CA2167943C - A thin-wall, seamless, porous polytetrafluoroethylene tube - Google Patents

A thin-wall, seamless, porous polytetrafluoroethylene tube

Info

Publication number
CA2167943C
CA2167943C CA002167943A CA2167943A CA2167943C CA 2167943 C CA2167943 C CA 2167943C CA 002167943 A CA002167943 A CA 002167943A CA 2167943 A CA2167943 A CA 2167943A CA 2167943 C CA2167943 C CA 2167943C
Authority
CA
Canada
Prior art keywords
article
article according
tube
sheet
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002167943A
Other languages
French (fr)
Other versions
CA2167943A1 (en
Inventor
Wayne D. House
Kenneth W. Moll
Stanislaw L. Zukowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22325057&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2167943(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Publication of CA2167943A1 publication Critical patent/CA2167943A1/en
Application granted granted Critical
Publication of CA2167943C publication Critical patent/CA2167943C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/20Flexible squeeze tubes, e.g. for cosmetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/08Deep drawing or matched-mould forming, i.e. using mechanical means only
    • B29C51/082Deep drawing or matched-mould forming, i.e. using mechanical means only by shaping between complementary mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/20Flexible squeeze tubes, e.g. for cosmetics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Abstract

A seamless tube (25) of porous polytetrafluoroethy-lene having a microstructure of nodes (31) interconnected by fibrils (33, 35, 39) and having a wall thickness of less than about 0.20 mm.

Description

WO 95I05277 ~ PCT/LTS94/04917 TITLE OF THE INVENTION
A THIN-WALL, SEAMLESS) POROUS POLYTETRAFLUOROETHYLENE TUBE
FIELD OF THE INVENTION
This invention relates to the field of porous expanded polytetrafluoroethylene materials of seamless, tubular form.
BACKGROUND OF THE INVENTION
Porous expanded polytetrafluoroethylene (hereinafter PTFE) materials are made as taught originally by U.S. Patents 3,953,566 and 4,187,390 to Gore. These patents teach the manufacture of seamless, tubular forms of porous expanded PTFE by a process comprising extruding a preform of PTFE resin and a lubricant through a tubular extruder barrel having a male form aligned with the longitudinal axis of the tubular barrel, thereby creating a tubular extrudate, removing the lubricant from the tubular extrudate, expanding the tubular extrudate by stretching in a direction parallel to the longitudinal axis of the tubular extrudate at a temperature less than the crystalline melt point of PTFE, thereby forming a tube of porous expanded PTFE having a microstructure of nodes interconnected by fibrils. These porous expanded PTFE tubes have found application in the field of implantable vascular grafts. These are presently sold as GORE-TEX~ Vascular Grafts (W. L. Gore 8~ Associates, Inc., Flagstaff, AZ) and are in the form of tubes of porous expanded PTFE with an exterior reinforcement of a helical wrap of thin, porous expanded PTFE
film to provide the grafts with increased hoop strength.
Present commercially available~seamless tubes of porous expanded PTFE made by a process including extrusion typically have wall thicknesses of about 0.31 mm or greater. The present limitation on thinner walls is due to the extrusion and subsequent expansion process which is unable to produce these thinner walls with adequate concentricity and uniformity.
It is speculated that thinner-walled seamless tubes would be useful in certain vascular graft applications wherein the tube may WO 95J05277 ' PCT/US94/04917 ~1G'~~~3 _2_ serve as a replacement for segments of blood vessels. These include tubes of inside diameter less than about 2 mm. Thin-walled seamless tubes of even larger inside diameter may be useful as intraluminai vascular grafts and as coverings for intraluminal stents, both of which are used as luminal linings of body conduits.

The present invention is a seamless tube of porous PTFE having a wall thickness of less than about 0.20 mm, and a method of making the seamless tube. Porous PTFE is herein defined as PTFE containing void spaces within the bulk volume of the porous PTFE shape, and having a bulk density of less than about 2.0 g/cc. Solid, non-porous PTFE has a bulk density of about 2.2 g/cc. The presence of void spaces may be identified by visually examining surfaces of the PTFE shape which may be surfaces of cross sections of the shape. This examination may require the aid of microscopy.
By seamless tube is meant a tube without any seam that extends from the exterior surface thrqugh to the luminal surface. Tubes formed by rolling a sheet into a tubular shape incorporate such seams and are therefore not considered to be seamless. Tubes of the present invention may, however, have additional, seamed layers added to either the exterior or luminal surfaces as long as no seam extends from the exterior surface through to the luminal surface.
The method of making the seamless tube comprises selecting a precursor sheet of porous PTFE) clamping around the perimeter of the sheet to restrain the sheet and forming a portion of the sheet into a tubular shape by forcing a male form against the sheet thereby forcing a portion of the sheet into a female form, wherein the longitudinal axes of the male form and female form are substantially perpendicular to the plane of the sheet. The formed tubular shape may then be cut free from the remaining flat portion of the sheet.
The clamped sheet of porous PTFE is preferably heated prier to the forming step. Less force is required for forming with increasing application of heat.

dV0 95/05277 ~~ PCT/US94104917 It is also preferred that the precursor sheet of porous PTFE be of less than about 0.20 mm thickness. It is further preferred that the precursor sheet of porous PTFE has not been subjected to heat in excess of the crystalline melt temperature of PTFE.
Preferred precursor sheet materials are sheets of porous expanded PTFE having a microstructure of nodes interconnected by fibrils, made as taught by U.S. Patents 3,953,566 and 4,18l,390. It is still further preferred that the precursor sheet of porous expanded PTFE
have a symmetrical microstructure of biaxially or multiaxially-oriented fibrils. These sheets having symmetrical microstructures can be expected to yield tubes of relatively uniform microstructure when formed by the method of the present invention. Sheets with symmetrical microstructures have fibrils oriented in at least two directions which are substantially perpendicular to each other and wherein the fibrils in the at least two directions are of approximately the same lengths. Microstructures having a substantial majority of fibrils oriented in only two directions that are substantially perpendicular to each other are considered to have biaxially-oriented fibrils. Another preferred symmetrical microstructure for the precursor sheet material has multiaxially-oriented fibrils, that is, fibrils oriented in virtually a11 directions within the plane of the sheet, the fibrils emanating from the nodes in all directions similar to the way spokes emanate from a wheel hub. The fibrils of these various directions should also be of approximately equal lengths. Porous expanded PTFE sheet materials having symmetrical microstructures are made by biaxial expansion processes taught by U.S. Patents 3,953,566; 4,187,390 and 4,482,516.
Seamless tubes of the present invention may be provided with an exterior helical wrap of thin porous expanded PTFE film if a tube of increased hoop strength is desired. Additionally) seamless tubes of the present invention may be provided with rapid recovery properties as taught by U.S.P. 4,877,661 and 5,026,513.

216'943 BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 describes a cross section of a clamping fixture incorporating male and female forms, useful for forming the tube of the present invention.
Figure Z describes a cross section of the cramping fixture of Figure 2 as used during the forming process.
Figure 3A is an enlarged schematic representation of a porous expanded PTFE precursor sheet material having a preferred symmetrical microstructure with biaxially-oriented fibrils.
Figure 3B is an enlarged schematic representation of a porous expanded PTFE precursor sheet material having a preferred symmetrical microstructure with multiaxially-oriented fibrils.
Figure 4 shows a scanning electron photomicrograph (X 2000 magnification) of the microstructure of nodes interconnected by fibrils of a precursor sheet of porous expanded PTFE used to form a seamless tube of the present invention.
Figure 5 shows a scanning electron photomicrograph (X 2000 magnification) of the luminal surface of a tube of the present invention.
DETAILED DESCRIPTION OF THE INYENTION
Figure 1 describes a cross section of a fixture ~ useful for forming the seamless tube of the present invention. Clamping plates ~,1_ and 13 are clamped around the perimeter of a flat sheet ~_5 of porous expanded PTFE. Clamping plate ~ is provided with an access hole 17 to allow male form ~3 to be forced against the flat sheet 15.
The male form ~3_ may optionally be provided with a stop ~ to control the length of the formed seamless tube. Clamping plate ~ is provided with a female form ~_9 having an open end ~ opposite the access hole 17 in plate ~. The other end of the female form ~9 adjacent to the flat sheet ~ should be provided with a radiused entrance ~_0. Access hole 17 should be of substantially larger diameter than the male form 23 in order to allow for enough material from flat sheet ~,_5 to be deformed into the desired tubular shape. For example, access hole 17 ~1~'~~4 may be more than three times the diameter of male form ~3_. Generally, the larger the access hole ~ and the larger the area of flat sheet within the clamped perimeter, the more material is available to be drawn into the tubular shape, thereby allowing for the longer tubular shapes to be formed.
The inside diameter of the female form ~ should allow clearance for the thickness of the flat sheet ~_5 around the male form ~ during the forming process. Put another way, the inside diameter of the female form 19 should be equal to at least the sum of the diameter of the male form 23 and twice the thickness of the flat sheet ~5. If too little clearance is provided, smearing of the inner or outer surfaces of the tube microstructure may occur, thereby substantially reducing the porosity of the resulting tube. Both the male form ~3 and the female form ~ may be provided with slight amounts of taper to allow easier release of these components after the forming process is complete. These tapers are such that the open end ~ of female form 19 and corresponding end of male form ~ are provided with the smaller diameter of the taper. The amount of taper may be quite small, for example, a diametrical end to end difference of 0.1 mm may be useful.
Figure 2 describes a cross section of the forming fixture after completion of the forming step. A portion of the flat sheet 15 has been formed between the male form ~ and female form ~ to create the seamless) thin-wall tube portion ~5. After the forming step is complete the male form ~3 is removed and the clamping plates ~1_ and 13 are separated, thereby releasing the fiat sheet ~ and the seamless, thin-wall tube portion 25. The seamless, thin-wall tube portion 25 may then be cut free from the remainder of the flat sheet 15 using a sharp blade to accomplish the cutting. Tip portion ~ may be retained with the seamless, thin-wall tube portion ~ if a blind tube is desired. Alternatively, if a tube with both ends open is desired, then the tip portion ~ may also be cut away.
It is preferred that the flat sheet ~ be heated during the forming step. In order to accomplish this, the forming fixture 10 should be secured into place in an oven operating at the desired temperature. After adequate heating, the forming force may be applied to the flat sheet ~5 from outside of the oven chamber by the use of a
2~6'~94~

male form ~ of length adequate to extend outside of the oven chamber through an opening provided in the oven wall.
Figures 3A and 3B describe enlarged schematic representations of symmetrical microstructures of porous expanded PTFE precursor sheet materials that are the preferred precursor sheet materials for making the present invention. These symmetrical microstructures have nodes interconnected by fibrils wherein the fibrils are oriented in at least two directions which are substantially perpendicular to each other.
Figure 3A describes a symmetrical microstructure of nodes ~ and fibrils 33 and 35 wherein the fibrils ~ and ~5_ are biaxially-oriented fibrils which are oriented in two different directions that are substantially perpendicular to each other. Those microstructures may contain some fibrils 37 which are not oriented in the two different directions. Figure 3B describes another synunetrical microstructure wherein the fibrils 39 are multiaxially-oriented fibrils oriented in virtually a11 directions within the plane of the sheet material.
Figure 4 shows a scanning electron photomicrograph of the microstructure of nodes interconnected by fibrils of a precursor sheet of porous expanded PTFE used to form a seamless tube of the present invention. This particular sheet is 0.1 mm thick GORE-TEX~ Surgical Membrane (W. L. Gore and Associates) Inc., Flagstaff, AZ). This is a sheet material that has been subjected to heat in excess of the crystalline melt temperature of PTFE. It has a microstructure of multiaxially-oriented fibrils wherein the fibrils are oriented in virtually a11 directions within the plane of the sheet, the fibrils emanating radially outward from each node in the fashion of spokes emanating from the hub of a wheel. Precursor sheet materials having symmetrical microstructures are preferred in order to produce a tube of relatively uniform microstructure.
Figure 5 describes a scanning electron photomicrograph (x2000 magnification) of the luminal surface of a tube of the present invention that was made from the precursor sheet material described by Figure 4. The surface shown has a microstructure of nodes interconnected by fibrils wherein the fibrils are substantially oriented in a direction parallel to the longitudinal axis of the tube and parallel to the direction of the applied forming force. The tube _7-had a relatively uniform wall thickness of about 0.07 mm, an inside diameter of about 8 mm, and a length of about 3 cm.
This example tube was made by clamping a sheet of 0.1 mm thick GORE-TEX~ Surgical Membrane into a fixture ~0_ similar to that described by Figures 1 and 2. This fixture had a 24 mm diameter access hole 17 and used a female form ~_9 of 9 mm inside diameter and 2.6 cm length. The male form ~ was of 8.0 mm diameter and 150 cm length. This assembly was secured into place within a convection air oven set at about 300 °C so that the male form ~ extended through an opening in the oven wall. After 20 minutes heating time within the oven, about 2.5 kg force was applied to male form ~ at a rate of about 1 mm/sec. The fixture ~_0 was then removed from the oven and allowed to cool, after which it was disassembled to free the flat sheet 15 and seamless, thin-wall tube portion ~. The seamless, thin-wall tube portion ~ was cut free from the flat sheet ~5 using a scalpel blade. The tip portion ~7 of the seamless, thin-wall tube portion 25 was also cut off. The wall thickness of the resulting tube was measured by cutting lengthwise through a portion of the tube wall and measuring the tube wall thickness adjacent to the cut using a Mitutoyo snap gauge Model No. 2804-IO having a part no. 7300 frame. A
sample of the tube wall was then cut away with a scalpel blade to be photographed for the scanning electron photomicrograph of Figure 5.
While this example involved the use of a precursor sheet material that had been exposed to temperatures in excess of the crystalline melt temperature of PTFE, it is preferred that porous PTFE sheet materials that have not been subjected to such temperatures be used as precursor materials in that they are more easily formed into the desired shape. Tubes made from such sheet materials may be subsequently heated by physically restraining them in the direction of the longitudinal axis of the tube and then heating them above the crystalline melt temperature of PTFE.
A second example was made from a porous expanded PTFE sheet material having biaxially-oriented fibrils wherein most of the fibrils were substantially oriented in a single direction. This material also possessed shorter fibrils oriented in a direction substantially perpendicular to the longer fibrils of the first direction. The sheet material used was GORE-TEX~ Filtration Membrane, part no. 10382 NA (W.

_8_ L. Gore & Associates, Inc., Elkton, MO). Two layers of this 0.05 mm thick membrane were stacked one above the other with a 0.013 mm thick) non-porous layer of fluorinated ethylene propylene (hereinafter FEP) between the two expanded PTFE layers. The two porous expanded PTFE
layers were oriented 90° apart so that the longer fibrils of one layer were oriented in a direction substantially perpendi-.-.ular to the longer fibrils of the second layer. The resulting three layer sandwich was clamped into the fixture described by Figure 1 and placed into an oven set at 315°C with the flat sheet ,~5 oriented horizontally and the male form ,~ oriented vertically and located above the flat sheet ~_5.
After 30 minutes, the sandwich was formed into a tube in the same fashion described for the previous example. Forming was accomplished with a force of about 0.6 kg at a rate of about 2 mm/second. The force was applied simply by placing a weight on the male form ~ and stop ~; the combined weight of the male form ~, stop ~ and weight was 0.6 kg. The resulting tube was impermeable due to the presence of the non-porous FEP layer and was of about 3 cm length with a wall thickness of about 0.05 mm.

Claims (34)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An article comprising a seamless tube of porous polytetrafluoroethylene having a wall thickness of less than 0.08 mm.
2. An article according to claim 1 wherein the wall thickness is less than 0.07 mm.
3. An article according to claim 1 wherein the wall thickness is less than 0.06 mm.
4. An article according to claim 1 wherein the porous polytetrafluoroethylene is porous expanded polytetrafluoroethylene having a microstructure of nodes interconnected by fibrils.
5. An article according to claim 2 wherein the porous polytetrafluoroethylene is porous expanded polytetrafluoroethylene having a microstructure of nodes interconnected by fibrils.
6. An article according to claim 3 wherein the porous polytetrafluoroethylene is porous expanded polytetrafluoroethylene having a microstructure of nodes interconnected by fibrils.
7. An article according to claim 4 having an exterior, helical wrap of porous polytetrafluoroethylene film.
8. An article according to claim 5 having an exterior, helical wrap of porous polytetrafluoroethylene film.
9. An article according to claim 6 having an exterior, helical wrap of porous polytetrafluoroethylene film.
10. An article according to claim 4, said article capable of being stretched and then rapidly recovering more than about 6 percent of its stretched length.
11. An article according to claim 6, said article capable of being stretched and then rapidly recovering more than about 6 percent of its stretched length.
12. An article according to claim 4 wherein the tube has a layer of fluorinated ethylene propylene.
13. An article according to claim 5 wherein the tube has a layer of fluorinated ethylene propylene.
14. An article according to claim 6 wherein the tube has a layer of fluorinated ethylene propylene.
15. An article according to claim 1 wherein the tube has two ends and wherein said tube is open only at one end.
16. An article according to claim 1 wherein the article is an implantable vascular graft.
17. An article according to claim 1 wherein the article is an intraluminal vascular graft.
18. An article according to claim 1 wherein the article is a covering for an intraluminal stent.
19. An article according to claim 2 wherein the article is an implantable vascular graft.
20. An article according to claim 2 wherein the article is an intraluminal vascular graft.
21. An article according to claim 2 wherein the article is a covering for an intraluminal stent.
22. An article according to claim 4 wherein the article is an implantable vascular graft.
23. An article according to claim 4 wherein the article is an intraluminal vascular graft.
24. An article according to claim 4 wherein the article is a covering for an intraluminal stent.
25. An article according to claim 7 wherein the article is an implantable vascular graft.
26. An article according to claim 7 wherein the article is an intraluminal vascular graft.
27. An article according to claim 7 wherein the article is a covering for an intraluminal stent.
28. A method of making a seamless tube of porous polytetrafluoroethylene having a wall thickness of less than about 0.20 mm comprising, selecting a sheet of porous polytetrafluoroethylene having a perimeter, clamping around the perimeter of the sheet to restrain the sheet, and forming a portion of the sheet into a tubular shape by forcing a male form against the sheet thereby forcing a portion of the sheet into a female form, wherein longitudinal axes of the male form and female forms are substantially perpendicular to the sheet.
29. A method according to claim 28 wherein the sheet of porous expanded polytetrafluoroethylene is heated to at least about 290° C prior to forming a portion of the sheet into a tubular shape.
30. A method according to claim 28 wherein said sheet of porous polytetrafluoroethylene is a sheet of porous expanded polytetrafluoroethylene having a microstructure of nodes interconnected by fibrils.
31. A method according to claim 28 wherein said tube has a wall thickness of less than about 0.20 mm.
32. A method according to claim 28 wherein said tube has a wall thickness of less than about 0.15 mm.
33. A method according to claim 28 wherein said tube has a wall thickness of less than about 0.10 mm.
34. A method according to claim 28 wherein said tube has a wall thickness of less than about 0.06 mm.
CA002167943A 1993-08-18 1994-05-04 A thin-wall, seamless, porous polytetrafluoroethylene tube Expired - Lifetime CA2167943C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10896093A 1993-08-18 1993-08-18
US08/108,960 1993-08-18
PCT/US1994/004917 WO1995005277A1 (en) 1993-08-18 1994-05-04 A thin-wall, seamless, porous polytetrafluoroethylene tube

Publications (2)

Publication Number Publication Date
CA2167943A1 CA2167943A1 (en) 1995-02-23
CA2167943C true CA2167943C (en) 1999-08-17

Family

ID=22325057

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002167943A Expired - Lifetime CA2167943C (en) 1993-08-18 1994-05-04 A thin-wall, seamless, porous polytetrafluoroethylene tube

Country Status (7)

Country Link
US (2) US5620763A (en)
EP (1) EP0714345B1 (en)
JP (1) JPH09501585A (en)
AU (1) AU6943794A (en)
CA (1) CA2167943C (en)
DE (1) DE69428282D1 (en)
WO (1) WO1995005277A1 (en)

Families Citing this family (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2169549C (en) * 1993-08-18 2000-07-11 James D. Lewis A tubular intraluminal graft
AU6943794A (en) * 1993-08-18 1995-03-14 W.L. Gore & Associates, Inc. A thin-wall, seamless, porous polytetrafluoroethylene tube
US5556426A (en) 1994-08-02 1996-09-17 Meadox Medicals, Inc. PTFE implantable tubular prostheses with external coil support
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US20020156523A1 (en) * 1994-08-31 2002-10-24 Lilip Lau Exterior supported self-expanding stent-graft
US6015429A (en) 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
US6264684B1 (en) * 1995-03-10 2001-07-24 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Helically supported graft
US6579314B1 (en) * 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US6039755A (en) * 1997-02-05 2000-03-21 Impra, Inc., A Division Of C.R. Bard, Inc. Radially expandable tubular polytetrafluoroethylene grafts and method of making same
US6124523A (en) * 1995-03-10 2000-09-26 Impra, Inc. Encapsulated stent
DE69518337T2 (en) * 1995-03-10 2001-02-01 Impra Inc ENDOLUMINAL ENCLOSED STENT AND MANUFACTURING METHOD
DE69635112T2 (en) * 1995-07-07 2006-05-18 W.L. Gore & Associates, Inc., Newark INTERIOR COATING FOR TUBES AND BLOOD TUBES
ES2224132T3 (en) 1995-08-24 2005-03-01 Bard Peripheral Vascular, Inc. ASSEMBLY METHOD OF A COVERED ENDOLUMINAL STENT.
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
EP0866677A4 (en) 1995-12-14 1999-10-27 Prograft Medical Inc Stent-graft deployment apparatus and method
US5800512A (en) * 1996-01-22 1998-09-01 Meadox Medicals, Inc. PTFE vascular graft
US6428571B1 (en) 1996-01-22 2002-08-06 Scimed Life Systems, Inc. Self-sealing PTFE vascular graft and manufacturing methods
WO1998012990A1 (en) 1996-09-26 1998-04-02 Scimed Life Systems, Inc. Support structure/membrane composite medical device
US5925074A (en) * 1996-12-03 1999-07-20 Atrium Medical Corporation Vascular endoprosthesis and method
US5824050A (en) * 1996-12-03 1998-10-20 Atrium Medical Corporation Prosthesis with in-wall modulation
US6010529A (en) * 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US6579582B1 (en) * 1997-10-10 2003-06-17 Vision Sciences Inc. Apparatus and method for forming complex-shaped components in a heated polymeric film
US6673102B1 (en) 1999-01-22 2004-01-06 Gore Enterprises Holdings, Inc. Covered endoprosthesis and delivery system
WO2000042947A2 (en) * 1999-01-22 2000-07-27 Gore Enterprise Holdings, Inc. Covered endoprosthesis and delivery system
US6517571B1 (en) 1999-01-22 2003-02-11 Gore Enterprise Holdings, Inc. Vascular graft with improved flow surfaces
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6364903B2 (en) 1999-03-19 2002-04-02 Meadox Medicals, Inc. Polymer coated stent
US6338724B1 (en) 1999-03-29 2002-01-15 Christos D. Dossa Arterio-venous interconnection
US6673103B1 (en) 1999-05-20 2004-01-06 Scimed Life Systems, Inc. Mesh and stent for increased flexibility
US6652570B2 (en) * 1999-07-02 2003-11-25 Scimed Life Systems, Inc. Composite vascular graft
US6364904B1 (en) * 1999-07-02 2002-04-02 Scimed Life Systems, Inc. Helically formed stent/graft assembly
US20010018609A1 (en) * 1999-08-11 2001-08-30 Scott Smith Seamless braided or spun stent cover
US6342294B1 (en) * 1999-08-12 2002-01-29 Bruce G. Ruefer Composite PTFE article and method of manufacture
AT407479B (en) * 1999-09-02 2001-03-26 Heinrich Dr Magometschnigg VASCULAR SURGICAL DEVICE FOR SUPPLY OR SEALING AND / OR COVERING Vascular Lesions
US6379382B1 (en) 2000-03-13 2002-04-30 Jun Yang Stent having cover with drug delivery capability
US6613082B2 (en) 2000-03-13 2003-09-02 Jun Yang Stent having cover with drug delivery capability
US7238168B2 (en) * 2000-06-02 2007-07-03 Avantec Vascular Corporation Exchangeable catheter
US6569180B1 (en) 2000-06-02 2003-05-27 Avantec Vascular Corporation Catheter having exchangeable balloon
US20030055377A1 (en) * 2000-06-02 2003-03-20 Avantec Vascular Corporation Exchangeable catheter
US6656202B2 (en) * 2000-07-14 2003-12-02 Advanced Cardiovascular Systems, Inc. Embolic protection systems
US6833153B1 (en) 2000-10-31 2004-12-21 Advanced Cardiovascular Systems, Inc. Hemocompatible coatings on hydrophobic porous polymers
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US6945991B1 (en) 2000-11-28 2005-09-20 Boston Scientific/Scimed Life Systems, Inc. Composite tubular prostheses
US6638468B1 (en) * 2000-12-26 2003-10-28 Scimed Life Systems, Inc. Method of reducing the wall thickness of a PTFE tube
US20030017775A1 (en) * 2001-06-11 2003-01-23 Scimed Life Systems. Inc.. Composite ePTFE/textile prosthesis
US7560006B2 (en) * 2001-06-11 2009-07-14 Boston Scientific Scimed, Inc. Pressure lamination method for forming composite ePTFE/textile and ePTFE/stent/textile prostheses
US7828833B2 (en) 2001-06-11 2010-11-09 Boston Scientific Scimed, Inc. Composite ePTFE/textile prosthesis
US7597775B2 (en) * 2001-10-30 2009-10-06 Boston Scientific Scimed, Inc. Green fluoropolymer tube and endovascular prosthesis formed using same
US6814561B2 (en) * 2001-10-30 2004-11-09 Scimed Life Systems, Inc. Apparatus and method for extrusion of thin-walled tubes
US7090693B1 (en) 2001-12-20 2006-08-15 Boston Scientific Santa Rosa Corp. Endovascular graft joint and method for manufacture
US6776604B1 (en) 2001-12-20 2004-08-17 Trivascular, Inc. Method and apparatus for shape forming endovascular graft material
US6790213B2 (en) 2002-01-07 2004-09-14 C.R. Bard, Inc. Implantable prosthesis
US7678068B2 (en) 2002-12-02 2010-03-16 Gi Dynamics, Inc. Atraumatic delivery devices
US7608114B2 (en) * 2002-12-02 2009-10-27 Gi Dynamics, Inc. Bariatric sleeve
US7025791B2 (en) * 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
JP4980569B2 (en) 2002-12-02 2012-07-18 ジーアイ・ダイナミックス・インコーポレーテッド Gastrointestinal implant device and delivery system for placing the device in the body
US20040199199A1 (en) * 2003-04-02 2004-10-07 Scimed Life Systems, Inc. Filter and method of making a filter
WO2005044361A1 (en) 2003-11-07 2005-05-19 Merlin Md Pte Ltd Implantable medical devices with enhanced visibility, mechanical properties and biocompatibility
US7476256B2 (en) 2003-12-09 2009-01-13 Gi Dynamics, Inc. Intestinal sleeve
EP1713634B1 (en) * 2003-12-30 2013-07-24 Boston Scientific Limited Method of uniaxially expanding a fluoropolymer tube
US20050186367A1 (en) * 2004-02-19 2005-08-25 Hanrahan James R. Low friction, abrasion-resistant materials and articles made therefrom
US8715340B2 (en) * 2004-03-31 2014-05-06 Merlin Md Pte Ltd. Endovascular device with membrane
US8915952B2 (en) * 2004-03-31 2014-12-23 Merlin Md Pte Ltd. Method for treating aneurysms
WO2007094738A1 (en) * 2006-02-13 2007-08-23 Merlin Md Pte Ltd Endovascular device with membrane
US8500751B2 (en) 2004-03-31 2013-08-06 Merlin Md Pte Ltd Medical device
ATE506042T1 (en) * 2004-07-09 2011-05-15 Gi Dynamics Inc DEVICES FOR PLACEMENT OF A GASTROINTESTINAL SLEEVE
US20060020328A1 (en) * 2004-07-23 2006-01-26 Tan Sharon M L Composite vascular graft having bioactive agent
US20060036308A1 (en) * 2004-08-12 2006-02-16 Medtronic Vascular, Inc. Stent with extruded covering
CA2577108A1 (en) 2004-08-31 2006-03-09 C.R. Bard, Inc. Self-sealing ptfe graft with kink resistance
US7951116B2 (en) 2004-11-12 2011-05-31 Boston Scientific Scimed, Inc. Selective surface modification of catheter tubing
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
EP1809202A4 (en) * 2004-12-22 2011-04-27 Merlin Md Pte Ltd A medical device
US20060149366A1 (en) * 2004-12-31 2006-07-06 Jamie Henderson Sintered structures for vascular graft
US7524445B2 (en) * 2004-12-31 2009-04-28 Boston Scientific Scimed, Inc. Method for making ePTFE and structure containing such ePTFE, such as a vascular graft
US7806922B2 (en) 2004-12-31 2010-10-05 Boston Scientific Scimed, Inc. Sintered ring supported vascular graft
US7857843B2 (en) 2004-12-31 2010-12-28 Boston Scientific Scimed, Inc. Differentially expanded vascular graft
US7220626B2 (en) * 2005-01-28 2007-05-22 International Business Machines Corporation Structure and method for manufacturing planar strained Si/SiGe substrate with multiple orientations and different stress levels
US7789888B2 (en) * 2005-02-14 2010-09-07 Bartee Chad M PTFE composite multi-layer material
US20060233990A1 (en) * 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
US20060233991A1 (en) * 2005-04-13 2006-10-19 Trivascular, Inc. PTFE layers and methods of manufacturing
ES2625807T3 (en) 2005-06-17 2017-07-20 C.R. Bard, Inc. Vascular graft with twisting resistance after clamping
WO2007056761A2 (en) * 2005-11-09 2007-05-18 C.R. Bard Inc. Grafts and stent grafts having a radiopaque marker
WO2007056762A2 (en) * 2005-11-09 2007-05-18 C.R. Bard Inc. Grafts and stent grafts having a radiopaque beading
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
WO2008063780A2 (en) * 2006-10-12 2008-05-29 C.R. Bard Inc. Vascular grafts with multiple channels and methods for making
FR2915903B1 (en) 2007-05-10 2010-06-04 Carpentier Matra Carmat METHOD FOR THE PRODUCTION OF A HEMOCOMPATIBLE OBJECT OF COMPLEX CONFIGURATION AND OBJECT THUS OBTAINED
US8087923B1 (en) 2007-05-18 2012-01-03 C. R. Bard, Inc. Extremely thin-walled ePTFE
US8216209B2 (en) 2007-05-31 2012-07-10 Abbott Cardiovascular Systems Inc. Method and apparatus for delivering an agent to a kidney
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
JP2010540190A (en) 2007-10-04 2010-12-24 トリバスキュラー・インコーポレイテッド Modular vascular graft for low profile transdermal delivery
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8196279B2 (en) * 2008-02-27 2012-06-12 C. R. Bard, Inc. Stent-graft covering process
US8262692B2 (en) * 2008-09-05 2012-09-11 Merlin Md Pte Ltd Endovascular device
WO2010039249A1 (en) 2008-10-03 2010-04-08 C.R. Bard, Inc. Implantable prosthesis
US8142145B2 (en) * 2009-04-21 2012-03-27 Thut Bruno H Riser clamp for pumps for pumping molten metal
WO2010143200A2 (en) 2009-06-11 2010-12-16 Indian Institute Of Technology A coronary stent with nano coating of drug free polymer and a process for preparation thereof
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
ES2943709T3 (en) 2012-04-06 2023-06-15 Merlin Md Pte Ltd Devices to treat an aneurysm
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
US10905539B2 (en) 2013-03-15 2021-02-02 W. L. Gore & Associates, Inc. Self-expanding, balloon expandable stent-grafts
US9522072B2 (en) * 2013-03-15 2016-12-20 W. L. Gore & Associates, Inc. Porous materials having a fibrillar microstructure and a fracturable coating
US10449781B2 (en) 2013-10-09 2019-10-22 Dover Europe Sarl Apparatus and method for thermal transfer printing
US9814560B2 (en) 2013-12-05 2017-11-14 W. L. Gore & Associates, Inc. Tapered implantable device and methods for making such devices
JP6673942B2 (en) 2015-06-05 2020-04-01 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Tapered hypobleeding implantable prosthesis
US10463470B2 (en) 2015-07-31 2019-11-05 Cook Medical Technologies Llc Methods of making a prosthesis with a smooth covering
CN108135302A (en) 2015-08-19 2018-06-08 W.L.戈尔及同仁股份有限公司 Compliance seamless three-dimensional product and the method for the product
WO2020163733A1 (en) 2019-02-08 2020-08-13 W. L. Gore & Associates, Inc. Ultraviolet light disinfecting systems
US11040548B1 (en) 2019-12-10 2021-06-22 Dover Europe Sarl Thermal transfer printers for deposition of thin ink layers including a carrier belt and rigid blade

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2781552A (en) * 1955-10-21 1957-02-19 Us Ceramic Tile Company Process for making thin articles of polytetrafluoroethylene
SE392582B (en) * 1970-05-21 1977-04-04 Gore & Ass PROCEDURE FOR THE PREPARATION OF A POROST MATERIAL, BY EXPANDING AND STRETCHING A TETRAFLUORETENE POLYMER PREPARED IN AN PASTE-FORMING EXTENSION PROCEDURE
US4203938A (en) * 1974-08-26 1980-05-20 The Dow Chemical Company Manufacture of polytetrafluoroethylene tubes
US4059380A (en) * 1976-08-26 1977-11-22 The Standard Oil Company Deep-draw thermoforming of thermoplastic sheet
JPS5334868A (en) * 1976-09-13 1978-03-31 Sumitomo Electric Industries Fine porous tube
DE2961447D1 (en) * 1978-08-18 1982-01-28 Akzo Nv Process for the preparation of p-nitroso-diphenylhydroxylamines
JPS6037733B2 (en) * 1978-10-12 1985-08-28 住友電気工業株式会社 Tubular organ prosthesis material and its manufacturing method
US4419320A (en) * 1980-10-22 1983-12-06 The Goodyear Tire & Rubber Company Novel process for deep stretch forming of polyesters
DE3214447C2 (en) * 1982-04-20 1994-05-11 Eilentropp Hew Kabel Unsintered wrapping tape of polytetrafluoroethylene
US4482516A (en) * 1982-09-10 1984-11-13 W. L. Gore & Associates, Inc. Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
US4563325A (en) * 1983-05-20 1986-01-07 Shell Oil Company Forming plastic articles in solid state
US4877661A (en) * 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
GB2211190A (en) * 1987-10-19 1989-06-28 Gore & Ass Rapid recoverable ptfe and a process for its manufacture
US5026513A (en) * 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
US4925710A (en) * 1988-03-31 1990-05-15 Buck Thomas F Ultrathin-wall fluoropolymer tube with removable fluoropolymer core
US4957669A (en) * 1989-04-06 1990-09-18 Shiley, Inc. Method for producing tubing useful as a tapered vascular graft prosthesis
EP0530201B1 (en) * 1990-03-15 1994-08-03 W.L. Gore & Associates, Inc. A catheter liner and a method of making the same
US5466509A (en) * 1993-01-15 1995-11-14 Impra, Inc. Textured, porous, expanded PTFE
AU6943794A (en) * 1993-08-18 1995-03-14 W.L. Gore & Associates, Inc. A thin-wall, seamless, porous polytetrafluoroethylene tube

Also Published As

Publication number Publication date
WO1995005277A1 (en) 1995-02-23
JPH09501585A (en) 1997-02-18
EP0714345B1 (en) 2001-09-12
CA2167943A1 (en) 1995-02-23
US6048484A (en) 2000-04-11
DE69428282D1 (en) 2001-10-18
US5620763A (en) 1997-04-15
EP0714345A1 (en) 1996-06-05
AU6943794A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
CA2167943C (en) A thin-wall, seamless, porous polytetrafluoroethylene tube
US5026513A (en) Process for making rapidly recoverable PTFE
US4877661A (en) Rapidly recoverable PTFE and process therefore
US4082893A (en) Porous polytetrafluoroethylene tubings and process of producing them
US4234535A (en) Process for producing porous polytetrafluoroethylene tubings
US5827327A (en) Carbon containing vascular graft and method of making same
US5641443A (en) Method of forming dual porosity PTFE tubes by extrusion of concentric preforms
EP0714487B2 (en) A thin-wall polytetrafluoroethylene tube
US4647416A (en) Method of preparing a vascular graft prosthesis
US5071609A (en) Process of manufacturing porous multi-expanded fluoropolymers
EP0778753B1 (en) Method of making an asymmetrical porous ptfe form
CA2436781C (en) High density microwall expanded polytetrafluoroethylene tubular structure
US5609624A (en) Reinforced vascular graft and method of making same
EP0137605B1 (en) Vascular graft prosthesis
EP1214951B1 (en) Expanded polytetrafluoroethylene product for medical applications
US7597775B2 (en) Green fluoropolymer tube and endovascular prosthesis formed using same
JP2001510367A (en) Radially expandable tubular polytetrafluoroethylene implant and method of making same
JP2001526080A (en) Supported implant and method of making same
GB2211190A (en) Rapid recoverable ptfe and a process for its manufacture
US6616876B1 (en) Method for treating expandable polymer materials
Sahmel et al. Extrusion as a manufacturing process for polymer micro-tubes for various bio-medical applications
GB1577326A (en) Porous polytetrafluoroethylene tubing
EP1767169B1 (en) Tubular stent-graft composite device and method of manufacture
WO2003045666A1 (en) Method for treating expandable polymer materials and products produced therefrom
JPS581656B2 (en) Polytetrafluoroethylene porous material and manufacturing method thereof

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20140505