copolymers and composite materials containing same
US5698624A (en) * 1995-06-07 1997-12-16 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising matrix polymers and said exfoliated layered materials formed with water-insoluble oligomers and polymers
US5844032A (en) * 1995-06-07 1998-12-01 Amcol International Corporation Intercalates and exfoliates formed with non-EVOH monomers, oligomers and polymers; and EVOH composite materials containing same
US5760121A (en) * 1995-06-07 1998-06-02 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
US6228903B1 (en) 1995-06-07 2001-05-08 Amcol International Corporation Exfoliated layered materials and nanocomposites comprising said exfoliated layered materials having water-insoluble oligomers or polymers adhered thereto
US5837763A (en) * 1995-06-07 1998-11-17 Amcol International Corporation Compositions and methods for manufacturing waxes filled with intercalates and exfoliates formed with oligomers and polymers
US5721306A (en) * 1995-06-07 1998-02-24 Amcol International Corporation Viscous carrier compositions, including gels, formed with an organic liquid carrier and a layered material:polymer complex
US5552469A (en) * 1995-06-07 1996-09-03 Amcol International Corporation Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same
EP0771854B1 (en) * 1995-11-02 2004-06-02 Mitsubishi Chemical Corporation Crystalline thermoplastic resin composition
KR100453938B1 (en) 1995-11-07 2005-01-31 사우던 클레이 프로덕츠, 아이엔시. An organic clay composition for gelling an unsaturated polyester resin
US5830528A (en) 1996-05-29 1998-11-03 Amcol International Corporation Intercalates and exfoliates formed with hydroxyl-functional; polyhydroxyl-functional; and aromatic compounds; composites materials containing same and methods of modifying rheology therewith
US5880197A (en) * 1995-12-22 1999-03-09 Amcol International Corporation Intercalates and exfoliates formed with monomeric amines and amides: composite materials containing same and methods of modifying rheology therewith
US5804613A (en) * 1995-12-22 1998-09-08 Amcol International Corporation Intercalates and exfoliates formed with monomeric carbonyl-functional organic compounds, including carboxylic and polycarboxylic acids; aldehydes; and ketones; composite materials containing same and methods of modifying rheology therewith
US6287634B1 (en) 1995-12-22 2001-09-11 Amcol International Corporation Intercalates and exfoliates formed with monomeric ethers and esters; composite materials containing same methods of modifying rheology therewith
JP2000505491A (en) * 1996-02-23 2000-05-09 ザ・ダウ・ケミカル・カンパニー Dispersion with delamination particles in polymer foam
JPH09295810A (en) * 1996-02-27 1997-11-18 Du Pont Kk Composite material and its production and composite material-containing resin composition and its production
US5730996A (en) * 1996-05-23 1998-03-24 Amcol International Corporation Intercalates and expoliates formed with organic pesticide compounds and compositions containing the same
US5916685A (en) 1996-07-09 1999-06-29 Tetra Laval Holdings & Finance, Sa Transparent high barrier multilayer structure
US5905000A (en) 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US6933331B2 (en) * 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US5962553A (en) * 1996-09-03 1999-10-05 Raychem Corporation Organoclay-polymer composites
US6652967B2 (en) * 2001-08-08 2003-11-25 Nanoproducts Corporation Nano-dispersed powders and methods for their manufacture
JP3793297B2 (en) 1996-11-01 2006-07-05 デュポン株式会社 Low density polyethylene-layered silicate composite material and method for producing the same
US6124365A (en) 1996-12-06 2000-09-26 Amcol Internatioanl Corporation Intercalates and exfoliates formed with long chain (C6+) or aromatic matrix polymer-compatible monomeric, oligomeric or polymeric intercalant compounds and composite materials containing same
US6251980B1 (en) 1996-12-06 2001-06-26 Amcol International Corporation Nanocomposites formed by onium ion-intercalated clay and rigid anhydride-cured epoxy resins
US5952095A (en) * 1996-12-06 1999-09-14 Amcol International Corporation Intercalates and exfoliates formed with long chain (C10 +) monomeric organic intercalant compounds; and composite materials containing same
US6084019A (en) * 1996-12-31 2000-07-04 Eastman Chemical Corporation High I.V. polyester compositions containing platelet particles
PL328862A1 (en) * 1996-12-31 1999-03-01 Dow Chemical Co Polymer/organocaly composites and their production
US5952093A (en) * 1997-02-20 1999-09-14 The Dow Chemical Company Polymer composite comprising a inorganic layered material and a polymer matrix and a method for its preparation
JP3356001B2 (en) * 1997-05-26 2002-12-09 株式会社豊田中央研究所 Resin composite material and method for producing the same
US6057035A (en) * 1997-06-06 2000-05-02 Triton Systems, Inc. High-temperature polymer/inorganic nanocomposites
US6162857A (en) 1997-07-21 2000-12-19 Eastman Chemical Company Process for making polyester/platelet particle compositions displaying improved dispersion
US6486252B1 (en) 1997-12-22 2002-11-26 Eastman Chemical Company Nanocomposites for high barrier applications
EP1054922A4 (en) * 1998-02-13 2001-08-08 Solutia Inc Polymer nanocomposite composition
US6395386B2 (en) 1998-03-02 2002-05-28 Eastman Chemical Company Clear, high-barrier polymer-platelet composite multilayer structures
US6090734A (en) * 1998-03-18 2000-07-18 Amcol International Corporation Process for purifying clay by the hydrothermal conversion of silica impurities to a dioctahedral or trioctahedral smectite clay
US6235533B1 (en) 1998-03-18 2001-05-22 Amcol International Corporation Method of determining the composition of clay deposit
US6050509A (en) * 1998-03-18 2000-04-18 Amcol International Corporation Method of manufacturing polymer-grade clay for use in nanocomposites
WO1999050340A1 (en) * 1998-03-30 1999-10-07 Kabushiki Kaisha Toyota Chuo Kenkyusho Polymer composite material and process for preparing the same
US6287992B1 (en) 1998-04-20 2001-09-11 The Dow Chemical Company Polymer composite and a method for its preparation
US6548587B1 (en) * 1998-12-07 2003-04-15 University Of South Carolina Research Foundation Polyamide composition comprising a layered clay material modified with an alkoxylated onium compound
US6376591B1 (en) * 1998-12-07 2002-04-23 Amcol International Corporation High barrier amorphous polyamide-clay intercalates, exfoliates, and nanocomposite and a process for preparing same
EP1147147A1 (en) 1998-12-07 2001-10-24 Eastman Chemical Company A colorant composition, a polymer nanocomposite comprising the colorant composition and articles produced therefrom
DE69910623T2 (en) * 1998-12-07 2004-06-17 University Of South Carolina Research Foundation POLYMER / CLAY NANOCOMPOSITE AND METHOD FOR THE PRODUCTION THEREOF
US6552114B2 (en) 1998-12-07 2003-04-22 University Of South Carolina Research Foundation Process for preparing a high barrier amorphous polyamide-clay nanocomposite
WO2000034377A1 (en) * 1998-12-07 2000-06-15 Eastman Chemical Company Process for preparing an exfoliated, high i.v. polymer nanocomposite with an oligomer resin precursor and an article produced therefrom
US6384121B1 (en) 1998-12-07 2002-05-07 Eastman Chemical Company Polymeter/clay nanocomposite comprising a functionalized polymer or oligomer and a process for preparing same
WO2000034375A1 (en) 1998-12-07 2000-06-15 Eastman Chemical Company A polymer/clay nanocomposite comprising a clay mixture and a process for making same
US6262162B1 (en) * 1999-03-19 2001-07-17 Amcol International Corporation Layered compositions with multi-charged onium ions as exchange cations, and their application to prepare monomer, oligomer, and polymer intercalates and nanocomposites prepared with the layered compositions of the intercalates
JP4615665B2 (en) * 1999-03-24 2011-01-19 株式会社日本触媒 Resin composition and heat ray and / or ultraviolet shielding material using the resin composition
DE19913661A1 (en) * 1999-03-25 2000-09-28 Basf Ag Process for incorporating at least one solid powder A into the melt of at least one thermoplastic polymer B.
US6350804B2 (en) 1999-04-14 2002-02-26 General Electric Co. Compositions with enhanced ductility
US6271298B1 (en) * 1999-04-28 2001-08-07 Southern Clay Products, Inc. Process for treating smectite clays to facilitate exfoliation
FR2793320B1 (en) * 1999-05-06 2002-07-05 Cit Alcatel OPTICAL FIBER CABLE WITH IMPROVED PROPERTIES
US6225394B1 (en) 1999-06-01 2001-05-01 Amcol International Corporation Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer ethylene vinyl alcohol (EVOH) intercalants and nanocomposites prepared with the intercalates
US6136908A (en) * 1999-06-17 2000-10-24 Industrial Technology Research Institute Preparation of thermoplastic nanocomposite
FR2796086B1 (en) * 1999-07-06 2002-03-15 Rhodianyl ABRASION RESISTANT WIRE ARTICLES
JP4622017B2 (en) * 1999-07-23 2011-02-02 東レ株式会社 Method for producing molded product having circular structure
US6777479B1 (en) * 1999-08-10 2004-08-17 Eastman Chemical Company Polyamide nanocomposites with oxygen scavenging capability
US6610772B1 (en) 1999-08-10 2003-08-26 Eastman Chemical Company Platelet particle polymer composite with oxygen scavenging organic cations
NL1012974C2 (en) * 1999-09-03 2001-03-06 Dsm Nv Extruded nanocomposite molded part, comprising at least a polycondensate and a nanofiller, as well as a process for their preparation.
US6787592B1 (en) 1999-10-21 2004-09-07 Southern Clay Products, Inc. Organoclay compositions prepared from ester quats and composites based on the compositions
US7279521B2 (en) 1999-11-10 2007-10-09 Foster Corporation Nylon nanocomposites
WO2001034685A1 (en) 1999-11-10 2001-05-17 Neil Charles O Optimizing nano-filler performance in polymers
DE19957245A1 (en) * 1999-11-27 2001-05-31 Clariant Gmbh New saline structural silicates with trialkyl-perfluoroalkenyl-ethyl-ammonium cation and other saline silicates are used as charge regulator in electrophotographic toner, powder lacquer, electret material or electrostatic separation
JP2003515648A (en) 1999-12-01 2003-05-07 イーストマン ケミカル カンパニー Polymer-clay nanocomposites containing amorphous oligomers
US6486253B1 (en) 1999-12-01 2002-11-26 University Of South Carolina Research Foundation Polymer/clay nanocomposite having improved gas barrier comprising a clay material with a mixture of two or more organic cations and a process for preparing same
US6988305B1 (en) * 1999-12-17 2006-01-24 Magna International Of America, Inc. Method and apparatus for blow molding large reinforced plastic parts
US6632868B2 (en) 2000-03-01 2003-10-14 Amcol International Corporation Intercalates formed with polypropylene/maleic anhydride-modified polypropylene intercalants
US6407155B1 (en) 2000-03-01 2002-06-18 Amcol International Corporation Intercalates formed via coupling agent-reaction and onium ion-intercalation pre-treatment of layered material for polymer intercalation
US6462122B1 (en) 2000-03-01 2002-10-08 Amcol International Corporation Intercalates formed with polypropylene/maleic anhydride-modified polypropylene intercalants
DE10115941B4 (en) * 2000-04-04 2006-07-27 Mi Soo Seok Process for the production of fibers with functional mineral powder and fibers made therefrom
DE10022144A1 (en) * 2000-05-08 2001-11-15 Bayer Ag Molding compositions, especially useful for making fuel pipes and tanks, comprise polyamide, layered silicate nanoparticles and reinforcing material
US6841211B1 (en) * 2000-05-12 2005-01-11 Pechiney Emballage Flexible Europe Containers having improved barrier and mechanical properties
US6403231B1 (en) 2000-05-12 2002-06-11 Pechiney Emballage Flexible Europe Thermoplastic film structures having improved barrier and mechanical properties
US6447860B1 (en) 2000-05-12 2002-09-10 Pechiney Emballage Flexible Europe Squeezable containers for flowable products having improved barrier and mechanical properties
US6586500B2 (en) 2000-05-30 2003-07-01 University Of South Carolina Research Foundation Polymer nanocomposite comprising a matrix polymer and a layered clay material having an improved level of extractable material
US6737464B1 (en) 2000-05-30 2004-05-18 University Of South Carolina Research Foundation Polymer nanocomposite comprising a matrix polymer and a layered clay material having a low quartz content
DE10128356A1 (en) * 2000-06-14 2003-01-02 Thueringisches Inst Textil Process for the production of nano-reinforced, thermoplastic polymers
US6794447B1 (en) * 2000-07-28 2004-09-21 Taylor Made Golf Co., Inc. Golf balls incorporating nanocomposite materials
US6598645B1 (en) 2000-09-27 2003-07-29 The Goodyear Tire & Rubber Company Tire with at least one of rubber/cord laminate, sidewall insert and apex of a rubber composition which contains oriented intercalated and/or exfoliated clay reinforcement
AU2001296496A1 (en) * 2000-10-02 2002-04-15 The University Of Akron Synthesis and characterization of nanocomposites by emulsion polymerization
US6753360B2 (en) 2000-12-22 2004-06-22 Ford Global Technologies, Llc System and method of preparing a reinforced polymer by supercritical fluid treatment
US6469073B1 (en) 2000-12-22 2002-10-22 Ford Global Technologies, Inc. System and method of delaminating a layered silicate material by supercritical fluid treatment
US6726989B2 (en) * 2001-02-09 2004-04-27 Fiber Innovation Technology, Inc. Fibers including a nanocomposite material
DE10115541A1 (en) * 2001-03-28 2002-10-10 Henkel Kgaa Derivatized phyllosilicates and their use in hair care
DE10125560A1 (en) * 2001-05-23 2002-11-28 Basf Ag Production of profiled parts of increased ductility from polyamide nanocomposites containing polyamide A and a delaminated silicate layer consisting of hydrophobized bentonite
WO2003002243A2 (en) 2001-06-27 2003-01-09 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US6858665B2 (en) 2001-07-02 2005-02-22 The Goodyear Tire & Rubber Company Preparation of elastomer with exfoliated clay and article with composition thereof
US6855426B2 (en) * 2001-08-08 2005-02-15 Nanoproducts Corporation Methods for producing composite nanoparticles
US20060128505A1 (en) * 2001-10-09 2006-06-15 Sullivan Michael J Golf ball layers having improved barrier properties
US6745703B2 (en) 2001-10-26 2004-06-08 Chep International, Inc. Composite pallet member
US6767952B2 (en) * 2001-11-13 2004-07-27 Eastman Kodak Company Article utilizing block copolymer intercalated clay
US7166656B2 (en) * 2001-11-13 2007-01-23 Eastman Kodak Company Smectite clay intercalated with polyether block polyamide copolymer
US6767951B2 (en) * 2001-11-13 2004-07-27 Eastman Kodak Company Polyester nanocomposites
US6759464B2 (en) 2001-12-21 2004-07-06 The Goodyear Tire & Rubber Company Process for preparing nanocomposite, composition and article thereof
US6861462B2 (en) * 2001-12-21 2005-03-01 The Goodyear Tire & Rubber Company Nanocomposite formed in situ within an elastomer and article having component comprised thereof
US7368496B2 (en) * 2001-12-27 2008-05-06 Lg Chem, Ltd. Nanocomposite composition having super barrier property and article using the same
KR100508907B1 (en) * 2001-12-27 2005-08-17 주식회사 엘지화학 Nanocomposite blend composition having super barrier property
US7037562B2 (en) 2002-01-14 2006-05-02 Vascon Llc Angioplasty super balloon fabrication with composite materials
US6863852B1 (en) 2002-05-30 2005-03-08 Zeus Industrial Products, Inc. Fluoropolymer extrusions based on novel combinations of process parameters and clay minerals
US8501858B2 (en) * 2002-09-12 2013-08-06 Board Of Trustees Of Michigan State University Expanded graphite and products produced therefrom
US20040101559A1 (en) * 2002-11-25 2004-05-27 David Wong Novel pharmaceutical formulations
US7708974B2 (en) * 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
US7250477B2 (en) * 2002-12-20 2007-07-31 General Electric Company Thermoset composite composition, method, and article
KR100512355B1 (en) * 2003-02-19 2005-09-02 주식회사 엘지화학 Polvinyl Chloride Foam
US20040241482A1 (en) * 2003-06-02 2004-12-02 Grah Michael D. PVdC film with nanocomposite tie layer
DE10326410A1 (en) * 2003-06-12 2005-01-05 Rehau Ag + Co. Polymer diffusion and wear protection layers for drinking water pipes made of plastic
US20050065263A1 (en) * 2003-09-22 2005-03-24 Chung James Y.J. Polycarbonate composition
US20050119371A1 (en) * 2003-10-15 2005-06-02 Board Of Trustees Of Michigan State University Bio-based epoxy, their nanocomposites and methods for making those
US20050159526A1 (en) * 2004-01-15 2005-07-21 Bernard Linda G. Polymamide nanocomposites with oxygen scavenging capability
US8293812B2 (en) * 2004-08-30 2012-10-23 The University of Queensland St. Lucia Polymer composite
WO2006080715A1 (en) * 2004-11-19 2006-08-03 Lg Chem, Ltd. Nanocomposite composition having high barrier property
WO2006071833A1 (en) * 2004-12-28 2006-07-06 Polyone Corporation Blends of nanocomposites and their use
US20060161130A1 (en) * 2005-01-14 2006-07-20 Kimberly-Clark Worldwide, Inc. Disposable absorbent article visually appearing similar to cloth underwear
US7528196B2 (en) 2005-01-24 2009-05-05 Taylor Made Golf Company, Inc. Polyalkenamer compositions and golf balls prepared therefrom
US7819761B2 (en) 2005-01-26 2010-10-26 Taylor Made Golf Company, Inc. Golf ball having cross-core hardness differential and method for making it
DE102005005042A1 (en) * 2005-02-03 2006-08-10 Trw Automotive Safety Systems Gmbh & Co. Kg The gas bag module
US20060235136A1 (en) * 2005-04-18 2006-10-19 Administrator Of The National Aeronautics And Space Administration Mechanically strong, thermally stable, and electrically conductive nanocomposite structure and method of fabricating same
AU2006285392A1 (en) * 2005-04-28 2007-03-08 Monosol, Llc Water-soluble composition and structures, and methods of making and using the same
EP1717264A1 (en) * 2005-04-29 2006-11-02 Campine Process for producing a polyamide and/or polyester composition comprising nanoclay
US20070009564A1 (en) * 2005-06-22 2007-01-11 Mcclain James B Drug/polymer composite materials and methods of making the same
US7874940B2 (en) * 2005-07-13 2011-01-25 Taylor Made Golf Company, Inc. Extrusion method for making golf balls
WO2007011708A2 (en) 2005-07-15 2007-01-25 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
KR101406415B1 (en) 2005-07-15 2014-06-19 미셀 테크놀로지즈, 인코포레이티드 Polymer coatings containing drug powder of controlled morphology
GB0515353D0 (en) * 2005-07-27 2005-08-31 Psimedica Ltd Food
US7888419B2 (en) * 2005-09-02 2011-02-15 Naturalnano, Inc. Polymeric composite including nanoparticle filler
US20070148457A1 (en) * 2005-09-14 2007-06-28 Naturalnano, Inc. Radiation absorptive composites and methods for production
KR100789245B1 (en) * 2005-09-22 2008-01-02 주식회사 엘지화학 Nanocomposite composition having barrier property and product using the same
US20070100085A1 (en) * 2005-11-03 2007-05-03 Taylor Made Golf Company, Inc. Amide-modified polymer compositions and sports equipment made using the compositions
US7605205B2 (en) * 2005-11-07 2009-10-20 Exxonmobil Chemical Patents, Inc. Nanocomposite compositions and processes for making the same
US8030411B2 (en) * 2005-12-21 2011-10-04 Taylor Made Golf Company, Inc. Polymer compositions comprising peptizers, sports equipment comprising such compositions, and method for their manufacture
US7625985B1 (en) 2005-12-22 2009-12-01 The Goodyear Tire & Rubber Company Water-based process for the preparation of polymer-clay nanocomposites
US8840660B2 (en) * 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US20070161737A1 (en) * 2006-01-09 2007-07-12 Bayer Materialscience Llc Thermoplastic composition containing polycarbonate-polyester and nanoclay
US20070161738A1 (en) * 2006-01-09 2007-07-12 Bayer Materialscience Llc Thermoplastic composition containing polycarbonate-polyester and nanoclay
US8089029B2 (en) * 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20070224244A1 (en) * 2006-03-22 2007-09-27 Jan Weber Corrosion resistant coatings for biodegradable metallic implants
US8048150B2 (en) * 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
AU2007243268B2 (en) 2006-04-26 2013-06-13 Micell Technologies, Inc. Coatings containing multiple drugs
WO2008017028A2 (en) * 2006-08-02 2008-02-07 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US8293318B1 (en) 2006-08-29 2012-10-23 Abbott Cardiovascular Systems Inc. Methods for modulating the release rate of a drug-coated stent
US8216267B2 (en) * 2006-09-12 2012-07-10 Boston Scientific Scimed, Inc. Multilayer balloon for bifurcated stent delivery and methods of making and using the same
US20080086201A1 (en) * 2006-09-15 2008-04-10 Boston Scientific Scimed, Inc. Magnetized bioerodible endoprosthesis
WO2008034047A2 (en) * 2006-09-15 2008-03-20 Boston Scientific Limited Endoprosthesis with adjustable surface features
JP2010503489A (en) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Biodegradable endoprosthesis and method for producing the same
ES2368125T3 (en) * 2006-09-15 2011-11-14 Boston Scientific Scimed, Inc. BIOEROSIONABLE ENDOPROOTHESIS WITH BIOESTABLE INORGANIC LAYERS.
JP2010503485A (en) * 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド Medical device and method for manufacturing the same
US8057534B2 (en) * 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
CA2663762A1 (en) * 2006-09-18 2008-03-27 Boston Scientific Limited Endoprostheses
US20080071358A1 (en) * 2006-09-18 2008-03-20 Boston Scientific Scimed, Inc. Endoprostheses
US7879968B2 (en) * 2006-10-17 2011-02-01 Taylor Made Golf Company, Inc. Polymer compositions and golf balls with reduced yellowing
US20080097577A1 (en) * 2006-10-20 2008-04-24 Boston Scientific Scimed, Inc. Medical device hydrogen surface treatment by electrochemical reduction
WO2008052000A2 (en) * 2006-10-23 2008-05-02 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US8124678B2 (en) * 2006-11-27 2012-02-28 Naturalnano, Inc. Nanocomposite master batch composition and method of manufacture
EP2277563B1 (en) * 2006-12-28 2014-06-25 Boston Scientific Limited Bioerodible endoprostheses and method of making the same
US8728170B1 (en) 2006-12-28 2014-05-20 Boston Scientific Scimed, Inc. Bioerodible nano-fibrous and nano-porous conductive composites
US20080176677A1 (en) * 2006-12-29 2008-07-24 Taylor Made Golf Company, Inc. Golf balls with improved feel
JP5603598B2 (en) 2007-01-08 2014-10-08 ミセル テクノロジーズ、インコーポレイテッド Stent with biodegradable layer
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
US8648132B2 (en) * 2007-02-07 2014-02-11 Naturalnano, Inc. Nanocomposite method of manufacture
US8003726B2 (en) * 2007-02-16 2011-08-23 Polyone Corporation Method to establish viscosity as a function of shear rate for in-situ polymerized nanonylon via chain extension
US20080249221A1 (en) * 2007-04-06 2008-10-09 Naturalnano Research, Inc. Polymeric adhesive including nanoparticle filler
US20080248201A1 (en) * 2007-04-06 2008-10-09 Naturalnano Research, Inc. Polymeric coatings including nanoparticle filler
SG183035A1 (en) * 2007-04-17 2012-08-30 Micell Technologies Inc Stents having biodegradable layers
US20090326133A1 (en) * 2007-05-23 2009-12-31 Naturalnano Research, Inc. Fire and flame retardant polymer composites
WO2008148013A1 (en) * 2007-05-25 2008-12-04 Micell Technologies, Inc. Polymer films for medical device coating
US20080302733A1 (en) * 2007-06-05 2008-12-11 Amcol International Corporation Coupling agent-reacted mercury removal media
US20090061212A1 (en) * 2007-08-29 2009-03-05 Wurtzel Kenneth C Reduced Crystallizing Aromatic Nylon
US8052745B2 (en) * 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
WO2009051780A1 (en) * 2007-10-19 2009-04-23 Micell Technologies, Inc. Drug coated stents
US20090143855A1 (en) * 2007-11-29 2009-06-04 Boston Scientific Scimed, Inc. Medical Device Including Drug-Loaded Fibers
WO2009079389A2 (en) * 2007-12-14 2009-06-25 Boston Scientific Limited Drug-eluting endoprosthesis
US8211976B2 (en) 2007-12-21 2012-07-03 Taylor Made Golf Company, Inc. Sports equipment compositions comprising a polyurethane, polyurea or prepolymer thereof and a polyfunctional modifier
US8932154B2 (en) 2007-12-28 2015-01-13 Taylor Made Golf Company, Inc. Golf ball with softer feel and high iron spin
US8357060B2 (en) * 2007-12-28 2013-01-22 Taylor Made Golf Company, Inc. Golf ball with soft feel
US8096899B2 (en) * 2007-12-28 2012-01-17 Taylor Made Golf Company, Inc. Golf ball comprising isocyanate-modified composition
US8047933B2 (en) 2008-02-19 2011-11-01 Taylor Made Golf Company, Inc. Golf ball
BRPI0910969B8 (en) * 2008-04-17 2021-06-22 Micell Technologies Inc device
US8236880B2 (en) 2008-04-23 2012-08-07 Taylor Made Golf Company, Inc. Compositions comprising an amino triazine and ionomer or ionomer precursor
JP2009271338A (en) * 2008-05-08 2009-11-19 Ricoh Co Ltd Toner, toner container, image forming apparatus and method for manufacturing toner
US7998192B2 (en) * 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
JP2011528275A (en) 2008-07-17 2011-11-17 ミセル テクノロジーズ,インク. Drug delivery medical device
RU2468979C2 (en) * 2008-07-30 2012-12-10 Колгейт-Палмолив Компани Uv-proof container with stained product
US7985252B2 (en) * 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) * 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US20100125002A1 (en) * 2008-11-14 2010-05-20 Taylor Made Golf Company, Inc. Resin compositions incorporating modified polyisocyanate and method for their manufacture and use
US8809428B2 (en) 2008-12-23 2014-08-19 Taylor Made Golf Company, Inc. Golf ball
US8357756B2 (en) 2008-12-23 2013-01-22 Taylor Made Golf Company, Inc. Compositions for sports equipment
US8834913B2 (en) * 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
US8267992B2 (en) * 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
EP2410954A4 (en) * 2009-03-23 2014-03-05 Micell Technologies Inc Peripheral stents having layers
JP2012522589A (en) * 2009-04-01 2012-09-27 ミシェル テクノロジーズ,インコーポレイテッド Covered stent
EP3366326A1 (en) 2009-04-17 2018-08-29 Micell Technologies, Inc. Stents having controlled elution
EP2453834A4 (en) 2009-07-16 2014-04-16 Micell Technologies Inc Drug delivery medical device
US20110022158A1 (en) * 2009-07-22 2011-01-27 Boston Scientific Scimed, Inc. Bioerodible Medical Implants
US20110130216A1 (en) * 2009-12-01 2011-06-02 Taylor Made Golf Company, Inc. Golf ball constructs and related systems
US8992341B2 (en) * 2009-12-23 2015-03-31 Taylor Made Golf Company, Inc. Injection moldable compositions and golf balls prepared therefrom
US8674023B2 (en) * 2009-12-31 2014-03-18 Taylor Made Golf Company, Inc. Ionomer compositions for golf balls
US8629228B2 (en) 2009-12-31 2014-01-14 Taylor Made Golf Company, Inc. Ionomer compositions for golf balls
US8575278B2 (en) * 2009-12-31 2013-11-05 Taylor Made Golf Company, Inc. Ionomer compositions for golf balls
US20110159991A1 (en) * 2009-12-31 2011-06-30 Taylor Made Golf Company, Inc. Golf ball composition
EP2531140B1 (en) * 2010-02-02 2017-11-01 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
WO2011119573A1 (en) * 2010-03-23 2011-09-29 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US8795762B2 (en) * 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
EP2560576B1 (en) 2010-04-22 2018-07-18 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
WO2012009684A2 (en) 2010-07-16 2012-01-19 Micell Technologies, Inc. Drug delivery medical device
US8979677B2 (en) 2010-11-24 2015-03-17 Taylor Made Golf Company, Inc. Golf ball with selected spin characteristics
US9533472B2 (en) 2011-01-03 2017-01-03 Intercontinental Great Brands Llc Peelable sealant containing thermoplastic composite blends for packaging applications
WO2012166819A1 (en) 2011-05-31 2012-12-06 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
WO2013012689A1 (en) 2011-07-15 2013-01-24 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
US9108082B2 (en) 2011-12-19 2015-08-18 Taylor Made Golf Company, Inc. Golf ball composition
WO2014021800A2 (en) 2012-07-30 2014-02-06 Rich Group Kimyevi Maddeler Insaat Sanayi Ve Ticaret Limited Sirketi Green technology line for production of clay micro- and nanoparticles and their functional polymer nanohybrids for nanoengineering and nanomedicine applications
JP2015531427A (en) * 2012-10-12 2015-11-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Ionomer composite
SG11201503859RA (en) * 2012-12-18 2015-06-29 Agency Science Tech & Res Method of preparing fiber-reinforced polymer composites and fiber-reinforced polymer composites prepared thereof
EP2967803B1 (en) 2013-03-12 2023-12-27 Micell Technologies, Inc. Bioabsorbable biomedical implants
KR102079613B1 (en) 2013-05-15 2020-02-20 미셀 테크놀로지즈, 인코포레이티드 Bioabsorbable biomedical implants
US10507363B2 (en) 2015-06-08 2019-12-17 Taylor Made Golf Company, Inc. Metallic monomer used as ionomeric additives for ionomers and polyolefins

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50109998A (en) * 1974-02-08 1975-08-29
EP0010929B1 (en) * 1978-10-27 1983-02-02 Toray Industries, Inc. Highly rigid polyamide composition and a method for its manufacture
JPS5937023B2 (en) * 1979-05-10 1984-09-07 東レ株式会社 Polyamide resin composition
US4379979A (en) * 1981-02-06 1983-04-12 The United States Of America As Represented By The Secretary Of The Navy Controlled porosity sheet for thermionic dispenser cathode and method of manufacture
US4739007A (en) * 1985-09-30 1988-04-19 Kabushiki Kaisha Toyota Chou Kenkyusho Composite material and process for manufacturing same
US4894411A (en) * 1987-03-18 1990-01-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite material and process for producing the same
JPH0778089B2 (en) * 1987-03-26 1995-08-23 株式会社豊田中央研究所 Method of manufacturing composite material
JP2528164B2 (en) * 1988-07-20 1996-08-28 宇部興産株式会社 Low warpage polyamide resin composition
JPH0747644B2 (en) * 1989-05-19 1995-05-24 宇部興産株式会社 Polyamide composite material and method for producing the same

Also Published As

Publication number Publication date
US5385776A (en) 1995-01-31
WO1994011430A1 (en) 1994-05-26
EP0668888A1 (en) 1995-08-30
JPH08503250A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
CA2148913A1 (en) Nanocomposites of gamma phase polymers
EP0598836B1 (en) Melt process formation of polymer nanocomposite of exfoliated layered material
Ou et al. The nucleating effect of montmorillonite on crystallization of PET/montmorillonite nanocomposite
Akkapeddi Glass fiber reinforced polyamide‐6 nanocomposites
Shah et al. Nanocomposites from poly (ethylene-co-methacrylic acid) ionomers: effect of surfactant structure on morphology and properties
Wang et al. Processing and properties of polymeric nano‐composites
DE69723887T2 (en) POLYMERNANO FIBER MATERIALS FOR GAS DENSITY APPLICATIONS
CA1148300A (en) Filled thermoplastic resin compositions
CA1283238C (en) Thermoplastic resin composition
Chang et al. Preparation and characterization of polyimide nanocomposites with different organo‐montmorillonites
WO1993004118A1 (en) Melt process formation of polymer nanocomposite of exfoliated layered material
Zilg et al. Nanofillers based upon organophilic layered silicates
CA1318072C (en) Reinforced molding resin composition
Tjong et al. Structure and properties of polyamide‐6/vermiculite nanocomposites prepared by direct melt compounding
WO2005047370A2 (en) Bio-based epoxy, their nanocomposites and methods for making those
MXPA06011840A (en) Polymer nanocomposites for air movement devices.
WO2005099406A9 (en) Polymer nanocomposites for air movement devices
Hiljanen-Vainio et al. Reinforcement of biodegradable poly (ester-urethane) with fillers
Chang et al. Various organo-clays based nanocomposites of poly (ethylene terephthalate-co-ethylene naphthalate)
Wahit et al. The effect of polyethylene-octene elastomer on the morphological and mechanical properties of polyamide 6/polypropylene nanocomposites
US7214734B2 (en) Liquid crystalline composites containing phyllosilicates
US4539350A (en) High impact, high modulus fiber reinforced linear polyester
JP3438345B2 (en) Aromatic polyester composition
Kim et al. Synthesis of thermally stable organosilicate for exfoliated poly (ethylene terephthalate) nanocomposite with superior tensile properties
Mun et al. Preparation of poly (ethylene terephthalate) nanocomposite fibers incorporating a thermally stable organoclay

Legal Events

Date Code Title Description
FZDE Discontinued