CA2170114A1 - Microcontroller with a caller identification unit - Google Patents

Microcontroller with a caller identification unit

Info

Publication number
CA2170114A1
CA2170114A1 CA002170114A CA2170114A CA2170114A1 CA 2170114 A1 CA2170114 A1 CA 2170114A1 CA 002170114 A CA002170114 A CA 002170114A CA 2170114 A CA2170114 A CA 2170114A CA 2170114 A1 CA2170114 A1 CA 2170114A1
Authority
CA
Canada
Prior art keywords
caller information
signal demodulator
microcontroller
power supply
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002170114A
Other languages
French (fr)
Inventor
Tiong Kee Chua
Satinder Jit Singh Sohi
Luen Hin Kwok
Cher Eng Lim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CA2170114A1 publication Critical patent/CA2170114A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/57Arrangements for indicating or recording the number of the calling subscriber at the called subscriber's set
    • H04M1/573Line monitoring circuits for detecting caller identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Telephone Function (AREA)
  • Telephonic Communication Services (AREA)
  • Devices For Supply Of Signal Current (AREA)

Abstract

A microcontroller (100) for processing caller information received from a telephone line to display on a display panel of a telecommunication device. The microcontroller (100) includes a central processing unit (160), a display control unit (110) for controlling the display panel, a ring detector (140), a carrier detector (150) for detecting the caller information, memory (120) for storing a plurality of predetermined control parameters, and a caller identification unit (130) for providing the caller information to the display control unit (110). Within the caller identification unit (130), a powermanagement (134) unit controls a power supply (170) to a signal demodulator (132), based on the plurality of predetermined control parameters, to process the caller information. Of the plurality of predetermined control parameters, a first control parameter enables the power supply and a second control parameter disables the power supply (170) to the signal demodulator (132).

Description

MICROCONTROLLER WITH A CALLER IDENTIFICATION
UNIT

Field of the Invention This invention relates in general to integrated circuits used in telecommunication devices and in particular to a microcontroller supporting caller identification features in a telecommunication device.

Background of the Invention Conventionally, electronic devices operate with control units known as microcontrollers. Fabricated on a silicon chip as an integrated circuit (IC), the microcontroller typically processes digital signals. Hence, electronic devices receiving analog signals as inputs need to convert such analog signals to digital signals before subsequent processing by the microcontroller.
One example of an electronic device operating with analog signals as inputs are telecommunication devices such as telephones and facsimile machines. Typically, analog circuitry within a telecommunication device couples to an interface for converting analog signals, received on a telephone line, to digital signals. In the art, this interface is known as a signal demodulator.
Analog signals received on a telephone line includes data such as caller information identifying the calling party sending the data. In the art, caller identification ICs are available for decoding the caller information.
Within the caller identification ICs, the caller information is converted by a signal demodulator to a digital format. Thereafter, the caller identification, in a digital format, is then used within the telecommunication device for subsequent processing.
Signal demodulators within caller identification ICs typically use analog switched capacitor filtering and, therefore, as is known in the art, have low immunity to power noise. This low immunity to power noise further limits such signal demodulators from processing analog signals received on noisy telephone lines. As a result, the analog signals may not 21 7 ~1 ~ 4 SC0479AS

be processed, or may even be wrongly processed, by a signal demodulator that uses analog switched capacitor filtering.
Thus, a need exists for a microcontroller, having a caller identification unit, for a telecommunication device to have good immunity to power noise 5 and, thereby, perform signal processing reliably. Furthermore, the microcontroller needs to also operate efficiently with low power consumption because many telecommunication devices are portable and operated with batteries that have limited power.

Summary of the Invention A microcontroller for processing caller information received from a telephone line to display on a display panel of a telecommunication 15 device. The microcontroller comprises a central processing unit for processing data, a display control unit for controlling the display panel, a parameter memory within the central processing unit for storing a plurality of predetermined control parameters, a ring detector for detecting a plurality of rings on the telephone line wherein the plurality of rings 20 includes a first ring, a carrier detector for detecting the caller information, and a caller identification unit for providing the caller information to the display control unit. The caller identification unit comprises a signal demodulator for processing the caller information, a power supply for the signal demodulator, and a power management unit within the central 25 processing unit for controlling the power supply based on the plurality of predetermined control parameters.

Brief Description of the Drawings FIG. 1 is a block diagram of a microcontroller in accordance with a preferred embodiment of the present invention.

FIG. 2 is a block diagram of a signal demodulator within the microcontroller of FIG. 1 in accordance with the preferred embodiment of the present invention.

FIG. 3 is a block diagram of a prior art signal demodulator.
2 ~ 7 1~

FIG. 4 is flow diagram of a method for controlling a power supply to the signal demodulator of FIG. 2 in accordance with the preferred embodiment of the present invention.

Detailed Description of the Invention In accordance with a preferred embodiment of the present invention, FIG. 1 shows a microcontroller 100 for processing caller information 10 received from a telephone line to display on a display panel of a telecommunication device. The microcontroller 100 comprises a display control unit 110, a central processing unit 160 for processing data, memory means 120 within the central processing unit 160, a ring detector 140, a carrier detector 150,, and a caller identification unit 130. Within the caller identification unit 130, a signal demodulator 132 processes the caller information and provides data output identifying the calling party to the display control unit 110.
In accordance with the preferred embodiment of the present invention, FIG. 2 shows a block diagram of the signal demodulator 132 of FIG. 1.
Comprising a sigma delta convertor 202, a digital filter 204, and a demodulator 206, the signal demodulator 132 receives the caller information in an analog format as an input for the sigma delta convertor 202. Output from the signal demodulator 132 is a digital baseband signal from the demodulator 206.
Integrated into the microcontroller 100, the signal demodulator 132 of the present invention advantageously eliminates the need for an independent signal demodulator 132 to interface with the microcontroller 100. Furthermore, unlike an analog switched capacitor filter 302 used, for example, in a prior art signal demodulator 300 shown in FIG. 3, the signal demodulator 132 in the present invention effectively applies digital signal processing to convert the caller information from the analog format to the digital baseband signal. As is known in the art, digital signal processing has a better power noise immunity and can, therefore, tolerate a higher level of noise typical of signals received from noisy telephone lines.
In accordance with the preferred embodiment of the present invention, the sigma delta convertor 202 receives the caller information from the telephone line and converts the caller information to a two-level quantized digital format. From this two-level quantized digital format, the caller information is passed through the digital filter 204 for noise filtering.
Thereafter, the demodulator 206 demodulates the caller information to the digital baseband signal.
FIG.1 also shows a power management unit 134 within the central processing unit 160 for controlling a power supply 170 to the signal demodulator 132 in accordance with the preferred embodiment of the present invention. Coupling to the power supply 170 for the signal demodulator 132, the power management unit 134 enables or disables the operations of the signal demodulator 132 based on a plurality of predetermined control parameters stored in the memory means 120. In accordance with the preferred embodiment of the present invention, the memory means 120 comprises a parameter memory within the central processing unit 160.
Caller information in conventional telephone signaling protocols is transmitted on the telephone line within the time period between a first ring and a second ring. Typically, this time period between the first ring and the second ring is more than sufficient to transmit all the caller information.
Such conventional telephone signaling protocols also define the caller information to include an indication of the size of the caller information, for example, a number of data bytes of caller information.
In accordance with the preferred embodiment of the present invention, FIG. 4 shows a method 400 for controlling the power supply 170 to the signal demodulator 132 by the power management unit 134. The method 400 begins at step 402 and proceeds to detect the first ring 404, by the ring detector 140, on the telephone line. When the ring detector 140 does not detect the first ring 404, the caller identification unit 130 will continue to monitor the telephone line to detect the first ring 404. Based on the plurality of predetermined control parameters stored in the memory means 120, the power management unit 134 controls the power supply 170 to the signal demodulator 132. In accordance with the preferred embodiment of the present invention, a first control parameter of the plurality of predetermined control parameters is activation of a ring detect flag when the ring detector 140 detects the first ring. With the first control parameter activated, the power management unit 134 enables 406 the power supply 170 to the signal demodulator 132. Thereafter, the signal demodulator 132 begins processing the caller information 408 according to the number of data bytes of caller information as indicated within the caller information. When processing the caller information 408, the microcontroller 100 checks whether the signal demodulator 132 has received and processed all the caller information 410. Upon determining that all the caller information is 5 received and is processed by the signal demodulator 132, the microcontroller 100 further checks a second control parameter of the plurality of predetermined control parameters. In accordance with the preferred embodiment of the present invention, the second control parameter is activation of a no carrier detect flag when the carrier detector 150 does not detect a carrier with caller information 412 on the telephone line. With activation of the second control parameter, the power management unit 134 disables 414 the power supply 170 to the signal demodulator 132.
The present invention advantageously controls the power supply 170 to the signal demodulator 132 with the power management unit 134 and provides an improved method to save on power during periods when no caller information is available. In addition, the digital implementation of the signal demodulator 132 as part of the caller identification unit 130 and its integration with a microcontroller 100 provide substantial cost savings of the present invention over the prior art signal demodulator 300 coupled to a separate microcontroller (not shown).
Such improvements to the microcontroller 100, integrated with the caller identification unit 130, ensures that portable battery-powered telecommunication devices consume power efficiently to remain operable longer. Furthermore, the digital implementation of the caller identification unit 130 makes the microcontroller 100 easier to fabricate with different process technologies compared with the prior art signal demodulator 300 that will require customizing to meet varying analog design parameters and manufacturing capabilities. An integrated microcontroller, such as the microcontroller 100 of the present invention, has fewer external components and, hence, reduces the cost of a telecommunication device.
By now it should be appreciated that there has been provided a method and apparatus to process caller information received on a telephone line by the microcontroller 100 for a telecommunication device.
We claim:

Claims (12)

1. In a microcontroller for a telecommunication device, a method for controlling a power supply to a signal demodulator of a caller identification unit within the microcontroller when the caller identification unit receives caller information from a telephone line wherein the microcontroller includes memory means, a ring detector, a carrier detector, and a display control unit, the method comprising the steps of:
detecting a first ring on the telephone line by the ring detector;
enabling the power supply to the signal demodulator by a power management unit within a central processing unit based on a first control parameter of a plurality of predetermined control parameters stored in the memory means;
thereafter, processing the caller information by the signal demodulator, based on a number of data bytes of caller information detected by the carrier detector, to provide the caller information to the display control unit; and disabling the power supply to the signal demodulator by the power management unit based on a second control parameter of the plurality of predetermined control parameters when the caller information is processed.
2. The method of Claim 1 wherein the step of enabling the power supply to the signal demodulator occurs with activation of a ring detect flag as the first control parameter.
3. The method of Claim 1 wherein the step of disabling the power supply to the signal demodulator occurs with activation of a no carrier detect flag as the second control parameter.
4. A microcontroller for processing caller information received from a telephone line to display on a display panel of a telecommunication device, the microcontroller comprising:
a central processing unit for processing data;
a display control unit for controlling the display panel;
a parameter memory within the central processing unit for storing a plurality of predetermined control parameters;
a ring detector for detecting a plurality of rings on the telephone line wherein the plurality of rings includes a first ring;
a carrier detector for detecting the caller information; and a caller identification unit for providing the caller information to the display control unit, the caller identification unit comprising:
a signal demodulator for processing the caller information;
a power supply for the signal demodulator; and a power management unit within the central processing unit for controlling the power supply based on the plurality of predetermined control parameters.
5. The microcontroller of Claim 4 wherein the signal demodulator comprises:
a sigma delta convertor for converting the caller information from an analog format to a two-level quantized digital format;
a digital filter for noise filtering the caller information in the two-level quantized digital format; and a demodulator for demodulating the caller information received from the digital filter to a baseband signal.
6. The microcontroller of Claim 4 wherein one of the plurality of predetermined control parameters is a first control parameter when a ring detect flag is activated for the power management unit to enable the power supply to the signal demodulator when the ring detector detects the first ring.
7. The microcontroller of Claim 4 wherein one of the plurality of predetermined control parameters is a second control parameter when a no carrier detect flag is activated for the power management unit to disable the power supply to the signal demodulator when the carrier detector does not detect the caller information.
8. A telecommunication device operating with information received on a telephone line, the telecommunication device comprising:

a display panel for displaying caller information derived from the information; and a microcontroller for processing the caller information, the microcontroller comprising:
a central processing unit for processing data;
a display control unit for controlling the display panel;
memory means within the central processing unit for storing a plurality of predetermined control parameters;
a ring detector for detecting a plurality of rings on the telephone line wherein the plurality of rings includes a first ring;
a carrier detector for detecting the caller information; and a caller identification unit for providing the caller information to the display control unit, the caller identification unit comprising:
a signal demodulator for processing the caller information;
a power supply for the signal demodulator; and a power management unit within the central processing unit for controlling the power supply based on the plurality of predetermined control parameters.
9. The telecommunication device of Claim 8 wherein the signal demodulator comprises:
a sigma delta convertor for converting the caller information from an analog format to a two-level quantized digital format;
a digital filter for noise filtering the caller information in the two-level quantized digital format; and a demodulator for demodulating the caller information received from the digital filter to a baseband signal.
10. The telecommunication device of Claim 8 wherein the memory means comprises a parameter memory within the power management unit.
11. The telecommunication device of Claim 8 wherein one of the plurality of predetermined control parameters is a first control parameter when a ring detect flag is activated for the power management unit to enable the power supply to the signal demodulator when the ring detector detects the first ring.
12. The telecommunication device of Claim 8 wherein one of the plurality of predetermined control parameters is a second control parameter when a no carrier detect flag is activated for the power management unit to disable the power supply to the signal demodulator when the carrier detector does not detect the caller information.
CA002170114A 1995-03-17 1996-02-22 Microcontroller with a caller identification unit Abandoned CA2170114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG1995000118A SG34478A1 (en) 1995-03-17 1995-03-17 Microcontroller with a caller identification unit
SG9500118-6 1995-03-17

Publications (1)

Publication Number Publication Date
CA2170114A1 true CA2170114A1 (en) 1996-09-18

Family

ID=20429032

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002170114A Abandoned CA2170114A1 (en) 1995-03-17 1996-02-22 Microcontroller with a caller identification unit

Country Status (9)

Country Link
US (1) US5781621A (en)
CN (1) CN1137713A (en)
AU (1) AU674823B2 (en)
CA (1) CA2170114A1 (en)
FR (1) FR2732536A1 (en)
GB (1) GB2298993B (en)
MY (1) MY133758A (en)
SG (1) SG34478A1 (en)
TW (1) TW280073B (en)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864612A (en) * 1996-10-01 1999-01-26 Bell Atlantic Network Services, Inc. Caller selective identification for telephone calls
KR100205542B1 (en) * 1996-12-18 1999-07-01 윤종용 A caller-id receiver and a transmitter-receiver having the same
US6111939A (en) * 1997-04-16 2000-08-29 Intel Corporation Method and apparatus for processing caller identification in a power managed computing environment
US6058172A (en) * 1997-07-10 2000-05-02 Cybiotronics Limited Telephone with novel FSK decoding means, simultaneous off-hook caller ID reception means, and set of configurable function key means
JP3821932B2 (en) * 1997-11-20 2006-09-13 富士通株式会社 Communication support device
US6205219B1 (en) * 1998-02-24 2001-03-20 Lucent Technologies, Inc. Call related information reception using sigma/delta modulation
US6480589B1 (en) 1998-07-14 2002-11-12 Samsung Electronics Co., Ltd. CPE alert signal detector and caller identification detector using peak detection
JP3166738B2 (en) * 1998-11-11 2001-05-14 日本電気株式会社 Personal computer, caller telephone number storage device, caller telephone number storage method, and recording medium
FR2793638A1 (en) * 1999-05-12 2000-11-17 Ascom Monetel Sa Power supply system for telephone accessories includes rectifier, storage battery and control deriving small charging current from telephone line
US6647114B1 (en) 1999-05-14 2003-11-11 Conexant Systems, Inc. Telephone line interface circuit with virtual impedance
US6731749B1 (en) 1999-05-14 2004-05-04 Conexant Systems, Inc. Telephone line interface circuit with intelligent line current and voltage control
US6584196B1 (en) 1999-05-14 2003-06-24 Conexant Systems, Inc. Electronic inductor with transmit signal telephone line driver
JP3267268B2 (en) * 1999-05-18 2002-03-18 日本電気株式会社 Mobile phone and method of accepting incoming calls
US7388949B2 (en) 2000-12-28 2008-06-17 At&T Delaware Intellectual Property, Inc. System and method for audio caller identification service
US7254226B1 (en) 2001-05-08 2007-08-07 At&T Intellectual Property, Inc. Call waiting priority alert
US7085358B2 (en) 2001-06-25 2006-08-01 Bellsouth Intellectual Property Corporation Visual caller identification
US7012999B2 (en) * 2001-06-25 2006-03-14 Bellsouth Intellectual Property Corporation Audio caller identification
US7315614B2 (en) 2001-08-14 2008-01-01 At&T Delaware Intellectual Property, Inc. Remote notification of communications
US7403768B2 (en) 2001-08-14 2008-07-22 At&T Delaware Intellectual Property, Inc. Method for using AIN to deliver caller ID to text/alpha-numeric pagers as well as other wireless devices, for calls delivered to wireless network
US7269249B2 (en) 2001-09-28 2007-09-11 At&T Bls Intellectual Property, Inc. Systems and methods for providing user profile information in conjunction with an enhanced caller information system
US7079837B1 (en) 2001-11-06 2006-07-18 Bellsouth Intellectual Property Corporation Caller identification queue for wireless telephones
US7315618B1 (en) 2001-12-27 2008-01-01 At&T Bls Intellectual Property, Inc. Voice caller ID
US7586898B1 (en) 2002-05-13 2009-09-08 At&T Intellectual Property, I, L.P. Third party content for internet caller-ID messages
US7385992B1 (en) 2002-05-13 2008-06-10 At&T Delaware Intellectual Property, Inc. Internet caller-ID integration
US7623645B1 (en) 2002-07-23 2009-11-24 At&T Intellectual Property, I, L.P. System and method for gathering information related to a geographical location of a caller in a public switched telephone network
US7139374B1 (en) 2002-07-23 2006-11-21 Bellsouth Intellectual Property Corp. System and method for gathering information related to a geographical location of a callee in a public switched telephone network
US7127488B1 (en) 2002-07-23 2006-10-24 Bellsouth Intellectual Property Corp. System and method for gathering information related to a geographical location of a caller in an internet-based communication system
US7006583B2 (en) * 2002-08-30 2006-02-28 Intel Corporation Method and apparatus for receiving differential ultra wideband signals
US7283625B2 (en) 2003-04-18 2007-10-16 At&T Bls Intellectual Property, Inc. Caller ID messaging telecommunications services
US7443964B2 (en) 2003-04-18 2008-10-28 At&T Intellectual Property, I,L.P. Caller ID messaging
US7978833B2 (en) 2003-04-18 2011-07-12 At&T Intellectual Property I, L.P. Private caller ID messaging
US7280646B2 (en) 2003-04-18 2007-10-09 At&T Bls Intellectual Property, Inc. Dynamic Caller ID messaging
US7463727B2 (en) 2003-04-18 2008-12-09 At&T International Property, I, L.P. Caller ID messaging device
US7269412B2 (en) 2003-05-29 2007-09-11 At&T Bls Intellectual Property, Inc. Caller identification device and method of operation thereof
US7623849B2 (en) 2003-11-13 2009-11-24 At&T Intellectual Property, I, L.P. Method, system, and storage medium for providing comprehensive originator identification services
US7672444B2 (en) 2003-12-24 2010-03-02 At&T Intellectual Property, I, L.P. Client survey systems and methods using caller identification information
US6970546B2 (en) * 2004-01-12 2005-11-29 Bellsouth Intellecutal Property Corp. Intelligent remote caller ID
US8195136B2 (en) 2004-07-15 2012-06-05 At&T Intellectual Property I, L.P. Methods of providing caller identification information and related registries and radiotelephone networks
US8160226B2 (en) 2007-08-22 2012-04-17 At&T Intellectual Property I, L.P. Key word programmable caller ID
US8243909B2 (en) 2007-08-22 2012-08-14 At&T Intellectual Property I, L.P. Programmable caller ID
US20100322396A1 (en) * 2009-06-18 2010-12-23 Christopher Paul Southerland Telephone Carrier ID
EP2706420B1 (en) * 2012-09-05 2015-03-18 Siemens Aktiengesellschaft Method for operating an automation device
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914689A (en) * 1987-12-22 1990-04-03 Bell Mountain States Telephone & Telegraph Co. Reverse automatic number identification system
US4924496A (en) * 1988-05-12 1990-05-08 Romek Figa D/B/A Abraham & Sons Automatic incoming telephone call originating number and party display system
JPH0773385B2 (en) * 1989-04-03 1995-08-02 三菱電機株式会社 Mobile phone equipment
US5343516A (en) * 1989-09-29 1994-08-30 Digital Systems Group, Inc. Computer telecommunications signalling interface
JPH0652914B2 (en) * 1990-09-21 1994-07-06 橋本コーポレイション株式会社 Caller telephone number display
IL102369A (en) * 1991-07-11 1995-11-27 Southwest Bell Tech Resources Tele-communication information display apparatus and method
US5555287A (en) * 1992-07-21 1996-09-10 Advanced Micro Devices, Inc. Integrated circuit and cordless telephone using the integrated circuit
US5561424A (en) * 1993-04-30 1996-10-01 Lucent Technologies Inc. Data converter with minimum phase fir filter and method for calculating filter coefficients

Also Published As

Publication number Publication date
GB2298993B (en) 1999-09-01
FR2732536A1 (en) 1996-10-04
MY133758A (en) 2007-11-30
GB9605528D0 (en) 1996-05-15
TW280073B (en) 1996-07-01
US5781621A (en) 1998-07-14
CN1137713A (en) 1996-12-11
SG34478A1 (en) 1996-12-06
GB2298993A (en) 1996-09-18
AU674823B2 (en) 1997-01-09
AU4557196A (en) 1996-09-26

Similar Documents

Publication Publication Date Title
US5781621A (en) Microcontroller with a caller identification unit
US6111939A (en) Method and apparatus for processing caller identification in a power managed computing environment
US5287401A (en) Apparatus and method for a modem for detecting a call waiting signal
US5659602A (en) Telephone apparatus for caller ID
US6304597B1 (en) Integrated modem and line-isolation circuitry with selective modem processing and associated method
US5426693A (en) Apparatus and method for automatically blocking the transmission of identifying information concerning a telephone calling party
US20030095647A1 (en) Method and system for conserving power and improving usability for personal computers with remote startup features
US6724891B1 (en) Integrated modem and line-isolation circuitry and associated method powering caller ID circuitry with power provided across an isolation barrier
US6714590B1 (en) Integrated modem and line-isolation circuitry and associated method
US6272184B1 (en) Non-coherent frequency shift keying detection scheme
US7020187B1 (en) Integrated modem and line-isolation circuitry with HDLC framing and associated method
US6662238B1 (en) Integrated modem and line-isolation circuitry with command mode and data mode control and associated method
US6826225B1 (en) Integrated modem and line-isolation circuitry with selective raw data or modem data communication and associated method
US6735246B1 (en) Integrated modem and line-isolation circuitry with data flow control and associated method
JP2814913B2 (en) Modem card for mobile radiotelephone
US5835581A (en) Multi-function telephone dialer display
JPH09205496A (en) Modem
KR200228168Y1 (en) A Direct-coupled Adaptor of Internet Phone
JPH04200157A (en) Dtmf signal receiving circuit
KR100617791B1 (en) Ear-mic controller and controlling method in portable radio terminal
KR970006769B1 (en) Dsp circuit for communications
KR970011427B1 (en) Line auto-selecting for a phone
JPH07123237A (en) Facsimile equipment
CA2113125C (en) Apparatus and method for automatically blocking the transmission of identifying information concerning a telephone calling party
CN1050482C (en) Telephone dialing device with function of inspecting identity of caller

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued