CA2168835C - Interbody spinal fusion implants - Google Patents

Interbody spinal fusion implants Download PDF

Info

Publication number
CA2168835C
CA2168835C CA002168835A CA2168835A CA2168835C CA 2168835 C CA2168835 C CA 2168835C CA 002168835 A CA002168835 A CA 002168835A CA 2168835 A CA2168835 A CA 2168835A CA 2168835 C CA2168835 C CA 2168835C
Authority
CA
Canada
Prior art keywords
spinal fusion
implant
fusion implant
spinal
implants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002168835A
Other languages
French (fr)
Other versions
CA2168835A1 (en
Inventor
Gary Karlin Michelson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Warsaw Orthopedic Inc
Original Assignee
Warsaw Orthopedic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/968,240 external-priority patent/US5741253A/en
Application filed by Warsaw Orthopedic Inc filed Critical Warsaw Orthopedic Inc
Priority to CA002569778A priority Critical patent/CA2569778C/en
Publication of CA2168835A1 publication Critical patent/CA2168835A1/en
Application granted granted Critical
Publication of CA2168835C publication Critical patent/CA2168835C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/446Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or elliptical cross-section substantially parallel to the axis of the spine, e.g. cylinders or frustocones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2/30744End caps, e.g. for closing an endoprosthetic cavity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2/4611Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8875Screwdrivers, spanners or wrenches
    • A61B17/8886Screwdrivers, spanners or wrenches holding the screw head
    • A61B17/8888Screwdrivers, spanners or wrenches holding the screw head at its central region
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/92Impactors or extractors, e.g. for removing intramedullary devices
    • A61B2017/922Devices for impaction, impact element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/03Automatic limiting or abutting means, e.g. for safety
    • A61B2090/033Abutting means, stops, e.g. abutting on tissue or skin
    • A61B2090/036Abutting means, stops, e.g. abutting on tissue or skin abutting on tissue or skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/442Intervertebral or spinal discs, e.g. resilient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/3013Rounded shapes, e.g. with rounded corners figure-"8"- or hourglass-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30112Rounded shapes, e.g. with rounded corners
    • A61F2002/30131Rounded shapes, e.g. with rounded corners horseshoe- or crescent- or C-shaped or U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30143Convex polygonal shapes hexagonal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/3011Cross-sections or two-dimensional shapes
    • A61F2002/30138Convex polygonal shapes
    • A61F2002/30148Convex polygonal shapes lozenge- or diamond-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30235Three-dimensional shapes cylindrical tubular, e.g. sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30405Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by screwing complementary threads machined on the parts themselves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30593Special structural features of bone or joint prostheses not otherwise provided for hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30604Special structural features of bone or joint prostheses not otherwise provided for modular
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30774Apertures or holes, e.g. of circular cross section internally-threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30777Oblong apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30785Plurality of holes parallel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • A61F2002/30787Plurality of holes inclined obliquely with respect to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30795Blind bores, e.g. of circular cross-section
    • A61F2002/30797Blind bores, e.g. of circular cross-section internally-threaded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30836Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves knurled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3085Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30878Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30879Ribs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/30906Special external or bone-contacting surface, e.g. coating for improving bone ingrowth shot- sand- or grit-blasted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/448Joints for the spine, e.g. vertebrae, spinal discs comprising multiple adjacent spinal implants within the same intervertebral space or within the same vertebra, e.g. comprising two adjacent spinal implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2002/449Joints for the spine, e.g. vertebrae, spinal discs comprising multiple spinal implants located in different intervertebral spaces or in different vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4619Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof for extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4625Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use
    • A61F2002/4627Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof with relative movement between parts of the instrument during use with linear motion along or rotating motion about the instrument axis or the implantation direction, e.g. telescopic, along a guiding rod, screwing inside the instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4603Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof
    • A61F2002/4629Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor for insertion or extraction of endoprosthetic joints or of accessories thereof connected to the endoprosthesis or implant via a threaded connection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4681Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor by applying mechanical shocks, e.g. by hammering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/001Figure-8-shaped, e.g. hourglass-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0004Rounded shapes, e.g. with rounded corners
    • A61F2230/0013Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0017Angular shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite

Abstract

The present invention discloses a spinal fusion implant that is at least partially cylindrical, made of material appropriate for human implantation and having preferably, but not necessarily, one closed end and one end capable of being closed, such that an internal chamber can be filled and hold any natural or artificial osteoconductive, osteoinductive, osteogenic, or other fusion enhancing material. The partially cylindrical implant directly participates and is incorporated in the ensuing fusion. In the preferred embodiment, the implant of the present invention relies on surface roughenings of the outer surface to enhance its stability and resist dislodgement from within the disc space between two adjacent vertebrae. The implant of the present invention incorporates at its rear end, an engagement means to facilitate insertion or extraction of the implant. The implant may be filled with, coated with, and/or composed of, fusion promoting substances. Finally, the implant of the present invention does not require rotation for its insertion and can be seated by linear advancement.

Description

INTERBODY SPINAL FUSION IMPLANTS
Field of the Invention The present invention relates to artificial spinal fusion implants to be placed across the intervertebral space left after the removal of a damaged spinal disc, and in particular to an improved, at least partially cylindrical, spinal fusion implant for implantation where two threaded cylindrical implants of requisite height would not fit within the transverse width of the spine.
Description of the Related Art In the past, Cloward, Wilterberger, Crock, Viche, Bagby, Brantigan, Michelson and others have taught various methods involving the drilling of holes across the disc space between two adjacent vertebrae of the spine for the purpose of causing an interbody spinal fusion. Cloward taught placing a dowel of bone within that drilled hole for the purpose of bridging the defect and to be incorporated into the fusion. Viche taught the threading of that bone dowel. Bagby taught the placing of ' 2168835 the bone graft into a metal buc)cet otherwise smooth on its surface, except for rows of radially placed holes communicative to the interior of the basket and to the bone graft. The Bagby device was disclosed as capable of being used in a luorse.
Brantigan taught the use of inert blocks preferably made of metal and having that metal at its external surface imitate the porosity of bone. Brantigan theorized that the bone dowel could be replaced entirely with a metal plug, that, while not itself active in the fusion, would nevertheless serve to S,~pport the vertebrae frorn within the disc space while allowing fusion to occur around it.
U.S. Patent No. 3,844,601 issued to Ma et al. on November 19, 1974, teaches a method and instrumentation for preparing rectangular spaces across the disc space into the adjacent vertebrae and for prepari.rrg a rectangular graft of tlae bone itself that is inserted in the rectangular spaces.
U.S. Patent No. 4,743,256 issued to Brantigan on May 10, 1988 teaches the use of an inert artificial spacer in the shape of a rectangle in place of using a rectangular borne graft as taught by Ma et al.
U.S. Patent No. 4,878,915 issued to Brantigan on November 7, 1989, teaches the use of fully cylindrical inert implants for use in interbody spinal fusion. Such implants do Trot participate in the bone fusion process but act as inert spacers acrd allow for Clue growth of bone to the outer surfaces of the implants.
U.S. Patent No. 4,834,757 issued to Brantigan on May 3U, 1989, teaches a rectangular sluaped, hollow spinal fusion implant for use in lieu of a rectangular bone graft or Brantigan~s earlier artificial inert spacer.
U.S. Patent No. 5,015,247 issued to Michelson on May 14, 1991, teaches the use of a thin-walled, higlrly perforated, threaded, hollow cylindrical implant closed or closable at both ends, so as to be compressably loaded with bone or other fusion promoting materials. Additionally, the Michelsorr device may 216~~35 then be coated with a bone production inducing chemical such as hydroxyapatite. The Miclielson patent also discloses an improved method of drilling boles across the disc space and into the two adjacent vertebrae and safely installing cylindrical implants such that the entire surgical procedure may be conducted through a hollow cylindrical tube. The hollow cylindrical tube may be left in place throughout the surgical procedure and serves to hold the adjacent vertebrae in place relative to each other, permits the guarded drilling of the holes across the disc space, and permits the insertion of the irnplant tlurough that same l:ube into the hole drilled across the disc space and into the adjacent vertebrae.
As regards this method of performing interbody spinal fusion using essentially cylindrical threaded implants, a special problem arises (see Figure 1) when an attempt is made to place two cylindrical implants (considered to be the preferred nurnber as it is a much more stable construct and has more surface area than a single implant placed centrally) side-by-side across a disc space and into the two adjacent vertebrae where tare lueight of the disc space is such that it reduires an implant of a diameter so large to penetrate into and significantly engage each of the adjacent vertebrae that it is no longer possible to place two such implants side-by-side and to still leave them contained within the transverse widtlu of the spine. If an attempt is made to remedy Llre problem by using smaller diameter implants placed side-by-side such drat both would then be able to fit within the transverse width of the spine, then tare implants would be of insufficient height to adequately engage the bone. If an attempt is made to remedy the problem by abandoning i.lie side-by-side double implant construct in favor of a single, centrally placed implant, irluen where the implant is sufficiently large enough to occupy a sufficient portion of the transverse width of tl.e disc space to pron«te firm stability, its vertical heiglut and excursion into the vertebrae would be so severe that if any two consecutive ,~
disc spaces were to be operated upon, the vertebrae in between would be cut in half.
U.S. Patent No, 5,055,104 issued to Ray on October 8, 1991 ("Ray Patent") discloses an implant comprising a helical coil without wall members that is assernbled after the coils are placed irr the disc space between tire vertebrae, which supposedly can then be removed after the vertebrae have become fused together. The Ray implant is defective and unworkable in that it is incapable of ueing used in the manner in which it is described as it is not possible to insert into hard bone an isolated helical coil without any wall members to support such a coil, which could would be analogous structurally to a slinky, (_See Ray Patent, Figures 1 and 7). Further, the Ray irnplant is unduly complex, because it would require the difficult, if not impossible, task of assembly wiLlrin the disc space. Figure 3 of the Ray Patent clearly reveals that Ray does not teach the use of a truncated cylindrical implant, but merely teaches the use of a truncated, helical coil appearing as a sharpened spring totally lacking any wall member which could be considered cylindrical. Therefore, Ray teaches only the use of an isolated thread which can only be inserted by rotation and cannot be linearly advanced.
If the overwhelming obstacles of the impossibility of inserting an isolated thread without wall members and flue Problem of the assembly within the disc space could be overcome, then the Ray implant would still be unsafe for its intended purpose as it would be at high risk of spontaneous disassembly and mechanical failure. Further, there would be insufficient room to safely rotate such a device for insertion as it is the very lack of such room that requires the use of a device having a decreased transverse width.
There is therefore, tyre need for a spinal fusion implarnt that is capable of being inserted into a hole drilled across flue disc space between two adjacent vertebrae and partially into tire two adjacent vertebrae such that the spinal fusion implant is capable of fitting within the transverse width of the spine wluen placed side-by-side next to a second of its kind.
SUMMARY OF THE PRESEIJ'r ILVVELdI-IU_N
The present invention is an irnproved interbody spinal fusion implant that is capable of being inserted into a hole drilled across the disc space between two adjacent vertebrae and into the two adjacent vertebrae such that tHre spinal fusion implant is capable of fitting within the transverse width of tire spine when placed side-by-side next to a second of its kind. The spinal fusion implant of the present invention comprises a thin-wall, multi-perforate, cylinder or partial cylinder, made of material appropriate for human implantation and leaving preferably, nut not necessarily, one closed end and one errd capable of being closed, such than an internal chamber can be filled and hold any natural or artificial osteoconductive, osteoinductive, osteogenic, or otluer fusion enhancing material. The spinal fusion implant of the present invention relies on rouglrenings of the outer surface to enhance its stability. Depending on the dimension of flue transverse width of the spine in whrich tire spinal fusion implant is being inserted, the spinal fusion implant of the present invention may have one or more flat sides to reduce the width of the spinal fusion implant. Tlne spinal fusion implant of tire present invention incorporates at il:s rear end, an engagement means to facilitate insertion or extraction of_ the irnp.lant, preferably at its rear end. The implant of the present invention may be made of., filled with and/or coated with fusion promoting substances. Further, the spinal fusion implant of the present invention does not require rotation for its insertion and can be seated by linear advancement.
The spinal fusion implant of tire present invention is generally effective, and is safer and more effective than i:lre cylindrical implants of tyre prior art for ttre special instance when it is desirable to insert two implants side-by-side into cylindrically prepared channels, and where the height of the . 21 ~~~3~
disc space between two adjacent vertebrae is so great relative to the transverse width of the spine, that two implants of the requisite height will not fit within the transverse width of the spine. Prior art has tauglut those knowledgeable in the art of spinal surgery, that the likelihood of obtaining a spinal fusion is proportionate to three factors: 1) the surface area of the implant 2) the quality and quantity of the graft material and 3) the stability of the fusion construct. The spinal fusion implant of the present invention increases each of these three factors by making it possible to use two implants side-by-side across a disc space that would otherwise lack sufficient width to accept more than one.
The spinal fusion implant of the present invention is more efficacious than the prior art on an individual implant basis for the following reasons:
1. Increased surface area. The spinal fusion implant of the present invention, because of its surface roughenings leas greater surface area for engaging tree adjacent vertebrae than an implant with smooth external surfaces. The presence or absence of holes does not materially affect this, so far as the holes are filled with material effectively contributing to the area of contact at the surface. The arced portions of the partially cylindrical implant of the present invention are in contact wil:lu Lhe adjacent vertebrae and provide a greater surface area than is possible with a flat portion from a non-cylindrical implant.
2. The guantity and guality of graft material presented. As the spinal fusion implant of the present invention is not screwed in, it need not be constructed to resist the torquing therewith associated. Thus, the implant of the present invention may be thinner walled and thereby, for a given diameter, have greater internal volume. The spinal fusion implant of the present invention has arced portions making the ' ' 21~~~~
_8_ implant stronger in compression than an implant lacking upper and lower curved supporting surfaces such that the wall of the implant can be relatively thinner than such implants. A
thinner wall is easier for bone to grow through. Also, the interpore bridges may be smaller allowing for greater porosity and thereby greater exposure to the internal graft material.
Further, the spinal fusion implant of the present invention may be constructed of and/or coated with, and/or loaded with a variety of materials and/or chemical substrates known t:o actively participate in the bone fusion process. As the spinal fusion implant of the present invention offers greater surface area, and greater internal volume for its outside diameter, it offers the opportunity for presenting a greater surface area and volume of these fusion materials.
3 ~ The imol~n~oF tire present inveption of fers grea -er st.auility than the prior aL_t imglanl.s. T'he least statrle implants are the implants lacking surface roughenings. Surface holes increase implant stability by increasing the interference of the implant to the opposed surfaces. The spinal fusion implant of the present invention is a further improvernent over flue prior art in that the surface roughenings of floe spinal fusion implant of the present invention resist motion in all directions. Further, all implants are subject to the possibility of backing out, by retracing the path by which they were inserted. fIowever, the spinal fusion irnplant of the present invention can have a surface configured to urge the spinal fusion implant forward as to offer increased resistance against such undesirable backward migration. Furtluer, the arced portions of the implant of tyre present invention provide a greater support area to better distribute the compression forces through tire vertebrae.
1'he spinal fusion implant. of the present invention is easier to use as it occupies less space, does not require pre-tapping, and can be inserted wittrout the need to rotate an instrument within the closed confines of the spinal wound.
Further, the spinal fusion implant of the present invention is easier to insert than implants lacking upper and lower curved supporting surfaces that are arcs of the same circle and which implants are to be inserted across the disc space and into the adjacent vertebrae as it is easier to prepare a round hole than a square hole, as a round hole can be drilled in a single step.
In accordance with the present invention, there is provided a spinal fusion implant made of a material appropriate for human implantation at least in part between two adjacent vertebral bodies, said implant comprising: a non-threaded cylindrical member having an exterior with opposed arcuate portions adapted to be oriented toward the adjacent endplates of the two adjacent vertebral bodies, each of said opposed arcuate portions having at least one opening passing therethrough to allow bone growth from adjacent vertebral body to adjacent vertebral body through said implant, said implant having a plurality of surface roughenings protruding from said exterior of said cylindrical member for engaging the two adjacent vertebral bodies to maintain said implant in place, said surface roughenings configured for linear insertion into the spine and to resist expulsion of said implant from between the two adjacent vertebral bodies.
In accordance with the present invention, there is further provided a spinal fusion implant made of a material appropriate for human implantation at least in part between two adjacent vertebral bodies, said implant comprising: a non-threaded cylindrical member having an exterior with opposed arcuate portions adapted to be oriented toward the adjacent endplates of the two adjacent vertebral bodies, each of said opposed arcuate portions having at least one opening passing therethrough to allow bone growth from adjacent vertebral body to adjacent vertebral body through said implant, said implant having a plurality of annular ratchetings defined around the circumference of said cylindrical member, said annular ratchetings being configured for linear insertion into the spine and to resist expulsion of said implant from between the adjacent vertebral bodies.
It is an object of embodiments of the present invention to provide an improved interbody spinal fusion implant such that it is possible to place two such implants side-by-side across a disc space and into two adjacent vertebrae in close approximation to each other and within the transverse width of the spine, where the transverse width of the spine would have otherwise been insufficient relative to the required implant height to have allowed for the accommodation of two prior art cylindrical threaded implants.
It is another object of embodiments of the present invention to provide a spinal fusion implant that is easier to insert, and does not require tapping prior to implantation.
It is yet another object of embodiments of the present invention to provide a spinal fusion implant that is safer, in which there is not need to run sharp threads near delicate structures.
It is still another object of embodiments of the present invention to provide a spinal fusion implant that is faster to implant between adjacent vertebrae via linear advancement as opposed to rotational advancement.

It is yet another object of embodiments of the present invention to provide a method for implanting partially cylindrical implants having at least one flat side.
These and other objects of embodiments of the present invention will be apparent from a review of the accompanying drawings and the following detailed description of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is diagrammatic representation of a segment of the human spinal column comprising several vertebrae with various cylindrical threaded implants inserted across the disc space and into the two adjacent vertebrae to illustrate the problems encountered by those implants.
Figure 2 is a top plan view along lines 2--2 of Figure 1 with the top vertebrae removed, of two cylindrical threaded implants illustrating the minimum distance possible between the two threaded implants when placed beside each other across the disc space.
Figure 3 is a perspective side view of an embodiment of the spinal fusion implant of an embodiment of the present invention having surface roughenings in the form of ratchetings.
Figure 4 is a first side elevational view of the spinal fusion implant of Figure 3.
Figure 5 is a top plan view of two spinal fusion implants of Figure 3 illustrating the minimum distance possible between the two implants when placed beside each other across the disc space.

- lla -Figure 6 is a second side elevational view of the spinal fusion implant of Figure 3.
Figure 7 is a cross sectional view along lines 7--7 of the spinal fusion implant of Figure 6.
Figure 8 is a cross sectional view along lines 8--8 of the spinal fusion implant of Figure 6.
Figure 9 is a top end view of the spinal fusion implant of Figure 3.
Figure 10 is a bottom end view of the spinal fusion implant of Figure 3.
Figure 11 is a side perspective view of an alternative embodiment of the spinal fusion implant of the present invention.
Figure 12 is a first side elevational view of the spinal fusion implant of Figure 11.
Figure 13 is a second side elevational view of the spinal fusion implant of Figure 11.

21~~~~5 Figure 14 is a cross sectional view along lines 14--14 of floe spinal fusion implant of Figure 13.
Figure 15 is a perspective side view of an alternative embodiment of the spinal fusion implant of the present invention having surface roughenings in the form of )tnurlind.
Figure 16 is a first side elevational view of the spinal fusion implant of Figure 15.
Figure 17 is a top plan view of two spinal fusion implants of Figure 15 illustrating the minimum disl~ance possible between the two implant when placed beside each otluer across the disc space.
T'igure 18 is an enlarged fragmentary view along line 18 of Figure 16 showing the surface configuration of the implant of Figure 15.
Figure 19 is a second side elevational view of the spinal fusion implant of Figure 15.
Figure 20 is a cross sectional view along lines 20--20 of the spinal fusion implant of Figure 16.
Figure 21 is a top end view of tte spinal fusion implant of Figure 15.
Figure 22 is a bottom end view of the spinal fusion implant of Figure 15.
Figure 23 is a perspective side view of an alternative embodiment of flue spinal fusion implant of the present inventi.Oll having flat sides and surface roughenirig.s in the form of ratclretings.
Figure 24 is a first side elevational view of tire spinal fusion irnplant of Figure 23.
Figure 25 is a diagramrnatic representation of a segment of the Imman spinal column showing two implants of Figure 23 the preserrt invention inserted witluin flue spine.
Figure 26 is a top plan view along lines 26--26 of Figure 25 with the top vertebrae removed, illustrating the minimum distance possible between two spinal fusion implants of Figure 23 placed beside each other across the disc space.
Figure 27 is a top end view of the spinal fusion implant of Figure 23.

Figure 28 is a uottom end view of tire spinal fusion implant of Figure 23.

Figure 29 is a second side elevational view of the spinal fusion implant Figure 23.
of Figure 30 is a cross sectional view along lines 30--30 of the spinal fusion implant of Figure 29.

Figure 30A is a cross sectional view of an alternative embodiment of the spinal fusion implant of i:he present invention leaving only one flat side.

Figure 31 is a perspective side view of an alternative embodiment of the spinal fusion implant of the present invention having flat sides and surface roughenings in the form of ratcl-retings.

figure 32 is a first side elevational view of tire spinal fusion implant Figure 31.
of Figure 33 is a second side elevational view of the spinal fusion implant Figure 31.
of Figure 34 is a cross sectional view along lines 34--34 of the spinal fusion implant of Figure 33.

Figure 35 is a cross sectional view along lines 35--35 of tire spinal fusionimplant of Figure 33.

Figure 36 is a perspective side view of an alternative embodiment of tyrespinal fusion implant of the present invention having flat sides acrd having surface roughenings in the form of knurl ing.

Figure 37 is a first side elevational view of the spinal fusion implant figure 36.
of Fignrre 38 is a second side elevational view of the spinal fusion implant Figure 36.
of Figure 39 is a cross sectional view along lines 39--39 of the spinal fusionrimplant of Figure 38.

Figure 40 is an enlarged fragmentary view along line 40 of Figi.rre 37 showingthe surface configuration of tlne spinal fusion irnplant Figure 36.
of F'p.gure 41 is a perspective side view of an alternative ,~~.-embodiment of the spinal fusion implant of the present invention having surface roughenings comprising of a blasted external surface.
figure 42 is a perspective side view of an alternative embodiment of the spinal fusion implant of the present invention leaving flat sides and openings in the form of vertical and horizontal slots.
figure 43 is an elevational side view of a segment of the spinal column with an alternative embodiment of two spinal fusion implants of the present invention having corresponding concave and convex sides inserted across one disc space and an alternative embodiment of a single spinal fusion implant of the present invention having a two cylindrical portions inserted across one disc space.

v 2168835 Tlyrevious Devices Referring to Figure 1, a diagrammatic representation of a segment of the human spinal column generally referred to by tire letter S is shown. The segment of the spinal column S
comprises several vertebrae V and a disc space D between two adjacent vertebrae v. various cylindrical threaded spinal fusion implants, each having different diameters, are shown inserted across the disc space D.
When the height Hs of the disc space D is so large that two cylindrical implants, such as spinal fusion implants l0a and 10b, each having a sufficient diameter to cross tyre disc space D and sufficiently engage into the borne of adjacent verteUrae v, are placed across the disc space D, tlue combined overall widtlu of the two spvinal implants l0a arrd lOb exceeds tyre transverse width Ws of the spinal column S. As a result, a portion of each implant l0a and 1Ub protrudes from i.lre sides of the spinal column S and could cause severe and perhaps mortal damage to tire patient as delicate and vital structures lie adjacent to that area of the spinal column S such drat tire use of two cylindrical spinal Fusion implants l0a arrd lOb would not be desirable.
If instead of two spinal fusion implants l0a and lUb, a single implant, such as spinal fusion implant 12a were to be used having a sufficient diameter to provide for stability and fusion, then tyre implant would penetrate deeply into the adjacent vertebrae V. The spinal fusion implant 12a would have a diameter that is significantly greater than tyre heiglt HS
of the disc space D, such drat the verteurae V would have to be substantially bored out to accommodate Lhe large diameter oL
the spinal fusion ioplant 12a. As a result, a large part oC
the vertebrae V would ue removec9, and thus tire overall structural integrity of the vertebrae V would be substantially weakened. This is especially a problem when a second spinal fusion implant 12b identical to spinal fusion irnplant 12a is placed across disc space D on the other side of the same vertebrae V such that two spinal fusion implants 12a and 12b are placed across the disc spaces D on either side of the vertebrae V. As a result, the vertebra V is cleaved into a "butterfly" configuration as shown in Fiiure 1, acrd the structural integrity and strength of the vertebrae V is further diminished such that the effectiveness o.f the spinal fusion process is substantially reduced, and the vertebrae V are at High risk of devascularization acrd fracture.
Conversely, if two cylindrical irnplants such as spinal fusion implants 14 a and 14b, each having a sufficiently sized diameter such that when placed side-by-side in i:he disc space U, the combined overall width of the spinal fusion implants 14a arid 14b just fills the transverse width Ws of the spinal column S, the diameter of eaclu of the spinal fusion implants 14a and 14b will not be sufficient to cross the disc space v to engage the vertebrae V. Therefore, while the spinal fusion implants 14a and 14b will not protrude from the sides of the spinal column S, the spinal fusion implants 19a and 19b cannot reach and engage the bone of the vertebrae V and thus cannot function to stabilize the adjacent vertebrae V.
Referring to Figure 2, a top plan view, taken along line 2--2 of Figure 1 with the upper vertebrae V removed, of two cylindrical threaded implants l0a and lOb placed across the disc space D is sluown. Tlre threaded implants l0a and lOb have an external thread lJ.a and llb which trust have a minimum height that is proportional to the size of the threaded implant to be effecl.ive. The thread lla and llb of tl-re i~hreaded implants l0a and lOb converts torque to linear motion, such that flue threads lla and llb need to be of a sufficient lreiglrt to overcome tUe resistance of flue material, suclu as krone, in which the threaded implants l0a and lOb are being inserted, such resistance being proportional to tUre surface area and diameter of each of threaded implant l0a and lOb. Thus, the difference between tUe major diameter (including the threads) and the root diameter (minus the threads) of each threaded implant l0a and lOb is such that when two threaded implants l0a and lOb are implanted across the disc space D and into tyre adjacent vertebrae V, there must be a minimum distance between the two threaded implants l0a and lOb to allow for the height of the threads lla and llb. This would be true even if the threads lla and llb were interdigitated tile threaded implants l0a and lOb would still be offset by at least tyre height of the tluread of at least one of the threaded implants l0a and lOb. Such a minimum distance between flue two l.lrreaded implants l0a arrd lOb increases the combined overall widtlu of the two threaded implants l0a and lOb when inserted.
Therefore, in order for a cylindrical spinal fusion implant to be used in tire spinal fusion process wluere the height Hs of the disc space D between two adjacent vertebrae V is large relative to its width Ws, it is necessary to have an implant that can be implanted adjacent to a second of its kind in closer contact than is possible with threaded implants, while still providing for an implant surface that will provide mechanical stability in engagement to the adjacent vertebrae V. The use of a cylindrical irnplarrt is desirable as it is easy to prepare the recipient site by drilling a cylindrical hole across the disc space D and into the adjacent vertebrae V. Tlre curved surface of the cylindrical luoles drilled into tyre vertebrae V have increased surface area compared to a flat surface and also provides for the possibility of tight congruency when the cylindrical hole is fitted with an implant leaving corresponding cylindrical portions of matched diameter.
T-11~_P_~sen_~ lnv rr.~iQn Referring to Figures 3-10, an embodirnerrt of tire spinal fusion implant of the present invention, is stown and generally referred to by flue numeral 100. Tlre spinal fusion implant 100 has a substantially cylindrical configuration having a thin y outer wall 112 surrounding an internal chamber 114 and a longitudinal central axis L. The exterior of the spinal fusion implant 100 comprises surface roughenings l:hat provide a surface suitable for engaging tlue vertebrae V to stabilize the spinal fusion implant 100 across the disc space D and into flue adjacent vertebrae V once surgically implanted. In one embodiment of the spinal fusion implant 100, the surface roughenings comprise a plurality of ratcluetings 120 along l.he circumference of said spinal fusion implant. Each of the plurality of ratcheti.ngs 120 has a bone engaging edge 122 and an angled segment 124.
Each of the plurality of ratcltetings 120 ltas a lteigltt that is substantially less than the height of a requisite thread for a cylindrical threaded implant of tl~e sarne size. As a thread is a simple device for converting torque to linear advancement, the requisite heiglut of the thread is proportional to the surface area and diameter of the implant arid must be sufficient to pull a cylindrical implant having a diameter sufficient to cross the disc space D through a material as dense as bone. In contrast, the ratchetings 120 have a height that is significantly less than the requisite heigHt of a thread of a same sized threaded implant since the spinal fusion implant 100 is implanted across Llte disc space D and into the adjacent vertebrae V by linear advancement. The spinal fusion implant 100 may be pushed into the cylindrical disc space D by direct, linear advancement since it requires no thread to hull it forward through the spine. As no torque is required to advance the spinal fusion implant 100 there is no minimum requisite lteigltt of l,lte surface roughenings. 'flte only surface feature necessary is that wlticln gives the spinal fusion implant 100 stability once implanted.
Moreover, the ratchetings 120 may face in one direction, the direction in which tlue spinal fusion implant 100 is inserted, and function to prevent the spinal fusion implant 100 from backing out of the disc space D in a direction opposite to f Y

tyre direction of insertion once inserted between the two adjacent vertebrae V. J.'he ratcluetings 120 urge the spinal fusion implant 100 forward against flue unrernoved borne of tl~e vertebrae V. Since implants generally want to back out along the same path in which they are inserted, such as repeated movement of the patient's body over time and wluich would cause some other design of implant to come loose (e.g. cause a threaded cylindrical implant to possibly unscrew), the ratchetings 120 tend to urge tire spinal fusion implant 100 forward against the solid unre~noved bone further resisting dislodgement and controlling motion resulting in an exceedingly stable implantation.
Tlre borne engaging edges 122 of flue ratchetings 120 that brave a height at a highest point measured from the root diameter of the spinal fusion implant 100 that: is approximately 0.35 mm. In this manner the spinal fusion iuplant 100 rnay be placed beside a second of its kind at a distance of approximately 0.7 mm apart or if offset even closer, substantially reducing lure combined overall width of the two spinal fusion implants J.UO once surgically implanted. The ratchetings 120 may have a height in the range of 0.25 - 1.5 rnm, with the preferred height range being 0.35 - 0.75 min.
Referring to Figure 5, two spinal fusion implants 100a arrd lOUb are shown inserted across flue disc space U having the same dimensions of the disc space D shown in Figure 2. 'flee two spinal fusion implants 100a and 100b have a decreased overall combined width when compared to two threaded spinal fusion implants placed side by side previously described and illustrated in Figure 2. The decreased combined overall widl:in of the two spinal fusion irnpl.arrts 100a and lOUb is tUre difference between tyre root and major diameters of the spinal fusion implants 100a and 100b and is achieved by utilizing surface roughenings such as ratclretings 120 for stability. fhe surface roughenirrgs allow lire two spinal fusion implants 100a and 100b to come into considerably closer approximation to one another and require less total transverse width for their insertion than is possible for two threaded cylindrical irnplants having identical root diameters because of the requisite thread 1-reight of such threaded implants. Reducing the offset between implants allows for the uses of larger diameter implants which can then still fit within the transverse width Ws of tlue spinal column and achieve more substantial engagement into the adjacent vertebrae V.
Referring to Figure 7, a cross section of flue spinal fusion implant 100 is shown wherein the wall 112 leas openings 128 passing therethrough to communicate with the internal chamber 114. The internal chamber 114 rnay be filled with bone material or any natural or artificial bone growth material or fusion promoting material such that bone growth occurs from the ~eltebrae V througlu the openings 128 to tire rnaterial within internal chamber 114. While tire openings 128 have been shown in the drawings as being circular, it is appreciated that floe openings 128 may have any shape, size, or form suitable for use in a spinal fusion implant without departing from ttre scope of the present invention. Also, the number of openings rnay be varied or no openings rnay be present on the spinal fusion implant .
Referring to Figures 8 and 9, tlue spinal fusion implant 100 lras a cap 130 with a thread 132 that threadably attaches to one end of the spinal fusion implant 100. Once i;he cap 130 is attached to the spinal fusion implant 100, the edge 136 acts as an additional ratcheting 120 to further stabilize tyre spinal fusion implant 100 once it is implanted across the disc space D.
Thre cap 130 is removable to provide access to tlue internal chamber 114, suclu that flue internal chamber 114 can be filled and boll any natural or artificial osteoconductive, osteoinductive, osteogenic, or other fusion enhancing material. Some examples of such materials are bone harvested from the patient, or bone growtl-r inducing material such as, but not limited to, lrydroxyapatite, hydroxyapatite tricalciurn phosphate; or one morphogenic protein. The cap 130 and/or the spinal fusion implant 100 itself is made of material appropriate for human implantation such as titanium and/or may be made of, and/or filled and/or coated with a bone ingrowth inducing material such as, but not limited to, hydroxyapatite or hydroxyapatite tricalcium phosphate or any other osteoconductive, osteoinductive, osteogenic, or other fusion enhancing material.
Referring to Figure 4, alternatively the cap 130a may be "bullet"-shaped to facilitate insertion. The cap 130a has at its greatest diameter a diameter equal to the root diameter of the spinal fusion implant 100 such that no additional ratchetings 120 are formed.
Referring to Figure 10, the spinal fusion implant 100 has an engagement means at one end in the form of a rectangular slot 140 for engaging a driver instrument having a removable engagement means for intimately engaging the rectangular slot 140. A threaded portion of the driver instrument, which in one embodiment extends as a rod through a hollow tubular member and can be rotationally controlled, screws into a threaded aperture 142 in the slot 140 and binds the implant 100 and the driver instrument together.
Once affixed to the implant driver instrument, the spinal fusion implant 100 may be then introduced through a hollow cylindrical tube and driven into the cylindrical hole that has been drilled across the disc space D. The implant driver instrument may then be impacted by a mallet, or similar device, to linearly advance the spinal fusion implant 100 across the disc space D. Once the spinal fusion implant 100 is inserted across the disc space D, the ratchetings 120, engage the bone of the vertebrae V and the implant driver instrument is detached from the spinal fusion implant 100. The procedure for drilling the holes across - 21a -the disc space D and instrumentation pertaining thereto are described in U.S. Patent No. 5,484,437.

'r....

Referring to Figmres 11-19, an alternative enibodimerct of the spinal fusion implant of the present invention, generally referred to by the numeral 200 is shown. Tlre spinal fusion implant 200 is similar to the spinal fusion implant lUO except that the openings 228 are bisected by the bone engaging edge 222 of the plurality of ratclretings 220. In this manner, the bone engaging edges are interrupted by the openings 228 to provide a "tooth-like" edge that engages the bone of the vertebrae V and creates an interference fit to prevent the backing out of flue implant 200 once inserted. It is appreciated that the number of openings 228 and the number of bone engaging edges 222 may be varied and Lhat the opening 228 can be placed in any orientation uelative to tte ratcluetirm~s 220 or other surface roughening without departing from the scope of the present invention.
Referring to Figures 15-19, an alternative embodiment of the spinal fusion implant of the present invention generally referred to by the numeral 300 is shown. The spinal fusion implant 300 leas a substantially cylincJrical configuration laving surface rouglenings for stabilizing tile implant 300 within the intervertebral space D. As shown i.n Figure 18, the surface roughenings comprise a surface knurling 320 such as, but not limited to, the diamond-shaped bone engaging pattern shown. Tlue spinal fusion implant 300 may leave surface )tnurling 32U tlrrougluout the entire external surface of the spinal fusion incplant 300, throughout only a portion of the external surface, or any combination thereof, without departing from flue scope of the present invention. Tn i:hose circumstances where tluere is rco undrilled bone in the disc space D forward of the spinal fusion implant 300 to resist further forward advancement of the implant:, surface knurling 320 is preferred as it produces au exceedingly high interference fit wit:H ttce bone oL l:he vertebrae V and resists motion equally in all directions and without the tendency to urge itself forwarc7.
Referring to Figure 17, two spinal fusion implants 300a and 2~68~35 30Ub rnay be placed side-by-side across the disc space D having the same dimensions of tlue disc space D shown in Figure 2, such that tlue two spinal fusion implants 300a and 300b are touching each other and alms reducing the overall combined width of the two spinal implants 300a and 3UOb to the minimr_rm distance possible with a substantially cylindrical implant having a roughened surface. In this rrranner, two cylindrical spinal fusion implants 300a and 30Ub having a sr.rfficient diameter to cross the height HS of tlue disc space D can be placed across the disc space D witloout exceeding flue transverse width Ws of the spinal column S. The spinal fusion implants 300a and 300b are inserted by linear advancement as described move for spinal fusion implant 100. Therefore, as no threading is required for the insertion of srinal fusion implants 300a and 300b, little or no space creed be present b~tweeu the spinal fusion implants 300a and 30Ub, as compared to the space that would be required for a thrread wluen using threaded implants.
Tlrus, the spinal fusion implants 30Ua arid 300b may be placed closer togethrer to substantially reduce the overall combined width of two such implants.
Referring to Figures 23-30, an alternative enibodi.rnerrt of i:lne spinal fusion implant of the present invention is shown arid is generally referred to by the nurneral 400. T'he spinal fusion implant 400 has a similar configuration to that of the spinal fusion implant 200, except that it comprises a partially cylindrical member having arcuate portions 402 and 404 which are arcs of i:he same circle with portions ot_ its outer wall 4U5 that are flattened so as to present a first flat side 406 and a second flat side 408.
Referring to Figure 28, the spinal fusion irnpl.ant 400 has a major diameter M equal to the distance between two diametrically opposite non-flattened segments, such as arcuate portions 402 and 404 which are arcs of tire same circle. Tire width Wi of the spinal fusion implant 400 is equal to tire distance between a flattened segment and a point diametrically ~168~35 opposite the flattened segment, such as the distance between flue first and second flat sides 406 and 408.
Referring to Figure 25, a diagranunatic rei~resetttation of a segment of a spinal colurnn S comprising several vertebrae V is shown having two spinal fusion implants 400a and 400b inserted across the disc space U between the two adjacent vertebrae V.
Tlue spinal fusion implants 400a and 40Ub are identical and each lras a first arcuate portion 402a arid 4021,, respectively; a second arcuate portion 404a and 404b, respectively; a first flat side 406a and 40Gb, respectively; and a second flat side 408a and 408b, respectively. Tlue spinal fusion implants 400a and 400b are implanted across Llre disc space U with the second flat side 408a of spinal fusion implant 400a facinc3 and adjacent to the first flat side 408b of spinal fusion irnplart 400b suclu that the combined overall width of the two spinal frtsion implants 400a and 400b is less than twice the maximum diameter M of the implants. The spinal fusion implants 400a and 400b are inserted by linear advancement as described above for spinal fusion implant 100.
Prior to implantation, two partially overlappitm~
cylindrical holes are drilled across the disc space U arid info the adjacent vertebrae V. The holes are drilled sufficiently overlapping to allow tlue two spinal fusion implants 400a and 400b Lo be implanted with the flat sides perpendicular to l:lte plane of the disc space U, tUe disc space U being in a pla~ie perpendicular to the longitudinal vertical axis A of the spinal column S as shown in Figure 25.
Tlte spinal fusion implants 400a and 40Ub may be inserted separately such that once a first spinal fusion implant 400a is inserted across the disc space U, a second spinal fusion implant 400b is driven across the disc space U so tluat the flat side 402 or 404 of each spinal fusion implant 400 are adjacent to each other and are touching. In this manner, tl~e two spinal fusion implants 400a and 400b are implanted across the disc space U and engage the bore of the adjacent vertebrae v without exceeding tire transverse width WS of the spinal column S.
Alternatively, the two spinal fusion implants 400a and 400b rnay be implanted across the disc space D simultaneously by placing i.:lrem adjacent and facing each other, in the orientation described above, prior to implantation. The two spinal fusion implants 400a and 400b are then linearly advanced into the drilled holes across the disc space D.
Referring to Figure 28, tire effect of having first and second flat sides 406 and 408 is that the overall width w. of i the spinal fusion implant 4(10 is substantially reduced while the height of the spinal fusion implant 400 remains the maximum diameter M of the cylindrical portion of tlne spinal fusion implant 400.
Referring to Figures 25 arid 26, as tyre height of each spinal fusion implant 400a and 400b is sufficient to cross the disc space D and into the two adjacent vertebrae V, each spinal fusion irnplarrt 400a and 400b engages tire bone of the adjacent vertebrae V while the combined width of the two spinal fusion implant 100 does not exceed the transverse width Ws of the spinal column S. As a result, the advanl.:ages o)_ placing two cylindrical implants side by side across the disc space D rnay be obtained without exceeding flue width WS of the spinal column S. Thus, as shown in Figure 2G, the two spinal fusion implants 400a and 400b can be inserted across the disc space D, having the same dimensions a.~ the disc space D shown in Figure 2, and can be placed much closer together as a result of tire first flat side 408b placed adjacent to the second flat side 408a while continuing to engage the adjacent vertebrae V.
As shown in Figure 30, the spinal fusion irnplarrt 400 has a hollow internal central charnber 414 and has a series of openings 428 passing through tlue outer wall 405 and into the central chamber 414 of the spinal fllslorl llllplarrt 400. The openings 428 may also ue present on flue first anc7 second flat sides 406 and 408. Said openings 428 wlril.e shown as round holes for example, may be any other workable configuration v Z »~~~~

consistent with their purpose and may include, but is not limited to, ovals, slots, grooves and holes that are not round as is true for any of the cylindrical implants disclosed above.
Referring to Figure 30A, it is appreciated that it is also within the scope of the present invention that the spinal fusion implant 400' could leave only one flat side so as to provide only a first flat side 406'. This configuration is appropriate where the width Wi of the spinal fusion implant 400 need only be slightly reduced with respect to its maximum diameter M, to prevent the combined overall width of two such implants from exceeding the transverse width Ws of the spinal column S.
Referring to Figures 23, 24 and 29, the spinal fusion implant 400 of the present invention has a plurality of ratclretings 420 facing one direction, as described above for spinal fusion implant 100, along tyre outer surface of the cylindrical portion of the circumference of the spinal fusion implant 400. The ratclretings 420 have a bone engaging edges 422 acrd the angled configuration of the ratchetings 420 provide for a "one-way" insertion of the spinal fusion implant 400 as the movement of tire spinal fusion implant 400 in the opposite way is prevented by the etrgagement or the engaging edges 422 with the vertebrae V. However, the flat sides 4U2 and 404 are preferably SIIIOOtIu and lave a flat surface so as to allow placement itr the closest possible proximity of the two spinal fusion implants 4UOa and 400b. The bone engaging edge 422 of each ratcheting 420 bisects tl-re holes 428 to increase the stability of the spinal fusion irnplatrt 400 once implanted.
Tlue spinal fusion implants 100-G00 each have an overall lengtl-r in the range of 20mm to 30mm, with 25mm being preferred, and a maximum diameter M in the range of l4nun t;o 24nrm, with l8mm being preferred w(reu inserted in the lumbar spine from Llre posterior approacl-r, anrl 20nun being preferred when inserted in llre lumbar spine from l:he anterior approach. 1'he syirral fusion implant 400 is quite appropriate for use in the cervical and 21 ~8~~5 thoracic spine as well. In the cervical spine such implants would have a length in tyre range of 10-l8mm preferred 12 mm aria a maxirnum diameter M in the range of 12-20mm, with the preferred diameter being l6mm. Irr the thoracic spine such implants would have a length in the range of 1G-26mnr and a greatest diameter in tyre range of 14-20nrm, with tire preferred diameter being l6mm. In addition to the foregoing dimensions,' spinal fusion implants 400-600 leave a width Wi for use in the cervical spine in the range of 8-l6mm, with the preferred width W, being 10-l4mm; for use in the lurnbar spine in the range of >_ 18-26mm, with the preferred width Ws being 18-20mm; and for use in the lumLrar spine irr the range of 18-26rnm, with tire preferred width Wi being 20-24mm.
Referring to Figures 27 and 28, when viewed on end, the spinal fusion implant 400 of the present invention bras externally the geometrical configuration of a circle with a portion of each side tangentially arnputated vertically to form the first and second flat sides 406 and 408. The cap 430 extends beyond the narrowest diameter of the wall 412 along the first and second arcr.rate portions 402 and 4U4 at the end of the spinal fusion irnplarrt 400 and acts as an additional ratcheting 420 with an engaging edge 436. In this manner, the additional ratcheting 420 functions t:o further increase the stability of t,lre spinal fusion implant 400 once inserted between the adjacent vertebrae V and to further prevent the dislodgement of the spinal fusion implant 400 from the disc space D. 1'lre cap 430 is flush with the flat sides 406 and 408 to preserve the flat surfaces of flat sides 406 and 408. The cap 430 further tras a sloping sides 438a and 438b corresponding position wii:lr tire flat sides 40G and 408 to facilitate insertion of flue spinal fusion implant 400 and to permit for close side by side placement of two spinal fusion implants 400. Alternatively, tire cap 430 can Ue flush all the way around with tUre root diaeneter of the spinal fusion implant 400 to further facilitate insertion for a longer ramp length.
The spinal fusion implant 400 leas surface roughenings such as, but not limited to, ratchetings 420 suclu that the outer surface of the spinal fusion irnplant 400 may have a plurality of other surface roughenings to enhance to stability of the spinal fusion implant 400 and i:o resist dislodgement once implanted across the disc space D. For example, the spinal fusion implant 400 may have an irregular outer surface that may be created by blasting or rough casting and the like. Such arr irregular surface may be used alone or in combination with other surface roughenings such as ratchetings and/or knurling and as already discussed, the openings 428 may be holes, grooves, slots or other.
Referring to Figures 32-35, an alternative embodiment of the spinal fusion implant of the present invention is sluown and generally referred to by the numeral 500. Ttre spinal fusion implant 500 is substantially the same as the spinal fusion implant 400, except that the openings 528 are positioned on the ratcheting 520 such that the openings 528 are positioned between the bone engaging edges 522 and are not bisected by the bone engaging edges 522. In this manner the bone engaging edges 522 are continuous and uninterrupted to engage the bone of the vertebrae V and prevent the backing out of the implant 500 once inserted.
Referring to Figures 36-40, an alternative embodiment of the spinal fusion implant of the present invention is shown and generally referred to by the numeral 600. The spinal fusion implant 600 is substantially identical to the spinal fusion implant 400 described above except that in place of ratchetings 420, it has surface knurling 620 such as, but not limited to, the diamond-shaped bone engaging pattern shown in Figure 40.
The surface knurling 620 assists in the retaining of i:he spinal fusion implant 600 once it is inserted across the disc space D
between two adjacent vertebrae V. It is recognized that the surface knurling 620 of the implant 600 may be combined with any of a number of other surface roughenings such as, but'not limited to, ratchetings to assist in retaining i~lne spinal fusion implant 600 across the disc space D.

As shown in Figure 36, the cap 630 of the spinal fusion implant 600 has sloping sides 660 and 662 corresponding with the first and second flat sides 606 and 608 to faci).itate insertion of the spinal fusion implant 600 and to perrnit for close side by side placement of two spinal fusion implants 600.
It is appreciated that the implant invention may include arry and all surface roughening configuration that either increase the surface area or interference fit of i:he implant and the vertebrae v. It is appreciated that the ratchetings described above for the various embodiments of the spinal fusion irnplants of the present invention may also comprise a knurled or otluer surface roughenings in combination with the ratchetings to further enhance the retention of the spinal fusion implant across the disc space D once inserted.
Referring to Figure 41, an alternative embodiment of the spinal fusion implant of the present invention generally referred to by flue numeral 700 is shown. The spinal f1rS10I1 implant 700 has surface roughenings comprising of a blasted external surface 701 to provide an engagement surface for the vertebrae V when inserted across the disc space U. The spinal fusion implant has a plurality of openings 728, a removable cap 730 with a hex slot 734 for engaging a loex tool.
Referring to Figure 42, an alternative ernbodimerrt of the spinal fusion implant of the present invention generally referred to by the numeral 800 is shown. Tlue spinal fusion implant 800 is similar to spinal fusion implarnt 400 described above except that it has openings in the form of horizontal slots 828 on the flat side 806 and vertical slots 829 on the cylindrical portion of flue spinal fusion implant 800.
It is appreciated that flue spinal implants of the present invention may leave any configuration such that the combined overall width of the two such spinal fusion implants is less than twice the maximum diameter M of those implants without departing from the scope of the present invent_i.on.

Referring to Figure 43, a segment of the spinal column S is shown with an alternative embodiment of two spinal fusion implants 900a and 900b inserted across disc space D1 is shown. Spinal fusion implant 900a lras a concave surface 902 which is correspondingly shaped for receiving tine convex surface 904 of spinal fusion implant 900b. When tire two spinal fusion implants 900a and 900b are placed side by side, the concave surface 902 mates with the convex s~.rrface 904 such l:hat tire combined overall widtlo of the two spinal fusion implants is less than twice the maxirnurn diameter M of those implants. ~s a result, the advantages of placing two implants that are partially cylindrical, witlu respect to the portion enc3aging the vertebrae V, side by side across tire disc space U may be obtained without exceeding the width Ws of the spinal column S
Referring still to Figure 43, arr alternative eunodimerrt of tire spinal fusion implant of the present invention comprising a single spinal. fusion implant 1000 inserted across tie disc space D2 of the spinal column S is shown. The spinal fusion 2p implant 1000 comprises a first cylindrical portion 1010 and a second cylindrical porl:i.on 1012 and may have any of the sm:face roughenings described above in reference to tire embodiments set forth above. In the preferred embodiment, the spinal fusion implant 1000 is inserted by linear advancement into two overlapping cylindrical luoles drilled across flue disc space U2.
While the present invention leas been described in detail with regard to tyre ~~referred emboQirnents, it i s appreciated drat other variations of the present invention rnay be devised which do not depart from the inventive concept: anQ scope of the present invention.

Claims (21)

1. A spinal fusion implant made of a material appropriate for human implantation at least in part between two adjacent vertebral bodies, said implant comprising:
a non-threaded cylindrical member having an exterior with opposed arcuate portions adapted to be oriented toward the adjacent endplates of the two adjacent vertebral bodies, each of said opposed arcuate portions having at least one opening passing therethrough to allow bone growth from adjacent vertebral body to adjacent vertebral body through said implant, said implant having a plurality of surface roughenings protruding from said exterior of said cylindrical member for engaging the two adjacent vertebral bodies to maintain said implant in place, said surface roughenings configured for linear insertion into the spine and to resist expulsion of said implant from between the two adjacent vertebral bodies.
2. A spinal fusion implant made of a material appropriate for human implantation at least in part between two adjacent vertebral bodies, said implant comprising:
a non-threaded cylindrical member having an exterior with opposed arcuate portions adapted to be oriented toward the adjacent endplates of the two adjacent vertebral bodies, each of said opposed arcuate portions having at least one opening passing therethrough to allow bone growth from adjacent vertebral body to adjacent vertebral body through said implant, said implant having a plurality of annular ratchetings defined around the circumference of said cylindrical member, said annular ratchetings being configured for linear insertion into the spine and to resist expulsion of said implant from between the adjacent vertebral bodies.
3. The spinal fusion implant of either claim 1 or 2, wherein said member includes a pair of opposed side portions between said opposed arcuate portions, at least one of said side portions being substantially flat.
4. The spinal fusion implant of claim 3, wherein at least one of said side portions has a curved exterior.
5. The spinal fusion implant of claim 4, wherein said exterior of at least one of said side portions is at least in part concave.
6. The spinal fusion implant of either claim 1 or 2, wherein said opposed arcuate portions are arcs of the same circle.
7. The spinal fusion implant of any one of claims 1-6, further comprising a plurality of cells in said exterior for retaining a fusion promoting substance.
8. The spinal fusion implant of any one of claims 1-6, wherein said spinal fusion implant is porous.
9. The spinal fusion implant of any one of claims 1-6, wherein said exterior has a bone ingrowth surface.
10. The spinal fusion implant of any one of claims 1-9, wherein said spinal fusion implant is treated with a fusion promoting substance.
11. The spinal fusion implant of any one of claims 1-9, wherein said spinal fusion implant is coated with a fusion promoting substance.
12. The spinal fusion implant of any one of claims 1-11, wherein said spinal fusion implant is stronger than bone.
13. The spinal fusion implant of any one of claims 1-12, further comprising a hollow interior in communication with said at least one opening.
14. The spinal fusion implant of claim 13, wherein said implant includes an end along the longitudinal central axis of said implant that is open to allow access to said hollow interior.
15. The spinal fusion implant of claim 14, wherein said end is adapted to be closed by a cap.
16. The spinal fusion implant of claim 15, in combination with a cap adapted to close said hollow interior.
17. The spinal fusion implant of any one of claims 1-16, in combination with a fusion promoting substance.
18. The spinal fusion implant of claim 17, wherein said fusion promoting substance includes at least one of bone, hydroxyapatite, hydroxyapatite tricalcium phosphate, and bone morphogenic protein.
19. The spinal fusion implant of any one of claims 1-18, in combination with an implant driver configured to insert said spinal fusion implant into the spine.
20. The spinal fusion implant of any one of claims 1-19, in combination with a guard having an opening for providing protected access to the disc space and the adjacent vertebral bodies and for guiding the insertion of said spinal fusion implant into the spine.
21. The spinal fusion implant of any one of claims 1-20, in combination with a drill for preparing an implantation space to receive said spinal fusion implant.
CA002168835A 1992-10-29 1996-02-05 Interbody spinal fusion implants Expired - Fee Related CA2168835C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002569778A CA2569778C (en) 1995-02-17 1996-02-05 Interbody spinal fusion implants

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US07/968,240 US5741253A (en) 1988-06-13 1992-10-29 Method for inserting spinal implants
US08/390,131 1995-02-17
US08/390,131 US5593409A (en) 1988-06-13 1995-02-17 Interbody spinal fusion implants

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA002569778A Division CA2569778C (en) 1995-02-17 1996-02-05 Interbody spinal fusion implants

Publications (2)

Publication Number Publication Date
CA2168835A1 CA2168835A1 (en) 1996-08-18
CA2168835C true CA2168835C (en) 2007-04-24

Family

ID=23541206

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002168835A Expired - Fee Related CA2168835C (en) 1992-10-29 1996-02-05 Interbody spinal fusion implants
CA002569778A Expired - Fee Related CA2569778C (en) 1995-02-17 1996-02-05 Interbody spinal fusion implants

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA002569778A Expired - Fee Related CA2569778C (en) 1995-02-17 1996-02-05 Interbody spinal fusion implants

Country Status (13)

Country Link
US (3) US5593409A (en)
EP (2) EP1525863A3 (en)
JP (1) JP3848392B2 (en)
KR (1) KR960030887A (en)
CN (1) CN1134810A (en)
AT (1) ATE281132T1 (en)
CA (2) CA2168835C (en)
DE (1) DE69633756T2 (en)
DK (1) DK0732093T3 (en)
ES (1) ES2231799T3 (en)
PT (1) PT732093E (en)
TR (1) TR199600134A2 (en)
TW (1) TW365158U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403943B2 (en) 2006-08-07 2013-03-26 Howmedica Osteonics Corp. Insertion system for implanting a medical device and surgical methods
US9289201B2 (en) 2006-08-07 2016-03-22 Howmedica Osteonics Corp. Medical device for repair of tissue and method for implantation and fixation

Families Citing this family (570)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20004692U1 (en) * 2000-03-14 2001-07-26 Sofamor Danek Gmbh Vertebral implant for screwing into an intervertebral space
US6923810B1 (en) * 1988-06-13 2005-08-02 Gary Karlin Michelson Frusto-conical interbody spinal fusion implants
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US6123705A (en) 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
US7491205B1 (en) * 1988-06-13 2009-02-17 Warsaw Orthopedic, Inc. Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
EP0703757B1 (en) 1988-06-13 2003-08-27 Karlin Technology, Inc. Apparatus for inserting spinal implants
US5772661A (en) * 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US7534254B1 (en) 1988-06-13 2009-05-19 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
US5609635A (en) * 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
US5895427A (en) * 1989-07-06 1999-04-20 Sulzer Spine-Tech Inc. Method for spinal fixation
US5769897A (en) * 1991-12-13 1998-06-23 Haerle; Anton Synthetic bone
DE19917696A1 (en) * 1999-04-20 2000-10-26 Karlheinz Schmidt Biological restoration agent, e.g. for filling bone defects, comprising a carrier coated with or including an active complex of structural, recruiting, adhesion and growth or maturation components
CA2551185C (en) * 1994-03-28 2007-10-30 Sdgi Holdings, Inc. Apparatus and method for anterior spinal stabilization
US5674296A (en) * 1994-11-14 1997-10-07 Spinal Dynamics Corporation Human spinal disc prosthesis
US6758849B1 (en) 1995-02-17 2004-07-06 Sdgi Holdings, Inc. Interbody spinal fusion implants
WO1996027348A1 (en) * 1995-03-08 1996-09-12 Synthes Ag, Chur Intervertebral implant
US5782919A (en) * 1995-03-27 1998-07-21 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
ATE286696T1 (en) 1995-03-27 2005-01-15 Sdgi Holdings Inc SPINAL FUSION IMPLANT AND INSERTION AND VERIFICATION TOOLS
US6206922B1 (en) 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6245072B1 (en) 1995-03-27 2001-06-12 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
DE59509814D1 (en) * 1995-10-20 2001-12-13 Synthes Ag INTERMEDIATE SWIVEL IMPLANT WITH COMPRESSIBLE HOLLOW BODY PROFILE
US5814084A (en) * 1996-01-16 1998-09-29 University Of Florida Tissue Bank, Inc. Diaphysial cortical dowel
US5766253A (en) * 1996-01-16 1998-06-16 Surgical Dynamics, Inc. Spinal fusion device
DE29600879U1 (en) * 1996-01-19 1996-03-28 Howmedica Gmbh Spinal implant
CA2199462C (en) * 1996-03-14 2006-01-03 Charles J. Winslow Method and instrumentation for implant insertion
US6111164A (en) * 1996-06-21 2000-08-29 Musculoskeletal Transplant Foundation Bone graft insert
US5895426A (en) 1996-09-06 1999-04-20 Osteotech, Inc. Fusion implant device and method of use
FR2753368B1 (en) 1996-09-13 1999-01-08 Chauvin Jean Luc EXPANSIONAL OSTEOSYNTHESIS CAGE
US5782832A (en) * 1996-10-01 1998-07-21 Surgical Dynamics, Inc. Spinal fusion implant and method of insertion thereof
US6063088A (en) * 1997-03-24 2000-05-16 United States Surgical Corporation Method and instrumentation for implant insertion
US5968098A (en) * 1996-10-22 1999-10-19 Surgical Dynamics, Inc. Apparatus for fusing adjacent bone structures
ATE262863T1 (en) * 1996-10-23 2004-04-15 Sdgi Holdings Inc SPACER FOR SWIVELS
US20050165483A1 (en) * 2004-01-27 2005-07-28 Ray Eddie F.Iii Bone grafts
EP0934026B1 (en) 1996-10-24 2009-07-15 Zimmer Spine Austin, Inc Apparatus for spinal fixation
US6416515B1 (en) * 1996-10-24 2002-07-09 Spinal Concepts, Inc. Spinal fixation system
US6190414B1 (en) 1996-10-31 2001-02-20 Surgical Dynamics Inc. Apparatus for fusion of adjacent bone structures
US6602293B1 (en) * 1996-11-01 2003-08-05 The Johns Hopkins University Polymeric composite orthopedic implant
DE19652608C1 (en) * 1996-12-18 1998-08-27 Eska Implants Gmbh & Co Prophylaxis implant against fractures of osteoporotically affected bone segments
US5961554A (en) * 1996-12-31 1999-10-05 Janson; Frank S Intervertebral spacer
US6712819B2 (en) 1998-10-20 2004-03-30 St. Francis Medical Technologies, Inc. Mating insertion instruments for spinal implants and methods of use
US6451019B1 (en) 1998-10-20 2002-09-17 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US6796983B1 (en) 1997-01-02 2004-09-28 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US20020143331A1 (en) * 1998-10-20 2002-10-03 Zucherman James F. Inter-spinous process implant and method with deformable spacer
US7201751B2 (en) * 1997-01-02 2007-04-10 St. Francis Medical Technologies, Inc. Supplemental spine fixation device
US6695842B2 (en) 1997-10-27 2004-02-24 St. Francis Medical Technologies, Inc. Interspinous process distraction system and method with positionable wing and method
US5836948A (en) 1997-01-02 1998-11-17 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US5728159A (en) * 1997-01-02 1998-03-17 Musculoskeletal Transplant Foundation Serrated bone graft
US7306628B2 (en) * 2002-10-29 2007-12-11 St. Francis Medical Technologies Interspinous process apparatus and method with a selectably expandable spacer
US7959652B2 (en) 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US6156038A (en) * 1997-01-02 2000-12-05 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US7101375B2 (en) * 1997-01-02 2006-09-05 St. Francis Medical Technologies, Inc. Spine distraction implant
US6902566B2 (en) * 1997-01-02 2005-06-07 St. Francis Medical Technologies, Inc. Spinal implants, insertion instruments, and methods of use
US6514256B2 (en) 1997-01-02 2003-02-04 St. Francis Medical Technologies, Inc. Spine distraction implant and method
US5860977A (en) 1997-01-02 1999-01-19 Saint Francis Medical Technologies, Llc Spine distraction implant and method
US6068630A (en) 1997-01-02 2000-05-30 St. Francis Medical Technologies, Inc. Spine distraction implant
US6193721B1 (en) * 1997-02-11 2001-02-27 Gary K. Michelson Multi-lock anterior cervical plating system
AU6145998A (en) 1997-02-11 1998-08-26 Gary Karlin Michelson Skeletal plating system
US6120506A (en) * 1997-03-06 2000-09-19 Sulzer Spine-Tech Inc. Lordotic spinal implant
EP0977527B1 (en) * 1997-04-25 2008-05-14 Stryker France Two-part intersomatic implants
US6641614B1 (en) 1997-05-01 2003-11-04 Spinal Concepts, Inc. Multi-variable-height fusion device
US6045579A (en) 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
DE19720241B4 (en) * 1997-05-15 2005-12-29 Eska Implants Gmbh & Co. Interbody fusion implant
US5876457A (en) 1997-05-20 1999-03-02 George J. Picha Spinal implant
US6585770B1 (en) 1997-06-02 2003-07-01 Sdgi Holdings, Inc. Devices for supporting bony structures
US6149651A (en) * 1997-06-02 2000-11-21 Sdgi Holdings, Inc. Device for supporting weak bony structures
US5897556A (en) * 1997-06-02 1999-04-27 Sdgi Holdings, Inc. Device for supporting weak bony structures
US6033438A (en) 1997-06-03 2000-03-07 Sdgi Holdings, Inc. Open intervertebral spacer
US5928243A (en) 1997-07-16 1999-07-27 Spinal Concepts, Inc. Pedicle probe and depth gage
US5910315A (en) * 1997-07-18 1999-06-08 Stevenson; Sharon Allograft tissue material for filling spinal fusion cages or related surgical spaces
US6030389A (en) 1997-08-04 2000-02-29 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6454769B2 (en) * 1997-08-04 2002-09-24 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6241771B1 (en) 1997-08-13 2001-06-05 Cambridge Scientific, Inc. Resorbable interbody spinal fusion devices
US6053921A (en) 1997-08-26 2000-04-25 Spinal Concepts, Inc. Surgical cable system and method
US5964769A (en) 1997-08-26 1999-10-12 Spinal Concepts, Inc. Surgical cable system and method
US6168631B1 (en) * 1997-08-29 2001-01-02 Kinetikos Medical, Inc. Subtalar implant system and method for insertion and removal
US6004326A (en) * 1997-09-10 1999-12-21 United States Surgical Method and instrumentation for implant insertion
US5865848A (en) * 1997-09-12 1999-02-02 Artifex, Ltd. Dynamic intervertebral spacer and method of use
WO1999013805A1 (en) * 1997-09-17 1999-03-25 Osteotech, Inc. Fusion implant device and method of use
US6511509B1 (en) 1997-10-20 2003-01-28 Lifenet Textured bone allograft, method of making and using same
ES2297898T3 (en) 1997-10-27 2008-05-01 St. Francis Medical Technologies, Inc. VERTEBRAL DISTRACTION IMPLANT.
US6648916B1 (en) * 1997-12-10 2003-11-18 Sdgi Holdings, Inc. Osteogenic fusion device
US20010001129A1 (en) * 1997-12-10 2001-05-10 Mckay William F. Osteogenic fusion device
US6146420A (en) * 1997-12-10 2000-11-14 Sdgi Holdings, Inc. Osteogenic fusion device
US6348058B1 (en) * 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6086613A (en) * 1997-12-23 2000-07-11 Depuy Acromed, Inc. Spacer assembly for use in spinal surgeries
USRE38614E1 (en) 1998-01-30 2004-10-05 Synthes (U.S.A.) Intervertebral allograft spacer
US7087082B2 (en) * 1998-08-03 2006-08-08 Synthes (Usa) Bone implants with central chambers
US6986788B2 (en) * 1998-01-30 2006-01-17 Synthes (U.S.A.) Intervertebral allograft spacer
US6143033A (en) * 1998-01-30 2000-11-07 Synthes (Usa) Allogenic intervertebral implant
US6224631B1 (en) * 1998-03-20 2001-05-01 Sulzer Spine-Tech Inc. Intervertebral implant with reduced contact area and method
US6241729B1 (en) * 1998-04-09 2001-06-05 Sdgi Holdings, Inc. Method and instrumentation for posterior interbody fusion
US6241769B1 (en) 1998-05-06 2001-06-05 Cortek, Inc. Implant for spinal fusion
US6171339B1 (en) * 1998-05-19 2001-01-09 Sulzer Spine-Tech Inc. Multi-lumen spinal implant guide and method
WO1999060956A1 (en) 1998-05-27 1999-12-02 Nuvasive, Inc. Interlocking spinal inserts
US6290724B1 (en) 1998-05-27 2001-09-18 Nuvasive, Inc. Methods for separating and stabilizing adjacent vertebrae
WO1999060837A2 (en) 1998-05-27 1999-12-02 Nuvasive, Inc. Bone blocks and methods for inserting
US6126689A (en) 1998-06-15 2000-10-03 Expanding Concepts, L.L.C. Collapsible and expandable interbody fusion device
US6086593A (en) 1998-06-30 2000-07-11 Bonutti; Peter M. Method and apparatus for use in operating on a bone
ATE363877T1 (en) 1998-07-22 2007-06-15 Warsaw Orthopedic Inc SCREWED CYLINDRICAL MULTIDISCOID SINGLE OR MULTIPLE NETWORK PLATE PROSTHESIS
PT1100417E (en) 1998-08-03 2004-08-31 Synthes Ag ALOGENIC IMPLANT INTERVERTEBRAL DILATADOR
US20060241763A1 (en) * 1998-08-03 2006-10-26 Synthes (Usa) Multipiece bone implant
US6099531A (en) * 1998-08-20 2000-08-08 Bonutti; Peter M. Changing relationship between bones
FR2782632B1 (en) * 1998-08-28 2000-12-29 Materiel Orthopedique En Abreg EXPANSIBLE INTERSOMATIC FUSION CAGE
CA2342633C (en) * 1998-09-04 2007-11-13 Spinal Dynamics Corporation Peanut spectacle multi discoid thoraco-lumbar disc prosthesis
EP1109517B1 (en) * 1998-09-04 2006-07-12 SDGI Holdings, Inc. Cylindrical hemi-lunar parallel array threaded disc prosthesis
US6117174A (en) * 1998-09-16 2000-09-12 Nolan; Wesley A. Spinal implant device
US6958149B2 (en) * 1998-10-06 2005-10-25 Stryker Corporation Repair of larynx, trachea, and other fibrocartilaginous tissues
US6652527B2 (en) 1998-10-20 2003-11-25 St. Francis Medical Technologies, Inc. Supplemental spine fixation device and method
US7189234B2 (en) 1998-10-20 2007-03-13 St. Francis Medical Technologies, Inc. Interspinous process implant sizer and distractor with a split head and size indicator and method
US6652534B2 (en) 1998-10-20 2003-11-25 St. Francis Medical Technologies, Inc. Apparatus and method for determining implant size
US7029473B2 (en) * 1998-10-20 2006-04-18 St. Francis Medical Technologies, Inc. Deflectable spacer for use as an interspinous process implant and method
AU4986099A (en) 1998-10-21 2000-05-08 Roger P Jackson Spinal fusion apparatus and method
US6174311B1 (en) 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6074423A (en) * 1998-11-02 2000-06-13 Lawson; Kevin Jon Safer more X-ray transparent spinal implant
US6126688A (en) * 1998-12-21 2000-10-03 Surgical Dynamics Inc. Apparatus for fusion of adjacent bone structures
AU2003266465B2 (en) * 1999-01-11 2006-12-14 Warsaw Orthopedic, Inc. Intervertebral Spacers with Side Wall Accessible Interior Cavity
JP2002534211A (en) * 1999-01-11 2002-10-15 エスディージーアイ・ホールディングス・インコーポレーテッド Intervertebral fixation spacer
US6547823B2 (en) 1999-01-22 2003-04-15 Osteotech, Inc. Intervertebral implant
US6325827B1 (en) * 1999-02-01 2001-12-04 Blacksheep Technologies, Inc. Intervertebral implant
US6086589A (en) * 1999-02-02 2000-07-11 Spineology, Inc. Method and device for fixing spondylolisthesis posteriorly
ES2209820T3 (en) 1999-02-04 2004-07-01 Sdgi Holdings, Inc. HIGHLY MINERALIZED OSTEOGENIC SPONGE COMPOSITIONS, AND USES OF THE SAME.
WO2000045753A1 (en) * 1999-02-04 2000-08-10 Sdgi Holdings, Inc. Improved interbody fusion device with anti-rotation features
US6743234B2 (en) 1999-02-04 2004-06-01 Sdgi Holdings, Inc. Methods and instrumentation for vertebral interbody fusion
WO2000045709A1 (en) * 1999-02-04 2000-08-10 Sdgi Holdings, Inc. Methods and instrumentation for vertebral interbody fusion
US6648895B2 (en) * 2000-02-04 2003-11-18 Sdgi Holdings, Inc. Methods and instrumentation for vertebral interbody fusion
US6241770B1 (en) * 1999-03-05 2001-06-05 Gary K. Michelson Interbody spinal fusion implant having an anatomically conformed trailing end
CA2363254C (en) * 1999-03-07 2009-05-05 Discure Ltd. Method and apparatus for computerized surgery
WO2000054821A1 (en) * 1999-03-16 2000-09-21 Regeneration Technologies, Inc. Molded implants for orthopedic applications
EP1164979B1 (en) * 1999-04-07 2005-12-21 Howmedica Osteonics Corp. Low profile fusion cage and insertion set
US6442814B1 (en) 1999-04-23 2002-09-03 Spinal Concepts, Inc. Apparatus for manufacturing a bone dowel
US6557226B1 (en) 1999-04-23 2003-05-06 Michael E. Landry Apparatus for manufacturing a bone dowel
CA2363562C (en) * 1999-05-05 2010-08-03 Gary Karlin Michelson Nested interbody spinal fusion implants
US6558423B1 (en) * 1999-05-05 2003-05-06 Gary K. Michelson Interbody spinal fusion implants with multi-lock for locking opposed screws
US7094239B1 (en) * 1999-05-05 2006-08-22 Sdgi Holdings, Inc. Screws of cortical bone and method of manufacture thereof
US6214050B1 (en) 1999-05-11 2001-04-10 Donald R. Huene Expandable implant for inter-bone stabilization and adapted to extrude osteogenic material, and a method of stabilizing bones while extruding osteogenic material
US6520991B2 (en) 1999-05-11 2003-02-18 Donald R. Huene Expandable implant for inter-vertebral stabilization, and a method of stabilizing vertebrae
US6520996B1 (en) 1999-06-04 2003-02-18 Depuy Acromed, Incorporated Orthopedic implant
EP1185221B1 (en) 1999-06-04 2005-03-23 SDGI Holdings, Inc. Artificial disc implant
EP1194086A4 (en) * 1999-06-08 2003-03-19 Osteotech Inc Keyed intervertebral dowel
US6277149B1 (en) 1999-06-08 2001-08-21 Osteotech, Inc. Ramp-shaped intervertebral implant
FR2897259B1 (en) 2006-02-15 2008-05-09 Ldr Medical Soc Par Actions Si INTERSOMATIC TRANSFORAMINAL CAGE WITH INTERBREBAL FUSION GRAFT AND CAGE IMPLANTATION INSTRUMENT
WO2001013807A2 (en) 1999-08-26 2001-03-01 Sdgi Holdings, Inc. Devices and methods for implanting fusion cages
US6464727B1 (en) 1999-09-01 2002-10-15 Hugh R. Sharkey Intervertebral spacer implant
US6527773B1 (en) * 1999-10-07 2003-03-04 Osteotech, Inc. Cervical dowel and insertion tool
US6575899B1 (en) 1999-10-20 2003-06-10 Sdgi Holdings, Inc. Methods and instruments for endoscopic interbody surgical techniques
US6592624B1 (en) 1999-11-24 2003-07-15 Depuy Acromed, Inc. Prosthetic implant element
DE19957339C2 (en) * 1999-11-29 2002-03-28 Franz Copf Cage element, as well as set of cage elements
US6827740B1 (en) 1999-12-08 2004-12-07 Gary K. Michelson Spinal implant surface configuration
US7115143B1 (en) * 1999-12-08 2006-10-03 Sdgi Holdings, Inc. Orthopedic implant surface configuration
US20010032017A1 (en) * 1999-12-30 2001-10-18 Alfaro Arthur A. Intervertebral implants
US6331179B1 (en) 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6447512B1 (en) 2000-01-06 2002-09-10 Spinal Concepts, Inc. Instrument and method for implanting an interbody fusion device
US6709458B2 (en) 2000-02-04 2004-03-23 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
CA2395609A1 (en) * 2000-02-04 2001-08-09 Gary Karlin Michelson Expandable interbody spinal fusion implant
US6716247B2 (en) 2000-02-04 2004-04-06 Gary K. Michelson Expandable push-in interbody spinal fusion implant
US6500205B1 (en) * 2000-04-19 2002-12-31 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
DE60119279T2 (en) * 2000-02-04 2007-03-08 Warsaw Orthopedic, Inc., Minneapolis EXPANDABLE INSERT INTERMEDIATE FUSION IMPLANT
EP1645248B8 (en) * 2000-02-04 2010-06-16 Warsaw Orthopedic, Inc. Expandable interbody spinal fusion implant having pivotally attached blocker
US6814756B1 (en) 2000-02-04 2004-11-09 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
US7182781B1 (en) * 2000-03-02 2007-02-27 Regeneration Technologies, Inc. Cervical tapered dowel
AR027685A1 (en) * 2000-03-22 2003-04-09 Synthes Ag METHOD AND METHOD FOR CARRYING OUT
US6436141B2 (en) 2000-04-07 2002-08-20 Surgical Dynamics, Inc. Apparatus for fusing adjacent bone structures
US6821298B1 (en) 2000-04-18 2004-11-23 Roger P. Jackson Anterior expandable spinal fusion cage system
US6350283B1 (en) * 2000-04-19 2002-02-26 Gary K. Michelson Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US7462195B1 (en) 2000-04-19 2008-12-09 Warsaw Orthopedic, Inc. Artificial lumbar interbody spinal implant having an asymmetrical leading end
FR2808995B1 (en) 2000-05-18 2003-02-21 Aesculap Sa INTERSOMATIC CAGE WITH UNIFIED GRAFT
JP2003534849A (en) 2000-05-30 2003-11-25 リン,ポール・エス Implant placed between cervical vertebrae
USD493225S1 (en) 2000-06-12 2004-07-20 Ortho Development Corporation Implant
US6579318B2 (en) 2000-06-12 2003-06-17 Ortho Development Corporation Intervertebral spacer
JP2004516040A (en) * 2000-06-30 2004-06-03 リトラン、スティーブン Multi-shaft coupling device and method
US7018416B2 (en) * 2000-07-06 2006-03-28 Zimmer Spine, Inc. Bone implants and methods
US6808537B2 (en) * 2000-07-07 2004-10-26 Gary Karlin Michelson Expandable implant with interlocking walls
US6852126B2 (en) 2000-07-17 2005-02-08 Nuvasive, Inc. Stackable interlocking intervertebral support system
WO2002009597A2 (en) * 2000-08-01 2002-02-07 Regeneration Technologies, Inc. Diaphysial cortical dowel
US7601174B2 (en) * 2000-08-08 2009-10-13 Warsaw Orthopedic, Inc. Wear-resistant endoprosthetic devices
US7125380B2 (en) * 2000-08-08 2006-10-24 Warsaw Orthopedic, Inc. Clamping apparatus and methods
DE60140004D1 (en) 2000-08-08 2009-11-05 Warsaw Orthopedic Inc DEVICE FOR STEREOTAKTIC IMPLANTATION
EP1363565A2 (en) * 2000-08-08 2003-11-26 SDGI Holdings, Inc. Implantable joint prosthesis
US6447546B1 (en) 2000-08-11 2002-09-10 Dale G. Bramlet Apparatus and method for fusing opposing spinal vertebrae
US7204851B2 (en) 2000-08-30 2007-04-17 Sdgi Holdings, Inc. Method and apparatus for delivering an intervertebral disc implant
US7503936B2 (en) * 2000-08-30 2009-03-17 Warsaw Orthopedic, Inc. Methods for forming and retaining intervertebral disc implants
US20020026244A1 (en) * 2000-08-30 2002-02-28 Trieu Hai H. Intervertebral disc nucleus implants and methods
JP2004507318A (en) * 2000-08-30 2004-03-11 エスディージーアイ・ホールディングス・インコーポレーテッド Disc nucleus pulposus implant and method
US6443987B1 (en) 2000-09-15 2002-09-03 Donald W. Bryan Spinal vertebral implant
US6500206B1 (en) 2000-09-15 2002-12-31 Donald W. Bryan Instruments for inserting spinal vertebral implant
EP1328217A2 (en) * 2000-09-19 2003-07-23 SDGI Holdings, Inc. Osteogenic fusion devices
KR100395253B1 (en) * 2000-09-28 2003-08-21 (주)태연메디칼 Backbone fused implant
US7166073B2 (en) * 2000-09-29 2007-01-23 Stephen Ritland Method and device for microsurgical intermuscular spinal surgery
US6692434B2 (en) 2000-09-29 2004-02-17 Stephen Ritland Method and device for retractor for microsurgical intermuscular lumbar arthrodesis
US6572654B1 (en) 2000-10-04 2003-06-03 Albert N. Santilli Intervertebral spacer
US20030120274A1 (en) * 2000-10-20 2003-06-26 Morris John W. Implant retaining device
AU2002213404A1 (en) * 2000-10-24 2002-05-06 Howmedica Osteonics Corp. Barrel-shaped apparatus for fusing adjacent bone structure
JP2004512097A (en) 2000-10-24 2004-04-22 エスディージーアイ・ホールディングス・インコーポレーテッド Apparatus and method for filling osteogenic material
CA2423603C (en) 2000-11-03 2010-05-04 Osteotech, Inc. Spinal intervertebral implant and method of making
US6666891B2 (en) 2000-11-13 2003-12-23 Frank H. Boehm, Jr. Device and method for lumbar interbody fusion
MXPA03004180A (en) 2000-11-13 2004-12-02 Boehm Frank H Jr Device and method for lumbar interbody fusion.
US6454807B1 (en) 2000-11-30 2002-09-24 Roger P. Jackson Articulated expandable spinal fusion cage system
US20020169507A1 (en) * 2000-12-14 2002-11-14 David Malone Interbody spine fusion cage
US6520993B2 (en) 2000-12-29 2003-02-18 Depuy Acromed, Inc. Spinal implant
US7018418B2 (en) * 2001-01-25 2006-03-28 Tecomet, Inc. Textured surface having undercut micro recesses in a surface
ATE384500T1 (en) * 2001-02-04 2008-02-15 Warsaw Orthopedic Inc INSTRUMENTS FOR INSERTING AND POSITIONING AN EXPANDABLE INTERVERBEL FUSION IMPLANT
US6986772B2 (en) * 2001-03-01 2006-01-17 Michelson Gary K Dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine
US6562045B2 (en) 2001-02-13 2003-05-13 Sdgi Holdings, Inc. Machining apparatus
WO2002098332A1 (en) * 2001-02-16 2002-12-12 Sulzer Spine-Tech Inc. Bone implants and methods
US20020116064A1 (en) * 2001-02-21 2002-08-22 Lance Middleton Apparatus for fusing adjacent bone structures
US6673075B2 (en) 2001-02-23 2004-01-06 Albert N. Santilli Porous intervertebral spacer
WO2002069891A2 (en) 2001-03-01 2002-09-12 Michelson Gary K Dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine and method for use thereof
US6896680B2 (en) 2001-03-01 2005-05-24 Gary K. Michelson Arcuate dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine
US20020138147A1 (en) * 2001-03-22 2002-09-26 Surgical Dynamics, Inc. Apparatus for fusing adjacent bone structures
US6899734B2 (en) 2001-03-23 2005-05-31 Howmedica Osteonics Corp. Modular implant for fusing adjacent bone structure
US6890355B2 (en) 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
US6989031B2 (en) * 2001-04-02 2006-01-24 Sdgi Holdings, Inc. Hemi-interbody spinal implant manufactured from a major long bone ring or a bone composite
US6582433B2 (en) 2001-04-09 2003-06-24 St. Francis Medical Technologies, Inc. Spine fixation device and method
PT2055267E (en) 2001-05-01 2013-07-15 Amedica Corp Radiolucent bone graft
US7776085B2 (en) * 2001-05-01 2010-08-17 Amedica Corporation Knee prosthesis with ceramic tibial component
US20050177238A1 (en) * 2001-05-01 2005-08-11 Khandkar Ashok C. Radiolucent bone graft
US7695521B2 (en) * 2001-05-01 2010-04-13 Amedica Corporation Hip prosthesis with monoblock ceramic acetabular cup
FR2824261B1 (en) 2001-05-04 2004-05-28 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS
US7097645B2 (en) * 2001-06-04 2006-08-29 Sdgi Holdings, Inc. Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments
WO2002098276A2 (en) * 2001-06-04 2002-12-12 Michelson Gary K Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof
CA2443429C (en) 2001-06-04 2010-08-10 Gary Karlin Michelson Anterior cervical plate system having vertebral body engaging anchors, connecting plate, and method for installation thereof
US7186256B2 (en) * 2001-06-04 2007-03-06 Warsaw Orthopedic, Inc. Dynamic, modular, single-lock anterior cervical plate system having assembleable and movable segments
US7041105B2 (en) * 2001-06-06 2006-05-09 Sdgi Holdings, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US7044952B2 (en) * 2001-06-06 2006-05-16 Sdgi Holdings, Inc. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments
WO2002102275A2 (en) * 2001-06-14 2002-12-27 Amedica Corporation Metal-ceramic composite articulation
FR2827156B1 (en) 2001-07-13 2003-11-14 Ldr Medical VERTEBRAL CAGE DEVICE WITH MODULAR FASTENING
US6926728B2 (en) * 2001-07-18 2005-08-09 St. Francis Medical Technologies, Inc. Curved dilator and method
US20030036427A1 (en) * 2001-08-20 2003-02-20 Steve Brandstetter Coin counter and ticket dispenser for a game machine
US20030055503A1 (en) * 2001-09-19 2003-03-20 O'neil Michael J. Alignment verification device and method of use
US7207992B2 (en) * 2001-09-28 2007-04-24 Stephen Ritland Connection rod for screw or hook polyaxial system and method of use
US6923814B1 (en) 2001-10-30 2005-08-02 Nuvasive, Inc. System and methods for cervical spinal fusion
US7766947B2 (en) * 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
US8025684B2 (en) * 2001-11-09 2011-09-27 Zimmer Spine, Inc. Instruments and methods for inserting a spinal implant
US7025787B2 (en) * 2001-11-26 2006-04-11 Sdgi Holdings, Inc. Implantable joint prosthesis and associated instrumentation
US6855167B2 (en) * 2001-12-05 2005-02-15 Osteotech, Inc. Spinal intervertebral implant, interconnections for such implant and processes for making
US20030114930A1 (en) * 2001-12-18 2003-06-19 Lim Kit Yeng Apparatus and method to stabilize and repair an intervertebral disc
US8137402B2 (en) * 2002-01-17 2012-03-20 Concept Matrix Llc Vertebral defect device
US7105023B2 (en) * 2002-01-17 2006-09-12 Concept Matrix, L.L.C. Vertebral defect device
US7011684B2 (en) * 2002-01-17 2006-03-14 Concept Matrix, Llc Intervertebral disk prosthesis
AU2003215099A1 (en) * 2002-02-07 2003-09-02 Ebi, L.P. Anterior spinal implant
US7527649B1 (en) 2002-02-15 2009-05-05 Nuvasive, Inc. Intervertebral implant and related methods
AR038680A1 (en) 2002-02-19 2005-01-26 Synthes Ag INTERVERTEBRAL IMPLANT
CA2475200C (en) * 2002-02-20 2011-02-15 Stephen Ritland Pedicle screw connector apparatus and method
CA2478311C (en) * 2002-03-11 2010-07-20 Spinal Concepts, Inc. Instrumentation and procedure for implanting spinal implant devices
US6824278B2 (en) * 2002-03-15 2004-11-30 Memx, Inc. Self-shadowing MEM structures
US6966910B2 (en) 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
EP1585427B1 (en) 2002-05-08 2012-04-11 Stephen Ritland Dynamic fixation device
US7618423B1 (en) 2002-06-15 2009-11-17 Nuvasive, Inc. System and method for performing spinal fusion
PT1539053E (en) * 2002-09-13 2008-05-23 Replication Medical Inc Implant manipulation and storage tools
JP4429909B2 (en) 2002-09-19 2010-03-10 ビリアーズ, マラン デ Intervertebral prosthesis
US7776049B1 (en) 2002-10-02 2010-08-17 Nuvasive, Inc. Spinal implant inserter, implant, and method
US7931674B2 (en) 2005-03-21 2011-04-26 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US7833246B2 (en) 2002-10-29 2010-11-16 Kyphon SÀRL Interspinous process and sacrum implant and method
US8070778B2 (en) * 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US20060271194A1 (en) * 2005-03-22 2006-11-30 St. Francis Medical Technologies, Inc. Interspinous process implant having deployable wing as an adjunct to spinal fusion and method of implantation
US6966929B2 (en) * 2002-10-29 2005-11-22 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with a spacer
US7909853B2 (en) * 2004-09-23 2011-03-22 Kyphon Sarl Interspinous process implant including a binder and method of implantation
US7273496B2 (en) * 2002-10-29 2007-09-25 St. Francis Medical Technologies, Inc. Artificial vertebral disk replacement implant with crossbar spacer and method
US7549999B2 (en) * 2003-05-22 2009-06-23 Kyphon Sarl Interspinous process distraction implant and method of implantation
US7497859B2 (en) * 2002-10-29 2009-03-03 Kyphon Sarl Tools for implanting an artificial vertebral disk
US8048117B2 (en) * 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
FR2846550B1 (en) 2002-11-05 2006-01-13 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US6685742B1 (en) 2002-11-12 2004-02-03 Roger P. Jackson Articulated anterior expandable spinal fusion cage system
WO2004058098A2 (en) * 2002-12-17 2004-07-15 Amedica Corporation Total disc implant
EP1430858B1 (en) 2002-12-19 2012-11-14 coLigne AG A pair of lumbar interbody implants and method of fusing together adjoining vertebrae bodies
JP4398975B2 (en) 2003-01-31 2010-01-13 スパイナルモーション, インコーポレイテッド Spinal cord midline indicator
EP1587462B1 (en) 2003-01-31 2012-06-06 Malan De Villiers Intervertebral prosthesis placement instrument
EP2457541A1 (en) 2003-02-06 2012-05-30 Synthes GmbH Implant between vertebrae
US7335203B2 (en) 2003-02-12 2008-02-26 Kyphon Inc. System and method for immobilizing adjacent spinous processes
US20040158254A1 (en) * 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
AU2004212942A1 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
JP4598760B2 (en) 2003-02-25 2010-12-15 リットランド、ステファン ADJUSTING ROD AND CONNECTOR DEVICE, AND ITS USING METHOD
US20040186483A1 (en) * 2003-03-22 2004-09-23 Bagby George W. Implant driver apparatus and bone joining device
WO2004084742A1 (en) * 2003-03-24 2004-10-07 Theken Surgical Llc Spinal implant adjustment device
US7819903B2 (en) 2003-03-31 2010-10-26 Depuy Spine, Inc. Spinal fixation plate
CN100544686C (en) 2003-04-11 2009-09-30 斯恩蒂斯有限公司 Intervertebral implant
US7419505B2 (en) * 2003-04-22 2008-09-02 Fleischmann Lewis W Collapsible, rotatable, and tiltable hydraulic spinal disc prosthesis system with selectable modular components
WO2004110247A2 (en) * 2003-05-22 2004-12-23 Stephen Ritland Intermuscular guide for retractor insertion and method of use
EP1626685B1 (en) 2003-05-27 2010-09-08 Spinalmotion, Inc. Prosthetic disc for intervertebral insertion
US10052211B2 (en) 2003-05-27 2018-08-21 Simplify Medical Pty Ltd. Prosthetic disc for intervertebral insertion
US7575599B2 (en) 2004-07-30 2009-08-18 Spinalmotion, Inc. Intervertebral prosthetic disc with metallic core
US7226482B2 (en) * 2003-09-02 2007-06-05 Synthes (U.S.A.) Multipiece allograft implant
AU2004283727A1 (en) 2003-10-23 2005-05-06 Trans1 Inc. Tools and tool kits for performing minimally invasive procedures on the spine
US7520899B2 (en) * 2003-11-05 2009-04-21 Kyphon Sarl Laterally insertable artificial vertebral disk replacement implant with crossbar spacer
US20050149192A1 (en) * 2003-11-20 2005-07-07 St. Francis Medical Technologies, Inc. Intervertebral body fusion cage with keels and implantation method
US7837732B2 (en) * 2003-11-20 2010-11-23 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
US7670377B2 (en) * 2003-11-21 2010-03-02 Kyphon Sarl Laterally insertable artifical vertebral disk replacement implant with curved spacer
US20050283237A1 (en) * 2003-11-24 2005-12-22 St. Francis Medical Technologies, Inc. Artificial spinal disk replacement device with staggered vertebral body attachments
US20050209603A1 (en) * 2003-12-02 2005-09-22 St. Francis Medical Technologies, Inc. Method for remediation of intervertebral disks
US20050154462A1 (en) * 2003-12-02 2005-07-14 St. Francis Medical Technologies, Inc. Laterally insertable artificial vertebral disk replacement implant with translating pivot point
US20050143826A1 (en) * 2003-12-11 2005-06-30 St. Francis Medical Technologies, Inc. Disk repair structures with anchors
US8333985B2 (en) 2004-01-27 2012-12-18 Warsaw Orthopedic, Inc. Non-glycerol stabilized bone graft
AU2005210630A1 (en) * 2004-01-30 2005-08-18 Warsaw Orthopedic, Inc. Stacking implants for spinal fusion
ES2547532T3 (en) 2004-02-04 2015-10-07 Ldr Medical Intervertebral disc prosthesis
FR2865629B1 (en) * 2004-02-04 2007-01-26 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
WO2005082292A1 (en) 2004-02-13 2005-09-09 Copf Franz Jr Intervertebral implant and surgical method for spondyilodesis of a lumbar vertebral column
US8140489B2 (en) * 2004-03-24 2012-03-20 Oracle International Corporation System and method for analyzing content on a web page using an embedded filter
JP3768508B2 (en) * 2004-03-26 2006-04-19 セントラルメディカル株式会社 Spine surgery spacer
US7918891B1 (en) * 2004-03-29 2011-04-05 Nuvasive Inc. Systems and methods for spinal fusion
CA2562061C (en) 2004-04-26 2011-06-21 Bioduct Llc Stent for avascular meniscal repair and regeneration
FR2869528B1 (en) 2004-04-28 2007-02-02 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US7524324B2 (en) * 2004-04-28 2009-04-28 Kyphon Sarl System and method for an interspinous process implant as a supplement to a spine stabilization implant
US7544208B1 (en) 2004-05-03 2009-06-09 Theken Spine, Llc Adjustable corpectomy apparatus
US20060036258A1 (en) * 2004-06-08 2006-02-16 St. Francis Medical Technologies, Inc. Sizing distractor and method for implanting an interspinous implant between adjacent spinous processes
US7585326B2 (en) 2004-08-06 2009-09-08 Spinalmotion, Inc. Methods and apparatus for intervertebral disc prosthesis insertion
US20180228621A1 (en) 2004-08-09 2018-08-16 Mark A. Reiley Apparatus, systems, and methods for the fixation or fusion of bone
US8444693B2 (en) * 2004-08-09 2013-05-21 Si-Bone Inc. Apparatus, systems, and methods for achieving lumbar facet fusion
US8425570B2 (en) 2004-08-09 2013-04-23 Si-Bone Inc. Apparatus, systems, and methods for achieving anterior lumbar interbody fusion
US8414648B2 (en) 2004-08-09 2013-04-09 Si-Bone Inc. Apparatus, systems, and methods for achieving trans-iliac lumbar fusion
US8470004B2 (en) 2004-08-09 2013-06-25 Si-Bone Inc. Apparatus, systems, and methods for stabilizing a spondylolisthesis
US9949843B2 (en) 2004-08-09 2018-04-24 Si-Bone Inc. Apparatus, systems, and methods for the fixation or fusion of bone
US20060036251A1 (en) 2004-08-09 2006-02-16 Reiley Mark A Systems and methods for the fixation or fusion of bone
US8388667B2 (en) 2004-08-09 2013-03-05 Si-Bone, Inc. Systems and methods for the fixation or fusion of bone using compressive implants
US9662158B2 (en) 2004-08-09 2017-05-30 Si-Bone Inc. Systems and methods for the fixation or fusion of bone at or near a sacroiliac joint
US20070156241A1 (en) 2004-08-09 2007-07-05 Reiley Mark A Systems and methods for the fixation or fusion of bone
US20060058881A1 (en) * 2004-09-16 2006-03-16 Trieu Hai H Intervertebral disc nucleus implants and methods
US7722895B1 (en) * 2004-09-20 2010-05-25 Warsaw Orthopedic, Inc. Osteogenic implants with combined implant materials, and materials and methods for same
US7455639B2 (en) * 2004-09-20 2008-11-25 Stephen Ritland Opposing parallel bladed retractor and method of use
WO2006034436A2 (en) * 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US8012209B2 (en) * 2004-09-23 2011-09-06 Kyphon Sarl Interspinous process implant including a binder, binder aligner and method of implantation
US20060069438A1 (en) * 2004-09-29 2006-03-30 Zucherman James F Multi-piece artificial spinal disk replacement device with multi-segmented support plates
US7481840B2 (en) * 2004-09-29 2009-01-27 Kyphon Sarl Multi-piece artificial spinal disk replacement device with selectably positioning articulating element
US7575600B2 (en) * 2004-09-29 2009-08-18 Kyphon Sarl Artificial vertebral disk replacement implant with translating articulation contact surface and method
WO2006042487A1 (en) 2004-10-18 2006-04-27 Buettner-Janz Karin Intervertebral disc endoprosthesis having cylindrical articulation surfaces
US8721722B2 (en) 2004-10-18 2014-05-13 Ebi, Llc Intervertebral implant and associated method
US20060085077A1 (en) * 2004-10-18 2006-04-20 Ebi, L.P. Intervertebral implant and associated method
US20060106381A1 (en) * 2004-11-18 2006-05-18 Ferree Bret A Methods and apparatus for treating spinal stenosis
US20060111779A1 (en) 2004-11-22 2006-05-25 Orthopedic Development Corporation, A Florida Corporation Minimally invasive facet joint fusion
US20060111786A1 (en) * 2004-11-22 2006-05-25 Orthopedic Development Corporation Metallic prosthetic implant for use in minimally invasive acromio-clavicular shoulder joint hemi-arthroplasty
US8021392B2 (en) * 2004-11-22 2011-09-20 Minsurg International, Inc. Methods and surgical kits for minimally-invasive facet joint fusion
US20060111780A1 (en) * 2004-11-22 2006-05-25 Orthopedic Development Corporation Minimally invasive facet joint hemi-arthroplasty
US7887589B2 (en) * 2004-11-23 2011-02-15 Glenn Bradley J Minimally invasive spinal disc stabilizer and insertion tool
EP1814474B1 (en) 2004-11-24 2011-09-14 Samy Abdou Devices for inter-vertebral orthopedic device placement
US8029540B2 (en) 2005-05-10 2011-10-04 Kyphon Sarl Inter-cervical facet implant with implantation tool
US7601170B2 (en) 2004-12-13 2009-10-13 Kyphon Sarl Inter-cervical facet implant and method
US8100944B2 (en) 2004-12-13 2012-01-24 Kyphon Sarl Inter-cervical facet implant and method for preserving the tissues surrounding the facet joint
US7736380B2 (en) * 2004-12-21 2010-06-15 Rhausler, Inc. Cervical plate system
FR2879436B1 (en) * 2004-12-22 2007-03-09 Ldr Medical INTERVERTEBRAL DISC PROSTHESIS
US7655046B2 (en) * 2005-01-20 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal fusion cage and associated instrumentation
US20060247778A1 (en) * 2005-01-26 2006-11-02 Ferree Bret A Intradiscal devices including spacers facilitating posterior-lateral and other insertion approaches
US8083797B2 (en) 2005-02-04 2011-12-27 Spinalmotion, Inc. Intervertebral prosthetic disc with shock absorption
US20060229723A1 (en) * 2005-04-08 2006-10-12 Sdgi Holdings, Inc. Intervertebral fusion device and method
JP5112295B2 (en) * 2005-04-27 2013-01-09 スタウト メディカル グループ,エル.ピー. Expandable support and method of use
US8506646B2 (en) * 2005-04-29 2013-08-13 Warsaw Orthopedic, Inc. Multi-purpose medical implant devices
FR2887762B1 (en) * 2005-06-29 2007-10-12 Ldr Medical Soc Par Actions Si INTERVERTEBRAL DISC PROSTHESIS INSERTION INSTRUMENTATION BETWEEN VERTEBRATES
JP5081822B2 (en) * 2005-07-14 2012-11-28 スタウト メディカル グループ,エル.ピー. Expandable support device and system
US8623088B1 (en) 2005-07-15 2014-01-07 Nuvasive, Inc. Spinal fusion implant and related methods
CA2615497C (en) 2005-07-19 2014-03-25 Stephen Ritland Rod extension for extending fusion construct
US8147521B1 (en) 2005-07-20 2012-04-03 Nuvasive, Inc. Systems and methods for treating spinal deformities
US20070027544A1 (en) * 2005-07-28 2007-02-01 Altiva Corporation Spinal cage implant
US8328851B2 (en) 2005-07-28 2012-12-11 Nuvasive, Inc. Total disc replacement system and related methods
US8366773B2 (en) 2005-08-16 2013-02-05 Benvenue Medical, Inc. Apparatus and method for treating bone
US7670375B2 (en) 2005-08-16 2010-03-02 Benvenue Medical, Inc. Methods for limiting the movement of material introduced between layers of spinal tissue
FR2891135B1 (en) 2005-09-23 2008-09-12 Ldr Medical Sarl INTERVERTEBRAL DISC PROSTHESIS
US8167915B2 (en) 2005-09-28 2012-05-01 Nuvasive, Inc. Methods and apparatus for treating spinal stenosis
EP1943986B1 (en) * 2005-10-26 2012-04-25 BIEDERMANN MOTECH GmbH Implant with one-piece swivel joint
FR2893838B1 (en) 2005-11-30 2008-08-08 Ldr Medical Soc Par Actions Si PROSTHESIS OF INTERVERTEBRAL DISC AND INSTRUMENTATION OF INSERTION OF THE PROSTHESIS BETWEEN VERTEBRATES
US8062372B2 (en) 2005-12-29 2011-11-22 Industrial Technology Research Institute Spinal fusion device
US20070173309A1 (en) * 2006-01-26 2007-07-26 Wms Gaming Inc. Gaming machine providing redeemable music awards
US7588599B2 (en) * 2006-01-26 2009-09-15 Spinal Generations, Llc Interbody cage system
US8252058B2 (en) * 2006-02-16 2012-08-28 Amedica Corporation Spinal implant with elliptical articulatory interface
US20070198093A1 (en) * 2006-02-17 2007-08-23 Amedica Corporation Spinal implant with offset keels
WO2007098288A2 (en) * 2006-02-27 2007-08-30 Synthes (U.S.A.) Intervertebral implant with fixation geometry
WO2007121320A2 (en) 2006-04-12 2007-10-25 Spinalmotion, Inc. Posterior spinal device and method
DE602007002583D1 (en) * 2006-04-28 2009-11-12 Concept Matrix Llc Two-vertebral fixation device
WO2007131002A2 (en) 2006-05-01 2007-11-15 Stout Medical Group, L.P. Expandable support device and method of use
US7959564B2 (en) 2006-07-08 2011-06-14 Stephen Ritland Pedicle seeker and retractor, and methods of use
US7780676B2 (en) 2006-07-11 2010-08-24 Ebi, Llc Intervertebral implantation apparatus
USD741488S1 (en) 2006-07-17 2015-10-20 Nuvasive, Inc. Spinal fusion implant
US8834526B2 (en) * 2006-08-09 2014-09-16 Rolando Garcia Methods and apparatus for treating spinal stenosis
US20080154314A1 (en) * 2006-08-16 2008-06-26 Mcdevitt Dennis M Composite interference screw for attaching a graft ligament to a bone, and other apparatus for making attachments to bone
US8894661B2 (en) 2007-08-16 2014-11-25 Smith & Nephew, Inc. Helicoil interference fixation system for attaching a graft ligament to a bone
US8043377B2 (en) * 2006-09-02 2011-10-25 Osprey Biomedical, Inc. Implantable intervertebral fusion device
US20080082172A1 (en) * 2006-09-29 2008-04-03 Jackson Roger P Interspinous process spacer
US8066750B2 (en) 2006-10-06 2011-11-29 Warsaw Orthopedic, Inc Port structures for non-rigid bone plates
US20080108990A1 (en) * 2006-11-02 2008-05-08 St. Francis Medical Technologies, Inc. Interspinous process implant having a fixed wing and a deployable wing and method of implantation
US8105382B2 (en) 2006-12-07 2012-01-31 Interventional Spine, Inc. Intervertebral implant
US20080154374A1 (en) * 2006-12-20 2008-06-26 Robert David Labrom Joint implant and a surgical method associated therewith
US20080161929A1 (en) 2006-12-29 2008-07-03 Mccormack Bruce Cervical distraction device
US8974496B2 (en) * 2007-08-30 2015-03-10 Jeffrey Chun Wang Interspinous implant, tools and methods of implanting
US20080167655A1 (en) * 2007-01-05 2008-07-10 Jeffrey Chun Wang Interspinous implant, tools and methods of implanting
EP2114313B1 (en) * 2007-02-09 2016-08-31 Dimicron, Inc. Multi-lobe artificial spine joint
US8372157B2 (en) * 2007-02-12 2013-02-12 Warsaw Orthopedic, Inc. Joint revision implant
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
EP2124777A4 (en) 2007-02-21 2013-06-05 Benvenue Medical Inc Devices for treating the spine
EP2124778B1 (en) 2007-02-21 2019-09-25 Benvenue Medical, Inc. Devices for treating the spine
US8673005B1 (en) 2007-03-07 2014-03-18 Nuvasive, Inc. System and methods for spinal fusion
US7901439B2 (en) * 2007-04-13 2011-03-08 Horton Kenneth L Allograft spinal facet fusion system
US20090048675A1 (en) * 2007-04-25 2009-02-19 Bhatnagar Mohit K Spinal Fusion Implants with Selectively Applied Bone Growth Promoting Agent
US8257395B2 (en) 2007-09-21 2012-09-04 Jmea Corporation Spinal fixation with selectively applied bone growth promoting agent
US8241357B2 (en) * 2007-04-25 2012-08-14 Jmea Corporation Prosthesis with a selectively applied bone growth promoting agent
US8083799B2 (en) * 2007-04-27 2011-12-27 Atlas Spine, Inc. Spinal implant
US8172905B2 (en) * 2007-04-27 2012-05-08 Atlas Spine, Inc. Spinal implant
US8480715B2 (en) * 2007-05-22 2013-07-09 Zimmer Spine, Inc. Spinal implant system and method
CA2725182A1 (en) * 2007-05-22 2008-12-18 Vg Innovations, Inc. Method and apparatus for spinal facet fusion
FR2916956B1 (en) 2007-06-08 2012-12-14 Ldr Medical INTERSOMATIC CAGE, INTERVERTEBRAL PROSTHESIS, ANCHORING DEVICE AND IMPLANTATION INSTRUMENTATION
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US10342674B2 (en) 2007-07-02 2019-07-09 Theken Spine, Llc Spinal cage having deployable member
US8142508B1 (en) 2007-07-02 2012-03-27 Theken Spine, Llc Spinal cage having deployable member which is removable
US8864829B1 (en) 2007-07-02 2014-10-21 Theken Spine, Llc Spinal cage having deployable member
US8292958B1 (en) 2007-07-02 2012-10-23 Theken Spine, Llc Spinal cage having deployable member
US8545562B1 (en) 2007-07-02 2013-10-01 Theken Spine, Llc Deployable member for use with an intervertebral cage
US20090012620A1 (en) * 2007-07-06 2009-01-08 Jim Youssef Implantable Cervical Fusion Device
EP2208481B1 (en) 2007-07-27 2016-12-28 R Tree Innovations, LLC Inter-Body Implantation System
US20090043391A1 (en) 2007-08-09 2009-02-12 Spinalmotion, Inc. Customized Intervertebral Prosthetic Disc with Shock Absorption
DE102007039899B3 (en) * 2007-08-23 2009-04-09 Siemens Ag Sensor for enabling the detection of a substance in the body of a living being
US8808380B2 (en) * 2007-08-27 2014-08-19 William Casey Fox Method and apparatus for an osteotomy fixation or arthrodesis cage
USD671645S1 (en) 2007-09-18 2012-11-27 Nuvasive, Inc. Intervertebral implant
US20090105833A1 (en) 2007-10-22 2009-04-23 Spinalmotion, Inc. Method and Spacer Device for Spanning a Space Formed upon Removal of an Intervertebral Disc
US8267997B2 (en) * 2007-11-12 2012-09-18 Theken Spine, Llc Vertebral interbody compression implant
KR20100105580A (en) 2007-11-16 2010-09-29 신세스 게엠바하 Low profile intervertebral implant
US9101491B2 (en) * 2007-12-28 2015-08-11 Nuvasive, Inc. Spinal surgical implant and related methods
WO2009089367A2 (en) 2008-01-09 2009-07-16 Providence Medical Technology, Inc. Methods and apparatus for accessing and treating the facet joint
EP2237748B1 (en) 2008-01-17 2012-09-05 Synthes GmbH An expandable intervertebral implant
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
US8083796B1 (en) 2008-02-29 2011-12-27 Nuvasive, Inc. Implants and methods for spinal fusion
KR20100137435A (en) 2008-03-06 2010-12-30 신세스 게엠바하 Facet interference screw
US8764833B2 (en) 2008-03-11 2014-07-01 Spinalmotion, Inc. Artificial intervertebral disc with lower height
US8202299B2 (en) * 2008-03-19 2012-06-19 Collabcom II, LLC Interspinous implant, tools and methods of implanting
US8333804B1 (en) 2008-03-27 2012-12-18 Spinelogik, Inc. Intervertebral fusion device and method of use
US8313528B1 (en) 2008-03-27 2012-11-20 Spinelogik, Inc. Intervertebral fusion device and method of use
CA2720580A1 (en) 2008-04-05 2009-10-08 Synthes Usa, Llc Expandable intervertebral implant
US9034038B2 (en) 2008-04-11 2015-05-19 Spinalmotion, Inc. Motion limiting insert for an artificial intervertebral disc
CA2722048A1 (en) 2008-05-05 2009-11-12 Yves Arramon Polyaryletherketone artificial intervertebral disc
US11224521B2 (en) 2008-06-06 2022-01-18 Providence Medical Technology, Inc. Cervical distraction/implant delivery device
US8267966B2 (en) 2008-06-06 2012-09-18 Providence Medical Technology, Inc. Facet joint implants and delivery tools
EP2328492B1 (en) 2008-06-06 2018-03-28 Providence Medical Technology, Inc. Facet joint implants and delivery tools
US9381049B2 (en) 2008-06-06 2016-07-05 Providence Medical Technology, Inc. Composite spinal facet implant with textured surfaces
WO2010030994A2 (en) 2008-06-06 2010-03-18 Providence Medical Technology, Inc. Cervical distraction/implant delivery device
US9333086B2 (en) 2008-06-06 2016-05-10 Providence Medical Technology, Inc. Spinal facet cage implant
US8361152B2 (en) * 2008-06-06 2013-01-29 Providence Medical Technology, Inc. Facet joint implants and delivery tools
US9220603B2 (en) 2008-07-02 2015-12-29 Simplify Medical, Inc. Limited motion prosthetic intervertebral disc
EP2299944A4 (en) 2008-07-17 2013-07-31 Spinalmotion Inc Artificial intervertebral disc placement system
WO2010009153A1 (en) 2008-07-18 2010-01-21 Spinalmotion, Inc. Posterior prosthetic intervertebral disc
JP5462874B2 (en) * 2008-07-23 2014-04-02 マック アイ マルバーグ Modular nucleus pulposus prosthesis
US9364338B2 (en) 2008-07-23 2016-06-14 Resspond Spinal Systems Modular nucleus pulposus prosthesis
US8808294B2 (en) 2008-09-09 2014-08-19 William Casey Fox Method and apparatus for a multiple transition temperature implant
USD621509S1 (en) 2008-10-15 2010-08-10 Nuvasive, Inc. Intervertebral implant
WO2010054208A1 (en) 2008-11-07 2010-05-14 Synthes Usa, Llc Vertebral interbody spacer and coupled plate assembly
WO2010056895A1 (en) 2008-11-12 2010-05-20 Stout Medical Group, L.P. Fixation device and method
US20100211176A1 (en) * 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
US8216316B2 (en) * 2008-12-17 2012-07-10 X-Spine Systems, Inc. Prosthetic implant with biplanar angulation and compound angles
US8157865B2 (en) * 2009-01-22 2012-04-17 Stephen Hochschuler Apparatus and method for stabilizing adjacent bone portions
USD754346S1 (en) 2009-03-02 2016-04-19 Nuvasive, Inc. Spinal fusion implant
US9387090B2 (en) 2009-03-12 2016-07-12 Nuvasive, Inc. Vertebral body replacement
US9687357B2 (en) 2009-03-12 2017-06-27 Nuvasive, Inc. Vertebral body replacement
US8535327B2 (en) 2009-03-17 2013-09-17 Benvenue Medical, Inc. Delivery apparatus for use with implantable medical devices
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
EP2451403B1 (en) 2009-07-09 2016-04-27 R Tree Innovations, LLC System for insertion of an inter-body implant device
BR112012005663A2 (en) 2009-09-17 2021-07-27 Synthes Gmbh intervertebral implant with expandable bone fixation limbs
US20110238183A1 (en) * 2009-09-26 2011-09-29 Maly Richard S Interbody Fusion Device
USD731063S1 (en) 2009-10-13 2015-06-02 Nuvasive, Inc. Spinal fusion implant
US9028553B2 (en) 2009-11-05 2015-05-12 DePuy Synthes Products, Inc. Self-pivoting spinal implant and associated instrumentation
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US9833331B2 (en) 2009-12-31 2017-12-05 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US20110184468A1 (en) * 2010-01-28 2011-07-28 Warsaw Orthopedic, Inc., An Indiana Corporation Spinous process fusion plate with osteointegration insert
US9427324B1 (en) 2010-02-22 2016-08-30 Spinelogik, Inc. Intervertebral fusion device and method of use
US9579188B2 (en) 2010-03-10 2017-02-28 Smith & Nephew, Inc. Anchor having a controlled driver orientation
JP5899124B2 (en) 2010-03-10 2016-04-06 スミス アンド ネフュー インコーポレーテッド Compound tightening screw and device
US9308080B2 (en) 2010-03-10 2016-04-12 Smith & Nephew Inc. Composite interference screws and drivers
US9775702B2 (en) 2010-03-10 2017-10-03 Smith & Nephew, Inc. Composite interference screws and drivers
CN102892387B (en) 2010-03-16 2016-03-16 品尼高脊柱集团有限责任公司 Intervertebral implant and graft induction system and method
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9907560B2 (en) 2010-06-24 2018-03-06 DePuy Synthes Products, Inc. Flexible vertebral body shavers
AU2011271465B2 (en) 2010-06-29 2015-03-19 Synthes Gmbh Distractible intervertebral implant
US8986355B2 (en) 2010-07-09 2015-03-24 DePuy Synthes Products, LLC Facet fusion implant
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
US9044284B2 (en) 2010-09-29 2015-06-02 Spinal Generations, Llc Intervertebral insert system
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8409257B2 (en) 2010-11-10 2013-04-02 Warsaw Othopedic, Inc. Systems and methods for facet joint stabilization
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US9241809B2 (en) 2010-12-21 2016-01-26 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
WO2012088238A2 (en) 2010-12-21 2012-06-28 Synthes Usa, Llc Intervertebral implants, systems, and methods of use
MX344606B (en) 2011-03-11 2016-12-20 Smith & Nephew Inc Trephine.
MX2013014423A (en) 2011-06-07 2014-05-28 Smith & Nephew Inc Surgical anchor delivery system.
WO2012178018A2 (en) 2011-06-24 2012-12-27 Benvenue Medical, Inc. Devices and methods for treating bone tissue
JP6047571B2 (en) 2011-08-16 2016-12-21 ストライカー・スピン Expandable graft
WO2013028808A1 (en) 2011-08-23 2013-02-28 Flexmedex, LLC Tissue removal device and method
US9724132B2 (en) 2011-08-31 2017-08-08 DePuy Synthes Products, Inc. Devices and methods for cervical lateral fixation
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
USD675320S1 (en) 2011-11-03 2013-01-29 Nuvasive, Inc. Intervertebral implant
USD721808S1 (en) 2011-11-03 2015-01-27 Nuvasive, Inc. Intervertebral implant
US9788844B2 (en) * 2011-12-16 2017-10-17 Medos International Sarl Methods and systems for attaching tissue to bone
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
FR2987256B1 (en) 2012-02-24 2014-08-08 Ldr Medical ANCHORING DEVICE FOR INTERVERTEBRAL IMPLANT, INTERVERTEBRAL IMPLANT AND IMPLANTATION INSTRUMENTATION
US10363140B2 (en) 2012-03-09 2019-07-30 Si-Bone Inc. Systems, device, and methods for joint fusion
WO2013134670A1 (en) 2012-03-09 2013-09-12 Si-Bone Inc. Integrated implant
US8778026B2 (en) 2012-03-09 2014-07-15 Si-Bone Inc. Artificial SI joint
CN104334092A (en) 2012-05-04 2015-02-04 西-博恩公司 Fenestrated implant
US8900303B2 (en) * 2012-07-09 2014-12-02 Howmedica Osteonics Corp. Porous bone reinforcements
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9452059B2 (en) * 2012-10-19 2016-09-27 Christian G. Zimmerman Intervertibral disc cap and method of use
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
USD745156S1 (en) 2012-10-23 2015-12-08 Providence Medical Technology, Inc. Spinal implant
USD732667S1 (en) 2012-10-23 2015-06-23 Providence Medical Technology, Inc. Cage spinal implant
US10022245B2 (en) 2012-12-17 2018-07-17 DePuy Synthes Products, Inc. Polyaxial articulating instrument
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10342675B2 (en) 2013-03-11 2019-07-09 Stryker European Holdings I, Llc Expandable implant
US10085783B2 (en) 2013-03-14 2018-10-02 Izi Medical Products, Llc Devices and methods for treating bone tissue
US10327910B2 (en) 2013-03-14 2019-06-25 X-Spine Systems, Inc. Spinal implant and assembly
US10070970B2 (en) 2013-03-14 2018-09-11 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
WO2014159225A2 (en) 2013-03-14 2014-10-02 Baxano Surgical, Inc. Spinal implants and implantation system
US9155531B2 (en) 2013-03-15 2015-10-13 Smith & Nephew, Inc. Miniaturized dual drive open architecture suture anchor
US9936983B2 (en) 2013-03-15 2018-04-10 Si-Bone Inc. Implants for spinal fixation or fusion
WO2014143894A1 (en) * 2013-03-15 2014-09-18 NuTech Spine, Inc. Anterior lumbar fusion method and device
AU2014251015B2 (en) 2013-04-09 2019-01-17 Smith & Nephew, Inc. Open-architecture interference screw
USD745159S1 (en) 2013-10-10 2015-12-08 Nuvasive, Inc. Intervertebral implant
US9839448B2 (en) 2013-10-15 2017-12-12 Si-Bone Inc. Implant placement
US11147688B2 (en) 2013-10-15 2021-10-19 Si-Bone Inc. Implant placement
US10478313B1 (en) 2014-01-10 2019-11-19 Nuvasive, Inc. Spinal fusion implant and related methods
US9730802B1 (en) 2014-01-14 2017-08-15 Nuvasive, Inc. Spinal fusion implant and related methods
WO2015162514A1 (en) * 2014-04-25 2015-10-29 Neo Medical Sa Spine cage
WO2015184018A1 (en) 2014-05-28 2015-12-03 Providence Medical Technology, Inc. Lateral mass fixation system
WO2015187937A1 (en) 2014-06-04 2015-12-10 Wenzel Spine, Inc. Bilaterally expanding intervertebral body fusion device
EP3160369A4 (en) * 2014-06-25 2018-04-18 Canary Medical Inc. Devices, systems and methods for using and monitoring spinal implants
WO2017008087A1 (en) 2015-07-06 2017-01-12 Javier Garcia-Bengochea Methods and devices for surgical access
EP3164080A4 (en) 2014-07-06 2018-06-27 Garcia-Bengochea, Javier Methods and devices for surgical access
JP6542362B2 (en) 2014-09-18 2019-07-10 エスアイ−ボーン・インコーポレイテッドSi−Bone, Inc. Matrix implant
US10166033B2 (en) 2014-09-18 2019-01-01 Si-Bone Inc. Implants for bone fixation or fusion
US9867718B2 (en) 2014-10-22 2018-01-16 DePuy Synthes Products, Inc. Intervertebral implants, systems, and methods of use
USD858769S1 (en) 2014-11-20 2019-09-03 Nuvasive, Inc. Intervertebral implant
US9931141B2 (en) * 2014-11-26 2018-04-03 Ex Technology, Llc Method and apparatus for joint fusion
US10034690B2 (en) 2014-12-09 2018-07-31 John A. Heflin Spine alignment system
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US10376206B2 (en) 2015-04-01 2019-08-13 Si-Bone Inc. Neuromonitoring systems and methods for bone fixation or fusion procedures
US10682243B2 (en) 2015-10-13 2020-06-16 Providence Medical Technology, Inc. Spinal joint implant delivery device and system
USD841165S1 (en) 2015-10-13 2019-02-19 Providence Medical Technology, Inc. Cervical cage
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
CN105287053A (en) * 2015-10-30 2016-02-03 重庆医科大学附属永川医院 Artificial bone
US10028836B2 (en) * 2016-01-26 2018-07-24 The Regents Of The University Of Colorado System and method of osteodistraction
CA3027227A1 (en) 2016-06-23 2017-12-28 VGI Medical, LLC Method and apparatus for spinal facet fusion
TW201806562A (en) 2016-06-28 2018-03-01 普羅維登斯醫療科技公司 Spinal implant and methods of using the same
EP3474783B1 (en) 2016-06-28 2023-05-03 Eit Emerging Implant Technologies GmbH Expandable, angularly adjustable intervertebral cages
US11596523B2 (en) 2016-06-28 2023-03-07 Eit Emerging Implant Technologies Gmbh Expandable and angularly adjustable articulating intervertebral cages
USD887552S1 (en) 2016-07-01 2020-06-16 Providence Medical Technology, Inc. Cervical cage
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
WO2018152529A1 (en) 2017-02-20 2018-08-23 Paragon 28, Inc. Implants, devices, instruments, systems and methods of forming and implanting
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
JP2020521536A (en) 2017-05-19 2020-07-27 プロビデンス メディカル テクノロジー インコーポレイテッド Spinal fixation access and delivery system
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
US10966843B2 (en) 2017-07-18 2021-04-06 DePuy Synthes Products, Inc. Implant inserters and related methods
US11045331B2 (en) 2017-08-14 2021-06-29 DePuy Synthes Products, Inc. Intervertebral implant inserters and related methods
WO2019051260A1 (en) 2017-09-08 2019-03-14 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
US10828077B2 (en) 2017-09-22 2020-11-10 Howmedica Osteonics Corp. Distal radius wedge screw
WO2019067584A1 (en) 2017-09-26 2019-04-04 Si-Bone Inc. Systems and methods for decorticating the sacroiliac joint
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
WO2019136263A1 (en) 2018-01-04 2019-07-11 Providence Medical Technology, Inc. Facet screw and delivery device
CN109044519A (en) * 2018-09-14 2018-12-21 北京爱康宜诚医疗器材有限公司 pedicle screw
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US11369419B2 (en) 2019-02-14 2022-06-28 Si-Bone Inc. Implants for spinal fixation and or fusion
WO2020168269A1 (en) 2019-02-14 2020-08-20 Si-Bone Inc. Implants for spinal fixation and or fusion
US11219531B2 (en) 2019-04-10 2022-01-11 Wenzel Spine, Inc. Rotatable intervertebral spacing implant
USD933230S1 (en) 2019-04-15 2021-10-12 Providence Medical Technology, Inc. Cervical cage
USD911525S1 (en) 2019-06-21 2021-02-23 Providence Medical Technology, Inc. Spinal cage
US11672570B2 (en) 2019-11-27 2023-06-13 Si-Bone Inc. Bone stabilizing implants and methods of placement across SI Joints
USD945621S1 (en) 2020-02-27 2022-03-08 Providence Medical Technology, Inc. Spinal cage
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
WO2022125619A1 (en) 2020-12-09 2022-06-16 Si-Bone Inc. Sacro-iliac joint stabilizing implants and methods of implantation
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US350420A (en) 1886-10-05 Staple-driving implement
US1137585A (en) 1915-02-05 1915-04-27 Thornton Craig Jr Dental appliance.
US2065659A (en) 1934-08-04 1936-12-29 Arthur V Cullen Fastening method and means
US2243718A (en) 1938-11-05 1941-05-27 Moreira Francisco Elias Godoy Surgical drill
US2181746A (en) 1939-02-04 1939-11-28 John R Siebrandt Combination bone clamp and adjustable drill guide
GB564591A (en) 1943-01-28 1944-10-04 Courtaulds Ltd Improvements in the manufacture and production of artificial threads, filaments and the like
US2543780A (en) 1946-12-09 1951-03-06 Herbert E Hipps Bone graft apparatus
US2537070A (en) 1948-12-27 1951-01-09 Puy Mfg Company Inc De Surgical appliance and method for fixation of bone fragments
US2514665A (en) 1949-01-11 1950-07-11 Myller Ernest Medical instrument
US2677369A (en) 1952-03-26 1954-05-04 Fred L Knowles Apparatus for treatment of the spinal column
US2774350A (en) 1952-09-08 1956-12-18 Jr Carl S Cleveland Spinal clamp or splint
US2789558A (en) 1953-09-17 1957-04-23 Leslie V Rush Medullary in driver and extractor
US2832343A (en) 1955-04-12 1958-04-29 Mose Clara Emilie Marie Dilators
US2842131A (en) 1957-05-27 1958-07-08 George W Smith Automatic drill
US2878809A (en) 1958-01-23 1959-03-24 Richards Mfg Company Surgical drill attachment
US3128768A (en) 1961-11-24 1964-04-14 Rosemount Eng Co Ltd Surgical drill
NL286346A (en) 1961-12-05
FR1338873A (en) 1962-06-04 1963-10-04 Comite Central De Fabricants D Furnace for the thermal treatment of agglomerated fuels or classified coal
US3298372A (en) 1963-12-17 1967-01-17 Feinberg Maurice Surgical hydrocephalus shunt sleeve for placement in a vertebra
US3426364A (en) 1966-08-25 1969-02-11 Colorado State Univ Research F Prosthetic appliance for replacing one or more natural vertebrae
US3486505A (en) 1967-05-22 1969-12-30 Gordon M Morrison Orthopedic surgical instrument
US3618611A (en) 1969-03-05 1971-11-09 Julius C Urban Vacuum rotary dissector
US3604487A (en) 1969-03-10 1971-09-14 Richard S Gilbert Orthopedic screw driving means
US3948262A (en) 1969-04-01 1976-04-06 Alza Corporation Novel drug delivery device
US3605123A (en) 1969-04-29 1971-09-20 Melpar Inc Bone implant
US3844601A (en) 1969-07-29 1974-10-29 W Rochester Choker knob for logging cables and method of making same
CA962806A (en) 1970-06-04 1975-02-18 Ontario Research Foundation Surgical prosthetic device
US3720959A (en) 1970-08-26 1973-03-20 G Hahn Mandibular prosthetic apparatus
US3709219A (en) 1970-11-27 1973-01-09 W Halloran Bone compression device
SE391122B (en) 1971-01-25 1977-02-07 Cutter Lab PROTESTS IN THE FORM OF A SPINE BONIC DISC AND PROCEDURES FOR MANUFACTURE THEREOF
US3750652A (en) 1971-03-05 1973-08-07 J Sherwin Knee retractor
US3867950A (en) 1971-06-18 1975-02-25 Univ Johns Hopkins Fixed rate rechargeable cardiac pacemaker
US3848601A (en) * 1972-06-14 1974-11-19 G Ma Method for interbody fusion of the spine
US3888260A (en) 1972-06-28 1975-06-10 Univ Johns Hopkins Rechargeable demand inhibited cardiac pacer and tissue stimulator
DE2311817C2 (en) 1973-03-09 1984-06-07 Werner Dipl.-Ing. 8000 München Kraus Stimulation current device to promote the healing of bone damage
DE2314573C2 (en) 1973-03-23 1986-12-18 Werner Dipl.-Ing. 8000 München Kraus Device for promoting healing processes
US4070514A (en) 1973-06-05 1978-01-24 The United States Of America As Represented By The United States Department Of Energy Method of fabricating graphite for use as a skeletal prosthesis and product thereof
US3905047A (en) 1973-06-27 1975-09-16 Posta Jr John J Implantable ceramic bone prosthesis
DE2340546A1 (en) 1973-08-10 1975-02-27 Pfaudler Werke Ag METALLIC IMPLANT AND PROCEDURE FOR ITS MANUFACTURING
US3892232A (en) 1973-09-24 1975-07-01 Alonzo J Neufeld Method and apparatus for performing percutaneous bone surgery
US3942535A (en) 1973-09-27 1976-03-09 G. D. Searle & Co. Rechargeable tissue stimulating system
JPS5060085A (en) 1973-09-27 1975-05-23
US4051905A (en) 1974-03-28 1977-10-04 Gerbruder Heller Drill for percussion drilling machines
US3875595A (en) * 1974-04-15 1975-04-08 Edward C Froning Intervertebral disc prosthesis and instruments for locating same
US3916907A (en) 1974-06-21 1975-11-04 Wendell C Peterson Spreader instrument for use in performing a spinal fusion
JPS5223514B2 (en) 1974-09-25 1977-06-24
US3952334A (en) 1974-11-29 1976-04-27 General Atomic Company Biocompatible carbon prosthetic devices
FR2295729A1 (en) 1974-12-27 1976-07-23 Mahay Et Cie TOTAL HIP PROSTHESIS
US4086701A (en) 1975-04-07 1978-05-02 Kyoto Ceramic Kabushiki Kaisha Device for implanting an artificial endosseous element of ceramics and an implant method for use of the same
USD257511S (en) 1975-09-08 1980-11-11 Olin Corporation Drill tool or the like
DE2546824C2 (en) 1975-10-18 1986-05-07 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Coated endoprosthesis and process for their manufacture
USD245259S (en) 1976-01-29 1977-08-02 Zimmer U.S.A. Inc. Tibial prosthesis
GB1574825A (en) 1976-03-31 1980-09-10 Rubery Owen Fasteners Ltd Screw threaded members and their manufacture
US4027392A (en) 1976-05-10 1977-06-07 Interface Biomedical Laboratories Corporation Endosteal bionic tooth and implantation method
DE7615320U1 (en) 1976-05-14 1979-02-08 Pfaudler-Werke Ag, 6830 Schwetzingen MEDICAL FASTENER
DE2621383A1 (en) 1976-05-14 1977-12-01 Gardner Denver Gmbh METHOD OF PLACING IMPLANTS INTO BONE AND APPARATUS
US4082097A (en) 1976-05-20 1978-04-04 Pacesetter Systems Inc. Multimode recharging system for living tissue stimulators
US4059115A (en) 1976-06-14 1977-11-22 Georgy Stepanovich Jumashev Surgical instrument for operation of anterior fenestrated spondylodessis in vertebral osteochondrosis
US4142517A (en) 1976-07-23 1979-03-06 Contreras Guerrero De Stavropo Apparatus for extracting bone marrow specimens
GB1550010A (en) 1976-12-15 1979-08-08 Ontario Research Foundation Surgical prosthetic device or implant having pure metal porous coating
US4232679A (en) 1977-01-26 1980-11-11 Pacesetter Systems, Inc. Programmable human tissue stimulator
GB1565178A (en) 1977-02-24 1980-04-16 Interfix Ltd Bone screw
US4259072A (en) 1977-04-04 1981-03-31 Kyoto Ceramic Co., Ltd. Ceramic endosseous implant
JPS53144194A (en) 1977-05-20 1978-12-15 Kureha Chemical Ind Co Ltd Compound implanted material and making method thereof
US4258716A (en) 1978-02-06 1981-03-31 The University Of Melbourne Microsurgical instruments
US4181457A (en) 1978-02-10 1980-01-01 Holmes Horace D Tapping tool for making vibration resistant prevailing torque fastener
FR2429009A1 (en) 1978-06-21 1980-01-18 Roux Christiane PROSTHESIS FOR ARTICULATION, PARTICULARLY COXO-FEMORAL, ARTIFICIAL
GB2029702B (en) 1978-07-20 1982-12-15 Secr Social Service Brit Fracture fixation aooaratus
AT358715B (en) 1978-09-04 1980-09-25 Plansee Metallwerk BUTCHING AND REJECTING DEVICE FOR BONE MARKING NAIL
US4197850A (en) 1978-11-03 1980-04-15 Pacesetter Systems, Inc. Implantable human tissue stimulator with memory protect means
USD260525S (en) 1978-12-04 1981-09-01 Lassiter Will M Channel drill and bolt combination
US4341206A (en) 1978-12-19 1982-07-27 Synthes Ag Device for producing a hole in a bone
FR2460657A1 (en) 1979-07-12 1981-01-30 Anvar BIODEGRADABLE IMPLANT FOR USE AS A BONE PROSTHESIS PIECE
US4333469A (en) 1979-07-20 1982-06-08 Telectronics Pty. Ltd. Bone growth stimulator
US4492226A (en) 1979-10-10 1985-01-08 Vsesojuzny Nauchno-Issledovatelsky I Ispytatelny Institut Meditsinskoi Tekhniki Device for uniting bone fragments
US4450834A (en) 1979-10-18 1984-05-29 Ace Orthopedic Manufacturing, Inc. External fixation device
CH642250A5 (en) 1979-12-22 1984-04-13 Straumann Inst Ag BALL JOINT PROSTHESIS WITH A CAP.
US4293962A (en) 1980-02-14 1981-10-13 Zimmer Usa, Inc. Bone plug inserting system
SU1124960A1 (en) 1980-02-19 1984-11-23 Bokov Nikolaj F Puncture instrument
US4289123A (en) 1980-03-31 1981-09-15 Dunn Harold K Orthopedic appliance
US4405319A (en) 1980-04-08 1983-09-20 Renal Systems, Inc. Porous titanium coating for blood access device
CH648197A5 (en) 1980-05-28 1985-03-15 Synthes Ag IMPLANT AND SCREW FASTENING ON ITS BONE.
GB2076657A (en) 1980-05-31 1981-12-09 Atkins Brian Norman Apparatus for external fixation of part of the human or animal skeletal structure
CA1146301A (en) 1980-06-13 1983-05-17 J. David Kuntz Intervertebral disc prosthesis
DE3031905A1 (en) 1980-08-23 1982-03-04 L. & C. Steinmüller GmbH, 5270 Gummersbach BURNER SYSTEM
GB2083754B (en) 1980-09-15 1984-04-26 Rezaian Seyed Mahmoud Spinal fixator
US4309777A (en) 1980-11-13 1982-01-12 Patil Arun A Artificial intervertebral disc
US4414979A (en) 1981-02-23 1983-11-15 Telectronics Pty. Ltd. Monitorable bone growth stimulator
JPS57163309A (en) 1981-04-01 1982-10-07 Olympus Optical Co Ltd Capsule apparatus for medical use
EP0077159A1 (en) 1981-10-14 1983-04-20 Brian Norman Atkins Vertebrae spreader
BR8107560A (en) 1981-11-19 1983-07-05 Luiz Romariz Duarte ULTRASONIC STIMULATION OF BONE FRACTURE CONSOLIDATION
US4501269A (en) * 1981-12-11 1985-02-26 Washington State University Research Foundation, Inc. Process for fusing bone joints
US4439152A (en) 1982-03-04 1984-03-27 Small Irwin A Method of jawbone abutment implant for dental prostheses and implant device
US4535485A (en) 1982-03-12 1985-08-20 Medical Biological Sciences, Inc. Polymeric acrylic prothesis
US4542539A (en) 1982-03-12 1985-09-24 Artech Corp. Surgical implant having a graded porous coating
US4547390A (en) 1982-03-12 1985-10-15 Medical Biological Sciences, Inc. Process of making implantable prosthesis material of modified polymeric acrylic (PMMA) beads coated with PHEMA and barium sulfate
US4549547A (en) 1982-07-27 1985-10-29 Trustees Of The University Of Pennsylvania Implantable bone growth stimulator
GB2126094A (en) 1982-08-26 1984-03-21 Brian Norman Atkins Device for holding the bones of the wrist and forearm after setting or during arthrodesis of the wrist
US4545374A (en) 1982-09-03 1985-10-08 Jacobson Robert E Method and instruments for performing a percutaneous lumbar diskectomy
US4600000A (en) 1982-09-16 1986-07-15 Edwards Charles C External fixation system
US4552200A (en) 1982-09-30 1985-11-12 Southwire Company Control in continuous casting to enhance feeding
US4535374A (en) 1982-11-04 1985-08-13 Amcodyne Incorporated Whitney-type head loading/unloading apparatus
US4497320A (en) 1983-02-14 1985-02-05 Rudolph Beaver, Inc. Surgical blade unit
SU1107854A1 (en) 1983-03-30 1984-08-15 Харьковский Научно-Исследовательский Институт Ортопедии И Травматологии Им.Проф.М.И.Ситенко Spine fixative
US4570623A (en) 1983-06-02 1986-02-18 Pfizer Hospital Products Group Inc. Arched bridge staple
USD281814S (en) 1983-07-13 1985-12-17 Techmedica, Inc. Osteotomy staple
US4570624A (en) 1983-08-10 1986-02-18 Henry Ford Hospital Universal guide for inserting parallel pins
IL69888A0 (en) 1983-10-03 1984-01-31 Avmedica Ltd Unilateral external fixation system for small bones
US4554914A (en) 1983-10-04 1985-11-26 Kapp John P Prosthetic vertebral body
SU1222254A1 (en) 1983-11-09 1986-04-07 Bogosyan Aleksandr B Needle for intraosseous injection
US4553273A (en) 1983-11-23 1985-11-19 Henry Ford Hospital Vertebral body prosthesis and spine stabilizing method
US4696290A (en) 1983-12-16 1987-09-29 Acromed Corporation Apparatus for straightening spinal columns
US4611581A (en) 1983-12-16 1986-09-16 Acromed Corporation Apparatus for straightening spinal columns
US4655777A (en) 1983-12-19 1987-04-07 Southern Research Institute Method of producing biodegradable prosthesis and products therefrom
SU1217374A1 (en) 1984-02-03 1986-03-15 Институт Сейсмологии Endoscopic knife
US4604995A (en) 1984-03-30 1986-08-12 Stephens David C Spinal stabilizer
US4653486A (en) 1984-04-12 1987-03-31 Coker Tom P Fastener, particularly suited for orthopedic use
DE3414514A1 (en) 1984-04-13 1985-10-24 Biotronik Meß- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin, 1000 Berlin SCREW-IN PAN FOR AN ARTIFICIAL HIP JOINT
US4608052A (en) 1984-04-25 1986-08-26 Minnesota Mining And Manufacturing Company Implant with attachment surface
US4619264A (en) 1984-06-14 1986-10-28 Singh Om P Method and apparatus for treatment of fresh fractures, delayed unions and non-unions of living bone
US4736738A (en) 1984-07-09 1988-04-12 Matej Lipovsek Instrument kit and procedure for performing posterior lumbar interbody fusion
EP0176728B1 (en) 1984-09-04 1989-07-26 Humboldt-Universität zu Berlin Intervertebral-disc prosthesis
GB2164277A (en) 1984-09-12 1986-03-19 Univ Manchester A bone drill
US4602638A (en) 1984-10-03 1986-07-29 Eddie Adams Apparatus and method for invasive electrical stimulation of bone fractures
CA1264674A (en) 1984-10-17 1990-01-23 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US4665920A (en) 1984-11-28 1987-05-19 Minnesota Mining And Manufacturing Company Skeletal tissue stimulator and a low voltage oscillator circuit for use therein
US4877020A (en) 1984-11-30 1989-10-31 Vich Jose M O Apparatus for bone graft
DE3445738A1 (en) 1984-12-14 1986-06-19 Draenert Klaus IMPLANT FOR BONE REINFORCEMENT AND ANCHORING OF BONE SCREWS, IMPLANTS OR IMPLANT PARTS
US4721103A (en) 1985-01-31 1988-01-26 Yosef Freedland Orthopedic device
FR2576779B1 (en) 1985-02-07 1988-10-07 Tornier Sa ASSEMBLY DEVICE BETWEEN A BONE IMPLANT AND THE TOOL FOR ITS PLACEMENT
US4634720A (en) 1985-02-19 1987-01-06 The Dow Chemical Company Process for the preparation of hard tissue prosthetics
US4661536A (en) 1985-02-19 1987-04-28 The Dow Chemical Company Process for the preparation of hard tissue prosthetics
US4636526A (en) 1985-02-19 1987-01-13 The Dow Chemical Company Composites of unsintered calcium phosphates and synthetic biodegradable polymers useful as hard tissue prosthetics
US4698375A (en) 1985-02-19 1987-10-06 The Dow Chemical Company Composites of unsintered calcium phosphates and synthetic biodegradable polymers useful as hard tissue prosthetics
US4592346A (en) 1985-04-08 1986-06-03 Jurgutis John A Orthopedic staple
US4636217A (en) 1985-04-23 1987-01-13 Regents Of The University Of Minnesota Anterior spinal implant
FR2581336B1 (en) 1985-05-02 1989-05-05 Collomb Jean WRENCH FOR SCREWING A PART WITH A HEAD WITH A SIZE AND A THREADED BORE
US4599086A (en) 1985-06-07 1986-07-08 Doty James R Spine stabilization device and method
US4743260A (en) 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4653509A (en) 1985-07-03 1987-03-31 The United States Of America As Represented By The Secretary Of The Air Force Guided trephine samples for skeletal bone studies
US4645503A (en) 1985-08-27 1987-02-24 Orthomatrix Inc. Moldable bone-implant material
US4743256A (en) * 1985-10-04 1988-05-10 Brantigan John W Surgical prosthetic implant facilitating vertebral interbody fusion and method
US4664567A (en) 1986-02-06 1987-05-12 Bijur Lubricating Corp. Drill bit
US4903882A (en) 1986-03-10 1990-02-27 Long Gregory T Driving tool for an electrical staple
US4677883A (en) 1986-06-09 1987-07-07 Lee Wen Hsin Cork screw
GB8620937D0 (en) 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
US4769881A (en) 1986-09-02 1988-09-13 Pedigo Irby R High precision tens apparatus and method of use
US4713004A (en) 1986-09-04 1987-12-15 Vent Plant Corporation Submergible screw-type dental implant and method of utilization
US4710075A (en) 1986-10-01 1987-12-01 Boehringer Mannheim Corporation Adjustable drill gauge
US4805602A (en) 1986-11-03 1989-02-21 Danninger Medical Technology Transpedicular screw and rod system
DE3637314A1 (en) 1986-11-03 1988-05-11 Lutz Biedermann SPACE HOLDER IMPLANT
US4834757A (en) * 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
CA1283501C (en) 1987-02-12 1991-04-30 Thomas P. Hedman Artificial spinal disc
US4714469A (en) 1987-02-26 1987-12-22 Pfizer Hospital Products Group, Inc. Spinal implant
US4790303A (en) 1987-03-11 1988-12-13 Acromed Corporation Apparatus and method for securing bone graft
DE8704901U1 (en) 1987-04-02 1987-07-23 Kluger, Patrick, Dr.Med., 3590 Bad Wildungen, De
US4781591A (en) 1987-04-06 1988-11-01 Allen James P Endosteal implant and method for performing implantation thereof
US4863477A (en) 1987-05-12 1989-09-05 Monson Gary L Synthetic intervertebral disc prosthesis
CH672588A5 (en) 1987-07-09 1989-12-15 Sulzer Ag
FR2624719B1 (en) 1987-12-18 1990-05-11 Zimmer Sa DRILLING PROBE, PARTICULARLY FOR POSITIONING AND FIXING A MEDULAR NAIL
US4830000A (en) 1987-12-31 1989-05-16 Aspen Laboratories, Inc. Surgical drill
US4851008A (en) 1988-02-01 1989-07-25 Orthomet, Inc. Bone implant prosthesis with substantially stress-free outer surface
US4865603A (en) 1988-02-04 1989-09-12 Joint Medical Products Corporation Metallic prosthetic devices having micro-textured outer surfaces
DE3809793A1 (en) 1988-03-23 1989-10-05 Link Waldemar Gmbh Co SURGICAL INSTRUMENT SET
US4848327A (en) 1988-05-23 1989-07-18 Perdue Kevin D Apparatus and procedure for blind alignment of fasteners extended through transverse holes in an orthopedic locking nail
US4911718A (en) 1988-06-10 1990-03-27 University Of Medicine & Dentistry Of N.J. Functional and biocompatible intervertebral disc spacer
US5015247A (en) * 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
IT215084Z2 (en) 1988-08-03 1990-07-30 Torino A VARIABLE EXCURSION CAMBRA
US5458638A (en) * 1989-07-06 1995-10-17 Spine-Tech, Inc. Non-threaded spinal implant
US4936848A (en) * 1989-09-22 1990-06-26 Bagby George W Implant for vertebrae
US5055104A (en) * 1989-11-06 1991-10-08 Surgical Dynamics, Inc. Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach
FR2708461B1 (en) * 1993-08-06 1995-09-29 Advanced Technical Fabrication Interbody implant for spine.
US5425772A (en) * 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
US5443514A (en) * 1993-10-01 1995-08-22 Acromed Corporation Method for using spinal implants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8403943B2 (en) 2006-08-07 2013-03-26 Howmedica Osteonics Corp. Insertion system for implanting a medical device and surgical methods
US9289201B2 (en) 2006-08-07 2016-03-22 Howmedica Osteonics Corp. Medical device for repair of tissue and method for implantation and fixation

Also Published As

Publication number Publication date
US6224595B1 (en) 2001-05-01
EP1525863A2 (en) 2005-04-27
EP1525863A3 (en) 2007-01-31
EP0732093B1 (en) 2004-11-03
EP0732093A3 (en) 1997-03-12
AU716409B2 (en) 2000-02-24
CN1134810A (en) 1996-11-06
TW365158U (en) 1999-07-21
DK0732093T3 (en) 2005-02-14
KR960030887A (en) 1996-09-17
PT732093E (en) 2005-02-28
DE69633756T2 (en) 2005-11-03
TR199600134A2 (en) 1996-10-21
US5593409A (en) 1997-01-14
JPH08266563A (en) 1996-10-15
US5785710A (en) 1998-07-28
DE69633756D1 (en) 2004-12-09
CA2569778A1 (en) 1996-08-18
AU4445196A (en) 1996-08-29
EP0732093B8 (en) 2004-12-22
CA2168835A1 (en) 1996-08-18
CA2569778C (en) 2009-06-30
EP0732093A2 (en) 1996-09-18
JP3848392B2 (en) 2006-11-22
ATE281132T1 (en) 2004-11-15
ES2231799T3 (en) 2005-05-16

Similar Documents

Publication Publication Date Title
CA2168835C (en) Interbody spinal fusion implants
US6123705A (en) Interbody spinal fusion implants
US6758849B1 (en) Interbody spinal fusion implants
EP1302182B1 (en) Translateral spinal implant
US5860973A (en) Translateral spinal implant
US20050267578A1 (en) Ratcheted bone dowel having smooth sides and method for use thereof
EP1147751B1 (en) Interbody fusion device
CA1292596C (en) Surgical prosthetic implant facilitating vertebral interbody fusion
US7291149B1 (en) Method for inserting interbody spinal fusion implants
US7179293B2 (en) Osteogenic fusion device
AU2001292826B2 (en) Osteogenic fusion devices
US20030055504A1 (en) Osteogenic fusion device
AU2001292826A1 (en) Osteogenic fusion devices
AU752060B2 (en) Improved interbody spinal fusion implants
AU733248B2 (en) Translateral spinal implant
AU769376B2 (en) Osteogenic fusion device

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140205