CA2177068A1 - Liquid cleaning compositions - Google Patents

Liquid cleaning compositions

Info

Publication number
CA2177068A1
CA2177068A1 CA002177068A CA2177068A CA2177068A1 CA 2177068 A1 CA2177068 A1 CA 2177068A1 CA 002177068 A CA002177068 A CA 002177068A CA 2177068 A CA2177068 A CA 2177068A CA 2177068 A1 CA2177068 A1 CA 2177068A1
Authority
CA
Canada
Prior art keywords
group
water
weight
microemulsion
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002177068A
Other languages
French (fr)
Inventor
Anne Marie Misselyn
Marianne Mahieu
Rita Erilli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of CA2177068A1 publication Critical patent/CA2177068A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3765(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/43Solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • Y10S516/06Protein or carboxylic compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • Y10S516/07Organic amine, amide, or n-base containing

Abstract

An improvement is described in microemulsion compositions which contain an anionic detergent, a nonionic surfactant, a grease release agent, a hydrocarbon ingredient, and water which comprises the use of a water-insoluble odoriferous perfume as the essential hydrocarbon ingredient in a proportion sufficient to form either a dilute o/w microemulsion composition containing, by weight, 1 % to 20 % of an anionic detergent, 6 to 50 % of a cosurfactant, 0.1 % to 10 % of a grease release agent, 0.4 % to 10 % of perfume and the balance being water as well as all purpose hard surface cleaning composition or light duty liquid detergent compositions which contain a grease release agent.

Description

~W095/14762 ~ ~ 7 7 ~ ~ 8 PCT/US9~1131S8 LIQUID CLEANING COMPOSITIONS

5 Field of the Invention This invention relates to an improved all-purpose liquid cleaner in the form of a microemulsion designed in particular for cleaning hard surfaces and which is effective in removing grease soil and/or bath soil and in leaving unrinsed surfaces with a shiny appearance as well as to an all purpose hard surface cleaner or light duty liquid 10 detergent composition which contains a grease release agent and these compositions are effective in removing grease soil.

Back~round Of The Invention In recent years all-purpose liquid detergents have become widely accepted for 15 cleaning hard surfaces, e.g., painted woodwork and paneis, tiled walls, wash bowls, bathtubs, linoleum or tile floors, washable wall paper, etc.. Such all-purpose liquids comprise clear and opaque aqueous mixtures of water-soluble synthetic organic detergents and water-soluble detergent builder salts. In order to achieve comparable cleaning efficiency with granular or powdered all-purpose cleaning compositions, use of 20 water-soluble inorganic phosphate builder salts was favored in the prior art all-purpose liquids. For example, such early phosphate-containing compositions are described in U.S. Patent Nos. 2,560,839; 3,234,138; 3,3~0,319; and British Patent No.1,223,739.
In view of the environmentalist's efforts to reduce phosphate levels in ground water, improved all-purpose liquids containing reduced concentrations of inoraanic 25 phosphate builder salts or non-phosphate builder salts have appeared. A particularly useful self-opacified liquid of the latter type is described in U.S. Patent No. 4,244,840.
However, these prior art all-purpose liquid detergents containing detergent builder salts or other equivalent tend to leave films, spots or streaks on cleaned 2 PCT/US94/131S8 ~
2~77068 2 unrinsed surfaces, particularly shiny surfaces. Thus, such liquids require thorough rinsing of the cleaned surfaces which is a time-consuming chore for the user.
In order to overcome the foregoing disadvantage of the prior art all-purpose liquid, U.S. Patent No. 4,017,409 teaches that a mixture of paraffin sulfonate and a reduced concentration of inorganic phosphate builder salt should be employed. t However, such compositions are not completely acceptable from an environmental point of view based upon the phosphate content. On the other hand, another alternative to achieving phosphate-free all-purpose liquids has been to use a major proportion of a mixture of anionic and nonionic detergents with minor amounts of glycol 10 ether solvent and organic amine as shown in U.S. Patent NO. 3,935,130. Again, this approach has not been completely satisfactory and the high levels of organic detergents necessary to achieve cleaning cause foaming which, in turn, leads to the need for thorough rinsing which has been found to be undesirable to today's consumers.
Another approach to formulating hard surface or all-purpose liquid detergent composition where product homogeneity and clarity are important considerations involves the formation of oil-in-water (o/w) microemulsions which contain one or more surface-active detergent compounds, a water-immiscible solvent (typically a hydrocarbon solvent), water and a "cosurfactant" compound which provides product20 stability. By definition, an o/w microemulsion is a spontaneously forming colloidal dispersion of "oil" phase particles having a particle size in the range of 25 to 800 A in a continuous aqueous phase. In view of the extremely fine particle size of the dispersed oil phase particles, microemulsions are transparent to light and are clear and usually highly stable against phase separation.
Patent disclosures relating to use of grease-removal solvents in o/w microemulsions include, for example, European Patent Applications EP 0137615 andEP 0137616 - Herbots et al; European Patent Application EP 0160762 - Johnston et al;
and U.S. Patent No. 4,561,991 - Herbots et al. Each of these patent disclosures also teaches using at least 5% by weight of grease-removal solvent.

~ WO 95/14762 ~ :L 7 ~ ~ ~ 8 PCT/US94/13158 It also is known from British Patent Application GB 21 44763A to Herbots et al, published March 13, 1985, that magnesium salts enhance grease-removal performance of organic grease-removal solvents, such as the terpenes, in o/w microemulsion liquid detergent compositions. The compositions of this invention described by Herbots et al.
5 require at least 5% of the mixture of grease-removal solvent and magnesium salt and preferably at least 5% of solvent (which may be a mixture of water-immiscible non-polar solvent with a sparingly soluble slightly polar solvent) and at least 0.1% magnesium salt.
However, since the amount of water immiscible and sparingly soluble 10 components which can be present in an o/w microemulsion, with low total active ingredients without impairing the stability of the microemulsion is rather limited (for example, up to 18% by weight of the aqueous phase), the presence of such high quantities of grease-removal solvent tend to reduce the total amount of greasy or oily soils which can be taken up by and into the microemulsion without causing phase 15 separation. The following representative prior art patents also relate to liquid detergent cleaning compositions in the form of o/w microemulsions: U.S. Patents Nos.. 4,472,291 - Rosario; 4,540,448 - Gauteer et al; 3,723,330 - Sheflin; etc.
Liquid detergent compositions which include terpenes, such as d-limonene, or other grease-removal solvent, although not disclosed to be in the form of o/w 20 microemulsions, are the subject matter of the following representative patentdocuments: European Patent Application 0080749; British Patent Specification 1,603,047; 4,414,128; and 4,540,505. For example, U.S. Patent No. 4,414,128 broadly discloses an aqueous liquid detergent composition characterized by, by weight:
(a) from 1% to 20% of a synthetic anionic, nonionic, amphoteric or 25 zwitterionic surfactant or mixture thereof;
(b) from 0.5% to 10% of a mono- or sesquiterpene or mixture thereof, at a weight ratio of (a):(b) being in the range of 5:1 to 1:3; and (c ) from 0.5% 10% of a polar solvent having a solubility in water at 1 5C. in the range of from 0.2% to 10%. Other ingredients present in the formulations WO 9S/14762 ~ 1 ~ rt 0 6 8 PCT/US94/13158 ~

disclosed in this patent include from 0.05% to 2% by weight of an alkali metal, ammonium or alkanolammonium soap of a C1 3-C24 fatty acid; a calcium sequestrantfrom .5% to 13% by weight; non-aqueous solvent, e.g., alcohols and glycol ethers, up to 10% by weight; and hydrotropes, e.g., urea, ethanolamines, salts of lower alkylaryl 5 sulfonates, up to 10% by weight. All of the formulations shown in the Examples of this patent include relatively large amounts of detergent builder salts which are detrimental to surface shine.
Furthermore, the present inventors have observed that in formulations containinggrease-removal assisting magnesium compounds, the addition of minor amounts of 10 builder salts, such as alkali metal polyphosphates, alkali metal carbonates, nitrilotriacetic acid salts, and so on, tends to make it more difficult to form stable microemulsion systems as well as causing residual deposits on the surface being cleaned, if they are incorporated into a light duty liquid detergent compositions.
U.S. Patent 5,082,584 discloses a microemulsion composition having an anionic 15 surfactant, a cosurfactant, nonionic surfactant, perfume and water; however, these compositions do not possess the grease release effect.
A major problem in cleaning of hard surface is the build up of grease on the hard surface. It is desirably in the cleaning of hard surface to be able to minimize this grease build up. The unique and novel microemulsion, all purpose hard surface cleaners and 20 light duty liquid detergent compositions of the instant invention have incorporated therein a grease release agent which helps minimize the build up of grease on the surface being cleaned.
.Summary of the Invention The present invention provides improved, clear, liquid cleaning compositions 25 having improved interfacial tension which improves cleaning hard surface in the form of a microemulsion( but also non microemulsion compositions) which is suitable for cleaning hard surfaces such as plastic, vitreous and metal surfaces having a shiny ~WO 95/14762 2 1 7 7 0 6 8~ PCT/US941131S8 finish or in the form of an all purpose hard surface cleaner or a light duty liquid detergent.
More particularly, the improved cleaning compositions exhibit good grease soil removal properties due to the improved interfacial tensions, when used in undiluted 5 (neat) form and leave the cleaned surfaces shiny without the need of or requiring only minimal additional rinsing or wiping. The latter characteristic is evidenced by little or no visible residues on the unrinsed cleaned surfaces and, accordingly, overcomes one of the disadvantages of prior art products. The instant microemulsion or non microemulsion composition or light duty liquid detergent compositions exhibit a grease 10 release effect in that the instant compositions impede or decrease the anchoring of greasy soil on surfaces that have been cleaned with the instant compositions as compared to surfaces cleaned with a commercial microemulsion composition which means that the grease soiled surface is easier to clean upon subsequent cleanings.
Surprisingly, these desirable results are accomplished even in the absence of 15 polyphosphate or other inorganic or organic detergent builder salts and also in the complete absence or substantially complete absence of grease-removal solvent.
In one aspect, the invention generally provides a stable, clear all-purpose, hard surface cleaning composition especially effective in the removal of oily and greasy oil, which is in the form of a substantially dilute oil-in-water microemulsion having an 20 aqueous phase and an oil phase; The dilute o/w microemulsion includes, on a weight basis:
0.1% to 20% by weight of an anionic surfactant;
0.1% to 10% by weight of a non-ionic surfactant 0.1% to 50% of a water-mixable cosurfactant having either limited ability or 25 substantially no ability to dissolve oily or greasy soil;
0.1%to 10% of a grease release agent;
0 to 15% of magnesium sulfate heptahydrate;
0.4 to 10.0% of a perfume or water insoluble hydrocarbon; and WO 9S/14762 2 ~ ~ 7 ~ 6 8 PCT/US94/13158 ~

10 to 85% of water, said proportions being based upon the total weight of the composition. Quite surprisingly although the perfume is not, per se, a solvent for greasy or oily soil, --even though some perfumes may, in fact, contain as much as 80% of terpenes which are known as good grease solvents -- the inventive compositions in dilute form have the capacity to solubilize up to 10 times or more of the weight of the perfume of oily and greasy soil, which is removed or loosened from the hard surface by virtue of the action of the anionic surfactant, said soil being taken up into the oil phase of the o/w microemulsion.
In second aspect, the invention generally provides highly concentration 10 microemulsion compositions in the form of either an oil-in-water (o/w) microemulsion or a water-in-oil (w/o) microemulsion which when diluted with additional water before use can form dilute o/w microemulsion compositions. Broadly, the concentrated microemulsion compositions contain, by weight, 0.1% to 20% of an anionic surfactant, 0.1% to 20% of a non-ionic surfactant, 0.1% to 50% of a cosurfactant, 1% to 10% of a 15 grease release agent, 0.4% to 10% of perfume or water insoluble hydrocarbon having 6 to 18 carbon atoms, 0.1% to 50% of a cosurfactant, and 20% to 97% of water.
The invention also relates to light duty liquid detergent compositions having improved grease properties which comprises approximately by weight:
(a) 1 to 50 wt. % of at least one surfactant, wherein the surfactant is selected20 from the group consisting of fatty acid soap surfactants, nonionic surfactants, anionic surfactants, zwitterionic surfactants and alkyl polysaccharides surfactants and mixtures thereof;
(b) 0.1 to 10 wt. % of a grease release agent;
(c) 0 to 15 wt. % of a solubilizing agent; and (d) the balance being water.
This invention also relates to an all purpose hard surface cleaner composition which comprises approximately by weight:
(a) 1 to 30% of at least one surfactant selected from the group consisting of nonionic surfactants and anionic surfactants and mixtures thereof;

WO 95/14762 2 ~ 7 7 b 6 ~ PCT/US94/13158 (b) 1 to 15% of a cosurfactant;
(c) 0.1 to 5% of a magnesium containing inorganic compound;
(d) 0.05 to 0.3% of a perfume;
(e) 0.1 to 10% of a grease release agent; and 5 (f) the balance being water.
Detailed Description of the Invention The present invention relates to a stable microemulsion composition approximately by weight: 0.1% to 20% of an anionic surfactant, 0.1% to 50% of a cosurfactant, .1% to 10% of a nonionic surfactant, 0.1% to 5% of MgS04.7H20; 0.1%
to 10% of a grease release agent; 0.1% to 10% of a water insoluble hydrocarbon or a perfume and the balance being water.
The detergent compositions of the present invention can be in the form of an oil-in-water microemulsion in the first aspect or after dilution with water in the second aspect, with the essential ingredients being water, anionic/nonionic surfactant,cosurfactant, grease release agent, and a hydrocarbon or perfume.
According to the present invention, the role of the hydrocarbon is provided by anon-water-soluble perfume. Typically, in aqueous based compositions the presence of a solubilizers, such as alkali metal lower alkyl aryl sulfonate hydrotrope, triethanolamine, urea, etc., is required for perfume dissolution, especially at perfume levels of 1% and higher, since perfumes are generally a mixture of fragrant essential oils and aromatic compounds which are generally not water-soluble. Therefore, byincorporating the perfume into the aqueous cleaning composition as the oil (hydrocarbon) phase of the ultimate o/w microemulsion composition, several different important advantages are achieved.
First, the cosmetic properties of the ultimate cleaning composition are improved:
the compositions are both clear (as a consequence of the formation of a microemulsion) and highly fragranced (as a consequence of the perfume level).
Second, an improved grease release effect and an improved grease removal capacity in neat (undiluted) usage of the dilute aspect or after dilution of the concentrate WO 9S/14762 2 1 7 7 0 6 8 PCT/US9J/13158 ~

can be obtained without detergent builders or buffers or conventional grease removal solvents at neutral or acidic pH and at low levels of active ingredients while improved cleaning performance can also be achieved in diluted usage.
As used herein and in the appended claims the term "perfume" is used in its 5 ordinary sense to refer to and include any non-water soluble fragrant substance or mixture of substances including natural (i.e., obtained by extraction of flower, herb, blossom or plant), artificial (i.e., mixture of natural oils or oil constituents) and synthetically produced substance) odoriferous substances. Typically, perfumes are complex mixtures of blends of various organic compounds such as alcohols, aldehydes, 10 ethers, aromatic compounds and varying amounts of essential oils (e.g., terpenes) such as from 0% to 80%, usually from 10% to 70% by weight, the essential oils themselves being volatile odoriferous compounds and also serving to dissolve the other components of the perfume.
In the present invention the precise composition of the perfume is of no particular 15 consequence to cleaning performance so long as it meets the criteria of waterimmiscibility and having a pleasing odor. Naturally, of course, especially for cleaning compositions intended for use in the home, the perfume, as well as all other ingredients, should be cosmetically acceptable, i.e., non-toxic, hypoallergenic, etc.
The hydrocarbon such as a perfume is present in the dilute o/w microemulsion in 20 an amount of from 0.4% to 10% by weight, preferably from 0.1% to 3.0% by weight, especially preferably from 0.5% to 2.0% by weight, such as weight percent. If the amount of hydrocarbon (perfume) is less than 0.4% by weight it becomes difficult to form the o/w microemulsion. If the hydrocarbon (perfume) is added in amounts more than 10% by weight, the cost is increased without any additional cleaning benefit and, 25 in fact, with some diminishing of cleaning performance insofar as the total amount of greasy or oily soil which can be taken up in the oil phase of the microemulsion will decrease proportionately.
Furthermore, although superior grease removal performance will be achieved for perfume compositions not containing any terpene solvents, it is apparently difficult for WO 95114762 ~ ~ 7 ~ 0 6 8 PCT/US94/131SX

perfumers to formulate sufficiently inexpensive perfume compositions for products of this type (i.e., very cost sensitive consumer-type products) which includes less than 20%, usually less than 30%, of such terpene solvents.
Thus, merely as a practical matter, based on economic consideration, the dilute o/w microemulsion detergent cleaning compositions of the present invention may often include as much as 0.2% to 7% by weight, based on the total composition, of terpene solvents introduced thereunto via the perfume component. However, even when the amount of terpene solvent in the cleaning formulation is less than 1.5% by weight, such as up to 0.6% by weight or 0.4% by weight or less, satisfactory grease removal and oil 10 removal capacity is provided by the inventive diluted o/w microemulsions.
Thus, for a typical formulation of a diluted o/w microemulsion according to thisinvention a 20 milliliter sample of o/w microemulsion containing 1% by weight ofperfume will be able to solubilize, for example, up to 2 to 3 ml of greasy and/or oily soil, while retaining its form as a microemulsion, regardless of whether the perfume contains 15 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7% or 0.8% by weight of terpene solvent.
In other words, it is an essential feature of the compositions of this invention that grease removal is a function of the result of the microemulsion, per se, and not of the presence or absence in the microemulsion of a "greasy soil removal" type of solvent.
In place of the perfume one can employ a water insoluble paraffin or isoparaffin20 having 6to 18carbonataconcentrationof 0.4to 8.0wt.percent,morepreferably 0.4 to 3.0 wt. %.
Regarding the anionic surfactant present in the o/w microemulsions any of the conventionally used water-soluble anionic surfactants or mixtures of said anionic surfactants and anionic surfactants can be used in this invention. As used herein the 25 term "anionic surfactant" is intended to refer to the class of anionic and mixed anionic-nonionic detergents providing detersive action.
Suitable water-soluble non-soap, anionic surfactants used in the instant compositions include those surface-active or detergent compounds which contain an organic hydrophobic group containing generally 8 to 26 carbon atoms and preferably 10 WO 9S/14762 PCT/US94/13158 ~
~177068 to 18 carbon atoms in their molecular structure and at least one water-solubilizing group selected from the group of sulfonate, sulfate and carboxylate so as to form a water-soluble detergent. Usually, the hydrophobic group will include or comprise a C8-c22 alkyl, alkyl or acyl group. Such surfactants are employed in the form of water-soluble salts and the salt-forming cation usually is selected from the group consisting of sodium, potassium, ammonium, magnesium and mono-, di- or tri-C2-C3 alkanolammonium, with the sodium, magnesium and ammonium cations again being preferred.
Examples of suitable sulfonated anionic surfactants are the well known higher 10 alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 10 to 16 carbon atoms in the higher alkyl group in a straight orbranched chain, Cg-C1s alkyl toluene sulfonates and Cg-C1s alkyl phenol sulfonates.
A preferred sulfonate is linear alkyl benzene sulfonate having a high content of 3-(or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or 15 lower) phenyl isomers, that is, wherein the benzene ring is preferably attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low. Particularly preferred materials are set forth in U.S. Patent 3,320,1 74.
Other suitable anionic surfactants are the olefin sulfonates, including long-chain alkene sulfonates, long-chain hydroxyalkane sulfonates or mixtures of alkene sulfonates and hydroxyalkane sulfonates. These olefin sulfonate detergents may be prepared in a known manner by the reaction of sulfur trioxide (SO3) with long-chain olefins containing 8 to 25, preferably 12 to 21 carbon atoms and having the formula 25 RCH=CHR1 where R is a higher alkyl group of 6 to 23 carbons and R1 is an alkyl group of 1 to 17 carbons or hydrogen to form a mixture of sultones and alkene sulfonic acids which is then treated to convert the sultones to sulfonates. Preferred olefin sulfonates contain from 14 to 16 carbon atoms in the R alkyl group and are obtained by sulfonating an 2 olefin.

~WO 95/14762 2 1 7 ~ 0 6~8 PCT/US94/13158 Other examples of suitable anionic sulfonate surfactants are the paraffin sulfonates containing 10 to 20, preferably 13 to 17, carbon atoms. Primary paraffin sulfonates are made by reacting long-chain alpha olefins and bisulfites and paraffin sulfonates having the sulfonate group distributed along the paraffin chain are shown in U.S. Patents Nos.. 2,503,280; 2,507,088; 3,260,744; 3,372,188; and German Patent 735,096.
Examples of satisfactory anionic sulfate surfactants are the Cg C1g alkyl sulfate salts and the Cg-C1 g alkyl ether polyethenoxy sulfate salts having the formula R(OC2H4)n OSO3M wherein n is 1 to 12, preferably 1 to 5, and M is a solubilizing10 cation selected from the group consisting of sodium, potassium, ammonium, magnesium and mono-, di- and triethanol ammonium ions. The alkyl sulfates may beobtained by sulfating the alcohols obtained by reducing glycerides of coconut oil or tallow or mixtures thereof and neutralizing the resultant product. On the other hand, the alkyl ether polyethenoxy sulfates are obtained by sulfating the condensation product of 15 ethylene oxide with a Cg-C1g alkanol and neutralizing the resultant product. The alkyl sulfates may be obtained by sulfating the alcohols obtained by reducing glycerides of coconut oil or tallow or mixtures thereof and neutralizing the resultant product. On the other hand, the alkyl ether polyethenoxy sulfates are obtained by sulfating the condensation product of ethylene oxide with a Cg-C1g alkanol and neutralizing the 20 resultant product. The alkyl ether polyethenoxy sulfates differ from one another in the number of moles of ethylene oxide reacted with one mole of alkanol. Preferred alkyl sulfates and preferred alkyl ether polyethenoxy sulfates contain 10 to 16 carbon atoms in the alkyl group.
The Cg-C12 alkylphenyl ether polyethenoxy sulfates containing from 2 to 6 25 moles of ethylene oxide in the molecule also are suitable for use in the inventive compositions. These detergents can be prepared by reacting an alkyl phenol with 2 to 6 moles of ethylene oxide and sulfating and neutralizing the resultant ethoxylated alkylphenol.

WO 9S/14762 PCT/US94/131S8 _ 2177~68 ~

Other suitable anionic surfactants are the Cg-C1s alkyl ether polyethenoxyl carboxylates having the structural formula R(OC2H4)nOX COOH wherein n is a number from 4 to 12, preferably 5 to 10 and X is selected from the group consisting of WO 95/14762 ~ ~ 7 7 ~ ~ 8 PCT/US94/13158 CH2, (C(O)R1 and ~>

5 wherein R1 is a C1-C3 alkylene group. Preferred compounds include Cg-C1 1 alkyl ether polyethenoxy (7-9) C(O) CH2CH2COOH, C13-C1s alkyl ether polyethenoxy (7-9) <~>

and C1 0-C1 2 alkyl ether polyethenoxy (5-7) CH2COOH. These compounds may be prepared by considering ethylene oxide with appropriate alkanol and reacting this reaction product with chloracetic acid to make the ether carboxylic acids as shown in US Pat. No. 3,741,911 or with succinic anhydride or phtalic anhydride. Obviously, these anionic surfactants will be present either in acid form or salt form depending upon 15 the pH of the final composition, with salt forming cation being the same as for the other anionic detergents.
Of the foregoing non-soap anionic surfactants, the preferred detergents are the Cg-C1s linear alkylbenzene sulfonates and the C13-C17 paraffin or alkane sulfonates.
Particularly, preferred compounds are sodium C10-C13 alkylbenzene sulfonate and 20 sodium C13-C17 alkane sulfonate. Generally, the proportion of the nonsoap-anionic surfactant will be in the range of 0.1% to 20.0%, preferably from 1% to 7%, by weight of the dilute o/w microemulsion composition.
One class of grease release agents used in the grease release system of the present invention are an ethoxylated maleic anhydride -alpha- olefin copolymer having 25 a comblike structure with both hydrophobic and hydrophilic chains. The polymer is made by Akzo Chemie America and has a number average molecular weight of 10,000 to 30,000, most preferably 15,000to 25,000. The ethoxylated maleicanhydride-W0 95/14762 2 ~ ~ 7 0 ~ ~ PCT/US941131~i8 ~

alpha-olefin copolymer which is used at a concentration of 0.5 to 10.0 wt. %, more preferably 1.0 to 8.0 wt. %, is depicted by the formula:

(CH-CH) (CH2-CH) C=O (CH2)x y o (CH2-CH2-O)nH CH3 wherein n is 5 to 14, preferably 7 to 9, x is 7 to 19, preferably 8 to 19 and y is of such a value as to provide a molecular weight 10,000 to 30,000.
Another class of grease release agents manufactured by BASF that are used in the grease release system of the present invention at a concentration of 0 to 10 wt. %, more preferably 0.5 to 8.0 wt. %, is a polymer depicted by the formula:
o R1 Il I
HO-C-C-C-C-C
C=O R2 o (EO) n wherein n is a numberfrom 2 to 16, preferably 2 to 10, R1 is selected from the group consisting of methyl or hydrogen, R2 is a C1 to C12, preferably C4to Cg, linear or branched chained alkyl group and R3 is a C2 to C16, preferably C2 to C12 linear or branched chained alkyl group.
The cosurfactant may play an essential role in the formation of the dilute o/w microemulsion and the concentrated microemulsion compositions. Very briefly, in the absence of the cosurfactant the water, detergent(s) and hydrocarbon (e.g., perfume) will, when mixed in appropriate proportions form either a micellar solution (lowconcentration) or form an oil-in-water emulsion in the first aspect of the invention. With the cosurfactant added to this system, the interfacial tension at the interface between ~ WO 95/14762 2 1 7 7 0 6 g PCT/US94/13158 the emulsion droplets and aqueous phase is reduced to a very low value (never negative). This reduction of the interfacial tension results in spontaneous break-up of the emulsion droplets to consecutively smaller aggregates until the state of a transparent colloidal sized emulsion. e.g., a microemulsion, is formed. In the state of a 5 microemulsion, thermodynamic factors come into balance with varying degrees ofstability related to the total free energy of the microemulsion. Some of the thermodynamic factors involved in determining the total free energy of the system are (1 ) particle-particle potential; (2) interfacial tension or free energy (stretching and bending); (3) droplet dispersion entropy; and (4) chemical potential changes upon 10 formation. A thermodynamically stable system is achieved when (2) interfacial tension or free energy is minimized and (3) droplet dispersion entropy is maximized. Thus, the role of cosurfactant in formation of a stable o/w microemulsion is to (a) decrease interfacial tension (2); and (b) modify the microemulsion structure and increase the number of possible configurations (3). Also, the cosurfactant will (c) decrease the 15 rigidity of the interfacial film..
Three major classes of compounds have been found to provide highly suitable cosurfactants over temperature ranges extending from ~C to 43C for instance; (1 ) water-soluble C3-C4 alkanols, polypropylene glycol of the formula HO(CH3CHCH2O)nH wherein n is a number from 2 to 18 and monoalkyl ethers and 20 esters of ethylene glycol and propylene glycol having the structural formulas R(X)nOH
and R1 (X)nOH wherein R is C1-C6 alkyl, R1 is C2-C4 acyl group, X is (OCH2CH2) or (OCH3CHCH2) and n is a number from 1 to 4; (2) aliphatic mono- and di-carboxylicacids containing 2 to 10 carbon atoms, preferably 3 to 6 carbons in the molecule; and (3) triethyl phosphate. Additionally, mixtures of two or more of the three classes of 25 cosurfactant compounds may be employed where specific pH's are desired.
When the mono- and di-carboxylic acid (Class 2) cosurfactants are employed in the instant microemulsion compositions at a concentration of 2 to 10 wt. %, the microemulsion compositions can be used as a cleaners for bathtubs and other hardsurfaced items, which are acid resistant or are of zirconium white enamel thereby WO 95/14762 2 ~ 7 ~ 0 6 8 PCT/US94/13158 ~

removing lime scale, soap scum and greasy soil from the surfaces of such items damaging such surfaces. An aminoalkylene phophonic acid at a concentration of 0.01 to 0.2 wt. % can be optionally used in conjunction with the mono- and di-carboxylic acids, wherein the aminoalkylene phosphonic acid helps prevent damage to zirconium 5 white enamel surfaces. Additionally, 0.05 to 1% of phosphoric acid can be used in the composition.
Representative members of the polypropylene glycol include dipropylene glycol and polypropylene glycol having a molecular weight of 200 to 1000, e.g., polypropylene glycol 400. Satisfactory glycol ethers are ethylene glycol monobutyl ether (butyl 10 cellosolve), diethylene glycol monobutyl ether (butyl carbitol), triethylene glycol monobutyl ether, mono, di, tri propylene glycol monobutyl ether, tetraethylene glycol monobutyl ether, propylene glycol tertiary butyl ether, ethylene glycol monoacetate and dipropylene glycol propionate.
Representative members of the aliphatic carboxylic acids include C3-C6 alkyl 15 and alkenyl monobasic acids and dibasic acids such as glutaric acid and mixtures of glutaric acid with adipic acid and succinic acid, as well as mixtures of the foregoing acids.
While all of the aforementioned glycol ether compounds and acid compounds provide the described stability, the most preferred cosurfactant compounds of each 20 type, on the basis of cost and cosmetic appearance (particularly odor), are diethylene glycol monobutyl ether and a mixture of adipic, glutaric and succinic acids, respectively.
The ratio of acids in the foregoing mixture is not particularly critical and can be modified to provide the desired odor. Generally, to maximize water solubility of the acid mixture glutaric acid, the most water-soluble of these three saturated aliphatic dibasic acids, will 75 be used as the major component. Generally, weight ratios of adipic acid: glutaric acid:succinic acid is 1-3:1-8:1-5, preferably 1-2:1-6:1-3, such as 1:1:1, 1:2:1, 2:2:1, 1:2:1.5, 1:2:2, 2:3:2, etc. can be used with equally good results.
Still other classes of cosurfactant compounds providing stable microemulsion compositions at low and elevated temperatures are the aforementioned alkyl ether ~ WO 95/14762 2 1 7 7 0 ~ ~ PCT/IJS94/13158 polyethenoxy carboxylic acids and the mono-, di- and triethyl esters of phosphoric acid such as triethyl phosphate.
The amount of cosurfactant required to stabilize the microemulsion compositions will, of course, depend on such factors as the surface tension characteristics of the 5 cosurfactant, the type and amounts of the primary surfactants and perfumes, and the type and amounts of any other additional ingredients which may be present in thecomposition and which have an influence on the thermodynamic factors enumerated above. Generally, amounts of cosurfactant in the range of from 0% to 50%, preferably from 0.5% to 15%, especially preferably from 1% to 7%, by weight provide stable 10 dilute o/w microemulsions for the above-described levels of primary surfactants and perfume and any other additional ingredients as described below.
As will be appreciated by the practitioner, the pH of the final microemulsion will be dependent upon the identity of the cosurfactant compound, with the choice of the cosurfactant being effected by cost and cosmetic properties, particularly odor. For 15 example, microemulsion compositions which have a pH in the range of 1 to 10 may employ either the class 1 or the class 4 cosurfactant as the sole cosurfactant, but the pH range is reduced to 1 to 8.5 when the polyvalent metal salt is present. On the other hand, the class 2 cosurfactant can only be used as the sole cosurfactant where the product pH is below 3.2. Similarly, the class 3 cosurfactant can be used as the sole 20 cosurfactant where the product pH is below 5. However, where the acidic cosurfactants are employed in admixture with a glycol ether cosurfactant, compositions can be formulated at a substantially neutral pH (e.g., pH 7+1.5, preferably 7~0.2).
The ability to formulate neutral and acidic products without builders which havegrease removal capacities is a feature of the present invention because the prior art o/w 25 microemulsion formulations most usually are highly alkaline or highly built or both.
In addition to their excellent capacity for cleaning greasy and oily soils, the low pH o/w microemulsion formulations also exhibit excellent cleaning performance and removal of soap scum and lime scale in neat (undiluted) as well as in diluted usage.

WO 95/14762 PCT/US9~/131~78 _ 217701~ ~

The final essential ingredient in the inventive microemulsion compositions having improved interfacial tension properties is water. The proportion of water in themicroemulsion compositions generally is in the range of 20% to 97%, preferably 70% to 97% by weight of the usual diluted o/w microemulsion composition.
As believed to have been made clear from the foregoing description, the dilute o/w microemulsion liquid all-purpose cleaning compositions of this invention areespecially effective when used as is, that is, without further dilution in water, since the properties of the composition as an o/w microemulsion are best manifested in the neat (undiluted) form. However, at the same time it should be understood that depending on 10 the levels of surfactants, cosurfactants, perfume and other ingredients, some degree of dilution without disrupting the microemulsion, per se, is possible. For example, at the preferred low levels of active surfactant compounds (i.e., primary anionic and nonionic detergents) dilutions up to 50% will generally be well tolerated without causing phase separation, that is, the microemulsion state will be maintained.
However, even when diluted to a great extent, such as a 2- to 10-fold or more dilution, for example, the resulting compositions are still effective in cleaning greasy, oily and other types of soil. Furthermore, the presence of magnesium ions or other polyvalent ions, e.g., aluminum, as will be described in greater detail below further serves to boost cleaning performance of the primary detergents in dilute usage.
On the other hand, it is also within the scope of this invention to formulate highly concentrated microemulsions which will be diluted with additional water before use.
The present invention also relates to a stable concentrated microemulsion or acidic microemulsion composition comprising approximately by weight:
(a) 1 to 30% of an anionic surfactant;
(b) .1% to 10% of a grease release agent;
(c) 0.1 to 50% of a cosurfactant;
(d) 0.4 to 10% of a water insoluble hydrocarbon or perfume;
(e) 0 to 18% of at least one dicarboxylic acid;
(f) 0 to 1% of phosphoric acid;

~WO 95/14762 2~ 1 7 7 D 6 8 ` PCT/US94/13158 (g) 0 to 0.2% of an aminoalkylene phosphonic acid;
(h) 0 to 15% of magnesium sulfate heptahydrate; and (i) balance being water.
Such concentrated microemulsions can be diluted by mixing with up to 20 times 5 or more, preferably 4 to 10 times their weight of water to form o/w microemulsions similar to the diluted microemulsion compositions described above. While the degree of dilution is suitably chosen to yield an o/w microemulsion composition after dilution, it should be recognized that during the course of dilution both microemulsion and non-microemulsions may be successively encountered.
In addition to the above-described essential ingredients required for the formation of the microemulsion composition, the compositions of this invention may often and preferably do contain one or more additional ingredients which serve to improve overall product performance.
One such ingredient is an inorganic or organic salt of oxide of a multivalent metal 15 cation, particularly Mg+~. The metal salt or oxide provides several benefits including improved cleaning performance in dilute usage, particularly in soft water areas, and minimized amounts of perfume required to obtain the microemulsion state. Magnesium sulfate, either anhydrous or hydrated (e.g., heptahydrate), is especially preferred as the magnesium salt. Good results also have been obtained with magnesium oxide, 20 magnesium chloride, magnesium acetate, magnesium propionate and magnesium hydroxide. These magnesium salts can be used with formulations at neutral or acidic pH since magnesium hydroxide will not precipitate at these pH levels.
Although magnesium is the preferred multivalent metal from which the salts (inclusive of the oxide and hydroxide) are formed, other polyvalent metal ions also can 25 be used provided that their salts are nontoxic and are soluble in the aqueous phase of the system at the desired pH level. Thus, depending on such factors as the pH of the system, the nature of the primary surfactants and cosurfactant, and so on, as well as the availability and cost factors, other suitable polyvalent metal ions include aluminum, copper, nickel, iron, calcium, etc. It should be noted, for example, that with the 2i7rlo68 20 preferred paraffin sulfonate anionic detergent calcium salts will precipitate and should not be used. It has also been found that the aluminum salts work best at pH below 5 or when a low level, for example 1 weight percent, of citric acid is added to the composition which is designed to have a neutral pH. Alternatively, the aluminum salt 5 can be directly added as the citrate in such case. As the salt, the same general classes of anions as mentioned for the magnesium salts can be used, such as halide (e.g., bromide, chloride), sulfate, nitrate, hydroxide, oxide, acetate, propionate, etc.
Preferably, in the dilute compositions the metal compound is added to the composition in an amount sufficient to provide at least a stoichiometric equivalent 10 between the anionic surfactant and the multivalent metal cation. For example, for each gram-ion of Mg++ there will be 2 gram moles of paraffin sulfonate, alkylbenzene sulfonate, etc., while for each gram-ion of A13+ there will be 3 gram moles of anionic surfactant. Thus, the proportion of the multivalent salt generally will be selected so that one equivalent of compound will neutralize from 0.1 to 1.5 equivalents, preferably 0.9 to 15 1.4 equivalents, of the acid form of the anionic detergent. At higher concentrations of anionic detergent, the amount of multivalent salt will be in range of 0.5 to 1 equivalents per equivalent of anionic detergent.
The o/w microemulsion compositions can optionally include from 0% to 5%, preferably from 0.1% to 2.0% by weight of the composition of a Cg-C22 fatty acid or 20 fatty acid soap as a foam suppressant. The addition of fatty acid or fatty acid soap provides an improvement in the rinseability of the composition whether applied in neat or diluted form. Generally, however, it is necessary to increase the level of cosurfactant to maintain product stability when the fatty acid or soap is present.
As example of the fatty acids which can be used as such or in the form of soap, 25 mention can be made of distilled coconut oil fatty acids, "mixed vegetable" type fatty acids (e.g. high percent of saturated, mono-and/or polyunsaturated C18 chains); oleic acid, stearic acid, palmitic acid, eiocosanoic acid, and the like, generally those fatty acids having from 8 to 22 carbon atoms being acceptable.

~p WO 95/14762 ~ ~ 7 7 0 g 8 PCT/US94/13158 The microemulsion composition of this invention may, if desired, also contain other components either to provide additional effect or to make the product moreattractive to the consumer. The following are mentioned by way of example: Colors or dyes in amounts up to 0.5% by weight; bactericides in amounts up to 1% by weight;
5 preservatives or antioxidizing agents, such as formalin, 5-chloro-2-methyl-4-isothaliazolin-3-one, 2,6-di-tert.butyl-p-cresol, etc., in amounts up to 2% by weight; and pH adjusting agents, such as sulfuric acid or sodium hydroxide, as needed.
Furthermore, if opaque compositions are desired, up to 4% by weight of an opacifier may be added.
In final form, the oil-in-water microemulsions exhibit stability at reduced and increased temperatures. More specifically, such compositions remain clear and stable in the range of 5C to 50C, especially 1 0C to 43C. Such compositions exhibit a pH
in the acid or neutral range depending on intended end use. The liquids are readily pourable and exhibit a viscosity in the range of 6 to 60 milliPascal . second (mPas.) as measured at 25C. with a Brookfield RVT Viscometer using a #1 spindle rotating at 20 RPM. Preferably, the viscosity is maintained in the range of 10 to 40 mPas.
The compositions are directly ready for use or can be diluted as desired and in either case no or only minimal rinsing is required and substantially no residue or streaks are left behind. Furthermore, because the compositions are free of detergent builders such as alkali metal polyphosphates they are environmentally acceptable and provide a better "shine" on cleaned hard surfaces.
When intended for use in the neat form, the liquid compositions can be packaged under pressure in an aerosol container or in a pump-type sprayer for the so-called spray-and-wipe type of application.
Because the compositions as prepared are aqueous liquid formulations and since no particular mixing is required to form the o/w microemulsion, the compositions are easily prepared simply by combining all the ingredients in a suitable vessel or container. The order of mixing the ingredients is not particularly important andgenerally the various ingredients can be added sequentially or all at once or in the form WO 9S/14762 PCTllJS94/131~i8 ~
~7~6~ 22 of aqueous solutions of each or all of the primary detergents and cosurfactants can be separately prepared and combined with each other and with the perfume. The magnesium salt, or other multivalent metal compound, when present, can be added as an aqueous solution thereof or can be added directly. It is not necessary to useelevated temperatures in the formation step and room temperature is sufficient.
The instant grease release agent can be employed in any type of hard surface cleaning compositions such as nonmicroemulsion all purpose cleaners and light duty liquid detergents.
The composition of the light duty liquid detergent having a pH of 6 to 8 10 comprises approximately by weight:
(a) 1 to 50 wt. %, more preferably 2 to 40 wt. % and most preferably 3 to 35 wt. % of at least one surfactant selected from the group consisting of nonionic surfactants, anionic surfactants, zwitterionic surfactants, fatty acid soap surfactants and alkyl polysaccharide surfactants;
1~ (b) 0.1 to 50 wt. %, more preferably 0.4 to 20 wt. % and most preferably 0.1 to 10 wt. % of a grease release agent;
(c) 0 to 15 wt. %, more preferably 1 to 12 wt. % of a solubilizing agent; and (d) the balance being water.
The nonionic surfactant can be present in the light duty liquid detergent 20 composition in amounts of 0 to 50%, preferably 1 to 30%, most preferably 2 to 25%, by weight of the light duty liquid detergent composition and provides superior performance in the removal of oily soil and mildness to human skin.
The light duty liquid compositions as well as the microemulsion composition do not contain any organic peroxides, alkylaryl phenols, oxyalkylated phenolic resin or 25 magnesium aluminum silicates or alkali metal silicates.
The water soluble nonionic surfactants utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide-propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ~ WO 95/14762 ~ 17 ~ ~ 6 8 PCT/US94/13158 ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI). The nonionic synthetic organic surfactants generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups. Practically any hydrophobic compound having a carboxy, hydroxy, amido, or 5 amino group with a free hydrogen attached to the nitrogen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water soluble nonionic surfactant. Further, the length of the polyethenoxy hydrophobic and hydrophilic elements.
The nonionic surfactant class includes the condensation products of a higher 10 alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, iauryl or myristyl alcohol condensed with 16 moles of ethylene oxide (E0), tridecanol condensed with 6 to moles of EO, myristyl alcohol condensed with 10 moles of EO per mole of myristyl alcohol, the condensation product of E0 with a cut of coconut fatty 15 alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of E0 per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
A preferred group of the foregoing nonionic surfactants are the Neodol 20 ethoxylates (Shell Co.), which are higher aliphatic, primary alcohol containing 9-15 carbon atoms, such as Cg-C1 1 alkanol condensed with 8 moles of ethylene oxide (Neodol 91-8), C12 13 alkanol condensed with 6.5 moles ethylene oxide (Neodol 23-6.5), C12 15 alkanol condensed with 12 moles ethylene oxide (Neodol 25-12), C14 15 alkanol condensed with 13 moles ethylene oxide (Neodol 45-13), and the like. Such 25 ethoxamers have an HLB (hydrophobic lipophilic balance) value of 8 to 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 8 contain lessthan 5 ethyleneoxide groups and tend to be poor emulsifiers and poor surfactants.
Additional satisfactory water soluble alcohol ethylene oxide condensates are thecondensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms WO 9S/14762 21 7 7 0 ~ 8 PCT/US94/131S8 ~ :

in a straight or branched chain configuration condensed with 5 to 30 moies of ethylene oxide. Examples of commercially available nonionic surfactants of the foregoing type are C1 1 -C15 secondary alkanol condensed with either 9 EO (Tergitol 1 5-S-9) or 12 EO
(Tergitol 15-S-12) marketed by Union Carbide.
Other suitable nonionic surfactants include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide. Specific examples of alkyl phenol ethoxylates include nonyl phenol condensed with 9.5 moles of EO permole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of 10 phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and di-isoctylphenol condensed with 15 moles of EO per mole of phenol. Commercially available nonionic surfactants of this type include Igepal C0-630 (nonyl phenol ethoxylate) marketed by GAF Corporation.
Also among the satisfactory nonionic surfactants are the water-soluble 15 condensation products of a C8-C20 alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio or ethylene oxide to propylene oxide is from 2.5:1 to 4:1, preferably 2.8:1 to 3.3:1, with the total of the ethylene oxide and propylene oxide (including the terminal ethanol or proponol group) being from 60-85%, preferably 70 to 80%, by weight. Such surfactants are commercially available from BASF-20 Wyandotte and a particularly preferred surfactant is a C1 0-C16 alkanol condensate with ethylene oxide and propylene oxide, the weight ratio of ethylene oxide to propylene oxide being 3:1 and the total alkoxy content being 75% by weight.
Condensates of 2 to 30 moles of ethylene oxide with sorbitan mono- and tri-C1 o-C20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the 25 nonionic detergent ingredient in the described shampoo. These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan trioleate and polyoxyethylene (20) sorbitan tristearate.

~WO 95114762 217 7 ~ 6 8 ; PCT/US94/13158 Other suitable water-soluble nonionic detergents which are less preferred are marketed under the trade name "Pluronics". The compounds are formed by condensing ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The molecular weight of the hydrophobic portion of the molecule is of the order of 950 to 4000 and preferably 200 to 2,~00. The addition of polyoxyethylene radicals to the hydrophobic portion tends to increase the solubility of the molecule as a whole so as to make the surfactant water-soluble. The molecular weight of the block polymers varies from 1,000 to 15,000 and the polyethylene oxide content may comprise 20% to 80% by weight. Preferably, these surfactants will be in liquid form and satisfactory surfactants are available as grades L62 and L64.
The anionic surfactant, used in the light duty liquid detergent composition are the same anionic surfactants as used in the aforementioned microemulsion compositions and, constitutes 0% to 50%, preferably 1% to 30%, most preferably 2 to 25%, by weight thereof and provides good foaming properties. However, preferably reducedamounts are utilized in order to enhance the mildness of the skin property desired in the inventive compositions.
The water-soluble zwitterionic surfactant, which can also present in the light duty liquid detergent composition, constitutes 0 to 15%, preferably 1 to 12%, most preferably 2 to 10%, by weight and provides good foaming properties and mildness to the present nonionic based liquid detergent. The zwitterionic surfactant is a water soluble betaine having the general formula:

wherein X- is selected from the group consisting of SO3- or CO2- and R1 is an alkyl group having 10 to 20 carbon atoms, preferably 12 to t 6 carbon atoms, or the amido radical:

WO 9S/14762 ~ ~ 7 7 ~ 6 8 PCT/US94/131SX

O H
R -C - N - (CH2)a ~
wherein R is an alkyl group having 9 to 19 carbon atoms and a is the integer 1 to 4; R2 5 and R3 are each alkyl groups having 1 to 3 carbons and preferably 1 carbon; R4 is an alkylene or hydroxyalkylene group having from 1 to 4 carbon atoms and, optionally, one hydroxyl group. Typical alkyldimethyl betaines include decyl dimethyl betaine or 2-(N-decyl-N, N-dimethyl-ammonia) acetate, coco dimethyl betaine or 2-(N-coco N, N-dimethylammonia) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, lauryl 10 dimethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine, etc. The amidobetaines similarly include cocoamidoethylbetaine, cocoamidopropyl betaine and the like. A preferred betaine is coco (Cg-C1g) amidopropyl dimethyl betaine. Theinstant light duty liquid detergent composition contains at least 5 wt. % of at least one of the surfactants selected from the group consisting of the nonionic surfactant, the 15 anionic surfactant and the betaine surfactant or a mixture thereof.
All of the aforesaid ingredients in this light duty liquid detergent are water soluble or water dispersible and remain so during storage.
The resultant homogeneous liquid detergent exhibits the same or better foam performance, both as to initial foam volume and stability of foam in the presence of 20 soils, and cleaning efficacy as an anionic based light duty liquid detergent (LDLD) as shown in the following Examples.
The essential ingredients discussed above are solubilized in an aqueous medium comprising water and optionally, solubilizing ingredients such as (monoalkanolamides and dialkanol amides) and alcohols and dihydroxy alcohols such 25 as C2-C3 mono- and di-hydoroxy alkanols, e.g. ethanol, isopropanol and propylene glycol. Suitable water soluble hydrotropic salts include sodium, potassium, ammonium and mono-, di- and triethanolammonium salts. While the aqueous medium is primarily water, preferably said solubilizing agents are included in order to control the viscosity of the liquid composition and to control low temperature cloud clear properties. Usually, it is desirable to maintain clarity to a temperature in the range of 5C to 1 0C. Therefore, the proportion of solubilizer generally will be from 1% to 15%, preferably 2% to 12%, most preferably 3% to 8%, by weight of the detergent composition with the proportion of ethanol, when present, being 5% of weight or less in order to provide a composition 5 having a flash point above 46C. Preferably the solubilizing ingredient will be a mixture of ethanol and either sodium xylene sulfonate or sodium cumene sulfonate or a mixture of said sulfonates. Another extremely effective solubilizing or cosolubilizing agent used at a concentration of 0.1 to 5 wt. percent, more preferably 0.5 to 4.0 weight percent is isethionic acid or an alkali metal salt of isethionic acid having the formula:
- +

wherein X is hydrogen or an alkali metal cation, preferably sodium.
In addition to the previously mentioned essential and optional constituents of the light duty liquid detergent, one may also employ normal and conventional adjuvants, 15 provided they do not adversely affect the properties of the detergent. Thus, there may be used various coloring agents and perfumes; ultraviolet light absorbers such as the Uvinuls, which are products of GAF Corporation; sequestering agents such as ethylene diamine tetraacetates; magnesium sulfate heptahydrate; pearlescing agents and opacifiers; pH modifiers; etc. The proportion of such adjuvant materials, in total will 20 normally not exceed 15% of weight of the detergent composition, and the percentages of most of such individual components will be 0.1% to 5% by weight and preferably less than 2% by weight. Sodium formate can be included in the formula as a perservative at a concentration of 0.1 to 4.0%. Sodium bisulfite can be used as a color stabilizer at a concentration of O.Ot to 0.2 wt.%. Typical perservatives are 25 dibromodicyano-butane, citric acid, benzylic alcohol and poly (hexamethylene- biguamide) hydro-chloride and mixtures thereof.
The instant light duty liquid detergent compositions can contain 0.1 to 4 wt. %,more preferably 0.5 to 3.0 wt. % of an alkyl polysaccharide surfactant. The alkyl polysaccharides surfactants, which are used in conjunction with the aforementioned WO 95/14762 2 i~ 7 ~ ~ 8 PCTtUS94tl31S8 ~

surfactants have a hydrophobic group containing from 8 to 20 carbon atoms, preferablyfrom 10 to 16 carbon atoms, most preferablyfrom 12to 14 carbon atoms, and polysaccharide hydrophilic group containing from 1.5 to 10, preferably from 1.5 to 4, most preferably from 1.6 ~o 2.7 saccharide units (e.g., galactoside, glucoside, 5 fructoside, glucosyl, fructosyl; and/or galactosyl units). Mixtures of saccharide moieties may be used in the alkyl polysaccharide surfactants. The number x indicates the number of saccharide units in a particular alkyl polysaccharide surfactant. For a particular alkyl polysaccharide molecule x can only assume integral values. In any physical sample of alkyl polysaccharide surfactants there will be in general molecules 10 having different x values. The physical sample can be characterized by the average value of x and this average value can assume non-integral values. In this specification the values of x are to be understood to be average values. The hydrophobic group (R) can be attached at the 2-, 3-, or 4- positions rather than at the 1 -position, (thus giving e.g. a glucosyl or galactosyl as opposed to a glucoside or galactoside). However, 15 attachment through the 1- position, i.e., glucosides, galactoside, fructosides, etc., is preferred. In the preferred product the additional saccharide units are predominately attached to the previous saccharide unit's 2-position. Attachment through the 3-, 4-, and 6- positions can also occur. Optionally and less desirably there can be a polyalkoxide chain joining the hydrophobic moiety (R) and the polysaccharide chain.
20 The preferred alkoxide moiety is ethoxide.
Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from 8 to 20, preferably from 10 to 18 carbon atoms. Preferably, the alkyl group is a straight chain saturated alkyl group. The alkyl group can contain up to 3 hydroxy groups and/or the polyalkoxide chain can contain up 25 to 30, preferably less than 10, alkoxide moieties.
Suitable alkyl polysaccharides are decyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, fructosides, fructosyls, lactosyls, glucosyls and/or galactosyls and mixtures thereof.

~ WO 95/14762 2 1 7 7 Q 6 8 PCTIUS94/131S8 The alkyl monosaccharides are relatively less soluble in water than the higher alkyl polysaccharides. When used in admixture with alkyl polysaccharides, the alkyl monosaccharides are solubilized to some extent. The use of alkyl monosaccharides in admixture with alkyl polysaccharides is a preferred mode of carrying out the invention.
Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexaglucosides.
The preferred alkyl polysaccharides are alkyl polyglucosides having the formula R20(Cn H2no)r(z)x wherein Z is derived from glucose, R is a hydrophobic group selected from the group consisting of alkyl, alkylphenyl, hydroxyalkylphenyl, and mixtures thereof in which said alkyl groups contain from 10 to 18, preferably from 12 to 14 carbon atoms; n is 2 or 3 preferably 2, r is from 0 to 10, preferable 0; and x is from 1.5 to 8, preferably from 1 .5 to 4, most preferably from 1.6 to 2.7. To prepare these compounds a long chain alcohol (R2OH) can be reacted with glucose, in the presence of an acid catalyst to form the desired glucoside. Alternatively the alkyl polyglucosides can be prepared by a two step procedure in which a short chain alcohol (R1 OH) can be reacted with glucose, in the presence of an acid catalyst to form the desired glucoside. Alternatively the alkyl polyglucosides can be prepared by a two step procedure in which a short chain alcohol (C1 6) is reacted with glucose or a polyglucoside (x=2 to 4) to yield a short chain alkyl glucoside (x=1 to ~) which can in turn be reacted with a longer chain alcohol (R2OH) to displace the short chain alcohol and obtain the desired alkyl polyglucoside. If this two step procedure is used, the short chain alkylglucosde content of the final alkylpolyglucoside material should be less than 50%, preferably less than 10%, more preferably less than 5%, most preferably 0% of the alkyl polyglucoside.
The amount of unreacted alcohol (the free fatty alcohol content) in the desired alkyl polysaccharide surfactant is preferably less than 2%, more preferably less than 0.5% by weight of the total of the alkyl polysaccharide. For some uses it is desirable to have the alkyl monosaccharide content less than 10%.

WO 9S/14762 2~ ~ 7 7 ~ ~ g PCT~USg~ll3lr8 ~

The used herein, "alkyl polysaccharide surfactant~ is intended to represent boththe preferred glucose and galactose derived surfactants and the less preferred alkyl polysaccharide surfactants. Throughout this specification, "alkyl polyglucoside" is used to include alkyl polyglycosides because the stereochemistry of the saccharide moiety is 5 changed during the preparation reaction.
An especially preferred APG glycoside surfactant is APG 625 glycoside manufactured by the Henkel Corporation of Ambler, PA. APG25 is a nonionic alkyl polyglycoside characterized by the formula:
CnH2n+1 O(C6H1 005)XH
wherein n=10 (2%); n=122 (65%); n=14 (21-28%); n=16 (4-8%) and n=18 (0.5%) and x(degree of polymerization) = 1.6. APG 625 has: a pH of 6 to 10 (10% of APG 625 in distilled water); a specific gravity at 25C of 1.1 g/ml; a density at 25C of 9.1 Ibs/gallon;
a calculated HLB of 12.1 and a Brookfield viscosity at 35C, 21 spindle, 5-10 RPM of 3,000 to 7,000 cps.
The instant compositions can contain a silk derivatives as part of the composition and generally constitute 0.01 to 3.0 % by weight, preferably 0.1 to 3.0% by weight, most preferably 0.2 to 2.5% by weight of the liquid detergent composition.
Included among the silk derivatives are silk fibers and hydrolyzate of silk fibers.
The silk fibers may be used in the form of powder in preparing the liquid detergent or as a powder of a product obtained by washing and treating the silk fibers with an acid.
Preferably, silk fibers are used as a product obtained by hydrolysis with an acid, alkali or enzyme, as disclosed in Yoshiaki Abe et al., U.S. Patent No. 4,839,168; Taichi Watanube et al., U.S. Patent No. 5,009,813; and Marvin E. Goldberg, U.S. Patent No.
5,069,898, each incorporated herein by reference.
Another silk derivative which may be employed in the composition of the present invention is protein obtained frorn degumming raw silk, as disclosed, for example, in Udo Hoppe et al., U.S. Patent No. 4,839,165, incorporated herein by reference. The principal protein obtained from the raw silk is sericin which has an empirical formula of C1 sH2sO3Ns and a molecular weight of 323.5.

~ W095tl4762 PCT/US94/13158 ~ 217706g Another example of a silk derivative for use in the liquid detergent composition of the present invention is a fine powder of silk fibroin in nonfibrous or particulate ~orm, as disclosed in Kiyoshi Otoi et al., U.S. Patent No. 4,233,212, incorporated herein by reference.
The fine powder is produced by dissolving a degummed silk material in at least one solvent selected from, for example, an aqueous cupriethylene diamine solution, an aqueous ammoniacal solution of cupric hydroxide, an aqueous alkaline solution ofcupric hydroxide and glycerol, an aqueous lithium bromide solution, an aqueous solution of the chloride, nitrate or thiocyanate of calcium, magnesium or zinc and an aqueous sodium thiocyanate solution. The resulting fibroin solution is then dialyzed.
The dialyzed aqueous silk fibroin solution, having a silk fibroin concentration of from 3 to 20% by weight, is subjected to at least one treatment for coagulating and precipitating the silk fibroin, such as, for example, by the addition of a coagulating salt, by aeration, by coagulation at the isoelectric point, by exposure to ultrasonic waves, by agitation at high shear rate and the like.
The resulting product is a silk fibroin gel which may be incorporated directly into the liquid detergent composition or the same may be dehydrated and dried into a powder and then dissolved in the liquid detergent composition.
The silk material which may be used to form the silk fibroin includes cocoons, raw silk, waste cocoons, raw silk waste, silk fabric waste and the like. The silk material is degummed or freed from sericin by a conventional procedure such as, for example, by washing in warm water containing a surfact-active agent or an enzyme, and then dried. The degummed material is dissolved in the solvent and preheated to a temperature of from 60 to 95C, preferably 70 to 85C. Further details of the process of 25 obtaining the silk fibroin are discussed in U.S. Patent No. 4,233,212.
A preferred silk derivative is a mixture of two or more individual amino acids which naturally occur in silk. The principal silk amino acids are glycine, alanine, serine and tyrosine.

~770~8 A silk amino acid mixture resulting from the hydrolysis of silk of low molecularweight and having a specific gravity of at least 1 is produced by Croda, Inc. and sold under the trade name "CROSILK LIQUID" which typically has a solids content in the range of 27 to 31% by weight. Further details of the silk amino acid mixture can be 5 found in Wendy W. Kim et al., U.S. Patent No. 4,906,460, incorporated herein by reference. A typical amino acid composition of "CROSILK LIQUID" is shown in the following Table .
AMINO ACID PERCENT BY WEIGHT
Alanine 28.4 Glycine 34.7 Valine 2.0 eucine .2 'roline .2 Tyrosine 0.6 Phenylalanine 0.9 Serine 15 4 -hreonine .
Arginine Asparti Acid ~. 7 Glutam c Acid ~.
soleuc ne C.
_ysine 1.
listidine 0.8 Cystine 0.1 Methionine 0.2 TOTAL 99.9 The instant compositions can contain a viscosity modifying solvent at a 10 concentration of 0.1 to 5.0 weight percent, more preferably 0.5 to 4.0 weight percent.
The viscosity modifying agent is an alcohol of the formula bR1 15 wherein R1 = CH3, CH2CH3 R2 = CH3, CH2CH3 R3 = CH2OH, CH2CH2OH;
which is preferably 3-methyl-3-methoxy-butanol.

~ WO 9S/14762 2 17 7 0 6 8 ~ PCT/US9~/13158 The 3-methyl-3-methoxy butanol is commercially available from Sattva Chemical Company of Stamford, Connecticut and Kuraray Co., Ltd., Osaka, Japan.
The instant composition can contain 0.1 to 4.0% of a protein selected from the group consisting of hydrolyzed animal collagen protein obtained by an enzymatic 5 hydrolysis, lexeine protein, vegetal protein and hydrolyzed wheat protein and mixtures thereof.
The present light duty liquid detergents such as dishwashing liquids are readilymade by simple mixing methods from readily available components which, on storage, do not adversely affect the entire composition. However, it is preferred that the 10 nonionic surfactant, if present, be mixed with the solubilizing ingredients, e.g., ethanol and, if present, prior to the addition of the water to prevent possible gelation. The surfactant system is prepared by sequentially adding with agitation the anionic surfactant, the betaine and the grease release agent to the non-ionic surfactant which has been previously mixed with a solubilizing agent such as ethyl alcohol and/or sodium 15 xylene sulfonate to assist in solubilizing said surfactants, and then adding with agitation the formula amount of water to form an aqueous solution of the surfactant system. The use of mild heating (up to 1 00C.) assists in the solubilization of the surfactants. The viscosities are adjustable by changing the total percentage of active ingredients. No polymeric or clay thickening agent is added. In all such cases the product made will be 20 pourable from a relatively narrow mouth bottle (1.5 cm. diameter) or opening, and the viscosity of the detergent formulation will not be so low as to be like water. The viscosity of the detergent desirably will be at least 100 centipoises (cps) at room temperature, but may be up to 1,000 centipoises as measured with a Brookfield Viscometer using a number 3 spindle rotating at 12 rpm. Its viscosity may approximate those of 25 commercially acceptable detergents now on the market. The detergent viscosity and the detergent itself remain stable on storage for lengthy periods of time, without color changes or settling out of any insoluble materials. The pH of this formation is substantially neutral to skin, e.g., 4.5 to 8 and preferably 5.5 to 5Ø

WO 9SI14762 ~ ~ 7 ~ 0 6 8 PCTIUS94/13158 This invention also relates to all all purpose hard surface cleaner composition which comprises at least one surfactant, a grease release agent, a magnesium containing inorganic compound, perfume and water.
The at least one surfactant is selected from the group consisting of nonionic 5 surfactants and anionic surfactants, wherein said surfactants are selected from the name aforementioned surfactants used in forming the microemulsion compositions of the instant invention. The concentration of the anionic surfactant is 0 to 20 wt. %, more preferably 1to 10wt.%andtheconcentrationofthenonionicsurfactantis 0.1to 10 wt. %, more preferably 0.5 to 6 wt. %.
The grease release agent is the same as that used in the microemulsion composition and constitutes 0.1 to 15 wt. %, more preferably 1 to 10 wt. %.
The magnesium inorganic compound is preferably magnesium sulfate heptahydrate and constitutes 0.1 to 5 wt. %, more preferably 0.4 to 3 wt. % of the instant composition.
The perfumes which are selected from the same group of perfumes as in the microemulsion compositions constitute less than 0.3 wt. % of the composition, preferably 0.05 to 0.3 wt. %.
The following examples are merely illustrative of the invention and are not to be construed as limiting thereof.
The following examples illustrate liquid cleaning compositions of the described invention. Unless otherwise specified, all percentages are by weight. The exemplified compositions are illustrative only and do not limit the scope of the invention. Unless otherwise specified, the proportions in the examples and elsewhere in the specification are by weight.

WO 95/14762 ~ 1 ~ 7 n ~ ~ PCT/US94/131S8 Fxample 1 The following microemulsion compositions in wt. % were prepared:
A B =Ajaxtm C (e) NME(C) Sodium C13-C17 Alkyl Sulfonate 4.0 4.0 4 DEGMBE 3.5 3.5 E-hylene glycol mono butyl ether 5 I\lgSO4 7 H20 1.5 1.5 1.5 Perfume (a) 0.8 0.8 Fatty acid 0.5 0.5 Copolymer (d) 4 Fatty alcohol C1 3 1 5, 7EO,4PO 3.0 3.0 Cg-C1 1 alcohol EO 5:1 3 Colorant 0.002 0.002 Preservative 0.2 0.2 Water balance balance balance pH 7 std Degreasing test Neat (b) equal std Dilute (b) better s-d Residue equal s-d Foam in hard Water equal s-d (a) contains 25% by weight of terpenes.
5 (b) the lower the number of strokes, the better the degreasing performance.
(c) manufactured by Colgate-Palmolive Co.
(d) copolymer is (CH - CH) (CH2 - CH) C = O (CH2)9 (cH2cH2 - O)gH 31 (e) Example 1 of U.S. Patent 5,082,584 Furthermore, "dissolution power" of the o/w microemulsion of this example is 15 compared to the "dissolution power" of an identical composition except that an equal amount (5 weight percent) of sodium cumene sulfonate hydrotrope is used in place of the diethylene glycol monobutyl ether cosurfactant in a test wherein equal W09S/14762 ~, ~7 ~ a 68 PCTIUS94/13158 concentrations of heptane are added to both compositions. The o/w microemulsion of this invention solubilizes 12 grams of the water immiscible substance as compared to 1.4 grams in the hydrotrope containing liquid composition.
In a further comparative test using blue colored cooking oil--a fatty triglyceride 5 soil --, the composition of Example 1 is clear after the addition of 0.2 grams of cooking oil whereas the cooking oil floats on the top of the composition containing the sulfonate hydrotrope.
When the concentration of perfume is reduced to 0.4% in the composition of Example 1, a stable o/w microemulsion composition is obtained. Similarly, a stable o/w 10 microemulsion is obtained when the concentration of perfume is increased to 2% by weight and the concentration of cosurfactant is increased to 6% by weight in Example 1.
Fxample 2 The example illustrates a typical formulation of a ~concentrated" o/w microemulsion based on the present invention:
% by weight Sodium C 1 3-C17 alkyl sulfonate 12 diethylene glycol monobutyl ether 8.4 Copolymer of Example 1 4.0 Perfume (a) 2.4 Mgso4.7H2o Fatty alcohol C1 3-C1 s, 7 EO,4 PO 7.2 Fatty acid 1.5 Water 61.5 pH: 7.0 + 0.2 This concentrated formulation can be easily diluted, for example, three times with tap water, to yield a diluted o/w microemulsion composition. Thus, by using microemulsion technology it becomes possible to provide a product having high levels of active detergent ingredients and perfume, which has high consumer appeal in terms 30 of clarity, odor and stability, and which is easily diluted at the usual usage concentration for similar all-purpose hard surface liquid cleaning compositions, while retaining its cosmetically attractive attributes.
Naturally, these formulations can be used, where desired, ~, W0 9511476~ 2 ~ 7 7 0 6 ~, rcT/rJs94ll3ls8 without further dilution and can also be used at full or diluted strength to clean soiled fabrics by hand or in an automatic laundry washing machine.
Fxample 3 This example illustrates a diluted o/w microemulsion composition according to 5 the invention having an acidic pH and which also provides improved cleaning performance on soap scum and lime scale removal as well as for cleaning greasy soil.
% by weight Sodium C 1 3-C17 alkyl sulfonate 4.0 Copolymer of Example 1 4.0 Mg SO4 7H20 1.5 Mixture of succinic acid/glutaric acid/
adipic acid (1 :1 :1 ) 5.0 Phosphoric acid 0.22 Perfume (d) 0.8 dye 0.002 preservative 0-3 amino alkylene phosphonic acid 0.25 Water, minors (dye) balance to 100 pH = 3 + 0.2 (d) contains 40% by weight of terpene Example 4 Formulas A and C of Example 1, were tested were tested for a grease release effect and compared to commercial AjaxtmNME
I. Grease release effect Test Method A) Surface treatment by diluted (1.2% in tap water) or neat tested formula:
1 .Pretreatment of half ceramic tile by the prototype, the other one by the reference (current AJAX); the pretreatment consists in:
a. display the product on the tile by sponges: 10 strokes b. Iet simply dry in the air or c. wet wipe with wet sponges: 5 strokes or d. wipe dry with paper towel: 5 strokes the surface 2.Spraying hot grease on the surface 3.first cleaning with neat or diluted products 4.drying, or wet wiping or wipe drying 5.second spraying follwed by second cleaning B) Soil composition:
20% hardened tallow 80% beef tallow fat blue dye WO 95/14762 217 7 0 ~ 8 PCTIUS9.1/131S8 ~

C) Soil preparation:
The fat mixture is heated and sprayed with an automatic spraying device on cleaned and dried ceramic tiles.
D) Soil removal:
Product used neat: 2.5 9 on sponge Product used dilute: 1.2% sol in tap water - 10 ml of the solution on the sponge The cleaning procedure is done with the gardner device for both product concentrations.
Results A) On pretre~ted ceramic tiles:
a.treated with the neat product; drying in open air before spraying the soil number of strokes for first cleaning number of strokes for second cleaning after drying in open air Formula A 30 30 Formula C
AJAX APCtm NME 30 36 15 b.treated with the neat product; wipe with paper towel before spraying the soil number of strokes for first cleaning number of strokes for the second cleaning after wipe with paper towel Formula A 32 40 Formula C
AJAX APCtm NME 32 41 c.treated with the neat product; wipe with wet sponges number of strokes for first cleaning number of strokes for the second cleaning after wipe with wet sponges FormulaA 25 32 Formula C
AJAX APCtm NME 25 32 d. treated by dilute product; drying in open air before spraying the soil number of strokes for first cleaning number of strokes for second cleaning after drying in open air Formula A 5 8 Formula C
AJAX APCtm NME 16 14 ~ WO 95/14762 ~ ~L 7 7 ~ ~ 8 PCT/US94/131S8 B) On untreated ceramic tiles a. cleaning by the diluted product conditions: between first and second cleaning let dry in the open air number of strokes for the first number of strokes for the cleaning second cleaning a~ter dryinp in the open air Formula A
Formula C ~4 6 AJA)~ APCtm NME 66 14 b.cleaning by the diluted product conditions: between first and second cleaning wipe with wet sponges number of strokes for the first number of strokes for the cleaning second cleanin~ after wil)ing with wet spon~es Formula A
FormulaC 54 10 AJA)( APCtm NME 66 20 10 These results clearly demonstrate the important grease release effect obtained with formula A, especially when the product is used diluted.
In summary, the described invention broadly relates to an improvement in microemulsion compositions containing an anionic surfactant, a nonionic surfactant, a cosurfactant, a hydrocarbon ingredient and water which comprise the use of a water-15 insoluble, odoriferous perfume as the essential hydrocarbon ingredient in a proportionsufficient to form either a dilute o/w microemulsion composition containing, by weight, 0.1% to 20% of an anionic detergent, 0.1% to 10% of a grease release agent; 0.1% to 50% of cosurfactant, 0.4% to 10% of perfume and the balance being water as well as to the previously described all purpose hard surface cleaner or light duty liquid detergent 20 compositions having incorporated therein a grease release agent

Claims

What Is Claimed 1. A stable microemulsion composition comprising approximately by weight:
0.1% to 20% of an anionic surfactant, 0.1% to 50% of a cosurfactant, 0.1% to 10% of a grease release agent, 0.1% to 10% of a water insoluble hydrocarbon or a perfume and the balance being water, wherein said grease release agent is selected from the group consisting of a copolymer characterized by the formula:

(CH-CH) (CH2-CH) C=O (CH2)X y O
(CH2-CH2-O)nH CH3 wherein n is 5 to 14, x is 7 to 19, and y is of such a value as to provide a molecular weight 10,000 to 30,000 and a polymer depicted by the formula:

wherein n is a number from 2 to 16, R1 is selected from the group consisting of methyl or hydrogen, R2 is a C1 to C12, linear or branched chained alkyl group and R3 is a C2 to C16, linear or branched chained alkyl group.
2. A stable, clear, all-purpose, hard surface cleaning composition which is especially effective in the removal of oily and greasy soil being in the form of an oil-in-water microemulsion (o/w), the aqueous phase of said microemulsion composition comprising approximately by weight: from 0.1% to 20% of an anionic surfactant; from 0.1% to 10% of a grease release agent; from 0.1% to 50% of a water-miscible cosurfactant having substantially no ability to dissolve oily or greasy soil selected from the group consisting of water-soluble C3-C4 alkanols, polypropylene glycol, C1-C4 alkyl ethers and esters of ethylene glycol or propylene glycol, aliphatic mono- and di-carboxylic acids containing 3 to 6 carbons in the molecule, C5-C15 alkyl ether polyethenoxy carboxylic acids of the structural formula R(OC2H4)nOX COOH whereinR is C9-C15 alkyl, n is a number from 4 to 12 and X is selected from the group consisting of CH2, C(O)R1 and C(O), wherein R1 is a C1-C3 alkylene group and mono-and di- and triethyl phosphate, 0.1% to 10% of a water-immiscible or hardly water-soluble hydrocarbon ingredient and the balance being water, said composition being particularly effective in removing oily or greasy soil from hard surfaces by solubilizing the oily or greasy soil in the oil phase of said microemulsion, wherein said grease release agent is selected from the group consisting of a copolymer characterized by the formula:

(CH-CH) (CH2-CH) C=O (CH2)x y O
(CH2-CH2-O)nH CH3 wherein n is 5 to 14, x is 7 to 19, and y is of such a value as to provide a molecular weight 10,000 to 30,000 a polymer depicted by the formula:

wherein n is a number from 2 to 16, R1 is selected from the group consisting of methyl or hydrogen, R2 is a C1 to C12, linear or branched chained alkyl group and R3 is a C2 to C16, linear or branched chained alkyl group.

3. The cleaning composition of Claim 2 which further contains a salt of a multivalent metal cation in an amount sufficient to provide from 0.5 to 1.5 equivalents of said cation per equivalent of said anionic detergent.
4. The cleaning composition of Claim 3 wherein the multivalent metal cation is magnesium or aluminum.
5. The cleaning composition of Claim 3, wherein said composition contains 0.9 to 1.4 equivalents of said cation per equivalent of anionic detergent.
6. The cleaning composition of Claim 4 wherein said multivalent salt is magnesium oxide or magnesium sulfate.
7. The cleaning composition of Claim 2 which contains from 0.5 to 15% by weight of said cosurfactant and from 0.4% to 3.0% by weight of said hydrocarbon.8. The cleaning composition of Claim 2 wherein the cosurfactant is a water soluble glycol ether.
9. The cleaning composition of Claim 8 wherein the glycol ether is selected from the group consisting of ethylene glycol monobutylether, diethylene glycol monobutyl ether, triethylene glycol monobutylether, propylene glycol tertbutyl ether, mono, di or tri propylene glycol monobutyl ether.
10. The cleaning composition of Claim 9 wherein the glycol ether is ethylene glycol monobutyl ether or diethylene glycol monobutyl ether.
11. The cleaning composition of Claim 2 wherein the cosurfactant is a C3-C6 aliphatic carboxylic acid selected from the group consisting of acrylic acid, propionic acid, glutaric acid, mixtures of glutaric acid and succinic acid and adipic acid and mixtures of any of the foregoing.
12. The cleaning composition of Claim 11 wherein the aliphatic carboxylic acid is a mixture of adipic acid, glutaric acid and succinic acid.
13. The cleaning composition of Claim 2 wherein the anionic surfactant is a C9-C15 alkyl benzene sulfonate or a C10-C20 alkane sulfonate.
14. A stable concentrated microemulsion composition comprising approximately by weight:

(a) 1 to 30% of an anionic surfactant;
(b) 0.1 to 8% of a grease release agent, wherein said grease release agent is selected from the group consisting of a copolymer characterized by the formula:

(CH-CH) (CH2-CH) C=O (CH2)x y O

(CH2-CH2-O)nH CH3 wherein n is 5 to 14, x is 7 to 19, and y is of such a value as to provide a molecular weight 10,000 to 30,000 a polymer depicted by the formula:

wherein n is a number from 2 to 16, R1 is selected from the group consisting of methyl or hydrogen, R2 is a C1 to C12, linear or branched chained alkyl group and R3 is a C2 to C16, linear or branched chained alkyl group.
(c) 2 to 30% of a cosurfactant;
(d) 0.4 to 10% of a water insoluble hydrocarbon or perfume;
(e) 0 to 18% of at least one dicarboxylic acid;
(f) 0 to 0.2% of an aminoalkylene phosphoric acid;
(g) 0 to 1.0% of phosphoric acid;
(h) 0 to 15% of magnesium sulfate heptahydrate; and (i) the balance being water.
15. A light duty liquid composition comprising approximately by weight (a) 1 to 50% of at least one surfactant;

(b) 0 to 15 wt. % of a solubilizing agent;
(c) 0.1 to 10 wt. % of a grease release agent; and (d) the balance being water, wherein said grease release agent is selected from the group consisting of a copolymer characterized by the formula:

(CH-CH) (CH2-CH) C=O (CH2)x y O
(CH2-CH2-O)nH CH3 wherein n is 5 to 14, x is 7 to 19, and y is of such a value as to provide a molecular weight 10,000 to 30,000 a polymer depicted by the formula:

wherein n is a number from 2 to 16, R1 is selected from the group consisting of methyl or hydrogen, R2 is a C1 to C12, linear or branched chained alkyl group and R3 is a C2 to C16, linear or branched chained alkyl group.
16. A light duty liquid detergent according to Claim 15 wherein at least one said surfactant is selected from the group consisting of fatty acid soap surfactants, nonionic surfactants, anionic surfactants, zwitterionic surfactants and alkyl polysaccharide surfactants and mixtures thereof.
17. A liquid detergent composition according to Claim 16 which includes 1 to 15% by weight of a solubilizing agent selected from the group consisting of C2-C3 mono- and di-hydroxy alkanols, water soluble salts of C1-C3 substituted benzene sulfonate hydrotropes and mixtures thereof.

18. A liquid detergent composition according to Claim 16 wherein ethanol is present in the amount of 5% by weight or less.
19. A liquid detergent composition according to Claim 17 wherein said nonionic surfactant is said condensate of a primary C8-C18 alkanol with 5-30 moles of ethylene oxide.
20. A liquid detergent composition according to Claim 19 wherein said anionic detergent is selected from the group consisting of C12-C16 alkyl sulfates, C10-C15 alkylbenzene sulfonates, C13-C17 paraffin sulfonates and C12-C18 alpha olefin sulfonates.
21. A liquid detergent composition according to Claim 16 wherein said nonionic surfactant is present in an amount of 1% to 25% by weight, said anionicdetergent is present in an amunt of 1% to 30% by weight and said betaine is present in an amount of 1% to 9% by weight.
22. A liquid detergent composition according to Claim 16 wherein said anionic detergent is a C12-C16 alkyl sulfate.
23. A liquid detergent composition according to Claim 16 further including a preservative.
24. A liquid detergent composition according to Claim 16 further including a color stabilizer.
25. An all purpose hard surface cleaning composition which comprises approximately by weight:
(a) 1 to 30% of at least one surfactant;
(b) 0.1 to 3% of a grease release agent, wherein said grease release agent is selected from the group consisting of a copolymer characterized by the formula:

(CH-CH) (CH2-CH) C=O (CH2)x y O
(CH2-CH2-O)nH CH3 wherein n is 5 to 14, x is 7 to 19, and y is of such a value as to provide a molecular weight 10,000 to 30,000 a polymer depicted by the formula:

wherein n is a number from 2 to 16, R1 is selected from the group consisting of methyl or hydrogen, R2 is a C1 to C12, linear or branched chained alkyl group and R3 is a C2 to C16, linear or branched chained alkyl group.
(c) 0.1 to 5% of a magnesium containing inorganic compound;
(d) 1 to 15% of a cosurfactant; and (e) the balance being water.
26. An all purpose hard surface cleaning composition according to Claim 25, wherein at least one said surfactant is selected from the group consisting of anionic surfactants and nonionic surfactants and mixtures thereof.
27. An all purpose hard surface cleaning composition according to Claim 26, wherein said cosurfactant is a monoalkyl ether or ester of ethylene glycol or propylene glycol.
28. An all purpose hard surface cleaning composition according to Claim 27, wherein said magnesium containing inorganic compound is magnesium sulfate heptahydrate.
CA002177068A 1993-11-22 1994-11-18 Liquid cleaning compositions Abandoned CA2177068A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15535893A 1993-11-22 1993-11-22
US08/155,358 1993-11-22
US08/336,935 US5486307A (en) 1993-11-22 1994-11-15 Liquid cleaning compositions with grease release agent
US08/336,935 1994-11-15

Publications (1)

Publication Number Publication Date
CA2177068A1 true CA2177068A1 (en) 1995-06-01

Family

ID=26852260

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002177068A Abandoned CA2177068A1 (en) 1993-11-22 1994-11-18 Liquid cleaning compositions

Country Status (8)

Country Link
US (1) US5486307A (en)
EP (1) EP0730635A1 (en)
AU (1) AU682739B2 (en)
BR (1) BR9408123A (en)
CA (1) CA2177068A1 (en)
NZ (1) NZ277159A (en)
PL (1) PL314619A1 (en)
WO (1) WO1995014762A1 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4324396A1 (en) * 1993-07-21 1995-01-26 Henkel Kgaa Detergents with high wettability
US5854193A (en) * 1993-08-04 1998-12-29 Colgate Palmolive Company Microemulsion/all purpose liquid cleaning composition based on EO-PO nonionic surfactant
US5716925A (en) * 1993-08-04 1998-02-10 Colgate Palmolive Co. Microemulsion all purpose liquid cleaning compositions comprising partially esterified, fully esterified and non-esterified polyhydric alcohol and grease release agent
US6017868A (en) * 1993-08-04 2000-01-25 Colgate Palmolive Company Microemulsion all purpose liquid cleaning composition based on EO-PO nonionic surfactant
US5573702A (en) * 1993-11-22 1996-11-12 Colgate-Palmolive Co. Liquid cleaning compositions with grease release agent
AU3132295A (en) * 1994-07-21 1996-02-22 Colgate-Palmolive Company, The Liquid cleaning compositions
US5874393A (en) * 1994-12-15 1999-02-23 Colgate-Palmolive Co. Microemulsion light duty liquid cleansing composition
US5912223A (en) * 1994-12-15 1999-06-15 Colgate Palmolive Company Microemulsion light duty liquid cleaning compositions
US5840676A (en) * 1994-12-15 1998-11-24 Colgate-Palmolive Company Microemulsion light duty liquid cleaning compositions
SE504086C2 (en) * 1995-03-09 1996-11-04 Akzo Nobel Nv Use of an alkyl betaine together with an anionic surfactant as a friction reducing agent
KR100320688B1 (en) * 1995-03-20 2002-05-09 알 브이 테이트 (로드니 비버스 테이트), 에이치 드로이. 씨. 지. 오닌크, 이. 에디, 산드라 웨드워즈 (에스 제이 에드워즈) Liquid Cleansing Formulations
US5770554A (en) * 1995-07-20 1998-06-23 Colgate-Palmolive Co. Liquid cleaning compositions
US5990066A (en) * 1995-12-29 1999-11-23 The Procter & Gamble Company Liquid hard surface cleaning compositions based on carboxylate-containing polymer and divalent counterion, and processes of using same
HUT78046A (en) * 1995-12-29 1999-07-28 The Procter & Gamble Co. Hard-surface cleaning compositions
US5719117A (en) * 1996-01-25 1998-02-17 Lever Brothers Company, Division Of Conopco, Inc. Isotropic liquids comprising hydrophobically modified polar polymers plus aliphatic hydrocarbon oils
EP0786516B1 (en) 1996-01-25 2004-04-21 Unilever N.V. Liquid detergent
US5714454A (en) * 1996-08-07 1998-02-03 Colgate-Palmolive Co. Light duty liquid cleaning compositions comprising alkyl sulroglycerides
US5958861A (en) * 1996-12-06 1999-09-28 Colgate Palmolive Company Liquid cleaning compositions containing a Lewis neutral base polymer
US5939376A (en) * 1997-09-25 1999-08-17 Colgate Palmolive Company Liquid cleaning compositions containing an organic ester foam control agent
US5814594A (en) * 1997-11-17 1998-09-29 Citra Science Ltd. Heavy oil remover
US5962388A (en) * 1997-11-26 1999-10-05 The Procter & Gamble Company Acidic aqueous cleaning compositions
US5911915A (en) * 1997-12-12 1999-06-15 Colgate Palmolive Company Antimicrobial multi purpose microemulsion
CO5040174A1 (en) * 1997-12-12 2001-05-29 Colgate Palmolive Co ANTIMICROBIAL COMPOSITIONS FOR MULTIPLE MICROEMULSION PURPOSES CONTAINING A CATIONIC TENSIOACTIVE
US6194371B1 (en) 1998-05-01 2001-02-27 Ecolab Inc. Stable alkaline emulsion cleaners
US6713414B1 (en) 2000-05-04 2004-03-30 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6423804B1 (en) 1998-12-31 2002-07-23 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6579570B1 (en) 2000-05-04 2003-06-17 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6034046A (en) * 1999-03-26 2000-03-07 Colgate Palmolive Company All purpose liquid bathroom cleaning compositions
US6034043A (en) * 1999-04-20 2000-03-07 Lever Brothers Company, Division Of Conopco, Inc. Mild antimicrobial liquid cleansing formulations comprising polyvalent cation or cations for improving an antimicrobial effectiveness
US6369016B1 (en) * 1999-11-08 2002-04-09 Dotolo Research Ltd. Heavy oil remover
US6593279B2 (en) * 1999-12-10 2003-07-15 Integrity Industries, Inc. Acid based micro-emulsions
US6599848B1 (en) 2000-05-04 2003-07-29 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6653406B1 (en) 2000-05-04 2003-11-25 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US7101612B2 (en) * 2000-05-04 2006-09-05 Kimberly Clark Worldwide, Inc. Pre-moistened wipe product
US6444214B1 (en) 2000-05-04 2002-09-03 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6835678B2 (en) 2000-05-04 2004-12-28 Kimberly-Clark Worldwide, Inc. Ion sensitive, water-dispersible fabrics, a method of making same and items using same
US6548592B1 (en) 2000-05-04 2003-04-15 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6815502B1 (en) 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US6429261B1 (en) 2000-05-04 2002-08-06 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6683143B1 (en) 2000-05-04 2004-01-27 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6586529B2 (en) 2001-02-01 2003-07-01 Kimberly-Clark Worldwide, Inc. Water-dispersible polymers, a method of making same and items using same
US20030032352A1 (en) * 2001-03-22 2003-02-13 Yihua Chang Water-dispersible, cationic polymers, a method of making same and items using same
US6828014B2 (en) 2001-03-22 2004-12-07 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US6362148B1 (en) * 2001-09-06 2002-03-26 Colgate-Palmolive Co. Anti-lime scale cleaning composition comprising polyoxyethylene oxide polycarboxylic acid copolymer
US20040029757A1 (en) * 2002-08-08 2004-02-12 Ecolab Inc. Hand dishwashing detergent composition and methods for manufacturing and using
US7666826B2 (en) * 2002-11-27 2010-02-23 Ecolab Inc. Foam dispenser for use in foaming cleaning composition
US7592301B2 (en) * 2002-11-27 2009-09-22 Ecolab Inc. Cleaning composition for handling water hardness and methods for manufacturing and using
US20040120915A1 (en) * 2002-12-19 2004-06-24 Kaiyuan Yang Multifunctional compositions for surface applications
US20060135394A1 (en) * 2004-12-20 2006-06-22 Smith Kim R Car wash composition for hard water, and methods for manufacturing and using
US7964544B2 (en) * 2005-10-31 2011-06-21 Ecolab Usa Inc. Cleaning composition and method for preparing a cleaning composition
US20070253926A1 (en) * 2006-04-28 2007-11-01 Tadrowski Tami J Packaged cleaning composition concentrate and method and system for forming a cleaning composition
PA8827701A1 (en) * 2008-05-23 2010-04-21 Colgate Palmolive Co MULTI PURPOSE CLEANING COMPOSITIONS
US20130139327A1 (en) * 2010-08-03 2013-06-06 Henkel Ag & Co. Kgaa Textile treatment composition for removal of deodorant stains
WO2012076309A1 (en) 2010-12-07 2012-06-14 Unilever Nv An antimicrobial composition capable of forming a turbid suspension upon dilution with water
US9834682B2 (en) 2013-09-18 2017-12-05 Milliken & Company Laundry care composition comprising carboxylate dye
EP3097172A1 (en) 2014-01-22 2016-11-30 The Procter & Gamble Company Method of treating textile fabrics
EP3097175B1 (en) 2014-01-22 2018-10-17 The Procter and Gamble Company Fabric treatment composition
WO2015112339A1 (en) 2014-01-22 2015-07-30 The Procter & Gamble Company Fabric treatment composition
US20160319224A1 (en) 2015-04-29 2016-11-03 The Procter & Gamble Company Method of treating a fabric
ES2682178T3 (en) 2015-04-29 2018-09-19 The Procter & Gamble Company Detergent composition
EP3674387A1 (en) 2015-04-29 2020-07-01 The Procter & Gamble Company Method of treating a fabric
DK3088502T3 (en) 2015-04-29 2018-08-13 Procter & Gamble PROCEDURE FOR TREATING A TEXTILE SUBSTANCE
CN107624127A (en) 2015-04-29 2018-01-23 宝洁公司 The method for handling fabric

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294726A (en) * 1962-09-07 1966-12-27 Jay S Wyner Composition for protecting and cleaning surfaces
CA722623A (en) * 1963-10-21 1965-11-30 General Aniline And Film Corporation Stabilized liquid heavy duty detergent composition
US3702300A (en) * 1968-12-20 1972-11-07 Lubrizol Corp Lubricant containing nitrogen-containing ester
US4353745A (en) * 1981-08-26 1982-10-12 Chemed Corporation Cleaner for anti-graffiti system
DE3136931A1 (en) * 1981-09-17 1983-04-07 Akzo Gmbh, 5600 Wuppertal COPOLYMERS FROM (ALPHA) - (BETA) -UNSATURED DICARBONIC ACID ESTERS, METHOD FOR THE PRODUCTION THEREOF AND THE USE THEREOF AS A LUBRICANT FOR THE PLASTIC PROCESSING
US4472291A (en) * 1983-03-07 1984-09-18 Rosano Henri L High viscosity microemulsions
FR2543016B1 (en) * 1983-03-24 1986-05-30 Elf Aquitaine ACID COMPOSITION BASED ON MICROEMULSION, AND ITS APPLICATIONS, IN PARTICULAR FOR CLEANING
US4501680A (en) * 1983-11-09 1985-02-26 Colgate-Palmolive Company Acidic liquid detergent composition for cleaning ceramic tiles without eroding grout
DE3572361D1 (en) * 1984-11-05 1989-09-21 Akzo Nv Metal carboxylate derivative for use in synthetic materials, emulsions and suspensions
US4654050A (en) * 1985-01-18 1987-03-31 The Lubrizol Corporation Esters of carboxy-containing interpolymers
US4844756A (en) * 1985-12-06 1989-07-04 The Lubrizol Corporation Water-in-oil emulsions
US4810407A (en) * 1986-03-26 1989-03-07 S. C. Johnson & Son, Inc. Non-homogenized multi-surface polish compositions
US5082584A (en) * 1986-05-21 1992-01-21 Colgate-Palmolive Company Microemulsion all purpose liquid cleaning composition
US4871823A (en) * 1987-09-11 1989-10-03 S. C. Johnson & Son, Inc. 1-Alkene/excess maleic anhydride polymers
US5108643A (en) * 1987-11-12 1992-04-28 Colgate-Palmolive Company Stable microemulsion cleaning composition
DE3837013A1 (en) * 1988-10-31 1990-05-03 Basf Ag USE OF PARTIALLY EXPLOITED COPOLYMERISES IN LIQUID DETERGENTS
DE3838093A1 (en) * 1988-11-10 1990-05-17 Basf Ag USE OF COPOLYMERISES AS ADDITION TO LIQUID DETERGENTS
US5008030A (en) * 1989-01-17 1991-04-16 Colgate-Palmolive Co. Acidic disinfectant all-purpose liquid cleaning composition
CA2004310C (en) * 1989-05-05 1995-02-21 John Jerome Burke Hard surface cleaning composition containing polyacrylate copolymers as performance boosters
US5300600A (en) * 1989-10-12 1994-04-05 Witco Corporation Aqueous dispersions of peroxides
US5223179A (en) * 1992-03-26 1993-06-29 The Procter & Gamble Company Cleaning compositions with glycerol amides
BR9408124A (en) * 1993-11-22 1997-08-05 Colgate Palmolive Co Microemulsion composition cleaning composition for hard surfaces for all purposes liquid detergent for light duty and liquid detergent composition
DK0730636T3 (en) * 1993-11-22 2001-08-13 Colgate Palmolive Co Liquid universal cleaning compositions of the microemulsion type

Also Published As

Publication number Publication date
PL314619A1 (en) 1996-09-16
BR9408123A (en) 1997-08-05
EP0730635A1 (en) 1996-09-11
AU682739B2 (en) 1997-10-16
US5486307A (en) 1996-01-23
AU1209295A (en) 1995-06-13
WO1995014762A1 (en) 1995-06-01
NZ277159A (en) 1997-05-26

Similar Documents

Publication Publication Date Title
US5486307A (en) Liquid cleaning compositions with grease release agent
US5552089A (en) Liquid cleaning compositions with grease release agent
US5604195A (en) Liquid cleaning compositions with polyethylene glycol grease release agent
US5573702A (en) Liquid cleaning compositions with grease release agent
US5736496A (en) Liquid cleaning compositions comprising a negatively charged complex comprising an anionic surfactant and an alkylene carbonate
US5082584A (en) Microemulsion all purpose liquid cleaning composition
US5719114A (en) Cleaning composition in various liquid forms comprising acaricidal agents
US5075026A (en) Microemulsion all purpose liquid cleaning composition
MXPA97003583A (en) Liqui cleansing compositions
WO1998050519A1 (en) Liquid cleaning compositions
US5770554A (en) Liquid cleaning compositions
AU706433B2 (en) Liquid cleaning compositions
AU722006B2 (en) Liquid cleaning compositions
MXPA98000565A (en) Liqui cleansing compositions
US6531442B1 (en) Liquid cleaning compositions comprising fluoroalkyl sulfonate
WO1996003491A1 (en) Liquid cleaning compositions
EP0987319A2 (en) Liquid cleaning compositions

Legal Events

Date Code Title Description
FZDE Discontinued