CA2168352A1 - Liquid delivery device having a vial attachment or adapter incorporated therein - Google Patents

Liquid delivery device having a vial attachment or adapter incorporated therein

Info

Publication number
CA2168352A1
CA2168352A1 CA 2168352 CA2168352A CA2168352A1 CA 2168352 A1 CA2168352 A1 CA 2168352A1 CA 2168352 CA2168352 CA 2168352 CA 2168352 A CA2168352 A CA 2168352A CA 2168352 A1 CA2168352 A1 CA 2168352A1
Authority
CA
Canada
Prior art keywords
vial
connector
adaptor
wall
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2168352
Other languages
French (fr)
Inventor
Gregory E. Sancoff
Mark C. Doyle
Frederic P. Field
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Winfield Medical
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2168352A1 publication Critical patent/CA2168352A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2089Containers or vials which are to be joined to each other in order to mix their contents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1412Containers with closing means, e.g. caps
    • A61J1/1425Snap-fit type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J7/00Apparatus for generating gases
    • B01J7/02Apparatus for generating gases by wet methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1468Containers characterised by specific material properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2006Piercing means
    • A61J1/201Piercing means having one piercing end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2006Piercing means
    • A61J1/2013Piercing means having two piercing ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/20Arrangements for transferring or mixing fluids, e.g. from vial to syringe
    • A61J1/2003Accessories used in combination with means for transfer or mixing of fluids, e.g. for activating fluid flow, separating fluids, filtering fluid or venting
    • A61J1/2048Connecting means
    • A61J1/2055Connecting means having gripping means

Abstract

A device is disclosed which provides direct and effective incorporation of material, such as medicine, from a vial into the interior of a dispensing device. The device has a vial adaptor (150) for engaging the vial, a connector (160) for joining the vial adaptor and the container of fluid, a conduit (155), such as a needle, which provides fluid communication between the vial and the container, and a reclosable valve (164). The device can also provide for attaching the vial to a dispensing device but without intially establishing liquid communication between the two.

Description

WO9s/0521i 2 1 6 8 3 5 2 pcT~ss4msss 1 LIQUID DELIVERY DEVICE HAVING A VIAL
ATT~C~M~T OR ADAPTER INCORPORATED T~T~
BACKGROUND OF T~E lNV~N-llON
1. Field of the Invention:
The present invention relates to liquid delivery devices such as medicine dispensers. More particularly it relates to liquid delivery devices having an adapter that permits a substance in a vial or other separate container to be transferred to such delivery device.
2. Descri~tion of the Prior Art:
There are a number of types of liquid delivery devices or dispensers that are intended to provide for the delivery of a liquid medication to a patient under controlled conditions.
One is shown in U.S. Patent No. 5,080,652 to G.E. Sancoff, et al. All such delivery devices utilize mechanisms to cause a liquid contained therein (often a solution containing one or more medications) to be dispensed either continually or intermittently from the container, normally through a conduit which terminates at its distal end with an attachment for intravenous, subcutaneous, or intraparenternal administration to a patient.
Such devices may be stored in an empty condition and then filled with the liquid medication shortly before or at the time of administration of the medication to the patient.
Alternatively, containers can be stored in a sealed condition but filled with a liquid medication or liquid medium, and at the time of administration the device is opened and the medication dispensed to the patient as indicated above. In many ins~a~ces it is desirable to incorporate additional or different mea~c~ions into the liquid medication already present in the device. In other instances where the device is filled with a neutral liquid medium, it is necessary to add the medication to that medium prior to dispensing to the patient. The latter commonly occurs when the particular medication to be delivered has a short shelf life or where it is effective only for a short period after being dispersed in the liquid medium.

-O9S/052l1 2 1 6 8 3 5 2 pcT~ss4m889l .._ In both of these cases, it is necessary to establish some sort of fluid connection between the device and the container holding the additional or separate medicine. With many devices this is either difficult or impossible to do, thus normally requiring a second administration of the additional or other medicine to the patient.
A primary failing of the prior art vial adapters has been the failure to provide a resealable attachment. Therefore, when a vial is disposed on the diluent source it cannot be removed without the loss of diluent or medication. Moreover, removal of the vial is preferable so as to minimize the volume of diluent and medicament lost in line.
Accordingly, a need exists for a vial adapter and an infusion pump with a vial adapter associated therewith that allow for the efficient and expeditious transfer of a medication into an infusion pump and that further allow the vial or other container with the medication to be removed, and the pump put on line to the patient.
S~MMARY OF T~ lNV' ..lON
The present invention provides several embodiments of adapters that can be used for the introduction of a medicament from a drug vial, for example, into an infusion pump or IV bag followed by the delivery of the medicament in a diluent to a patient. A profound feature of the present invention is that, in a preferred embodiment, it provides a mechanism to allow for the introduction of the drug or medicament to the pump and the delivery from the pump through a single port. In a preferred embodiment, this is achieved through the use of a resealable valve in a lumen in the vial adapter.
This aspect of the present invention stands in stark contrast to the prior art. In the prior art, many complicated structures were used to achieve the objective of the present invention.
In accordance with a first aspect of the present invention, there is provided a liquid dispensing device comprising a container for fluid having an interior, an exterior, and an opening which provides fluid communication WO95/0521i 2 1683~2 PcT~ss4/n8891 _ -3 between the interior and the exterior, a vial having an interior, a neck with a groove therein and a piercable seal, a connector attached to the container and surrounding the opening, the connector having a hollow channel disposed therein in fluid communication with the opening in the container, and the channel having a reclosable valve disposed therein, the valve being normally closed, and a vial adaptor having an open proximal end, a closed distal end, a wall disposed between the distal and proximal ends, the wall further comprising a flange which releasably engages the groove on the neck of the vial, and a hollow conduit passing through the closed end and having a distal end extending beyond the closed end and sized to fit within the hollow channel of said connector, and a sharp proximal end adapted to pierce the seal on the vial, wherein the vial fits within the open proximal end of the vial adaptor and the flange engages the groove to hold the vial in the adaptor, and the connector and adaptor slidably attach such that the distal end of the hollow conduit in the vial adaptor slides within the hollow channel in the connector and contacts the valve causing it to open, and the proximal end of the conduit pierces the seal on the vial, thereby establishing fluid communication between the interior of the container and the interior of the vial.
In a preferred embodiment, the vial adaptor can be detached from the connector upon sliding movement of the connector and the adaptor away from each other. In another embodiment, the adaptor further comprises a second wall extending distally past the distal end and having an interior surface having a locking Luer fitting, and the connector further comprises a corresponding locking Luer fitting, such that the adaptor and the connector can be releasably joined by interlocking the Luer fittings. In yet another embodiment, the liquid dispensing device further comprises a removable wall section disposed between the vial adaptor and the connector, which forms a seal between the adaptor and the connector and acts to prevent the adaptor and the connector from sliding toward each other and opening the valve. In -~095/05211 21 683~2 PCT~Sg~/08891 another embodiment, the device further comprises an O-ring disposed between the vial adaptor and the connector, which forms a seal between the vial adaptor and the connector. In still another preferred embodiment of the device, the hollow channel within the connector is the sole outlet port for the interior of the container. In another preferred embodiment, the conduit comprises a needle having a channel disposed longitudinally therein. In yet another embodiment, the conduit comprises a needle having a channel formed in one side.
In accordance with another aspect of the present invention, there is provided a system for connecting a diluent source within a first container to a vial containing a medication, comprising a vial adaptor having an open proximal end, a distal end, and a wall section between the proximal end and said distal end, wherein the wall section further comprises a flange adapted to releasably engage a corresponding groove on the vial, and the vial adaptor further comprises a conduit attached at the distal end of the vial adaptor, the conduit having a distal end and a sharp proximal end adapted to pierce a seal on the vial, the conduit further defining a first lumen that extends from the proximal end of the conduit through the distal end of the vial adaptor. The vial adaptor further comprises a second wall section forming a channel that extends distally past the distal end of the conduit, and a connector having a proximal end, a distal end and a third wall section disposed between the proximal and the distal ends, wherein the proximal end further comprises a recessed wall section sized to fit within the channel formed by the second wall section of the adaptor, the connector having a second lumen extending therethrough and wherein the distal end of the connector is adapted to attach to the container and the connector further comprises a reclosable valve that is ordinarily closed to prevent fluid communication through said second lumen. The vial adaptor and the connector are adapted to releasably and sealingly connect at the distal end of the adaptor and the proximal end of the connector, such WOgs/0521i 21 68352 PcT~Ss4t~8891 _ -5-that the recessed wall section slides within the channel formed by the wall section upon sliding movement of the distal end of the adaptor and the proximal end of the connector towards each other such that the conduit contacts the valve causing it to open to allow fluid communication through the valve and the first and second lumen.
In a preferred embodiment, the vial adaptor can be removed from the connector upon sliding movement of the proximal end of the connector and the distal end of the adaptor away from each other. In another embodiment, the adaptor further comprises a locking Luer fitting on its distal end and the connector further comprises a corresponding locking Luer fitting on its proximal end, such that the adaptor and the connector can be releasably ..joined by interlocking the Luer fittings. In yet another embodiment, the device further comprises a removable wall section disposed between the vial adaptor and the connector, which forms a seal between the adaptor and the connector and acts to prevent the adaptor and the connector from moving longitudinally with respect to one another. In still another embodiment, the second lumen within the connector, when attached to the container, is the sole outlet port for the diluent source within said first container.
In accordance with yet another aspect of the present invention, there is provided a liquid dispensing device comprising a hollow casing having inner and outer sides, the inner side defining an interior which can contain a fluid, an opening in the casing providing fluid communication between the interior and the exterior of the casing, a hollow sleeve surrounding the opening and extending outwardly from the outer side, a reclosable valve on the interior of the sleeve, the valve being normally closed and being openable only from outside said casing, a flange on the interior of the sleeve for releasably engaging a groove on a neck of a vial which can contain a medicament and having a piercable seal which provides fluid communication between the interior and exterior of the vial, a conduit having a sharp distal end at least ~O9S/05211 2 1 6 8 3 5 2 PCT~Sg4!0889i -partially within the sleeve which pierces the seal and a proximal end in fluid communication with the interior of the hollow casing, such that when the distal end pierces the seal, fluid communication is established between the interiors of the hollow casing and the vial. The device further comprises a second flange within the sleeve and spaced apart from the first flange, the second flange also engagable with the groove on the vial and spaced apart from the seal a sufficient distance such that when the vial is inserted into the sleeve, the second flange engages the groove on the vial such that the vial and the sleeve are secured together but the conduit does not contact the seal and no fluid communication exists between the interiors of the vial and the hollow casing.
In a preferred embodiment, the conduit comprises a needle lS having a channel disposed longitudinally therein. In another preferred embodiment, the conduit comprises a needle having a channel formed in one side.
In accordance with still another aspect of the present invention, there is provided an adaptor for releasably joining a vial with a liquid delivery device, comprising a vial adaptor which comprises a front open end sized to receive a neck of the vial, a flange for engaging a corresponding groove on the vial, a back closed end, a wall having an inner and outer surface extending distally from the closed end to form a channel, a hollow needle extending through the back end and into the channel, and a connector comprising an outer wall having a proximal end and a distal end and a recessed wall sized to fit within the channel formed by the wall of the vial adaptor and having an inner and outer surface, the recessed wall extending proximately from the outer wall and forming a lumen to receive the needle such that fluid communication is achieved between the needle`and the lumen, and wherein a reclosable valve is located within the lumen, and wherein the outer wall is adapted to be releasably connected to an opening in the liquid delivery device.
In a preferred embodiment, the adaptor further comprises a detachable wall disposed at the proximal end of the outer Wo95tO5211 2 1 6 8 3 5 2 PCT~Sg4/08891 _ -7-wall of the connector, which forms a seal between the vial adaptor and the connector and acts to prevent the vial adaptor and connector from moving slidably with respect to one another. In another embodiment, the recessed wall further S comprises threads on the outer surface of the recessed wall and the adaptor further comprises threads on the interior surface of the wall, such that the vial adaptor and the connector may be joined through the interlocking of the threads. In yet another embodiment, the adaptor further comprises an O-ring disposed at the proximal end of the outer wall of the connector, which forms a seal between the vial adaptor and the connector.
sRIgF DgSCRIPTION OF T~E DRAWINGS
FIGURE 1 is a side elevation view, with portions cut away, of one configuration of the dispensing device of the present invention;
FIGURE 2 is a similar view with pressurized infusion in operation;
FIGURE 3 is an enlarged view of the upper portion of FIGURE 2;
FIGURE 4 is a view similar to a portion of FIGURE 2 showing manual compression of the dispensing device;
FIGURE 5 is an enlarged sectional view taken on line 5-5 of FIGURE l;
FIGURE 6 is a sectional view similar to that of FIGURE
5 showing an alternative rim configuration;
FIGURE 7 is a side elevation view, with portions cut away, of an alternative device with a separate adapter to hold the vial;
FIGURE 8 is an enlarged view of the upper portion of FIGURE 7;
FIGURE 9 is a partially cut away view of an alternative adapter arrangement in storage position;
FIGURE 10 is a similar view with the vial in the adapter;
and FIGURE 11 is a side elevation view of a further configuration of the apparatus.

WO95/05211 2 1 68352 PCT~Sg4!0889i _ -8-FIGURE 12 is a side cross sectional view of a vial adapter ln accordance with the present invention having its frangible strip in place, thereby preventing the two sections of the connector from moving relative to one another, thus maintaining the seal of the one-way valve.
FIGURE 13 is the view in FIGURE 12 with the frangible strip removed.
FIGURE 14 is the view in FIGURE 13 where the two sections of the adapter have been moved longitudinally toward each other thereby actuating the one-way valve and allowing fluid communication through the first and second lumen.
FIGURE 15 is a similar view as in FIGURE 12 in an embodiment where the two sections of the connector have threads.
FIGURE 16 is a similar view as in FIGURE 13 in the embodiment shown in FIGURE 15.
FIGURE 17 is a similar view as in FIGURE 14 in the embodiment shown in FIGURES 15 and 16.
nRTATT.Rn DESCRIPTION OF T~B ~K~KKKh~ ~NBODrMENTS
The present invention is related to an attachment or an adapter that allows for the addition of a medication from a container holding the medication to a solution contained within a liquid delivery device. It will be understood that often drugs or medications, following their manufacture, are packaged within containers that allow the medication to be kept sterile. Glass vials are frequently used; glass is highly inert, very stable, is readily sterilizable, and can be used with virtually any medication, whether it is a solid or liquid. The vials usually have a rubber septum at their mouths that allow for the reconstitution, dilution, and/or simple transfer of the medication from the vial through use of a needle and syringe.
The present invention allows for similar ease of transfer without the need for the use of a needle and syringe. Rather, the invention allows a vial to be essentially attached to a liquid delivery device and the medication contained in the vial transferred to the device easily and without wo gs/0s2!i ~ 1 6 8 3 5 2 pcrlus94m889l -g contamination. This is accomplished in the broadest sense by having a first connector sized to fit around the mouth of a drug vial that has a piercing means to perforate the septum in the vial, a channel extending from the connector that will allow the communication of the medication from the vial to the delivery device, and a second connector that is attached to the device. Preferably, the channel additionally contains means for preventing communication of the medication from the drug vial to the device and/or communication of the diluent from the device to the drug vial.
As discussed above, the medication contained in the drug vial can be a liquid or a solid and the principle of the invention is to move the medication from the vial to the liquid delivery device. When the medication is a liquid, it will be understood that it will easily flow through the channel into the delivery device. However, when the medication is a solid, it is necessary to reconstitute the solid. This may be accomplished either through adding a solvent to the solid while it is in the vial or a solvent in the device can be communicated through the channel to the vial and the reconstituted medication can be communicated back to the device.
The latter process is preferred, since, many medications are less stable in solution and begin to lose their efficacy the longer they are maintained in solution. This is a primary reason that such medications have been packaged and sold as solids in the first place. Therefore, it will be understood that it is highly advantageous to be able to reconstitute solid medications, just prior to administration to the patient.
The connector structure that meets the above-discussed requirements of the present invention will be best understood by reference to the drawings. FIGURES 1, 2, 4 and 11 show overall views of different embodiments of the present device with the connecting structure incorporated therein and showing the connection with the separate container, here illustrated as a vial. In FIGURES 1 and 2, the device shown is that WOg5/05211 - 2 1 6 ~ 3 ~ 2 PCT~S94/0889i described and claimed in co-pending U.S Patent Application Serial No. 08/105,327. The details of the operation of that device, including the means for dispensing the contained liquid, may be understood by reference thereto.
A device 2 of this invention is commonly formed of two parts 4 and 6 which are joined in a convenient manner, as by mating flanges 8. The device is hollow with an interior 10 shown as filled with a liquid 12. The liquid 12 may be a medication itself, or it may be an inert carrier liquid into which a medication is subsequently incorporated, as will be described below.
It will be understood that the descriptions herein as to "medication" is merely for the purpose of example, and that a variety of other types of fluids and added materials, such as intravenous nutrients, may be mixed and dispensed with the device of this invention. Those skilled in the art will be well aware of the many materials which can be handled by this device, and can readily determine the optimum manner of handling any particular combination of materials.
Dispensing of the liquid is by means of motion of membrane 14 by the pressure of gas which is evolved by the reaction of two chemicals which are initially separated but are brought together and allowed to react and evolve the gas.
The chemicals are conveniently housed in a well 16 attached to the wall of portion 6 of container 2. One of the chemicals is illustrated in the form of a solid pellet 18 and the other is in the form of liquid 20. The two are separated by membrane 22. ~hen a flexible cap 24 surrounding liquid 20 is flexed, as shown in FIGURE 2, a sharp protuberance 26 on the inside of dome 24 perforates membrane 22, allowing liquid chemical 20 to flow into contact with chemical 18, evolving gas which escapes through openings 28 as indicated by arrows 30, thus pushing membrane 14 forward as indicated in FIGURE 2 and causing the liquid to be dispensed through outlet 32 (visible in FIGURE
11). Membrane 14 is secured at its periphery by being clamped between the flanges 8 (designated as 8a and 8b in FIGURES 5 and 6).

woss/os2li 2 1 6 8 3 ~ 2 PCT~Sg4/08891 If desired, the device 2 can have a skirt 34 surrounding the well 16 to allow the device to be placed on end and to protect the well 16 and dome 24 against accidental activatiOn of the chemicals. Also present may be gas relief valve 36 which serves to control any overpressure from the evolving gas and also to allow the device 2 to be completely depressurized to ambient pressure once all of the liquid 12 has been dispensed.
For the purposes of illustration herein, the liquid 12 will hereafter be referred to simply as the carrier liquid, and it will be assumed that there is no medication initially present in liquid 12. It will of course be understood that this is solely for the purpose of illustration and that as noted above in fact there are many instances in which the liquid 12 may itself be a medication. The medicating substance 48 is initially contained in separate container 38, here illustrated as a vial. The medication 48 will be present within interior 40 of vial 38 and may be either in liquid form or in the form of a readily soluble solid material, usually a powder or granulated material. The vial 38 normally has a reduced collar area 42 widening to a lip 44, and is sealed by a membrane or cap 46. The purpose of the structure of the invention herein is to permit the medication 48 to be transferred from the vial 38 to the interior of the device 2 and there be incorporated into the carrier fluid 12.
The concept is best understood by reference to FIGURE 3.
At the top of portion 4 is formed a sleeve-like member 50 which surrounds an opening 52 leading from the interior 10 of device 2 to the exterior of the device 2 in the open hollow middle of the sleeve 50. The inside diameter of the sleeve 50 is sufficiently large to be able to accommodate either the entire diameter of vial 38 as shown or at least the upper neck portion including neck 42 and rim 44 (as illustrated in FIGURES 10 and ll). The opening 52 is closed by any convenient means, either a plug 54 or preferably a one-way valve 56, which will be described in more detail below. Also present will be a fluid communication member, normally in the ~095/05211 2 1 6~352 PCT~Sg4/0889i form of a needle 58, the structure of which will also be described below.
In one form of usage herein the vial 38 is positioned above the opening 60 of sleeve 50 and is pushed downward to make contact with needle 58. Needle 58 penetrates through the cap 46 of vial 38 and also penetrates through the closure 54 so that the opposite ends of needle 58 are positioned respectively in the medication 48 within interior 40 and in the carrier liquid 12 in interior lO. Fluid communication may be either by a hollow axial conduit 62 through needle 58, as shown in FIGURE lO, or through a conduit formed by a groove 64 formed in one side of the needle 58. There is also preferably a second groove or conduit 66 (shown in FIGURE 3) which passes through only a portion of the needle 58 and term~ates in a junction with a conduit 68 which in turn extends to an opening 70 in sleeve which provides access to the ambient atmosphere.
Thus as the medication 48 is withdrawn from the vial 38, air or other ambient gas can pass into the interior 40 through conduits 66 and 68 and hole 70 so that the formation of a vacuum and subsequently restricted flow of medication 48 is prevented. Typically there will also be a filter 72 present to remove any unwanted material from the ambient air as it passes from hole 70 into conduit 68.
Within sleeve 50, there will be a securing device 74 which contains means (illustrated in FIGURE 3 as flange 76) to engage a corresponding depression or groove 78 in the neck 42 of vial 38. The flange 76, and usually the entire member 74, will have some degree of resiliency so that the vial 38 can be pushed forward so that rim 44 passes the flange or shoulder 76 and allows the grooved area 78 to cooperate with the flange 76 to prevent unwanted disengagement of the vial 38 from securement within the sleeve 50. Other means of securement can be in the form of tabs 80 formed on the outer end of sleeve 50 as shown in FIGURE lO or as radial structures in the forms of truncated cones 82 and 82' which are engaged by the hooks 84 of an external sleeve 86.
In some embodiments the sleeve will be in the form of a 2 1 6~352 WOg5/05211' PCT~Sg4/0889]

sleeve assembly which is formed of a sleeve 50 attached to the wall of portion 4 and a male/female coupling member 88 which has a secondary sleeve 50' into which the vial 38 fits. This use of the coupling device 88 permits the entire assembly to be removed from the device 2 so that the sleeve 50 and opening 52 can if desired be subsequently used as an outlet equivalent to outlet 32 once the contents of vial 38 have been incorporated into the fluid 12. In the embodiment shown in FIGURE 1, the needle 58 is initially retained in a sliding plate 90 which is depressed downward by the positioning of vial 38, eventually coming to rest against the bottom 92 of sleeve 50 once the needle 58 has penetrated through the plug 54. The continued movement of vial 38 then causes the needle 58 to penetrate the cap 46 to establish a fluid co,,m,munication between the vial 38 and the dispensing device 2.
Once the vial is in place and secured, as shown in FIGURE
3, the transfer of the contents 48 of vial 38 is commenced.
The contents 48 may initially be under some pressure and therefore be forced through needle 58 into liquid carrier 12.
Alternatively, however, it is preferred to have the top portion 4 of the device 2 be somewhat flexible, as illustrated in FIGURE 4 at 94. When the portion 94 is flexed as indicated by arrows 96, the formation of a reduced pressure in interior 10 causes the contents 48 of vial 38 to be rapidly drawn out of the interior 40 and into fluid 12. Mixing is preferably accomplished by moving or pumping the fluid back and forth between the interior 40 and the fluid 12.
It is desirable to have a one-way valve 56 present in the sleeve 50, which valve is activated by contact with needle 58 when the vial 38 is pressed into place. This may be best seen in FIGURES 8 and 9. In this case, valve 56 is in the form of a bottle shaped plug 96, which conforms to a funnel-shaped interior 98 in a plug 100 which is fitted into sleeve 50 with an interference fit so that it is retained by friction on the mating surfaces 102. The plug 98 can be buoyant so that any fluid in container 12 forces it up into the opening 98 and closes the valve by contact between the surfaces 104. Or, in voss/0s211 2 1 6~3~2 PCT~Sg4/0889i a preferred embodiment, the plug is restrained under mechanical pressure or is a compression fitting, which is opened by compression or force in a direction opposite the compression. When the needle 58 or needle-like structure 58' 5 is pushed downward by the force of position of vial 38, the bottom 106 of the needle 58 or needle-like structure 58' contacts the top 108 of the plug 96 and forces it downward, thus opening the gap 98 to allow the liquid 12 to flow upward into the vial or the material 48 to flow toward the device 2 either because the material 48 is a liquid initially or because it becomes dissolved in that portion of the liquid 12 which passes into the interior 40 of vial 38. The plug 96 is prevented from falling out of the position by shoulders 110 of plug 100.
It is often desirable to be able to have the vial 38 and dispenser device 2 loosely attached together as for shipping and storing, but positioned apart so that the needle 58 or needle-like structure 58 ' is not penetrating into fluid communication with either of the vessels. The two vessels are 20 positioned so that a simple push on the vial 38 will cause the two to come into operative position and the medication 48 and the carrier material 12 to be properly mixed. This permits, for instance, medications and carrier materials to be shipped and stored together and to be immediately available as in an 25 emergency situation. For instance, storage of medications in a hospital emergency room must be such that the emergency room personnel can immediately obtain the exact medications needed and do not need to look for two or more separate containers which may be stored at different locations or of which one may 30 have simply not been properly replenished. In order to avoid premature activation of the medication system and to preserve the shelf life of the medication for the maximum period, it is necessary however to have the vessels connected but remain sufficiently far apart that neither one becomes inadvertently 35 opened and the contents then exposed and subject to subsequent deterioration.
A structure to accomplish this is shown in FIGURE 9 in WOg5/0521i PCT~Sg4/0889 which there are two separate securing conical flanges 82 and 82~ which are spaced some distance apart. A second male/female device 88', with a top section similar to that as shown in FIGURE 10 (but without the vial itself being shown) is used for this purpose. In operation, the member 88~ is pushed downward only to the point where the tabs 84 engage the flange 82'. In this position, the vial 38 and device 2 are held securely together but are spaced apart far enough that the needle 58 does not penetrate the cap 46 of vial 38. Nor is it pushed downward to engage and open one-way valve 56.
Subsequently when it is desired to join the two materials, the member 88' is pushed further down so that the tabs 84 engage the conical flange 82, which causes the needle 58 to be pushed downward to open plug 56 and to also penetrate and open the cap 46 by the downward movement of vial 38, all as illustrated in FIGURE 10. The tabs 84 on member 88' can, if desired, be fitted with levers 112 which permit one to use thumb or finger pressure to spread the tabs 84 and release the member 88' when the vial 38 is empty.
In yet another embodiment, as shown in FIGURES 12 through 17, the vial adapter consists essentially of male and female fittings, such as common Luer type fittings or locking Luers.
One of the fittings is connected to the vial connector and one is connected to the delivery device. Further, preferably, one of the fittings contains a check valve, that acts to prevent the flow of liquid from the device. It will be appreciated, that in these constructions, either the male or the female fitting can be connected to the vial connector end or vice versa.
Thus, referring now to FIGURE 12, a drug vial adapter 150 is provided with a vial attachment end 151 that is sized and shaped to receive and lock in a drug vial (not shown). The vial attachment end 151 has an front open end 152 and a back closed end 153. As will be appreciated, drug vials typically have a rim that separates their mouth portion from their neck portion. The vial attachment end 151 of the vial adapter 150 has a vial catch 154 that is formed around the circumference -- 2 1 683 j2 --~095/05211 PCT~ss~!08891 of the front open end 152 of the vial attachment end 151 which acts to lock a drug vial to the vial adapter 150. In the center of the vial attachment end 151, a spike 155 is positioned. Thus, a drug vial is centered in the front open end 152 of the vial attachment end 151 and pushed longitudinally towards the back closed end 153 of the vial attachment end 151. Such action forces the spike 155 through a septum or a similar sealing means in a drug vial. A rim on a drug vial will catch on the vial catch 154, holding the vial in position with the spike 155 extending therein.
Extending distally from the back closed end 153 of the vial attachment end 151, the vial adapter 150 has a stem wall 156. The stem wall 156 defines a main channel section 157.
Within the main channel section 157, a rod 158 ext.ends. The rod 158 is in communication with the spike 155 through a first lumen 159, thus allowing fluid communication between a vial into the main channel section 157.
Distal to the vial attachment end 151 and its stem wall 156 is a connector 160. The connector 160 has a wall 161 and a recessed wall 162. The recessed wall is sized to fit within the main channel section 157 of the vial attachment end 151.
Internal to the wall 161 and the recessed wall 162 of the connector 160, a second lumen 163 extends. Within the second lumen 163, there is a valve 164 that is kept in general longitudinal position with circumferential tabs 165 and 166.
The valve 164, on its proximal end, has a recessed stem section 167 that extends proximally through the lumen 163 and - the proximal most circumferential tab 166.
The distal end 168 of the rod 158 is sized to fit within the distal end 169 of the second lumen 163, thus allowing fluid communication between the first lumen 159 and the second lumen 163. However, the valve 164 acts to stop fluid flow from the proximal end 170 to the distal end 169 of the connector 160 because pressure exerted against the distal end 171 of the valve 164 forces the proximal edge 172 of the valve 164 against the proximal most circumferential tab 166.
The vial attachment end 151 of the vial adapter 150 is woss/0s2ll 2 1 6 ~ 3 5 2 PcT~s94/n889l attached to the connector 160 through detachable wall section 173. The detachable wall section 173 acts to provide mechanical stability to the vial adapter as well as maintaining the channel section aseptic and sterile. In a preferred embodiment, the detachable wall section forms a seal between the vial attachment end 151 of the vial adapter 150 and the connector 160 of the vial adapter 150. There are other structures that would achieve similar results as the detachable wall section 173. For example, a resilient or flexible seal between the vial attachment end 151 of the vial adapter 150 and the connector 160 of the vial adapter 150 would be equivalent. Some reduction in structural rigidity would be observed. However, such a sleeve would serve to seal the connection. Similarly, an o-ring or other similar structure could be provided on the sleeve. Such structure would provide an adequate seal, however, there would also be seen a reduced mechanical strengthening.
Alternatively, it will be understood that, instead of utilizing the detachable wall section, the device can be fitted with one or more detents on the connector and a detent release lever on the vial attachment end, along with threading. This configuration would provide similar mechanical strength properties as the detachable wall section and could be easily adapted to provide for aseptic or sterile closure. Moreover, such an arrangement can be completely removed from the connector 160, providing a similar advantage as the detachable wall section 173.
In the preferred embodiment, however, the detachable wall section 173 has means, such as frangible strips 174 and pull tab 175 that allow the removal of the detachable wall section 173 from the vial adapter 150. This is advantageous, since the entire vial attachment end 151 can be removed, if desired, from the vial adapter 150, leaving only the connector 160.
This allows the connector 160 to be used for attachment to another connector, such as a connector on an IV set.
In FIGURE 13, the detachable wall section 173 has been removed leaving a void section 176 in the vial adapter 150.

~ 2 1 6~3S2 ``
~095/05211 PCT~sg4/088si This void section 176, as will be seen in FIGURE 14, allows the vial attachment end 151 to move distally toward the connector 160, with the stem wall 156 sliding over the recessed wall area 162 on the connector 160. This distal movement operates to move the distal end 168 of the rod 158 toward the distal end 177 of the valve 164, forcing the proximal edge 172 of the valve 164 away from the proximal most circumferential tab 166 and allowing fluid to flow from the second lumen 163 in the connector 160 into the first lumen 159 and out the distal end 178 of the spike 155.
As will be understood, in the above-discussed design in FIGURES 15 through 17, as easily as the vial attachment end 151 of the vial adapter 150 will slide distally toward the connector 160, it can slide proximally, falling apart.
Therefore, in a preferred embodiment, the inside wall 178 of the stem wall 156 and the outside wall 179 of the recessed wall section are threaded, or are otherwise constructed so as to protect against detachment. Moreover, these designs tend to simplify the depression of the valve 164 in order to allow communication of fluid through the second and first lumens.
FIGURES 15 through 17 show a model having threads 181 on the stem wall and threads 180 on the recessed wall section 162.
The detachable wall section 173 is removed by pulling on pull tab 175 in the direction of arrow A. The detachable wall section will separate along frangible wall sections 174.
Thereafter, in FIGURE 16, the vial attachment end 151 is turned in the direction of arrow B, which turns the stem wall 156 around the recessed wall section 162 and the threads 180 and 181 will draw the stem wall 156 distally on the connector.
This action, as will be seen in FIGURE 17, will reduce the size of the void space 176 and also allow fluid communication between the first and second lumens 159 and 163, respectively, as discussed in more detail in connection with FIGURE 14.
It will be appreciated that there are valves and valve systems that can be opened without the longitudinal motion of the vial attachment end and the connector in relation to one another. For example, there are a variety of bayonet type woss/0s21l 2 1 6 8 3 5 2 PcT~sg4/n889l valve actuators. In bayonet style actuators, upon the axial twisting of one of the ends relative to the other, structure similar to the rod 158 can be caused to extend and depress the distal end of the valve. In addition, a variety of axial pressure valves are made that, when pressure is exerted external to the valve, will deform the shape of the lumen surrounding the valve closure and all fluid flow therethrough.

Claims (20)

WHAT WE CLAIM IS:
1. A liquid dispensing device comprising:
a container for fluid having an interior, an exterior, and an opening which provides fluid communication between the interior and the exterior;
a vial having an interior, a neck, a groove in the neck, and a piercable seal;
a connector attached to the container surrounding the opening, the connector having a hollow channel disposed therein and in fluid communication with the opening in the container, the channel having a reclosable valve disposed therein, the valve being normally closed;
and a vial adaptor having an open proximal end, a closed distal end, a wall disposed between the distal and proximal ends, the wall comprising a flange which releasably engages the groove on the neck of the vial, and a hollow conduit passing through the closed end and having a distal end extending beyond the closed end and sized to fit within the hollow channel of said connector, and a sharp proximal end adapted to pierce the seal on the vial;
wherein the vial fits within the open proximal end of the vial adaptor and the flange engages the groove to hold the vial in the adaptor, and the connector and adaptor slidably attach such that the distal end of the hollow conduit in the vial adaptor slides within the hollow channel in the connector and contacts the valve causing it to open, and the proximal end of the conduit pierces the seal on the vial, thereby establishing fluid communication between the interior of the container and the interior of the vial.
2. The device of Claim 1, wherein the vial adaptor can be detached from the connector upon sliding movement of the connector and the adaptor away from each other.
3. The device of Claim 1, wherein the adaptor further comprises a second wall extending distally past the distal end and having an interior surface having a locking Luer fitting and wherein said connector further comprises a corresponding locking Luer fitting, such that the adaptor and the connector can be releasably joined by interlocking the Luer fittings.
4. The device of Claim 1, further comprising a removable wall section disposed between the vial adaptor and the connector, the removable wall section forming a seal between the adaptor and the connector and acting to prevent the adaptor and the connector from sliding toward each other and opening the valve.
5. The device of Claim 1, further comprising an O-ring disposed between the vial adaptor and the connector, the O-ring forming a seal between the vial adaptor and the connector.
6. The device of Claim 1, wherein the hollow channel within the connector is the sole outlet port for the interior of the container.
7. The device of Claim 1, wherein the conduit comprises a needle having a channel disposed longitudinally therein.
8. The device of Claim 1, wherein said conduit comprises a needle having a channel formed in one side of the needle.
9. A system for connecting a diluent source within a first container to a vial containing a medication, comprising:
a vial adaptor having an open proximal end, a distal end, and a wall section between said proximal end and said distal end, wherein the wall section comprises a flange adapted to releasably engage a corresponding groove on the vial, said vial adaptor further comprising a conduit attached at said distal end of said vial adaptor, said conduit having a distal end and a sharp proximal end adapted to pierce a seal on said vial, said conduit further defining a first lumen that extends from the proximal end of the conduit through the distal end of the vial adaptor; said vial adaptor further comprising a second wall section forming a channel that extends distally past the distal end of said conduit; and a connector having a proximal end, a distal end and a third wall section disposed between said proximal and said distal ends, wherein the proximal end comprises a recessed wall section sized to fit within the channel formed by said second wall section of said adaptor, said connector having a second lumen extending therethrough and wherein said distal end of said connector is adapted to attach to said container; said connector further comprising a reclosable valve that is ordinarily closed to prevent fluid communication through said second lumen;
said vial adaptor and said connector being adapted to releasably and sealingly connect at the distal end of said adaptor and the proximal end of said connector, such that said recessed wall section slides within the channel formed by said wall section upon sliding movement of the distal end of the adaptor and the proximal end of the connector towards each other such that said conduit contacts said valve causing it to open to allow fluid communication through said valve and said first and second lumen.
10. The system of Claim 9, wherein the vial adaptor can be removed from said connector upon sliding movement of the proximal end of the connector and the distal end of the adaptor away from each other.
11. The system of Claim 9, wherein said adaptor further comprises a locking Luer fitting on its distal end and wherein said connector further comprises a corresponding locking Luer fitting on its proximal end, such that said adaptor and said connector can be releasably joined by interlocking said Luer fittings.
12. The system of Claim 9, further comprising a removable wall section disposed between said vial adaptor and said connector, said removable wall section forming a seal between said adaptor and said connector and acting to prevent said adaptor and said connector from moving longitudinally with respect to one another.
13. The system of Claim 9, wherein said second lumen within said connector, when attached to said container, is the sole outlet port for said diluent source within said first container.
14. A liquid dispensing device comprising:
a hollow casing having inner and outer sides, said inner side defining an interior which can contain a fluid;
an opening in said casing providing fluid communication between said interior and the exterior of said casing;
a hollow sleeve surrounding said opening and extending outwardly from said outer side, said sleeve having an interior;
an reclosable valve on the interior of said sleeve, said valve being normally closed and being openable only from outside said casing;
a flange on the interior of said sleeve for releasably engaging a groove on a neck of a vial, said vial having an interior which can contain a medicament and a piercable seal which provides fluid communication between the interior and exterior of said vial;
a conduit having a sharp distal end at least partially within said sleeve which pierces said seal and a proximal end in fluid communication with the interior of said hollow casing, such that when said distal end pierces said seal, fluid communication is established between said interiors of said hollow casing and said vial; and a second flange within said sleeve and spaced apart from said first flange, said second flange also engagable with said groove on said vial, and spaced apart from said seal a sufficient distance such that when said vial is inserted into said sleeve, said second flange engages the groove on the vial such that the vial and said sleeve are secured together but said conduit does not contact said seal and no fluid communication exists between said interiors of said vial and said hollow casing.
15. The device of Claim 14, wherein said conduit comprises a needle having a channel disposed longitudinally therein.
16. The device of Claim 14, wherein said conduit comprises a needle having a channel formed in one side of said needle.
17. An adaptor for releasably joining a vial with a liquid delivery device, comprising:
a vial adaptor comprising a front open end sized to receive a neck of said vial, a flange for engaging a corresponding groove on said vial, a back closed end, a wall having an inner and outer surface extending distally from said closed end to form a channel, a hollow needle extending through said back end and into said channel;
and a connector comprising an outer wall having a proximal end and a distal end and a recessed wall sized to fit within the channel formed by the wall of said vial adaptor and having an inner and outer surface, said recessed wall extending proximately from said outer wall and forming a lumen to receive the needle such that fluid communication is achieved between the needle and said lumen, and wherein a reclosable valve is located within said lumen, and wherein said outer wall is adapted to be releasably connected to an opening in said liquid delivery device.
18. The adaptor of Claim 17, further comprising a detachable wall disposed at the proximal end of said outer wall of said connector, wherein said detachable wall forms a seal between the vial adaptor and the connector and acts to prevent the vial adaptor and connector from moving slidably with respect to one another.
19. The adaptor of Claim 17, wherein said recessed wall further comprises threads on the outer surface of the recessed wall and said adaptor further comprises threads on the interior surface of said wall, such that said vial adaptor and said connector may be joined through the interlocking of said threads.
20. The adaptor of Claim 17, further comprising an O-ring disposed at the proximal end of said outer wall of said connector, said O-ring forming a seal between the vial adaptor and the connector.
CA 2168352 1993-08-06 1994-08-08 Liquid delivery device having a vial attachment or adapter incorporated therein Abandoned CA2168352A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/105,284 1993-08-06
US08/105,284 US5397303A (en) 1993-08-06 1993-08-06 Liquid delivery device having a vial attachment or adapter incorporated therein

Publications (1)

Publication Number Publication Date
CA2168352A1 true CA2168352A1 (en) 1995-02-23

Family

ID=22304983

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2168352 Abandoned CA2168352A1 (en) 1993-08-06 1994-08-08 Liquid delivery device having a vial attachment or adapter incorporated therein

Country Status (11)

Country Link
US (1) US5397303A (en)
EP (1) EP0713409B1 (en)
JP (1) JPH09501342A (en)
CN (1) CN1132481A (en)
AT (1) ATE210480T1 (en)
AU (1) AU684816B2 (en)
CA (1) CA2168352A1 (en)
DE (1) DE69429433T2 (en)
ES (1) ES2169082T3 (en)
PT (1) PT713409E (en)
WO (1) WO1995005211A2 (en)

Families Citing this family (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5700244A (en) * 1992-04-17 1997-12-23 Science Incorporated Fluid dispenser with fill adapter
US5531683A (en) * 1992-08-13 1996-07-02 Science Incorporated Mixing and delivery syringe assembly
US5562616A (en) * 1995-03-01 1996-10-08 Habley Medical Technology Corporation Semi-automatic reconstituting system for binary oncolytic pharmaceuticals
US5766147A (en) * 1995-06-07 1998-06-16 Winfield Medical Vial adaptor for a liquid delivery device
US5700245A (en) 1995-07-13 1997-12-23 Winfield Medical Apparatus for the generation of gas pressure for controlled fluid delivery
US6277095B1 (en) 1995-10-11 2001-08-21 Science Incorporated Fluid delivery device with full adapter
US5741242A (en) * 1995-12-22 1998-04-21 Science Incorporated Infusion device with fill assembly
US5807335A (en) * 1995-12-22 1998-09-15 Science Incorporated Fluid delivery device with conformable ullage and fill assembly
US5707589A (en) * 1996-04-12 1998-01-13 Merlin Instrument Company Funnel-shaped sample-vial septum with membrane covered diffusion-barrier section
JP2000508934A (en) 1996-04-22 2000-07-18 アボツト・ラボラトリーズ Container sealing system
ZA978002B (en) 1996-09-11 1998-03-02 Baxter Int Containers and methods for storing and admixing medical solutions.
US5891129A (en) * 1997-02-28 1999-04-06 Abbott Laboratories Container cap assembly having an enclosed penetrator
US5924584A (en) * 1997-02-28 1999-07-20 Abbott Laboratories Container closure with a frangible seal and a connector for a fluid transfer device
US5971722A (en) * 1997-09-05 1999-10-26 Baxter International Inc Electrochemical syringe pump having a sealed storage reservoir for a charge transfer medium
US6019750A (en) 1997-12-04 2000-02-01 Baxter International Inc. Sliding reconstitution device with seal
US6003566A (en) 1998-02-26 1999-12-21 Becton Dickinson And Company Vial transferset and method
US6382442B1 (en) 1998-04-20 2002-05-07 Becton Dickinson And Company Plastic closure for vials and other medical containers
US6681946B1 (en) 1998-02-26 2004-01-27 Becton, Dickinson And Company Resealable medical transfer set
US6209738B1 (en) 1998-04-20 2001-04-03 Becton, Dickinson And Company Transfer set for vials and medical containers
US6378714B1 (en) 1998-04-20 2002-04-30 Becton Dickinson And Company Transferset for vials and other medical containers
US6904662B2 (en) * 1998-04-20 2005-06-14 Becton, Dickinson And Company Method of sealing a cartridge or other medical container with a plastic closure
US6957745B2 (en) * 1998-04-20 2005-10-25 Becton, Dickinson And Company Transfer set
US7425209B2 (en) * 1998-09-15 2008-09-16 Baxter International Inc. Sliding reconstitution device for a diluent container
US6113583A (en) 1998-09-15 2000-09-05 Baxter International Inc. Vial connecting device for a sliding reconstitution device for a diluent container
AR021220A1 (en) 1998-09-15 2002-07-03 Baxter Int CONNECTION DEVICE FOR ESTABLISHING A FLUID COMMUNICATION BETWEEN A FIRST CONTAINER AND A SECOND CONTAINER.
US7074216B2 (en) * 1998-09-15 2006-07-11 Baxter International Inc. Sliding reconstitution device for a diluent container
FR2783808B1 (en) 1998-09-24 2000-12-08 Biodome CONNECTION DEVICE BETWEEN A CONTAINER AND A CONTAINER AND READY-TO-USE ASSEMBLY COMPRISING SUCH A DEVICE
US6719719B2 (en) * 1998-11-13 2004-04-13 Elan Pharma International Limited Spike for liquid transfer device, liquid transfer device including spike, and method of transferring liquids using the same
DE19930791B4 (en) * 1999-07-03 2004-02-12 Fresenius Ag Lockable needle adapter
FR2802183B1 (en) * 1999-12-10 2002-02-22 Biodome METHOD FOR MANUFACTURING A CONNECTION DEVICE BETWEEN A CONTAINER AND A CONTAINER, CORRESPONDING CONNECTION DEVICE AND READY-TO-USE ASSEMBLY COMPRISING SUCH A DEVICE
AU2001222342A1 (en) * 2000-07-22 2002-02-18 Yong-Nyun Kim Liquid supply apparatus
GB0021665D0 (en) * 2000-09-04 2000-10-18 Genosis Ltd Fluid dispensing apparatus
FR2815328B1 (en) * 2000-10-17 2002-12-20 Biodome CONNECTION DEVICE BETWEEN A CONTAINER AND A CONTAINER AND READY-TO-USE ASSEMBLY COMPRISING SUCH A DEVICE
US6474375B2 (en) 2001-02-02 2002-11-05 Baxter International Inc. Reconstitution device and method of use
US20020138046A1 (en) * 2001-03-23 2002-09-26 Douglas Joel S. Adapter for medication cartridges
US20030032935A1 (en) * 2001-08-10 2003-02-13 Scimed Life Systems, Inc. Packages facilitating convenient mixing and delivery of liquids
KR100456273B1 (en) * 2001-11-16 2004-11-10 김용년 Solid formulation producing carbon dioxide when contacting liquid acid and a method of preparing the same
KR100507593B1 (en) * 2002-02-08 2005-08-10 주식회사 이화양행 Liquid supply apparatus
FR2836129B1 (en) 2002-02-20 2004-04-02 Biodome CONNECTION DEVICE BETWEEN A CONTAINER AND A CONTAINER AND READY-TO-USE ASSEMBLY COMPRISING SUCH A DEVICE
US7094369B2 (en) * 2002-03-29 2006-08-22 Scimed Life Systems, Inc. Processes for manufacturing polymeric microspheres
US7462366B2 (en) 2002-03-29 2008-12-09 Boston Scientific Scimed, Inc. Drug delivery particle
US7131997B2 (en) * 2002-03-29 2006-11-07 Scimed Life Systems, Inc. Tissue treatment
US7053134B2 (en) * 2002-04-04 2006-05-30 Scimed Life Systems, Inc. Forming a chemically cross-linked particle of a desired shape and diameter
WO2003105917A2 (en) 2002-06-12 2003-12-24 Scimed Life Systems, Inc. Bulking agents
US7449236B2 (en) * 2002-08-09 2008-11-11 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
US7842377B2 (en) 2003-08-08 2010-11-30 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
US8012454B2 (en) * 2002-08-30 2011-09-06 Boston Scientific Scimed, Inc. Embolization
US7588825B2 (en) * 2002-10-23 2009-09-15 Boston Scientific Scimed, Inc. Embolic compositions
US7883490B2 (en) * 2002-10-23 2011-02-08 Boston Scientific Scimed, Inc. Mixing and delivery of therapeutic compositions
US6948522B2 (en) * 2003-06-06 2005-09-27 Baxter International Inc. Reconstitution device and method of use
CA2529429C (en) * 2003-06-17 2009-10-20 Filtertek Inc. Fluid handling device and method of making same
US7976823B2 (en) * 2003-08-29 2011-07-12 Boston Scientific Scimed, Inc. Ferromagnetic particles and methods
US7901770B2 (en) * 2003-11-04 2011-03-08 Boston Scientific Scimed, Inc. Embolic compositions
FR2863679B1 (en) * 2003-12-11 2007-09-14 Ge Med Sys Global Tech Co Llc THREE-WAY VALVE FOR FLUID DISTRIBUTION AND USE THEREOF
US7641851B2 (en) 2003-12-23 2010-01-05 Baxter International Inc. Method and apparatus for validation of sterilization process
US20050133729A1 (en) * 2003-12-23 2005-06-23 Archie Woodworth Apparatus and method for fabricating a reconstitution assembly
US7736671B2 (en) * 2004-03-02 2010-06-15 Boston Scientific Scimed, Inc. Embolization
US8173176B2 (en) 2004-03-30 2012-05-08 Boston Scientific Scimed, Inc. Embolization
US20050238870A1 (en) * 2004-04-22 2005-10-27 Marcia Buiser Embolization
IL161660A0 (en) 2004-04-29 2004-09-27 Medimop Medical Projects Ltd Liquid drug delivery device
US7311861B2 (en) 2004-06-01 2007-12-25 Boston Scientific Scimed, Inc. Embolization
US8425550B2 (en) * 2004-12-01 2013-04-23 Boston Scientific Scimed, Inc. Embolic coils
WO2006085327A1 (en) * 2005-02-14 2006-08-17 Medimop Medical Projects Ltd Medical device for in situ liquid drug reconstitution in medicinal vessels
US7727555B2 (en) * 2005-03-02 2010-06-01 Boston Scientific Scimed, Inc. Particles
US7858183B2 (en) * 2005-03-02 2010-12-28 Boston Scientific Scimed, Inc. Particles
US7963287B2 (en) * 2005-04-28 2011-06-21 Boston Scientific Scimed, Inc. Tissue-treatment methods
ITMO20050141A1 (en) * 2005-06-09 2006-12-10 Aries S R L CLOSING DEVICE FOR CONTAINERS OR LINES OF ADMINISTRATION OF MEDICINAL OR FERMACEUTICAL FLUIDS.
US20070004973A1 (en) * 2005-06-15 2007-01-04 Tan Sharon M L Tissue treatment methods
US9463426B2 (en) * 2005-06-24 2016-10-11 Boston Scientific Scimed, Inc. Methods and systems for coating particles
DK1919432T3 (en) 2005-08-11 2012-01-30 Medimop Medical Projects Ltd Liquid Medication Transfer Devices for Safe Safe Resting Connection on Medical Vials
US8007509B2 (en) * 2005-10-12 2011-08-30 Boston Scientific Scimed, Inc. Coil assemblies, components and methods
US20070083219A1 (en) * 2005-10-12 2007-04-12 Buiser Marcia S Embolic coil introducer sheath locking mechanisms
US8152839B2 (en) * 2005-12-19 2012-04-10 Boston Scientific Scimed, Inc. Embolic coils
US8101197B2 (en) 2005-12-19 2012-01-24 Stryker Corporation Forming coils
US20070142859A1 (en) * 2005-12-19 2007-06-21 Boston Scientific Scimed, Inc. Embolic coils
US7947368B2 (en) * 2005-12-21 2011-05-24 Boston Scientific Scimed, Inc. Block copolymer particles
US20070142560A1 (en) * 2005-12-21 2007-06-21 Young-Ho Song Block copolymer particles
US7501179B2 (en) * 2005-12-21 2009-03-10 Boston Scientific Scimed, Inc. Block copolymer particles
IL174352A0 (en) * 2006-03-16 2006-08-20 Medimop Medical Projects Ltd Medical devices for use with carpules
CA2834152C (en) * 2006-05-25 2016-07-05 Bayer Healthcare Llc Reconstitution device
US20070299461A1 (en) * 2006-06-21 2007-12-27 Boston Scientific Scimed, Inc. Embolic coils and related components, systems, and methods
US8414927B2 (en) 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Cross-linked polymer particles
WO2008058249A1 (en) * 2006-11-09 2008-05-15 Puricore, Inc. Apparatuses and systems for storing, dispensing, and reconstituting materials
TW200835474A (en) * 2006-11-17 2008-09-01 Novartis Ag Integrated storage and delivery systems for nutritional compositions
WO2008064293A2 (en) * 2006-11-22 2008-05-29 Calgon Carbon Corporation Carbon filled pressurized container and method of making same
US20080145658A1 (en) * 2006-12-15 2008-06-19 Boston Scientific Scimed, Inc. Freeze Thaw Methods For Making Polymer Particles
AU2008233220B2 (en) * 2007-03-30 2013-01-10 Instrumentation Laboratory Company Adaptor for sample vial
IL182605A0 (en) * 2007-04-17 2007-07-24 Medimop Medical Projects Ltd Fluid control device with manually depressed actuator
CN101918074B (en) 2007-09-18 2013-02-27 麦迪麦珀医疗工程有限公司 Medicament mixing and injection apparatus
IL186290A0 (en) * 2007-09-25 2008-01-20 Medimop Medical Projects Ltd Liquid drug delivery devices for use with syringe having widened distal tip
DE102007046951B3 (en) * 2007-10-01 2009-02-26 B. Braun Melsungen Ag Device for introducing a medicament into an infusion container
US8639387B2 (en) * 2007-11-02 2014-01-28 Vkr Holding A/S Method, system and device for controlling a device related to a building aperture
WO2009060419A2 (en) * 2007-11-08 2009-05-14 Elcam Medical A.C.A..L. Ltd Vial adaptor and manufacturing method therfor
US20120095415A1 (en) * 2008-01-22 2012-04-19 Pro-Iv Ltd. Drug port verification valve
US8123736B2 (en) * 2009-02-10 2012-02-28 Kraushaar Timothy Y Cap adapters for medicament vial and associated methods
US8162914B2 (en) * 2009-02-10 2012-04-24 Kraushaar Timothy Y Cap adapters for medicament vial and associated methods
JP5685579B2 (en) 2009-04-14 2015-03-18 ユーコン・メディカル,リミテッド・ライアビリティ・カンパニー Fluid transfer device
US8343098B2 (en) * 2009-06-29 2013-01-01 Acist Medical Systems, Inc. Method and system for removing air from a flow path of a fluid injection device
IL201323A0 (en) 2009-10-01 2010-05-31 Medimop Medical Projects Ltd Fluid transfer device for assembling a vial with pre-attached female connector
CA2778105C (en) 2009-10-23 2019-04-02 Amgen Inc. Vial adapter and system
IL202069A0 (en) 2009-11-12 2010-06-16 Medimop Medical Projects Ltd Fluid transfer device with sealing arrangement
IL202070A0 (en) 2009-11-12 2010-06-16 Medimop Medical Projects Ltd Inline liquid drug medical device
EP2351596A1 (en) * 2010-01-29 2011-08-03 Fresenius Medical Care Deutschland GmbH Insert for the infusion of drugs
CN102781396B (en) 2010-02-24 2015-01-07 麦迪麦珀医疗工程有限公司 Liquid drug transfer device with vented vial adapter
BR112012021134B1 (en) 2010-02-24 2020-01-21 Medimop Medical Projects Ltd fluid transfer set for use with a first vial and a second vial for reconstitution and liquid drug delivery
WO2011130738A1 (en) * 2010-04-16 2011-10-20 Viropharma Incorporated Methods of using an asymmetric mixing device for preparation of c1-esterase inhibitor medicament
USD655017S1 (en) 2010-06-17 2012-02-28 Yukon Medical, Llc Shroud
BRPI1003460B1 (en) * 2010-09-29 2015-01-06 Norival Caetano "BAG FOR PACKAGING, RECONSTITUTION AND / OR DILUTION OF INJECTABLE USE PRODUCTS
USD669980S1 (en) 2010-10-15 2012-10-30 Medimop Medical Projects Ltd. Vented vial adapter
IL209290A0 (en) 2010-11-14 2011-01-31 Medimop Medical Projects Ltd Inline liquid drug medical device having rotary flow control member
CA2831100C (en) 2011-03-31 2020-02-18 Mark Dominis Holt Vial adapter and system
IL212420A0 (en) 2011-04-17 2011-06-30 Medimop Medical Projects Ltd Liquid drug transfer assembly
US9227017B2 (en) * 2011-06-21 2016-01-05 Windgap Medical, Llc Automatic mixing device and delivery system
USD681230S1 (en) 2011-09-08 2013-04-30 Yukon Medical, Llc Shroud
IL215699A0 (en) 2011-10-11 2011-12-29 Medimop Medical Projects Ltd Liquid drug reconstitution assemblage for use with iv bag and drug vial
USD674088S1 (en) 2012-02-13 2013-01-08 Medimop Medical Projects Ltd. Vial adapter
USD720451S1 (en) 2012-02-13 2014-12-30 Medimop Medical Projects Ltd. Liquid drug transfer assembly
USD737436S1 (en) 2012-02-13 2015-08-25 Medimop Medical Projects Ltd. Liquid drug reconstitution assembly
IL219065A0 (en) 2012-04-05 2012-07-31 Medimop Medical Projects Ltd Fluid transfer device with manual operated cartridge release arrangement
WO2013175515A1 (en) * 2012-05-25 2013-11-28 Vitop Moulding S.R.L. System for the controlled tapping of liquids from containers
CN104540490B (en) * 2012-06-27 2018-06-15 卡麦尔药物股份公司 Connecting device for medical purposes
IL221634A0 (en) 2012-08-26 2012-12-31 Medimop Medical Projects Ltd Universal drug vial adapter
IL221635A0 (en) 2012-08-26 2012-12-31 Medimop Medical Projects Ltd Drug vial mixing and transfer device for use with iv bag and drug vial
EP2872100B1 (en) 2012-09-13 2017-03-29 Medimop Medical Projects Ltd Telescopic female drug vial adapter
USD734868S1 (en) 2012-11-27 2015-07-21 Medimop Medical Projects Ltd. Drug vial adapter with downwardly depending stopper
IL225734A0 (en) 2013-04-14 2013-09-30 Medimop Medical Projects Ltd Ready-to-use drug vial assemblages including drug vial and drug vial closure having fluid transfer member, and drug vial closure therefor
JP6199483B2 (en) 2013-05-10 2017-09-20 メディモップ・メディカル・プロジェクツ・リミテッド Medical device comprising a vial adapter having an in-line dry drug module
CN103353023B (en) * 2013-06-18 2015-07-29 湖州师范学院 A kind of cork gasket health care diversion plug
CN103353022B (en) * 2013-06-24 2015-10-07 湖州师范学院 A kind of health care water diversion joint
USD767124S1 (en) 2013-08-07 2016-09-20 Medimop Medical Projects Ltd. Liquid transfer device with integral vial adapter
CN205626622U (en) 2013-08-07 2016-10-12 麦迪麦珀医疗工程有限公司 Liquid transfer device that is used together with infusion container
USD765837S1 (en) 2013-08-07 2016-09-06 Medimop Medical Projects Ltd. Liquid transfer device with integral vial adapter
USD794183S1 (en) 2014-03-19 2017-08-08 Medimop Medical Projects Ltd. Dual ended liquid transfer spike
USD757933S1 (en) 2014-09-11 2016-05-31 Medimop Medical Projects Ltd. Dual vial adapter assemblage
WO2016110838A1 (en) 2015-01-05 2016-07-14 Medimop Medical Projects Ltd Dual vial adapter assemblages with quick release drug vial adapter for ensuring correct usage
CN113143759B (en) 2015-07-16 2024-01-30 西部制药服务以色列有限公司 Liquid drug transfer device for secure telescopic snap-fit on an injection vial
USD801522S1 (en) 2015-11-09 2017-10-31 Medimop Medical Projects Ltd. Fluid transfer assembly
CN108366905A (en) 2015-11-25 2018-08-03 西部制药服务以色列有限公司 Include double bottle commutator components of the vial adapter of the inlet valve with automatic-sealed
DE102016200172A1 (en) * 2016-01-08 2017-07-13 Parker Hannifin Manufacturing Germany GmbH & Co. KG Fluid valve and connection device
IL245803A0 (en) 2016-05-24 2016-08-31 West Pharma Services Il Ltd Dual vial adapter assemblages including vented drug vial adapter and vented liquid vial adapter
IL245800A0 (en) 2016-05-24 2016-08-31 West Pharma Services Il Ltd Dual vial adapter assemblages including identical twin vial adapters
IL246073A0 (en) 2016-06-06 2016-08-31 West Pharma Services Il Ltd Fluid transfer devices for use with drug pump cartridge having slidable driving plunger
IL247376A0 (en) 2016-08-21 2016-12-29 Medimop Medical Projects Ltd Syringe assembly
USD832430S1 (en) 2016-11-15 2018-10-30 West Pharma. Services IL, Ltd. Dual vial adapter assemblage
IL249408A0 (en) 2016-12-06 2017-03-30 Medimop Medical Projects Ltd Liquid transfer device for use with infusion liquid container and pincers-like hand tool for use therewith for releasing intact drug vial therefrom
US11701301B2 (en) 2017-03-06 2023-07-18 All India Institute Of Medical Sciences (Aiims) Device, method and kit for the reconstitution of a solid or semi solid pharmaceutical composition
IL251458A0 (en) 2017-03-29 2017-06-29 Medimop Medical Projects Ltd User actuated liquid drug transfer devices for use in ready-to-use (rtu) liquid drug transfer assemblages
US10526192B2 (en) * 2017-03-31 2020-01-07 Tuthill Corporation Universal adapter
IL254802A0 (en) 2017-09-29 2017-12-31 Medimop Medical Projects Ltd Dual vial adapter assemblages with twin vented female vial adapters
JP7209710B2 (en) * 2017-11-02 2023-01-20 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Container adapter, delivery assembly, and method of delivering liquid to a patient
US20190321888A1 (en) * 2018-04-18 2019-10-24 Tytus3D System Inc. Apparatus for dispensing content
USD903864S1 (en) 2018-06-20 2020-12-01 West Pharma. Services IL, Ltd. Medication mixing apparatus
JP1630477S (en) 2018-07-06 2019-05-07
USD923812S1 (en) 2019-01-16 2021-06-29 West Pharma. Services IL, Ltd. Medication mixing apparatus
JP1648075S (en) 2019-01-17 2019-12-16
JP7101900B2 (en) 2019-01-31 2022-07-15 ウェスト・ファーマ・サービシーズ・アイエル・リミテッド Liquid transfer device
IL277446B2 (en) 2019-04-30 2024-02-01 West Pharma Services Il Ltd Liquid transfer device with dual lumen iv spike
USD956958S1 (en) 2020-07-13 2022-07-05 West Pharma. Services IL, Ltd. Liquid transfer device
USD983366S1 (en) 2021-07-15 2023-04-11 Kairish Innotech Private Limited Vial adapter
WO2023141121A1 (en) * 2022-01-18 2023-07-27 Illinois Tool Works Inc. In situ generated propellant pressurized material dispenser

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718236A (en) * 1969-12-04 1973-02-27 E Reyner Pressurized container with non-rigid follower
US3840009A (en) * 1971-12-27 1974-10-08 Alza Corp Self-powered vapor pressure delivery device
CH557178A (en) * 1972-08-10 1974-12-31 Siemens Ag DEVICE FOR DISPENSING DRUGS.
US4049158A (en) * 1975-11-13 1977-09-20 S. C. Johnson & Son, Inc. Pressurized container-dispensers and filling method
US4019512A (en) * 1975-12-04 1977-04-26 Tenczar Francis J Adhesively activated sterile connector
US4203441A (en) * 1978-12-18 1980-05-20 Alza Corporation Osmotically triggered device with gas generating means
US4379453A (en) * 1978-12-28 1983-04-12 Baron Howard C Infusion system with self-generating pressure assembly
US4360131A (en) * 1979-12-19 1982-11-23 Enviro-Spray Systems, Inc. Pressure generating apparatus
US4376500A (en) * 1980-07-25 1983-03-15 Enviro-Spray Systems, Inc. Expandable bag
US4510734A (en) * 1980-07-25 1985-04-16 Enviro-Spray Systems Incorporated Expandable bag and method of manufacture
US4373341A (en) * 1980-12-18 1983-02-15 Mahaffy & Harder Engineering Co. Expandible package for dispensing containers
US4478044A (en) * 1981-08-05 1984-10-23 Enviro-Spray Systems, Inc. Inflatable pouch and method of manufacture
US4518103A (en) * 1981-09-09 1985-05-21 Aerosol Services Co. Method and apparatus for releasing additional ingredients in a pressurized container
US4553685A (en) * 1982-04-05 1985-11-19 Enviro-Spray Systems, Inc. Dispensing system and a refill pouch
US4513884A (en) * 1982-04-05 1985-04-30 Enviro-Spray Systems, Inc. Dispensing system and a refill pouch
US4410321A (en) * 1982-04-06 1983-10-18 Baxter Travenol Laboratories, Inc. Closed drug delivery system
US4507116A (en) * 1982-04-22 1985-03-26 Saul Leibinsohn Apparatus for the induced infusion of a liquid from a flexible liquid bag
US4491250A (en) * 1982-07-23 1985-01-01 Grow Group, Inc. Pressurized dispensing pouch
US5022564A (en) * 1982-09-02 1991-06-11 Joy Research, Incorporated Regulated pressurized dispenser and method
US4646946A (en) * 1982-09-02 1987-03-03 Reyner Ellis M Pressure generating apparatus and method
JPS60227773A (en) * 1983-12-22 1985-11-13 山田 靖幸 Ultra-small portable syringe
US4583971A (en) * 1984-02-10 1986-04-22 Travenol European Research And Development Centre (Teradec) Closed drug delivery system
US4606734A (en) * 1984-02-22 1986-08-19 Abbott Laboratories Container mixing system with externally mounted drug container
IE57676B1 (en) * 1984-03-19 1993-02-24 Abbott Lab Drug delivery system
US4759756A (en) * 1984-09-14 1988-07-26 Baxter Travenol Laboratories, Inc. Reconstitution device
US4679706A (en) * 1984-10-29 1987-07-14 Enviro-Spray Systems, Inc. Dispensing system with inflatable bag propelling mechanism and separate product gas phase
EP0203186B1 (en) * 1984-12-03 1992-03-04 BAXTER INTERNATIONAL INC. (a Delaware corporation) Drug delivery apparatus preventing local and systemic toxicity
US4648955A (en) * 1985-04-19 1987-03-10 Ivac Corporation Planar multi-junction electrochemical cell
US4886514A (en) * 1985-05-02 1989-12-12 Ivac Corporation Electrochemically driven drug dispenser
US4687423A (en) * 1985-06-07 1987-08-18 Ivac Corporation Electrochemically-driven pulsatile drug dispenser
US4675020A (en) * 1985-10-09 1987-06-23 Kendall Mcgaw Laboratories, Inc. Connector
US5049129A (en) * 1986-05-29 1991-09-17 Zdeb Brian D Adapter for passive drug delivery system
US4781679A (en) * 1986-06-12 1988-11-01 Abbott Laboratories Container system with integral second substance storing and dispensing means
US4923095A (en) * 1987-04-06 1990-05-08 Adolph Coors Company Apparatus and method for generating pressures for a disposable container
US4850978A (en) * 1987-10-29 1989-07-25 Baxter International Inc. Drug delivery cartridge with protective cover
US4804366A (en) * 1987-10-29 1989-02-14 Baxter International Inc. Cartridge and adapter for introducing a beneficial agent into an intravenous delivery system
FR2622541B1 (en) * 1987-10-30 1990-03-09 Oreal
JPH021277A (en) * 1988-03-31 1990-01-05 Fujisawa Pharmaceut Co Ltd Infusion container
US4898209A (en) * 1988-09-27 1990-02-06 Baxter International Inc. Sliding reconstitution device with seal
US4936829A (en) * 1988-10-19 1990-06-26 Baxter International Inc. Drug delivery apparatus including beneficial agent chamber with chimney for a directed flow path
US5080652A (en) * 1989-10-31 1992-01-14 Block Medical, Inc. Infusion apparatus
US5137186A (en) * 1990-01-26 1992-08-11 Ccl Industries Inc. Method and apparatus for dispensing product from a product bag
US5106374A (en) * 1990-05-08 1992-04-21 Abbott Laboratories Ambulatory infusion device
US5116316A (en) * 1991-02-25 1992-05-26 Baxter International Inc. Automatic in-line reconstitution system
US5167631A (en) * 1991-09-17 1992-12-01 Imed Corporation Portable infusion device

Also Published As

Publication number Publication date
EP0713409A1 (en) 1996-05-29
AU7482394A (en) 1995-03-14
ATE210480T1 (en) 2001-12-15
EP0713409B1 (en) 2001-12-12
AU684816B2 (en) 1998-01-08
JPH09501342A (en) 1997-02-10
US5397303A (en) 1995-03-14
EP0713409A4 (en) 1997-02-26
WO1995005211A2 (en) 1995-02-23
CN1132481A (en) 1996-10-02
WO1995005211A3 (en) 1995-05-18
DE69429433T2 (en) 2002-08-14
DE69429433D1 (en) 2002-01-24
ES2169082T3 (en) 2002-07-01
PT713409E (en) 2002-06-28

Similar Documents

Publication Publication Date Title
EP0713409B1 (en) Liquid delivery device having a vial attachment or adapter incorporated therein
US5766147A (en) Vial adaptor for a liquid delivery device
US4589879A (en) Cannula assembly having closed, pressure-removable piercing tip
US4392850A (en) In-line transfer unit
US9610223B2 (en) System and method for intermixing the contents of two containers
AU2008242160B2 (en) Method and apparatus for contamination-free transfer of a hazardous drug
EP1124527B1 (en) System for storing, mixing and administering a drug
EP0817654B1 (en) Pre-filled syringe drug delivery system
US20210038476A1 (en) Pre-filled diluent syringe vial adapter
US5817082A (en) Medicament container closure with integral spike access means
US5487737A (en) Storage and transfer bottle designed for storing a component of a medicamental substance
US5895383A (en) Medicament container closure with recessed integral spike access means
US5171214A (en) Drug storage and delivery system
US20150265500A1 (en) Vial adapters
AU2013200393B2 (en) Method and apparatus for contamination-free transfer of a hazardous drug
CA2252404A1 (en) Container closure system
US10426701B2 (en) Single use connectors
JP2000514677A (en) Method and apparatus for sealing and connecting containers
JPH05103820A (en) Medicinal fluid injector

Legal Events

Date Code Title Description
FZDE Discontinued