CA2186569A1 - Electrosurgical clamping device with insulation limited bipolar electrode - Google Patents

Electrosurgical clamping device with insulation limited bipolar electrode

Info

Publication number
CA2186569A1
CA2186569A1 CA002186569A CA2186569A CA2186569A1 CA 2186569 A1 CA2186569 A1 CA 2186569A1 CA 002186569 A CA002186569 A CA 002186569A CA 2186569 A CA2186569 A CA 2186569A CA 2186569 A1 CA2186569 A1 CA 2186569A1
Authority
CA
Canada
Prior art keywords
tissue
grasping
electrode
end effector
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002186569A
Other languages
French (fr)
Inventor
Joseph F. Paraschac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Endo Surgery Inc
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Publication of CA2186569A1 publication Critical patent/CA2186569A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • A61B18/1447Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod wherein sliding surfaces cause opening/closing of the end effectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2945Curved jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1422Hook
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1425Needle
    • A61B2018/1432Needle curved

Abstract

An electrosurgical hemostatic instrument is provided in which the coagulation status of tissue engaged by two elements delivering an electrosurgical energy to tissue may be observed, and in which damage from thermal spread may be minimized. A
preferred embodiment of the invention provides a bipolar endoscopic clamping, coagulation and cutting device. In this device, the outer conductive surface of the tissue engaging elements is substantially covered by an insulative coating whichconfines current flow to the clamped tissue and limited regions around the tissue engaging elements. Coagulation may be observed by watching the region around thetissue engaging elements. Coagulation around the tissue engaging elements may becontrolled by selectively coating the outside of the elements with insulation to control current flow from the surface of the engaging elements.

Description

2 1 8656~
ELECTROSURGICAL CLAMPING DEVICE WITH
INSULATION LIMITED BIPOLAR ELECTRODE

FIELD OF THE INVENTION
s The present invention relates to an electrosurgical hemostatic grasping, clarnping or forceps type device, and in particular, to a clamping and cutting device inclllriing a pair of electrically conductive clarnping elements coated with an electrically insulative substance.

BACKGROUND OF THE INVENTION

Electrosurgical hemostatic devices have been used for effecting improved hemostasis by heating tissue and blood vessels to cause coagulation or cauterization.
15 Monopolar electrosurgical devices utiliæ one active electrode associated with the cutting or ca.~ izillg instrument and a remote return or ground electrode which is usually ~tt~hed externally to the patient. Thus in surgery utilizing monopolar instruments, electrical current passes from the active electrode, through the patient to the return electrode.
In bipolar electrosurgical instruments both electrodes are included on the instrument and, generally, both electrodes are active. Thus, a typical bipolar instrument includes two or more electrodes which are charged to different electrical potenti~l~ In bipolar instruments, the coagulating current flows through tissue 2 5 positioned between the electrodes.

Bipolar forceps, being one type of bipolar electrosurgical instrument, have been used in various procedures for co~ ting tissue. Generally bipolar forceps include two opposing jaws each conne~ted to an output electrode of an electrical30 generator such that the opposing jaws are charged to different electrical potentials.
Organic tissue being electrically conductive, when the jaws are used to grasp tissue the two electrodes apply electrical current through the grasped tissue. The use of bipolar forceps may, in certain circllm~t~n~ es, cause areas of thermal spread, i.e., regions of co~ tion caused by the ~ sip~tion of heat outside the area defined by the grasping or eng~ging surfaces of the forceps.

U.S. Application Serial No. 08/095,797 filed on June 22, 1993, illustrates, in a plefe,l~d embodiment, a clamping and co~ ting device in which most of the tissue being treated by the end effector of the device is not visible to the user. The electrodes in the preferred embodiment of this device are offset from each other with respect to the tissue grasping surfaces so that the likelihood of arcing or shorting is reduced. However, in this device it is difficult to visualiæ co~gul~tion as it is occurring to the tissue unless thermal spread is occurring.

U.S. Application Serial No. 08/415,957 filed on April 3, 1995, illustrates a clamping, cutting and co~ ting device in which the tissue being treated by the end effector of the device is partially visible to the user, improving visual feedb~-~k The electrodes of the preferred embodiment of this device are also offset to reduce the likelihood of arcing or shorting.

Electrical energy is used in medical instruments for hemostasis, that is to stopor slow bleeding in tissue. Application of electrical current in conjunction with pressure applied by the end effector results in a significant reduction in bleeding, and may be used to reduce bleeding along a cut line prior to cutting tissue. The electrical current which passes through the tissue acts to heat the tissue. As the tissue is heated, it r~h~nges in color and texture. The experienced surgeon may, by looking for changes 2 5 in the color or texture of the tissue around the end effector, deterrnine when to turn off the current to the end effector. Although the changes in tissue color and texture around the end effector are useful to the surgeon, it is beneficial in many procedures to limit the region effected by the electrical current and insulating heat, i.e. to limit the ~ ! 8656~

thermal spread. In addition, it is beneficial in certain circumstances to develop a - subst~nti~lly uniform electrical field through the tissue between the end effectors.
Thererol~, it would be beneficial to design an end effector wherein the electrical field iS subst~nti~lly Uni~llll and subst~nti~lly confined to the region between the tissue 5 cont~tin~ faces of the end effectors with only a limited region of thermal spread.

In the device illustrated in Figure 1, the bipolar electrodes are llnco~t~
offering many current paths for co~ tin~ energy. As tissue between the electrodes coagulates its impedance rises, and the coagulation current seeks à lower impedance 10 path through the tissue. Tissue which touches uncoated electrodes on the sides of the end effector, offers a low impedance path, increasing thermal spread and decreasing current density in the region between the electrodes. In the simplified cross-section of an end effector in Figure 1, first electrode 1 and second electrode 2 hold tissue 3. In the end effector in Figure 1, electrical current travels along current paths 4 between 15 first electrode 1 which is charged to a first electrical potential and second electrode 2 which is charged to a second electrical potential. As the tissue coagulates, coagulation region 5 forms between electrode 1 and electrode 2 increasing the impedance of the tissue between the electrodes. In the device illustrated in Figure 1, current paths 4 extend well beyond the edges of the end effector and out into tissue 3. The resulting 20 co~ tion region therefore extends laterally out into the tissue around the end effector.

The device illustrated in Figure 2 utilizes what is known as "compression zone" technology wherein one electrode is positioned inside one jaw of the device and 2 5 the second electrode is positioned around the outside of at least one jaw. As tissue between the inner and outer electrode co~ t~s, the coagulated tissue between thejaws inc~ tes the inner electrode, effectively stopping coagulation and therrnal spread.
In the simplified cross-section of an end effector illustrated in Figure 2, tissue 13 is positioned between first insulator 16 and second insulator 18. In the end effector of Figure 2, electrical current flows between first electrode 11 and third electrode 17, in addition, if region 12 is an active electrode current may flow between second electrode 12 and third electrode 17. First electrode 11 and second electrode 12 are charged to a 5 first electrieal potential while third electrode 17 is charged to a second electrical pole~Lial. As current flows through tissue 13, c~gul~tion regions 15 are formed.The arrangement of electrodes in the end effeetor of Figure 2 confines the current paths and thus, co~gul~tion regions 15 to the space between first insulator 16 and seeond insulator 18.

A surgical device according to the present invention includes a bipolar c~ tion device which may be used to grasp and treat tissue and may further include a cutting elemP-nt to cut the treated tissue. In one embodiment of the present 15 invention, an end effector of an ele~;Ll~sulgical device includes first and second clamping elements arranged such that tissue may be clamped between the first andsecond elem~ntc. In this embodiment, the clamping elements include electrically conductive external surfaces and electrically conductive clamping surfaces wherein the external clamping surfaces are subst~nti~lly covered by a coating of electrieally 20 insulative material, the electrically insulative material being arranged such that the electric field is substantially confined between the clamping surfaces. In a further embodiment of the present invention, the insulative material covers all but a small portion of the exterior surface of the electrically conductive clamping element, leaving the clamping surface electrically eonduetive. In a further embodiment of the present 25 invention, the end effector includes a first knife channel in the first clamping surface and a second knife ehannel in the second clamping surface. In this embodiment, the 2 1 &6569 knife channel may be coated with in.c~ ting material to prevent an electrically con~ ctive knife from shorting between the first and second surfaces.

BRIEF DESCRIPI'ION OF THE DRAW~NGS

The novel features of the invention are set forth with particularity in the appended claims. The invention itself, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the 10 ~c~Q~ ying drawings in which:

Figure 1 is a simplified cross-section of a bipolar end effector without external in.~ tion.

Figure 2 is a simplified cross-section of a bipolar end effector utilizing compression zone technology.

Figure 3 is a simplified cross-section of one embodiment of a bipolar end effector according to the present invention.
Figure 4 is an elevated side view of a bipolar clamping, cutting and coa~ tin~ device including an end effector according to the present invention;

Figure 5 is a perspective exploded view of one embodiment of a bipolar end 2 5 effector accordi~g to the present invention.

Figure 6 is a top view of the bipolar end effector illustrated in Figure 5 as itgrasps tissue.

2 l &6s6q - Figure 7 is a perspective view of a bipolar end effector.

Figure 8 is an enlargement of a portion of one embodiment the end effector illustrated in Figure 7 including an insulative coating according to the presentinvention.

Figure 9 is an enlargement of a portion of one embodiment the end effector illustrated in Figure 7 including an insulative coating according to the present1 0 invention.

Figure 10 is a bottom view of a curved bipolar end effector jaw.

Figure 11 is a top view of a curved end effector jaw according to the present 1 5 invention.

DETAILED DESCRlPrlON OF THE INVENTION

In the simplified cross-section of an end effector according to the present invention illustrated in Figure 3, tissue 23 is grasped between first electrode 21 and second electrode 22. In end effector 10, an electrical potential or voltage is generated between electrode 21 and second electrode 22. Thus when an electrically conductive material such as organic tissue is grasped by the end effector, electrical current flows between first electrode 21 and second electrode 22. In Figure 3, insulators 26 and 28 cover subst~nti~lly all of the outer surface of first electrode 21 and second electrode 22 respectively confining a s~lbst~nti~l portion of the current path 24 to the region between first electrode 21 and second electrode 22. A small portion of the electrical current flows through tissue 23 in the region outside electrode 21 and electrode 22, 7 21 8656q co~ ting the tissue and providing the surgeon with visible evidence of co~ tion.Thus, the co~ tPd region around the outside of end effector 10 may be referred to as the feedb~cl~ region since the thermal spread in this region provides the surgeon with visible evidence of coagulation.

In the embodiment illustrated in Figure 3, insulation layer 26 covers su~st~nti~lly all of the outer surface 32 of electrode 21, leaving only a small region 29 of outer surface 32 exposed and electrically conductive. Region 29 may be referred to as an outer electrode. Insulation layer 28 covers substantially all of the outer surface 34 of electrode 22, leaving only a small region 39 of outer surface 34 exposed and electrically conductive. In the embodiment illustrated in Figure 3, outer electrode 29 is located ~ r~nt the interface between outer surface 32 and tissue grasping surface 27.
The region ~dj~rPnt the interface between outer surface 32 and tissue grasping surface 27 may be referred to as the transition region. In the embodiment illustrated in Figure 3, outer electrode 39 is located ~dj~oent the interface between outer surface 34 and tissue grasping surface 36. The region of outer surfaoe 34 ~dj~cent tissue grasping surface 36 may be referred to as the transition region. More generally, as used herein, the transition region refers to any portion of the jaw around the interface between the outer faoe of an electrode and the tissue grasping surfaoe. Tissue 23 conducts current between electrodes 21 and 22, generating co~ tion region 25.
Since insulators 26 and 28 do not cover the entire outer surface 32 and 34 of conductors 21 and 22 respectively, leaving outer electrodes 29 and 39, a small portion of the current will flow outside the region between grasping surfaoes 27 and 36,co~ul~ting tissue outside that region and providing visual confirmation of coagulation.
The siæ and shape of the fee~lb~rl~ region may be varied by varying the portion of outer surfaoe 32 and 34 which are not covered by insulative coating i.e. by varying the size and location of outer electrodes 29 and 39. Where neoessary, shorting may be prevented by, for example, including an island of insulation on the grasping surfaoe 27 -8- 21 8b569 or 36 of either electrode 21 or 2i to establish an insulative gap between the conductive surfaces. However, the grasped tissue will generally prevent shorting of the electrodes during tre~ment and, once the tissue is treated it may not be necessary or desirable to prevent the electrodes from shorting.

Figure 4 is a perspective view of a bipolar forceps 410 according to the present invention. In bipolar forceps 410, upper jaw 416 and lower jaw 417 of end effector 412 are supported by upper wire form 414 and lower wire form 415.
Wire forms 414 and 415 also act as conductors supplying bipolar electrical energy to upper jaw 416 and lower jaw 417 respectively. Tissue stop 418 is positioned within closure tube 420. Rotation knob 422 is affixed to closure tube420 to cause rotation of closure tube 420 with respect to handle 426. Handle 426includes knife button 424, grip 428 and trigger 430. Electrical cord 434 is connected to handle 426 through strain relief 432. Trigger latch 436 is positioned on trigger 430. Handle latch shield 438 is positioned on grip 428.

Figure 5 is an exploded view of one embodiment of a bipolar end effector according to the present invention. As illustrated in Figure 5, jaw members 116 and 117 include electrodes 147 and 148 respectively, which include tissue grasping surfaces 118 and 119 respectively. Top jaw 116 and bottom jaw 117 are arranged to grasp or position tissue therebetween. Jaw members 116 and 117 include an outer electrically insulative coating 146 and 156 of, for example, a ceramic material.Closure tube 115 is adapted to close the jaws 116 and 117 together as tube 115 is advanced distally. Jaw member 116 includes a U-shaped insulator 134 formed on the inside of electrode 147. Jaw member 117 includes a U-shaped insulator 164 formedon the inside of electrode 148. The upper half 120 of groove or knife channel 143 is lined by insulator 134. The lower half 121 of groove of knife channel 143 is in~ tPd by insulator 164. Insulators 146 and 156 are arranged so that when tissue is grasped and jaws 116 and 117 are closed together, a portion of the external surface of electrodes 147 and 148 is exposed. The exposed portion of the outer surface of electrode 147 forms outer electrode 170. The exposed portion of the outer surface of electrode 148 forms outer electrode 172. Outer electrode 170 is formed in the transition region at the interface between the outer surface of electrode 147 and tissue grasping surface 118 while outer electrode 172 is formed in the transition region at the interface between the outer surface of electrode 148 and tissue grasping surface 119.
The siæ and shape of outer electrodes 170 and 172 may be adjusted by selectivelydepositing more or less insulation in the transition regions of electrodes 147 and 148 r~ ;tively. Control of the siæ and shape of the feedb~ region in treated tissue may be achieved, at least in part, by controlling the siæ and shape of the outerelectrodes, for example, by controlling the siæ and shape of outer electrodes 170 and 172. For the purposes of this application, outer electrodes may also be referred to as feedb~ or thermal spread electrodes. The distal end 144 and 145 of jaw members 116 and 117 respectively, has an inwardly angled shape. The inwardly angled distal ends 144 and 145 form a V-shaped space at the distal end jaws 116 and 117, whichassists in channeling tissue in between jaws 116 and 117.

In Figure 5, knife 122 is adapted to cut tissue by moving distally in knife channel 143 when jaws 116 and 117 are closed to grip tissue. Knife 122 includes upper knife section 123 and lower knife section 124. Upper knife section 123 includes sharpened blade 125 at the distal end of upper knife section 123. Lower knife section 124 includes sharpened blade 126 at the distal end of the lower knife section 124.

Fig. 6 is a top view of the end effector illustrated in Figure 5. In Figure 6, upper jaw 116 of end effector 610 grasps tissue 198. As electrical current flowsthrough the tissue, insulator 146 prevents current from flowing except where theelectrode is exposed (e.g. between the tissue grasping electrodes and through the outer electrodes). An area of tissue 197 surrounding the end effector is illustrated in which ~les~ tion of and/or thermal effects on the tissue may be vicll~li7~cl Region 197 may be referred to as the fee~b~ region.

Figure 7 is a perspective view of a straight bipolar end effector 210 without insulation. End effector 210 comprises upper jaw electrode 216 and lower jaw electrode 217. Electrodes 216 and 217 include tissue grasping teeth 206 and 208 ec~i~/ely. Tissue grasping teeth 206 are disposed on at least a portion of uppertissue grasping surface 218. Tissue grasping teeth 208 are disposed on at least a 1 0 portion of lower tissue grasping surface 219. In the embodiments of Figure 7, grasping teeth 206 and 208 are chamfered such that outer faces 222 slant in toward the center of end effector 210. In other embodiments of the present invention, outersurface faces 222 may have a radius rather than a chamfer. In other embodiments of the present invention, outer faces 222 may be parallel to or a continuation of outer surfaces 232 and 234. In figure 7, jaws 216 and 217 include holes 280. Holes 280are interspersed along the length of jaws 216 and 217. Holes such as holes 280 pelrol,ll at least three functions in an end effector such as the end effector illustrated in Figure 7. Holes 280 may be used to observe the tissue clamped between jaws 216 and 217. Alternatively, holes 280 may be used to observe the position of a cutting 2 0 element such as the knife illustrated in Figure 5, as it moves along channel 282 when jaws 216 and 217 are closed. Holes 280 also reduce the physical and thermal mass of jaws 216 and 217. ~Pducing the thermal mass of the jaws reduces the jaws ability to absorb heat generated in the treated tissue, thus increasing coagulation speed which may, in certain circum~t~nces, improve the performance of the end effector. In the embodiment of Figure 7, U-shaped electrodes 216 and 217 have a subst~nti~lly rert~ngul~r cross section. The use of a subst~nti~lly rectangular cross section improves the structural strength of the jaws and, as a result, the clamping force which 2 ! 86569 may be applied to the jaws. The rectangular cross section of the jaw improves - shielding of a knife blade as it moves along channel 282.

Figure 8 is an enlargement of a portion of one embodiment of electrode 212 of 5 the end effector illustrated in Figure 7. In Figure 8, electrode 212 includes an insulative coating 220 which covers subst~n~i~lly all of the outer surface of electrode 212. Insulative coating 220 does not cover the chamfered surface 222 of teeth 206, leaving that portion of the outer surface of electrode 212 exposed and electrically conductive. Thus, in the embodiment of.the invention illustrated in Figure 8, the outer 1 0 electrode is formed from the chamfered surface of teeth 206. In a similar manner, a second outer electrode may be formed from the chamfered portion of teeth 208 in Figure 7.

Figure 9 is an enlargement of a portion of one embodiment of electrode 212 of the end effector illustrated in Figure 7. In Figure 9, electrode 212 includes aninsulative coating 230 which covers substantially all of the outer surface of electrode 212. Insulative coating 230 covers at least a portion of chamfered surface 222 of teeth 206, leaving the remainder of the chamfered surface exposed and electrically conductive. Thus, in the embodiment of the invention illustrated in Figure 9, the outer 2 0 electrode is formed from the nonin~ul~ted, electrically conductive portion of chamfered surface 222. In a similar manner, a second outer electrode may be formed by in~ul~ting all but a portion of the chamfered surface 222 of teeth 208 in Figure 7.

It will be understood that the actual shape of the outer electrode will be 25 determined by selectively depositing insulation on the outer surface of an electrode such as jaws 216 and 217 and may, for example, include an embodiment wherein theouter surface of selected ones of the grasping teeth are coated or partially coated with insulation. In addition, in a further embodiment, the outer electrode may include at -12- 21 8656q least a portion of the outer surface of the clamping jaw ~ nt the tissue grasping - teeth.

Figure 10 is a bottom view of a curved bipolar end effector jaw 310 wherein chamfered surface 322 is clearly illustrated. Jaw 310 includes teeth 316 which are chamfered such that chamfered surface 322 is recessed from exterior surface 340. In the embodiment of Figure 10, teeth 316 are not recessed from interior surface 342.
Figure 11 is a top view of a curved end effector jaw. In Figure 11, electrode 512 is coated by outer insulation layer 520.

When the outside of bipolar electrode jaws are covered in an incul~ting material, the available current path is confined to the tissue touching the exposed electrode surface. This causes the tissue between the jaws to co~ tP fast. In addition, the thermal image is confined to a visibly smaller area than would be the case 1 5 with uncoated electrodes, even when current is applied well beyond the point at which coagulation is fini~hP~I Thus, the present invention is intended to create a selective region of visible co~ tion around the end effector to provide visual feedb~ck to the surgeon. In addition, by reducing the active electrode siæ, the electrical fields are focused, speeding coagulation.
A generator, not shown, provides electrosurgical energy to the bipolar electrodes. The generator is preferably an electrosurgical unit capable of providing bipolar energy. Electrical energy is delivered through wires which are coupled to the electrodes. After electrosurgical energy is applied and the tissue is electrosurgically 2 5 treated to a desired degree, a cutting element such as the knife illustrated in Figure S
may be advanced to cut the treated tissue.

21 ~f~569 While prefellcd embodirnents of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, ch~n~s, and substitutions will now occur to those skilled in the art without departing from the 5 invention. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.

Claims (12)

1. A bipolar electrosurgical instrument comprising:
a shaft having a distal end and a longitudinal axis;
an end effector located at the distal end of the shaft, adapted to receive bipolar energy therein, said end effector comprising:
first and second jaw elements including first and second opposed tissue contacting surfaces, said tissue contacting surfaces moveable relative to each other from an open, spaced-apart position for positioning tissue therebetween, to a closed position for grasping said tissue, at least a portion of one of saidtissue contacting surfaces comprising a first electrode, and at least a portion of one of said tissue contacting surfaces comprising second electrode which is electrically isolated from said first electrode, said first and second jaw elements further including first and second outer surfaces wherein at least a portion of said outer surface is covered by an insulative material, said insulative material covering all but a portion of said outer surfaces adjacent said first and secondelectrodes.
2. The electrosurgical instrument of claim 1 wherein said instrument further includes a cutting element moveable between said tissue contacting surfaces to cut tissue between said tissue contacting surfaces.
3. The electrosurgical device of claim 2, wherein each of said first and second tissue contacting surfaces further comprises a proximal and distal portion, and said end effector further comprises a longitudinal axis extending proximal to distal through said end effector; and wherein said cutting element is moveable in a direction from the proximal to distal portions of said surfaces.
4. A bipolar electrosurgical instrument comprising:
an end effector located at the distal end of the instrument, adapted to receive bipolar energy, said end effector comprising:
first tissue grasping element including an electrically conductive exterior surface partially coated with an insulative coating and an electricallyconductive tissue grasping surface; and second tissue grasping element including an electrically conductive exterior surface partially coated with an insulative coating and an electricallyconductive tissue grasping surface.
5. The bipolar electrosurgical instrument of claim 4 wherein said exterior surface is not coated in the transition region between said exterior surface and said tissue grasping surface.
6. The bipolar electrosurgical instrument of claim 5 further comprising a cutting element arranged to cut tissue positioned between said first and second tissue grasping surfaces.
7. A bipolar electrosurgical instrument comprising:
an end effector located at the distal end of the instrument said end effector comprising:
first tissue grasping element including one or more outer electrodes and an electrically conductive tissue grasping surface; and second tissue grasping element including one or more outer electrodes and an electrically conductive tissue grasping surface.
8. A bipolar electrosurgical instrument according to claim 7 wherein said tissue grasping surface on said first grasping element includes electrically conductive grasping teeth.
9. A bipolar electrosurgical instrument according to claim 8 wherein said grasping teeth are partially covered by said electrical coating.
10. A bipolar electrosurgical instrument according to claim 7 wherein said tissue grasping surface on said first grasping element includes electrically conductive grasping teeth, said grasping teeth including an interior region and an exterior region, said exterior region being partially covered by said electrical coating.
11. A bipolar electrosurgical instrument according to claim 7 wherein said tissue grasping surface on said first grasping element includes electrically conductive grasping teeth, said grasping teeth including an interior region and an exterior region, said exterior region being electrically conductive.
12. An instrument adapted to coagulate tissue comprising:
a first electrode adapted to receive electrical energy of a first potential;
a second electrode spaced from said first electrode and adapted to receive electrical energy of a second potential;
a first insulative coating partially covering an outer surface of said first electrode;
a second insulative coating partially covering an outer surface of said second electrode.
CA002186569A 1995-09-29 1996-09-26 Electrosurgical clamping device with insulation limited bipolar electrode Abandoned CA2186569A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/537,065 1995-09-29
US08/537,065 USH1745H (en) 1995-09-29 1995-09-29 Electrosurgical clamping device with insulation limited bipolar electrode

Publications (1)

Publication Number Publication Date
CA2186569A1 true CA2186569A1 (en) 1997-03-30

Family

ID=24141048

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002186569A Abandoned CA2186569A1 (en) 1995-09-29 1996-09-26 Electrosurgical clamping device with insulation limited bipolar electrode

Country Status (5)

Country Link
US (1) USH1745H (en)
EP (1) EP0765639A1 (en)
JP (1) JPH09108234A (en)
AU (1) AU6566796A (en)
CA (1) CA2186569A1 (en)

Families Citing this family (360)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US6267761B1 (en) * 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
US6494881B1 (en) 1997-09-30 2002-12-17 Scimed Life Systems, Inc. Apparatus and method for electrode-surgical tissue removal having a selectively insulated electrode
DE69829833T2 (en) * 1997-10-08 2006-01-26 Ethicon, Inc. Bipolar electrosurgical scissors for fine dissection.
US6726686B2 (en) 1997-11-12 2004-04-27 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
US6169926B1 (en) 1998-02-27 2001-01-02 James A. Baker RF electrode array for low-rate collagen shrinkage in capsular shift procedures and methods of use
US6010516A (en) * 1998-03-20 2000-01-04 Hulka; Jaroslav F. Bipolar coaptation clamps
US6086586A (en) * 1998-09-14 2000-07-11 Enable Medical Corporation Bipolar tissue grasping apparatus and tissue welding method
US7118570B2 (en) 2001-04-06 2006-10-10 Sherwood Services Ag Vessel sealing forceps with disposable electrodes
US7582087B2 (en) 1998-10-23 2009-09-01 Covidien Ag Vessel sealing instrument
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US6358273B1 (en) 1999-04-09 2002-03-19 Oratec Inventions, Inc. Soft tissue heating apparatus with independent, cooperative heating sources
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US20030109875A1 (en) 1999-10-22 2003-06-12 Tetzlaff Philip M. Open vessel sealing forceps with disposable electrodes
US6558385B1 (en) * 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
US20020107514A1 (en) * 2000-04-27 2002-08-08 Hooven Michael D. Transmural ablation device with parallel jaws
US6546935B2 (en) 2000-04-27 2003-04-15 Atricure, Inc. Method for transmural ablation
US7740623B2 (en) 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20040138621A1 (en) 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
DE60121229T2 (en) 2001-04-06 2007-05-24 Sherwood Services Ag DEVICE FOR SEALING AND SHARING A VESSEL WITH NON-LASTING END STOP
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
EP1527747B1 (en) 2001-04-06 2015-09-30 Covidien AG Electrosurgical instrument which reduces collateral damage to adjacent tissue
US10849681B2 (en) 2001-04-06 2020-12-01 Covidien Ag Vessel sealer and divider
US7967816B2 (en) 2002-01-25 2011-06-28 Medtronic, Inc. Fluid-assisted electrosurgical instrument with shapeable electrode
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7270664B2 (en) 2002-10-04 2007-09-18 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7033354B2 (en) * 2002-12-10 2006-04-25 Sherwood Services Ag Electrosurgical electrode having a non-conductive porous ceramic coating
US7776036B2 (en) 2003-03-13 2010-08-17 Covidien Ag Bipolar concentric electrode assembly for soft tissue fusion
CA2523675C (en) 2003-05-01 2016-04-26 Sherwood Services Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
AU2004241092B2 (en) 2003-05-15 2009-06-04 Covidien Ag Tissue sealer with non-conductive variable stop members and method of sealing tissue
US7857812B2 (en) 2003-06-13 2010-12-28 Covidien Ag Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism
US7156846B2 (en) 2003-06-13 2007-01-02 Sherwood Services Ag Vessel sealer and divider for use with small trocars and cannulas
USD956973S1 (en) 2003-06-13 2022-07-05 Covidien Ag Movable handle for endoscopic vessel sealer and divider
US7150749B2 (en) 2003-06-13 2006-12-19 Sherwood Services Ag Vessel sealer and divider having elongated knife stroke and safety cutting mechanism
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7232440B2 (en) * 2003-11-17 2007-06-19 Sherwood Services Ag Bipolar forceps having monopolar extension
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7811283B2 (en) 2003-11-19 2010-10-12 Covidien Ag Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7500975B2 (en) 2003-11-19 2009-03-10 Covidien Ag Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument
US7442193B2 (en) 2003-11-20 2008-10-28 Covidien Ag Electrically conductive/insulative over-shoe for tissue fusion
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
EP1750608B1 (en) 2004-06-02 2012-10-03 Medtronic, Inc. Ablation device with jaws
US7195631B2 (en) 2004-09-09 2007-03-27 Sherwood Services Ag Forceps with spring loaded end effector assembly
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US7955332B2 (en) 2004-10-08 2011-06-07 Covidien Ag Mechanism for dividing tissue in a hemostat-style instrument
US7686827B2 (en) 2004-10-21 2010-03-30 Covidien Ag Magnetic closure mechanism for hemostat
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
JP4402629B2 (en) * 2005-08-19 2010-01-20 オリンパスメディカルシステムズ株式会社 Ultrasonic coagulation and incision device
US7628791B2 (en) 2005-08-19 2009-12-08 Covidien Ag Single action tissue sealer
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US7846161B2 (en) 2005-09-30 2010-12-07 Covidien Ag Insulating boot for electrosurgical forceps
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
US8298232B2 (en) 2006-01-24 2012-10-30 Tyco Healthcare Group Lp Endoscopic vessel sealer and divider for large tissue structures
US7766910B2 (en) 2006-01-24 2010-08-03 Tyco Healthcare Group Lp Vessel sealer and divider for large tissue structures
US8734443B2 (en) 2006-01-24 2014-05-27 Covidien Lp Vessel sealer and divider for large tissue structures
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US7846158B2 (en) 2006-05-05 2010-12-07 Covidien Ag Apparatus and method for electrode thermosurgery
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7744615B2 (en) 2006-07-18 2010-06-29 Covidien Ag Apparatus and method for transecting tissue on a bipolar vessel sealing instrument
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8597297B2 (en) 2006-08-29 2013-12-03 Covidien Ag Vessel sealing instrument with multiple electrode configurations
US7780663B2 (en) * 2006-09-22 2010-08-24 Ethicon Endo-Surgery, Inc. End effector coatings for electrosurgical instruments
US8070746B2 (en) 2006-10-03 2011-12-06 Tyco Healthcare Group Lp Radiofrequency fusion of cardiac tissue
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US7951149B2 (en) 2006-10-17 2011-05-31 Tyco Healthcare Group Lp Ablative material for use with tissue treatment device
US7785060B2 (en) * 2006-10-27 2010-08-31 Applied Materials, Inc. Multi-directional mechanical scanning in an ion implanter
USD649249S1 (en) 2007-02-15 2011-11-22 Tyco Healthcare Group Lp End effectors of an elongated dissecting and dividing instrument
US8267935B2 (en) * 2007-04-04 2012-09-18 Tyco Healthcare Group Lp Electrosurgical instrument reducing current densities at an insulator conductor junction
US7877853B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing end effector assembly for sealing tissue
US7877852B2 (en) 2007-09-20 2011-02-01 Tyco Healthcare Group Lp Method of manufacturing an end effector assembly for sealing tissue
US8241283B2 (en) 2007-09-28 2012-08-14 Tyco Healthcare Group Lp Dual durometer insulating boot for electrosurgical forceps
US8251996B2 (en) 2007-09-28 2012-08-28 Tyco Healthcare Group Lp Insulating sheath for electrosurgical forceps
US9023043B2 (en) 2007-09-28 2015-05-05 Covidien Lp Insulating mechanically-interfaced boot and jaws for electrosurgical forceps
US8764748B2 (en) 2008-02-06 2014-07-01 Covidien Lp End effector assembly for electrosurgical device and method for making the same
US8623276B2 (en) 2008-02-15 2014-01-07 Covidien Lp Method and system for sterilizing an electrosurgical instrument
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US8469956B2 (en) 2008-07-21 2013-06-25 Covidien Lp Variable resistor jaw
US8162973B2 (en) 2008-08-15 2012-04-24 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US8257387B2 (en) 2008-08-15 2012-09-04 Tyco Healthcare Group Lp Method of transferring pressure in an articulating surgical instrument
US9603652B2 (en) 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8795274B2 (en) 2008-08-28 2014-08-05 Covidien Lp Tissue fusion jaw angle improvement
US8317787B2 (en) 2008-08-28 2012-11-27 Covidien Lp Tissue fusion jaw angle improvement
US8784417B2 (en) 2008-08-28 2014-07-22 Covidien Lp Tissue fusion jaw angle improvement
US8303582B2 (en) 2008-09-15 2012-11-06 Tyco Healthcare Group Lp Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique
US20100069903A1 (en) 2008-09-18 2010-03-18 Tyco Healthcare Group Lp Vessel Sealing Instrument With Cutting Mechanism
US9375254B2 (en) 2008-09-25 2016-06-28 Covidien Lp Seal and separate algorithm
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8636761B2 (en) 2008-10-09 2014-01-28 Covidien Lp Apparatus, system, and method for performing an endoscopic electrosurgical procedure
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8486107B2 (en) 2008-10-20 2013-07-16 Covidien Lp Method of sealing tissue using radiofrequency energy
US8197479B2 (en) 2008-12-10 2012-06-12 Tyco Healthcare Group Lp Vessel sealer and divider
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
JP2009148574A (en) * 2009-01-14 2009-07-09 Covidien Ag Electrosurgery implement which decreases thermal diffusion
JP4975768B2 (en) * 2009-01-19 2012-07-11 コヴィディエン・アクチェンゲゼルシャフト An electrosurgical instrument that reduces incidental damage to adjacent tissue
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8430876B2 (en) 2009-08-27 2013-04-30 Tyco Healthcare Group Lp Vessel sealer and divider with knife lockout
US8357159B2 (en) 2009-09-03 2013-01-22 Covidien Lp Open vessel sealing instrument with pivot assembly
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US9024237B2 (en) 2009-09-29 2015-05-05 Covidien Lp Material fusing apparatus, system and method of use
US8512371B2 (en) 2009-10-06 2013-08-20 Covidien Lp Jaw, blade and gap manufacturing for surgical instruments with small jaws
US8480671B2 (en) 2010-01-22 2013-07-09 Covidien Lp Compact jaw including split pivot pin
US8556929B2 (en) 2010-01-29 2013-10-15 Covidien Lp Surgical forceps capable of adjusting seal plate width based on vessel size
US8597295B2 (en) 2010-04-12 2013-12-03 Covidien Lp Surgical instrument with non-contact electrical coupling
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
US8430877B2 (en) 2010-06-02 2013-04-30 Covidien Lp Apparatus for performing an electrosurgical procedure
US8469991B2 (en) 2010-06-02 2013-06-25 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409247B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US8491624B2 (en) 2010-06-02 2013-07-23 Covidien Lp Apparatus for performing an electrosurgical procedure
US8409246B2 (en) 2010-06-02 2013-04-02 Covidien Lp Apparatus for performing an electrosurgical procedure
US9144455B2 (en) 2010-06-07 2015-09-29 Just Right Surgical, Llc Low power tissue sealing device and method
US8298233B2 (en) 2010-08-20 2012-10-30 Tyco Healthcare Group Lp Surgical instrument configured for use with interchangeable hand grips
US8814864B2 (en) 2010-08-23 2014-08-26 Covidien Lp Method of manufacturing tissue sealing electrodes
US9345534B2 (en) 2010-10-04 2016-05-24 Covidien Lp Vessel sealing instrument
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
USD661394S1 (en) 2011-02-24 2012-06-05 Tyco Healthcare Group Lp Device jaw
US10413349B2 (en) 2011-03-04 2019-09-17 Covidien Lp System and methods for identifying tissue and vessels
US8568408B2 (en) 2011-04-21 2013-10-29 Covidien Lp Surgical forceps
US8939972B2 (en) 2011-05-06 2015-01-27 Covidien Lp Surgical forceps
US8900232B2 (en) 2011-05-06 2014-12-02 Covidien Lp Bifurcated shaft for surgical instrument
US8685009B2 (en) 2011-05-16 2014-04-01 Covidien Lp Thread-like knife for tissue cutting
US9265568B2 (en) 2011-05-16 2016-02-23 Coviden Lp Destruction of vessel walls for energy-based vessel sealing enhancement
US9456870B2 (en) 2011-05-16 2016-10-04 Covidien Lp Optical energy-based methods and apparatus for tissue sealing
US9113933B2 (en) 2011-05-16 2015-08-25 Covidien Lp Optical energy-based methods and apparatus for tissue sealing
US9113934B2 (en) 2011-05-16 2015-08-25 Covidien Lp Optical energy-based methods and apparatus for tissue sealing
US10117705B2 (en) 2011-05-16 2018-11-06 Covidien Lp Optical recognition of tissue and vessels
US8968283B2 (en) 2011-05-19 2015-03-03 Covidien Lp Ultrasound device for precise tissue sealing and blade-less cutting
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
US9161807B2 (en) 2011-05-23 2015-10-20 Covidien Lp Apparatus for performing an electrosurgical procedure
US8702749B2 (en) 2011-06-09 2014-04-22 Covidien Lp Lever latch assemblies for vessel sealer and divider
US9615877B2 (en) 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
US9039704B2 (en) 2011-06-22 2015-05-26 Covidien Lp Forceps
US9039732B2 (en) 2011-07-11 2015-05-26 Covidien Lp Surgical forceps
US8628557B2 (en) 2011-07-11 2014-01-14 Covidien Lp Surgical forceps
US8745840B2 (en) 2011-07-11 2014-06-10 Covidien Lp Surgical forceps and method of manufacturing thereof
US9844384B2 (en) 2011-07-11 2017-12-19 Covidien Lp Stand alone energy-based tissue clips
US8702737B2 (en) 2011-08-08 2014-04-22 Covidien Lp Surgical forceps
US8968306B2 (en) 2011-08-09 2015-03-03 Covidien Lp Surgical forceps
US8852186B2 (en) 2011-08-09 2014-10-07 Covidien Lp Microwave sensing for tissue sealing
US8968307B2 (en) 2011-08-18 2015-03-03 Covidien Lp Surgical forceps
US8968317B2 (en) 2011-08-18 2015-03-03 Covidien Lp Surgical forceps
US8685056B2 (en) 2011-08-18 2014-04-01 Covidien Lp Surgical forceps
US9028492B2 (en) 2011-08-18 2015-05-12 Covidien Lp Surgical instruments with removable components
US9113909B2 (en) 2011-09-01 2015-08-25 Covidien Lp Surgical vessel sealer and divider
US9113938B2 (en) 2011-09-09 2015-08-25 Covidien Lp Apparatus for performing electrosurgical procedures having a spring mechanism associated with the jaw members
US8679098B2 (en) 2011-09-13 2014-03-25 Covidien Lp Rotation knobs for surgical instruments
US8845636B2 (en) 2011-09-16 2014-09-30 Covidien Lp Seal plate with insulation displacement connection
US9636169B2 (en) 2011-09-19 2017-05-02 Covidien Lp Electrosurgical instrument
US8961515B2 (en) 2011-09-28 2015-02-24 Covidien Lp Electrosurgical instrument
US9486220B2 (en) 2011-09-28 2016-11-08 Covidien Lp Surgical tissue occluding device
US8756785B2 (en) 2011-09-29 2014-06-24 Covidien Lp Surgical instrument shafts and methods of manufacturing shafts for surgical instruments
US9060780B2 (en) 2011-09-29 2015-06-23 Covidien Lp Methods of manufacturing shafts for surgical instruments
US9668806B2 (en) 2011-09-29 2017-06-06 Covidien Lp Surgical forceps including a removable stop member
US8864795B2 (en) 2011-10-03 2014-10-21 Covidien Lp Surgical forceps
US9492221B2 (en) 2011-10-20 2016-11-15 Covidien Lp Dissection scissors on surgical device
US8968308B2 (en) 2011-10-20 2015-03-03 Covidien Lp Multi-circuit seal plates
US9314295B2 (en) 2011-10-20 2016-04-19 Covidien Lp Dissection scissors on surgical device
US8968309B2 (en) 2011-11-10 2015-03-03 Covidien Lp Surgical forceps
US9113899B2 (en) 2011-11-29 2015-08-25 Covidien Lp Coupling mechanisms for surgical instruments
US9265565B2 (en) 2011-11-29 2016-02-23 Covidien Lp Open vessel sealing instrument and method of manufacturing the same
US8968310B2 (en) 2011-11-30 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade lockout mechanism
US9259268B2 (en) 2011-12-06 2016-02-16 Covidien Lp Vessel sealing using microwave energy
US8864753B2 (en) 2011-12-13 2014-10-21 Covidien Lp Surgical Forceps Connected to Treatment Light Source
US9023035B2 (en) 2012-01-06 2015-05-05 Covidien Lp Monopolar pencil with integrated bipolar/ligasure tweezers
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9113882B2 (en) 2012-01-23 2015-08-25 Covidien Lp Method of manufacturing an electrosurgical instrument
US9113897B2 (en) 2012-01-23 2015-08-25 Covidien Lp Partitioned surgical instrument
US8961513B2 (en) 2012-01-25 2015-02-24 Covidien Lp Surgical tissue sealer
US8968360B2 (en) 2012-01-25 2015-03-03 Covidien Lp Surgical instrument with resilient driving member and related methods of use
US9693816B2 (en) 2012-01-30 2017-07-04 Covidien Lp Electrosurgical apparatus with integrated energy sensing at tissue site
US8747434B2 (en) 2012-02-20 2014-06-10 Covidien Lp Knife deployment mechanisms for surgical forceps
US8887373B2 (en) 2012-02-24 2014-11-18 Covidien Lp Vessel sealing instrument with reduced thermal spread and method of manufacture therefor
US9011435B2 (en) 2012-02-24 2015-04-21 Covidien Lp Method for manufacturing vessel sealing instrument with reduced thermal spread
US8752264B2 (en) 2012-03-06 2014-06-17 Covidien Lp Surgical tissue sealer
US8961514B2 (en) 2012-03-06 2015-02-24 Covidien Lp Articulating surgical apparatus
US8968298B2 (en) 2012-03-15 2015-03-03 Covidien Lp Electrosurgical instrument
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
US9265569B2 (en) 2012-03-29 2016-02-23 Covidien Lp Method of manufacturing an electrosurgical forceps
US10966780B2 (en) 2012-04-17 2021-04-06 Covidien Lp Electrosurgical instrument having a coated electrode
US9713493B2 (en) 2012-04-30 2017-07-25 Covidien Lp Method of switching energy modality on a cordless RF device
US8968311B2 (en) 2012-05-01 2015-03-03 Covidien Lp Surgical instrument with stamped double-flag jaws and actuation mechanism
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
US8920461B2 (en) 2012-05-01 2014-12-30 Covidien Lp Surgical forceps with bifurcated flanged jaw components
US9820765B2 (en) 2012-05-01 2017-11-21 Covidien Lp Surgical instrument with stamped double-flange jaws
US9034009B2 (en) 2012-05-01 2015-05-19 Covidien Lp Surgical forceps
US9039731B2 (en) 2012-05-08 2015-05-26 Covidien Lp Surgical forceps including blade safety mechanism
US9375258B2 (en) 2012-05-08 2016-06-28 Covidien Lp Surgical forceps
US9113901B2 (en) 2012-05-14 2015-08-25 Covidien Lp Modular surgical instrument with contained electrical or mechanical systems
US9192432B2 (en) 2012-05-29 2015-11-24 Covidien Lp Lever latch assemblies for surgical improvements
US8679140B2 (en) 2012-05-30 2014-03-25 Covidien Lp Surgical clamping device with ratcheting grip lock
US8968313B2 (en) 2012-06-12 2015-03-03 Covidien Lp Electrosurgical instrument with a knife blade stop
US9510891B2 (en) 2012-06-26 2016-12-06 Covidien Lp Surgical instruments with structures to provide access for cleaning
US9011436B2 (en) 2012-06-26 2015-04-21 Covidien Lp Double-length jaw system for electrosurgical instrument
US9770255B2 (en) 2012-06-26 2017-09-26 Covidien Lp One-piece handle assembly
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US9072524B2 (en) 2012-06-29 2015-07-07 Covidien Lp Surgical forceps
US9833285B2 (en) 2012-07-17 2017-12-05 Covidien Lp Optical sealing device with cutting ability
US10368945B2 (en) 2012-07-17 2019-08-06 Covidien Lp Surgical instrument for energy-based tissue treatment
US8939975B2 (en) 2012-07-17 2015-01-27 Covidien Lp Gap control via overmold teeth and hard stops
US9301798B2 (en) 2012-07-19 2016-04-05 Covidien Lp Surgical forceps including reposable end effector assemblies
US9192421B2 (en) 2012-07-24 2015-11-24 Covidien Lp Blade lockout mechanism for surgical forceps
US9636168B2 (en) 2012-08-09 2017-05-02 Covidien Lp Electrosurgical instrument including nested knife assembly
US9433461B2 (en) 2012-09-07 2016-09-06 Covidien Lp Instruments, systems, and methods for sealing tissue structures
US9439711B2 (en) 2012-10-02 2016-09-13 Covidien Lp Medical devices for thermally treating tissue
US9687290B2 (en) 2012-10-02 2017-06-27 Covidien Lp Energy-based medical devices
US9526564B2 (en) 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US9549749B2 (en) 2012-10-08 2017-01-24 Covidien Lp Surgical forceps
US9681908B2 (en) 2012-10-08 2017-06-20 Covidien Lp Jaw assemblies for electrosurgical instruments and methods of manufacturing jaw assemblies
US9265566B2 (en) 2012-10-16 2016-02-23 Covidien Lp Surgical instrument
US9375259B2 (en) 2012-10-24 2016-06-28 Covidien Lp Electrosurgical instrument including an adhesive applicator assembly
US10206583B2 (en) 2012-10-31 2019-02-19 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US9572529B2 (en) 2012-10-31 2017-02-21 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US9375205B2 (en) 2012-11-15 2016-06-28 Covidien Lp Deployment mechanisms for surgical instruments
US10772674B2 (en) 2012-11-15 2020-09-15 Covidien Lp Deployment mechanisms for surgical instruments
US9498281B2 (en) 2012-11-27 2016-11-22 Covidien Lp Surgical apparatus
US9375256B2 (en) 2013-02-05 2016-06-28 Covidien Lp Electrosurgical forceps
US10265119B2 (en) 2013-02-15 2019-04-23 Covidien Lp Electrosurgical forceps
US9713491B2 (en) 2013-02-19 2017-07-25 Covidien Lp Method for manufacturing an electrode assembly configured for use with an electrosurigcal instrument
US9375262B2 (en) 2013-02-27 2016-06-28 Covidien Lp Limited use medical devices
US10070916B2 (en) 2013-03-11 2018-09-11 Covidien Lp Surgical instrument with system and method for springing open jaw members
US9655673B2 (en) 2013-03-11 2017-05-23 Covidien Lp Surgical instrument
US9456863B2 (en) 2013-03-11 2016-10-04 Covidien Lp Surgical instrument with switch activation control
US9877775B2 (en) 2013-03-12 2018-01-30 Covidien Lp Electrosurgical instrument with a knife blade stop
USD728786S1 (en) 2013-05-03 2015-05-05 Covidien Lp Vessel sealer with mechanical cutter and pistol-grip-style trigger
US9468453B2 (en) 2013-05-03 2016-10-18 Covidien Lp Endoscopic surgical forceps
US9622810B2 (en) 2013-05-10 2017-04-18 Covidien Lp Surgical forceps
EP3003177B1 (en) 2013-05-31 2021-03-10 Covidien LP Surgical device with an end-effector assembly for monitoring of tissue during a surgical procedure
US9649151B2 (en) 2013-05-31 2017-05-16 Covidien Lp End effector assemblies and methods of manufacturing end effector assemblies for treating and/or cutting tissue
US9554845B2 (en) 2013-07-18 2017-01-31 Covidien Lp Surgical forceps for treating and cutting tissue
AU2013397838B2 (en) 2013-08-07 2018-08-16 Covidien Lp Bipolar surgical instrument with tissue stop
EP3030178B1 (en) 2013-08-07 2019-01-09 Covidien LP Bipolar surgical instrument
USD744644S1 (en) 2013-08-07 2015-12-01 Covidien Lp Disposable housing for open vessel sealer with mechanical cutter
EP3030177A4 (en) 2013-08-07 2017-04-26 Covidien LP Bipolar surgical instrument
WO2015017994A1 (en) 2013-08-07 2015-02-12 Covidien Lp Bipolar surgical instrument
USD736920S1 (en) 2013-08-07 2015-08-18 Covidien Lp Open vessel sealer with mechanical cutter
USD726910S1 (en) 2013-08-07 2015-04-14 Covidien Lp Reusable forceps for open vessel sealer with mechanical cutter
US10646267B2 (en) 2013-08-07 2020-05-12 Covidien LLP Surgical forceps
US9439717B2 (en) 2013-08-13 2016-09-13 Covidien Lp Surgical forceps including thermal spread control
US10405874B2 (en) 2013-08-13 2019-09-10 Covidien Lp Surgical instrument
US9445865B2 (en) 2013-09-16 2016-09-20 Covidien Lp Electrosurgical instrument with end-effector assembly including electrically-conductive, tissue-engaging surfaces and switchable bipolar electrodes
US9943357B2 (en) 2013-09-16 2018-04-17 Covidien Lp Split electrode for use in a bipolar electrosurgical instrument
US9717548B2 (en) 2013-09-24 2017-08-01 Covidien Lp Electrode for use in a bipolar electrosurgical instrument
US10610289B2 (en) 2013-09-25 2020-04-07 Covidien Lp Devices, systems, and methods for grasping, treating, and dividing tissue
US10231772B2 (en) 2013-09-25 2019-03-19 Covidien Lp Wire retention unit for a surgical instrument
US9642671B2 (en) 2013-09-30 2017-05-09 Covidien Lp Limited-use medical device
USD788302S1 (en) 2013-10-01 2017-05-30 Covidien Lp Knife for endoscopic electrosurgical forceps
US9974601B2 (en) 2013-11-19 2018-05-22 Covidien Lp Vessel sealing instrument with suction system
US10231776B2 (en) 2014-01-29 2019-03-19 Covidien Lp Tissue sealing instrument with tissue-dissecting electrode
US11090109B2 (en) 2014-02-11 2021-08-17 Covidien Lp Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same
US10130413B2 (en) 2014-02-11 2018-11-20 Covidien Lp Temperature-sensing electrically-conductive tissue-contacting plate and methods of manufacturing same
US10278768B2 (en) 2014-04-02 2019-05-07 Covidien Lp Electrosurgical devices including transverse electrode configurations
US10123835B2 (en) 2014-04-02 2018-11-13 Covidien Lp Electrosurgical devices including transverse electrode configurations and methods relating to the same
US9687295B2 (en) 2014-04-17 2017-06-27 Covidien Lp Methods of manufacturing a pair of jaw members of an end-effector assembly for a surgical instrument
US10258404B2 (en) * 2014-04-24 2019-04-16 Gyrus, ACMI, Inc. Partially covered jaw electrodes
US10231777B2 (en) 2014-08-26 2019-03-19 Covidien Lp Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument
US10660694B2 (en) 2014-08-27 2020-05-26 Covidien Lp Vessel sealing instrument and switch assemblies thereof
US10820939B2 (en) 2014-09-15 2020-11-03 Covidien Lp Vessel-sealing device including force-balance interface and electrosurgical system including same
US9918785B2 (en) 2014-09-17 2018-03-20 Covidien Lp Deployment mechanisms for surgical instruments
US9987076B2 (en) 2014-09-17 2018-06-05 Covidien Lp Multi-function surgical instruments
US9931158B2 (en) 2014-09-17 2018-04-03 Covidien Lp Deployment mechanisms for surgical instruments
US10039593B2 (en) 2014-09-17 2018-08-07 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
US10080605B2 (en) 2014-09-17 2018-09-25 Covidien Lp Deployment mechanisms for surgical instruments
US10080606B2 (en) 2014-09-17 2018-09-25 Covidien Lp Method of forming a member of an end effector
US11406409B2 (en) 2014-09-25 2022-08-09 Covidien Lp Extendable length surgical instruments
US10258360B2 (en) 2014-09-25 2019-04-16 Covidien Lp Surgical instruments
US11207127B2 (en) 2014-09-25 2021-12-28 Covidien Lp Surgical instruments facilitating replacement of disposable components and/or sterilization of reusable components
US10463422B2 (en) 2014-12-18 2019-11-05 Covidien Lp Surgical instrument with stopper assembly
US10172612B2 (en) 2015-01-21 2019-01-08 Covidien Lp Surgical instruments with force applier and methods of use
US10653476B2 (en) 2015-03-12 2020-05-19 Covidien Lp Mapping vessels for resecting body tissue
US10206736B2 (en) 2015-03-13 2019-02-19 Covidien Lp Surgical forceps with scalpel functionality
US10595933B2 (en) 2015-04-24 2020-03-24 Covidien Lp Multifunctional vessel sealing and divider device
WO2016169037A1 (en) 2015-04-24 2016-10-27 Covidien Lp Vessel sealing device with fine dissection function
US9848935B2 (en) 2015-05-27 2017-12-26 Covidien Lp Surgical instruments including components and features facilitating the assembly and manufacturing thereof
US9974602B2 (en) 2015-05-27 2018-05-22 Covidien Lp Surgical instruments and devices and methods facilitating the manufacture of the same
US10441340B2 (en) 2015-05-27 2019-10-15 Covidien Lp Surgical forceps
US9956022B2 (en) 2015-05-27 2018-05-01 Covidien Lp Surgical forceps and methods of manufacturing the same
US10226269B2 (en) 2015-05-27 2019-03-12 Covidien Lp Surgical forceps
US10722293B2 (en) 2015-05-29 2020-07-28 Covidien Lp Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
USD844138S1 (en) 2015-07-17 2019-03-26 Covidien Lp Handle assembly of a multi-function surgical instrument
USD844139S1 (en) 2015-07-17 2019-03-26 Covidien Lp Monopolar assembly of a multi-function surgical instrument
US9987078B2 (en) 2015-07-22 2018-06-05 Covidien Lp Surgical forceps
US10631918B2 (en) 2015-08-14 2020-04-28 Covidien Lp Energizable surgical attachment for a mechanical clamp
US10213221B2 (en) 2015-10-28 2019-02-26 Covidien Lp Surgical instruments including cam surfaces
US10154877B2 (en) 2015-11-04 2018-12-18 Covidien Lp Endoscopic surgical instrument
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
US10172672B2 (en) 2016-01-11 2019-01-08 Covidien Lp Jaw force control for electrosurgical forceps
WO2017123584A1 (en) * 2016-01-11 2017-07-20 GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) Forceps with tissue stops
US10426543B2 (en) 2016-01-23 2019-10-01 Covidien Lp Knife trigger for vessel sealer
US20170209206A1 (en) * 2016-01-23 2017-07-27 Covidien Lp Devices and methods for tissue sealing and mechanical clipping
US10695123B2 (en) 2016-01-29 2020-06-30 Covidien Lp Surgical instrument with sensor
US10864003B2 (en) 2016-02-05 2020-12-15 Covidien Lp Articulation assemblies for use with endoscopic surgical instruments
US10537381B2 (en) 2016-02-26 2020-01-21 Covidien Lp Surgical instrument having a bipolar end effector assembly and a deployable monopolar assembly
USD819815S1 (en) 2016-03-09 2018-06-05 Covidien Lp L-shaped blade trigger for an electrosurgical instrument
USD828554S1 (en) 2016-03-09 2018-09-11 Covidien Lp Contoured blade trigger for an electrosurgical instrument
US10765471B2 (en) 2016-04-15 2020-09-08 Bolder Surgical, Llc Electrosurgical sealer and divider
US10517665B2 (en) 2016-07-14 2019-12-31 Covidien Lp Devices and methods for tissue sealing and mechanical clipping
US10856933B2 (en) 2016-08-02 2020-12-08 Covidien Lp Surgical instrument housing incorporating a channel and methods of manufacturing the same
US10631887B2 (en) 2016-08-15 2020-04-28 Covidien Lp Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures
US10772642B2 (en) 2016-08-18 2020-09-15 Covidien Lp Surgical forceps
US10441305B2 (en) 2016-08-18 2019-10-15 Covidien Lp Surgical forceps
US10918407B2 (en) 2016-11-08 2021-02-16 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US11207091B2 (en) 2016-11-08 2021-12-28 Covidien Lp Surgical instrument for grasping, treating, and/or dividing tissue
US10813695B2 (en) 2017-01-27 2020-10-27 Covidien Lp Reflectors for optical-based vessel sealing
US11229480B2 (en) 2017-02-02 2022-01-25 Covidien Lp Latching mechanism for in-line activated electrosurgical device
US10881445B2 (en) 2017-02-09 2021-01-05 Covidien Lp Adapters, systems incorporating the same, and methods for providing an electrosurgical forceps with clip-applying functionality
WO2018165808A1 (en) 2017-03-13 2018-09-20 Covidien Lp Electrosurgical instrument with trigger driven cutting function
US11172980B2 (en) 2017-05-12 2021-11-16 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US10973567B2 (en) 2017-05-12 2021-04-13 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US11166759B2 (en) 2017-05-16 2021-11-09 Covidien Lp Surgical forceps
USD854684S1 (en) 2017-06-08 2019-07-23 Covidien Lp Open vessel sealer with mechanical cutter
USD854149S1 (en) 2017-06-08 2019-07-16 Covidien Lp End effector for open vessel sealer
US10512501B2 (en) 2017-06-08 2019-12-24 Covidien Lp Electrosurgical apparatus
USD843574S1 (en) 2017-06-08 2019-03-19 Covidien Lp Knife for open vessel sealer
USD859658S1 (en) 2017-06-16 2019-09-10 Covidien Lp Vessel sealer for tonsillectomy
US11154348B2 (en) 2017-08-29 2021-10-26 Covidien Lp Surgical instruments and methods of assembling surgical instruments
US11123132B2 (en) 2018-04-09 2021-09-21 Covidien Lp Multi-function surgical instruments and assemblies therefor
US10780544B2 (en) 2018-04-24 2020-09-22 Covidien Lp Systems and methods facilitating reprocessing of surgical instruments
US10828756B2 (en) 2018-04-24 2020-11-10 Covidien Lp Disassembly methods facilitating reprocessing of multi-function surgical instruments
US11033289B2 (en) 2018-05-02 2021-06-15 Covidien Lp Jaw guard for surgical forceps
US11109930B2 (en) 2018-06-08 2021-09-07 Covidien Lp Enhanced haptic feedback system
US11896291B2 (en) 2018-07-02 2024-02-13 Covidien Lp Electrically-insulative shafts, methods of manufacturing electrically-insulative shafts, and energy-based surgical instruments incorporating electrically-insulative shafts
US11612403B2 (en) 2018-10-03 2023-03-28 Covidien Lp Multi-function surgical transection instrument
USD904611S1 (en) 2018-10-10 2020-12-08 Bolder Surgical, Llc Jaw design for a surgical instrument
US11471211B2 (en) 2018-10-12 2022-10-18 Covidien Lp Electrosurgical forceps
US11376062B2 (en) 2018-10-12 2022-07-05 Covidien Lp Electrosurgical forceps
US10881452B2 (en) 2018-10-16 2021-01-05 Covidien Lp Method of assembling an end effector for a surgical instrument
US11350982B2 (en) 2018-12-05 2022-06-07 Covidien Lp Electrosurgical forceps
US11246648B2 (en) 2018-12-10 2022-02-15 Covidien Lp Surgical forceps with bilateral and unilateral jaw members
US11147613B2 (en) 2019-03-15 2021-10-19 Covidien Lp Surgical instrument with increased lever stroke
US11523861B2 (en) 2019-03-22 2022-12-13 Covidien Lp Methods for manufacturing a jaw assembly for an electrosurgical forceps
US11490916B2 (en) 2019-03-29 2022-11-08 Covidien Lp Engagement features and methods for attaching a drive rod to a knife blade in an articulating surgical instrument
US11576696B2 (en) 2019-03-29 2023-02-14 Covidien Lp Engagement features and methods for attaching a drive rod to a knife blade in an articulating surgical instrument
US11490917B2 (en) 2019-03-29 2022-11-08 Covidien Lp Drive rod and knife blade for an articulating surgical instrument
US11607267B2 (en) 2019-06-10 2023-03-21 Covidien Lp Electrosurgical forceps
US11376030B2 (en) 2020-02-10 2022-07-05 Covidien Lp Devices and methods facilitating the manufacture of surgical instruments
US11622804B2 (en) 2020-03-16 2023-04-11 Covidien Lp Forceps with linear trigger mechanism
US11844562B2 (en) 2020-03-23 2023-12-19 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US11660109B2 (en) 2020-09-08 2023-05-30 Covidien Lp Cutting elements for surgical instruments such as for use in robotic surgical systems
USD934423S1 (en) 2020-09-11 2021-10-26 Bolder Surgical, Llc End effector for a surgical device
US11925406B2 (en) 2020-09-14 2024-03-12 Covidien Lp End effector assemblies for surgical instruments
US11806068B2 (en) 2020-12-15 2023-11-07 Covidien Lp Energy-based surgical instrument for grasping, treating, and/or dividing tissue

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2068721A (en) * 1932-11-18 1937-01-26 Wappler Frederick Charles Method for electrosurgical severance of adhesions
US2031682A (en) * 1932-11-18 1936-02-25 Wappler Frederick Charles Method and means for electrosurgical severance of adhesions
FR95614E (en) * 1967-06-06 1971-03-26 S M A Segnalamento Marittimo E Coagulation apparatus for high frequency cauterization, using hemostatic forceps.
FR2355521A1 (en) * 1976-06-22 1978-01-20 Mendez Rene Surgical forceps for biopsy and electro-coagulation - with insulation along complete tube length and over jaws to prevent random burning
US4375218A (en) * 1981-05-26 1983-03-01 Digeronimo Ernest M Forceps, scalpel and blood coagulating surgical instrument
US4655216A (en) * 1985-07-23 1987-04-07 Alfred Tischer Combination instrument for laparoscopical tube sterilization
US4938761A (en) * 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
US5049148A (en) * 1989-06-29 1991-09-17 Mehl Thomas L Radio frequency hair removal tweezer
US5482054A (en) * 1990-05-10 1996-01-09 Symbiosis Corporation Edoscopic biopsy forceps devices with selective bipolar cautery
US5324289A (en) * 1991-06-07 1994-06-28 Hemostatic Surgery Corporation Hemostatic bi-polar electrosurgical cutting apparatus and methods of use
US5403312A (en) * 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
JPH08509623A (en) * 1993-02-11 1996-10-15 シンバイオシス・コーポレイション Endoscopic biopsy forceps device with selective bipolar cautery
US5445638B1 (en) * 1993-03-08 1998-05-05 Everest Medical Corp Bipolar coagulation and cutting forceps
US5458598A (en) * 1993-12-02 1995-10-17 Cabot Technology Corporation Cutting and coagulating forceps
US5599350A (en) * 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback

Also Published As

Publication number Publication date
JPH09108234A (en) 1997-04-28
USH1745H (en) 1998-08-04
AU6566796A (en) 1997-04-10
EP0765639A1 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
CA2186569A1 (en) Electrosurgical clamping device with insulation limited bipolar electrode
US5674220A (en) Bipolar electrosurgical clamping device
EP0795301B1 (en) Bipolar cutting and coagulation instrument
US5755717A (en) Electrosurgical clamping device with improved coagulation feedback
US8814865B2 (en) Electrical cutting and vessel sealing jaw members
US7052496B2 (en) Instrument for high-frequency treatment and method of high-frequency treatment
JP3523839B2 (en) Surgical instruments
EP2100567B1 (en) Bipolar cutting end effector
EP0797959B1 (en) Improved bipolar scissors
EP0769277B1 (en) Self protecting knife for curved jaw surgical instruments
US7160298B2 (en) Electrosurgical instrument which reduces effects to adjacent tissue structures
US7947041B2 (en) Vessel sealing instrument
CA2168404C (en) Surgical instrument with expandable cutting element
EP0518230B1 (en) Bi-polar electrosurgical endoscopic instruments
EP1372505B1 (en) Electrosurgical instrument reducing thermal spread
US20050149017A1 (en) Movable handle for vessel sealer
JPH08317934A (en) Hemostatic device for electric surgery with adaptable electrode
US20040249374A1 (en) Vessel sealing instrument
JP2013255802A (en) Electrosurgical dissector with thermal management
JP2003175053A (en) High frequency treatment tool
US11490953B2 (en) Electrosurgical instrument and passively cooled jaw members thereof

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20000926