CA2197901A1 - Reduction of nonspecific hybridization by using novel base-pairing schemes - Google Patents

Reduction of nonspecific hybridization by using novel base-pairing schemes

Info

Publication number
CA2197901A1
CA2197901A1 CA002197901A CA2197901A CA2197901A1 CA 2197901 A1 CA2197901 A1 CA 2197901A1 CA 002197901 A CA002197901 A CA 002197901A CA 2197901 A CA2197901 A CA 2197901A CA 2197901 A1 CA2197901 A1 CA 2197901A1
Authority
CA
Canada
Prior art keywords
analyte
oligonucleotide
nucleic acid
assay
base pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002197901A
Other languages
French (fr)
Inventor
Mark L. Collins
Thomas Horn
Patrick J Sheridan
Brian D. Warner
Michael S. Urdea
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2197901A1 publication Critical patent/CA2197901A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/20Purine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6832Enhancement of hybridisation reaction
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/336Modified G

Abstract

Methods are provided for substantially reducing background signals encountered in nucleic acid hybridization assays. The method is premised on the elimination or significant reduction of the phenomenon of nonspecific hybridization, so as to provide a detectable signal which is produced only in the presence of the target polynucleotide of interest. In addition, a novel method for the chemical synthesis of isoguanosine or 2'-deoxy-isoguanosine is provided. The invention also has applications in antisense and aptamer therapeutics and drug discovery.

Description

W0 96/069~0 2 1 9 7 9 ~ I rcTNsg~~

, REDUCT]ON OF NQNSPl~CIFIC HYBRlr~T7.~TlON BY
USING NovFT BA~F.-PATRTNG SCHF.l~

Technical Field This inveDtion relates generally to nucleic acid chemistry and h~1. iJ;~liu.l assays.
More particularly, the invention relates to methods for generating a more target-dependent signal in nucleic acid hybridization assays by minimizing ba~ noise deriving primarily from nonspecific hybridization. The invention also has "l'P'' ~ in antisense and aptamer LLlI~ J~ and drug discovery.

l 0 p ~ ~k pround _ ~ ' Nucleic acid hyb~iJ;~l;v~ assays are commonly used in genetic research, biomedical research and clinical diagnostics. In a basic nucleic acid h~l"; i;~l;un assay, single-stranded analyte nucleic acid is hybridized to a labeled single-stranded nucleic acid probe and resulting labeled duplexes are detected. Variations ofthis basic scheme have been developed to enhance accuracy, facilitate the separation of the duplexes to be detected from extraneous materials, andlor amplify the signal that is detected.
The present invention is directed to a method of reducing background noise e,,~,uu,.~ d in any nucleic acid h,~b.jJ;~.liùn assay. Generally, the l,c.~ ' noise which is addressed by way of the presently disclosed techniques results from undesirable interaction of 2 0 various pOl,r ~ ulcûli ic ' , that are used in a given assay, i.e., interaction which gives rise to a signal which does not correspond to the presence or quantity of analyte. The invention is useful in conjunction with any number of assay formats wherein multiple hybridization steps are carried out to produce a detectable signal which correlates with the presence or quantity of a pùl}~uclculidc analyte, One such assay is described in detail in commoniy assigned U.S. Patent No. 4,868,105 to Urdea et al., the disclosure of which is i~cu~ul2lLe i herein by reference. That assay involves the use of a two-part capturing system designed to bind the pol,r..u.,l~,ul;de analyte to -WO 96/06950 2 ~ 9 7 q ~ ~ PCT/US95/11115 a solid support, and a two-part labeling system designed to bind a detectable label to the puly~uck~vlile analyte to be detected or quantitated. The two-part capture system involves the use of capture probes bound to a solid support and capture extender molecules which hybridize both to a segment of the capture probes and to a segment of the l~ol,yl~uclcvLi :Ic analyte. The 5 two-part labelling system involves the use of label extender molecules which hybridize to a segment of the polynucleotide analyte, and labeled probes which hybridize to the label extender molecules and contain or bind to a detectable label. An advantage of such a system is that a plurality of hybridization steps must occur in order for label to be detected in a manner that correlates with the presence ofthe analyte, insofar as two distinct h,~vfidi~,~Li()~ reactions must 10 occur for analyte "capture," and, similarly, two distinct hybridization reactions must occur for anal~te labelling. However, there remain a number of ways in which a detectable signal can bc generated in a manner which does not correspond to the presence or quantity of analyte, and these will be discussed in detail below.
Another example of an assay with which the present invention is usefiul is a signal , l-r " method which is described in commonly assigned U.S. Patent No. 5,124,246 to Urdea et al., the disclosure of which is i,.~,u. ,uu. altid herein by reference. In that method, the signal is amplified through the use of " - r ~ ' multimers, pGlJ .lucl~.vLid~,i. which are constructed so as to contain a first segment that hybridizes specifically to the label extenders, and a multiplicity of identical second segments that hybridize specifically to a labeled probe.
20 The degree of ...pl;fi, -liul. is Ll-~,o,c ~ u~u~wLioll.~l to the number of iterations ofthe second segment. The multimers may be either linear or branched. Branched multimers may be in the shape of a fork or a comb, with comb-type multimers preferred.
One approach to solving the problem of interfering background signals in nucleic acid hyl,fid;L~.L;oll assays is provided in commonly assigned PCT Publication No. WO95/16055 in 2 5 which at least two capture extenders and/or two or more label extenders must bind to the analyte in order to trigger a detectable signal. To fiurther reduce background noise, the assay is conducted under conditions which favor the formation of ... ~1l; u , . l complexes, Another approach which has been proposed to increase the target ~l~pl~n~lPnl e ofthe signal in a hyl)l;d;~Liull assay is described in European Patent Publication No. 70,6S5, 3 0 mventors Heller et al. That reference describes a h. ~ ~g( ~v.,~ h~l,. ;d;~L;On assay in which a W096r06950 ~ 21 s1qol PCTlVS9~rllll~

~ ~3~
~ ~ î
nonradiative transfer of energy occurs between pro~dmal probes; two distinct events must occur for a target-generated signal to be produced, enhancin~ the accuracy of detection.
The present invention is also designed to increase the accuracy of detection and~, of polynucleotide analytes in hyL.I ;di~,aLiull assays. The invention increases both 5 the sensitivity and specificity of such assays. by reducing the incidence of signal generation that occurs in the absence of target. and does not involve an increase in either time or cost relative to currently used assay ~,olL~;ul aLiuaS.
The goals of the present invention. namely to reduce bal,~ uulld noise and to increase accuracy of detection and ~ of analytes in nucleic acid hybridization assays have 10 been achieved, in part, by the use of nucleoside variants that form base pairs by virtue of "nonnatural" hydrogen bonding patterns. As used herein, a "nonnatural" base pair is one forrned between nucleotidic units other than adenosine (A), thymidine (T), cytidine (C), guanosine (G) or uridine (U). One such nonnatural nucleoside base pair is formed between isocytosine (i*oC) and isoguanine (isoG). IsoC and isoG can form a base pair with a standard 15 geometry (i.e., â "Watson-Crick base pair") but involving hydrogen bonding other than that involved in the bonding of cytosine (C) to guanine (G), âS shown below:

~ - N-H O N~

~N~ H-N~N~
~O~ H- N~
~ H
- C G

wo 96/069!i0 2 1 9 7 9 0 1 PCT/IJS9511111~

Oo H--N N
~ ~N R

isoC isoG

Leach et al. (1992) J. Am. C'hL'n7. 5'oc. 114.367S-3683 applied molecular mechanics, molecular dynamics and free ener~y p.,. Iu~ iu" calculations to study the structure and stability of the isoCi'isoGbasepair. Toretal.(1993)J.Am.(.'hem.~5'oc. 115:4461-4467describeamethod whereby a modified i.soC in a DNA template will direct the ;..~,w l)ol ~L;ull of an isoG analog into the transcribed RNA product. Switzer et al. (1993) ~i-z' y 32: 10489-lû496 studied the conditions under which the base pair formed between IsoC and isoG might be ~ ,o~u~ d into DNA and RNA by DNA and RNA IJ~ ,I~C:~.
2 0 I-ILI ulu-,l;u-l of a new base pair into DNA oligomers offers the potential of allowing more precise control over hybridization Summarv of the Invention . . .
The present invention provides methods and kits for detecting nucleic acid analytes in a sample. In general, the methods represent improvements in nucleic acid h~bl;d~L;ull assays, such as in sit1~ hyl)l ;d ;L~II ;UI I assays, Southerns, Northerns, dot blots and polymerase chain reaction assays. In particular, the methods represent improvements on solution phase sandwich hyl,l id;~l;uu assays which involve binding the analyte to a solid support~ labelling the analyte. and detecting the presence of label on the support. Preferred methods involve the 3 0 use of, . . 1~ n multimers which enable the binding of significantly more label in the analyte-probe complex, enhancing assay sensitivity and specificity.
In a first aspect of the invention, an assay is provided in which one or more nucleotidic units which are capable of forming base pairs and which are other than adenosine (Al, thymidine (T), cytidine (C), guanosine (G) or uridine (U), are i~ u~7~ol~l~d into nontarget W096/~6950 2 1 9790 1 PCTNS95)]~5 ~j hybridizing oligf n~lflrf.~ti"f segments, i.e., "universal" segments, of nucleic acid hybl;L~L;ul~
assay ~.u., .l.u. ,. . ,l ~ This use ûf such nucleotidic units gives rise to unique base-pairing schemes which result in enhanced binding specificity between universal segments.
In a related aspect of the invention, an assay is provided in which at least one first 5 nucleotidic unit other than A, T, C, G, or U capable ûf forming a base pair with a second nucleotidic unit other than A, T, C, G, or U, is ,uu. dLed intû nucleic acid sequences of assay uull~ which are ~ y to nucleic acid sequences present in assay i.r....~ other than the target analyte. Examples of base pairs formed between two such nucleotidic units are given in the following structures (I) to (IV):
o H

R~,O ~ H-N~$

R/ ,N-H~ O R

~ - H

(Il) =,= ~N ~""O~H

= = . . , . = . , . = ,. . .

~- 21~ 01 1~--H O
N~ ~N'~
(III) ~ ~ ~ R
R O H-~
H
=
and ~& H-N~ N
N N-H ~ N~N--R
N-H O~ H3 (~v) wherein R represents a backbone which will allow the bases to form a base pair with a 2 0 f - .".~11. r ~ y nucleotidic unit when h~,ul iJol ~kd into a pol~,-uc!cuLidc, and R' is, for example, hydrogen. methyl, ~- or ~-propynyl, bromine, fluorine, iodine, or the like. By h~ù~i ~ such nucleotidic units into such so-called "universal" sequences, i.e., sequences not involved in hybl iJ;~aliull to the target analyte, the potential for nonspecific hJbl ;J;LaiiUII is greatly reduced. In one preferred rll.l,o ~ , the first and second nucleotidic units ~,Lng~,alJly consist of isocytidine and ;~ SU~ ~n -, as shown in ~ormula (1).
In a related aspect ofthe invention, an assay is provided in which the melt ~ d~Ul Tml of the complex formed between the analyte and the support-bound capture probes, mediated by one or more distinct capture extender molecules, and/or the label extender and amplifier or In ua.~ l;r~ , is significantly lower than the melt L~ J~ UI ~ Tm2 of the complex 3 0 formed between the labeled probes and the amplifier. In this aspect, the assay is carried out ~ 7 '7 1 9~9~ 1 under conditions which initially favor the formation of all hybrid complexes The conditions are then altered during the course of the assay so as to destabilize tke Tml hybrid complexes.
The invention additionally ,". . ".,~ a method for carrying out a hybridization assay in which each ofthe dr)lt ' techniques are combined, i.e.. in which nucleotidic units 5 otherthanA,T,G,C,orUarei,.~,ull~wdltdintouniversalsegmentsofassay~ and in which the melt lt~ lul ~ of Tml hybrid complexes is significantly lower than the melt ul-p.,.~lulc of Tn~2 hybrid complexes.
In a further aspect, the invention f ~ a novel method for :.J. '' ' ' ,, L(", ' or 2'-deoxy~
Finally, the invention . o ~ kits cûntaining the reagents necessary to carry outthe assays described and claimed herein.

Brief Description of the Figures Figure I . Figure I diagrams a solution phase sandwich hybridization assay of the prior 15 art with heavy lines indicating the universal sequences.
Figure 2. Figure 2 portrays a method for binding probes to double-stranded DNA with heavy lines indicating the universal sequences.
Figure 3. Figure 3 depicts the use of nonnatural nucleotide-containing probes and UU~ to block nonspecific l.~L..;I;~l;u...

DPt~ Description QfthP Iny~nfi~n Definitions and 1-.. ,.. 1 l",~, Before the present invention is disclosed and described in detail, it is to be understood that this invention is not limited to specific assay formats, materials or reagents, as such may, 25 of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular rll~l.o,l;".. . ~ only and is not intended to be limiting.
In tkis ~ . u. ,~. and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:
~ As used herein, the terms "pol~.. J~,lculidc" and "olig-. .~1 ul; IP~ shall be generic to 3û polydc~".y.;Lr -' ' ' (containing 2-deoxy-D-ribose), to poly,;b~ u~ c (containing D-ribose), to any other type of pol~l,u~,L,ul;dc which is an N- or C-glycoside of a purine or pyrimidine base, and to other polymers containing n m~uclcvL;Jic backbones, for example, polyamide (e.g., peptide nucleic acids (PNAs)) and pOi~ll.VI, ' '' (I,UIIIIII.,. ~ ly available from the Anti-Virals, Inc., Corvallis, Oregon, as NeugeneTM polymers), and other synthetic sequence-specific nucleic acid polymers providing that the polymers contain ~ v~ - in a 5 uu~lrl,~;uldliull which allows for base pairing and base stacking. such as is found in DNA and RNA. There is no intended distinction in length between the term ''~ u~,lev~iJc'' and "vl;gvllul~levliJe~" and these terms will be used hlLelull, ll~ dbly. These terms refer only to the primary structure of the molecule. Thus, these terms include double- and single-stranded DNA, as well as double- and single-stranded RNA, DNA:RNA hybrids, and hybrids between 10 PNAs and DNA or RNA. and also include known types of ".,..l;~ ., for example, labels which are known in the art, methylation, "caps." substitution of one or more of the naturally occurring nucleotides with an analog, i~l~C, uu~ ,vLidc ' ~ ' such as, for example, those with uncharged linka,ges (e.g., methyl ~ L,l".-- ~ ;~L~.a, r~
carbamates, etc.), with negatively charged linkages (e.g., phOa,ullUIui' - ph~ Lu~uJ;LLv-15 ates, etc.), and with positively charged linkages (e.g., aminoalkl,~, ' . ' _ " , amino-alkylpllvauLvLl h,.lel ~), those containing pendant moieties, such as, for example, proteins ('mcluding nucleases, toxins, antibodies, signal peptides, poly-~lysine, etc.), those with i..,e~ lLulS (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages 2 0 (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the phl~.lucl~,vli ;le or n! ~ Ir . ~
It will be appreciated that, as used herein, the terms "uu~,L.v:~id~," and "uul,lcvliJe" will include those moieties which contain not only the known purine and pyrimidine bases, but also other hc~eluu~ , bases which have been modified. Such 11.~ ;IJA'~ include methylated 25 purines or ~ ~. i ' '' , acylated purines or l)yfi "' , or other L~.,el u.,~,le S Modified nucleosides or nucleotides will also include, ~ ... on the sugar moiety, e.g., wherein one or more of the hydroxyl groups are replaced with halogen, aliphatic groups, or are fi ' ~ ' as ethers, amines, or the like. The term ''uuclavLidic unit" is intended to encompass nucleosides and nucleotides.
I~JlL~ -V-e"~ .-_ tonucleotidicunitsincludelec" "'~,appending, substituting for or otherwise altering functional groups on the purine or pyrimidine base which WO 96106950 2 1 9 ~ q o IPCT/l~S95/11115 ~

form hydrogen bonds to a respective ..,.."~ AIY pyrimidine or purine. The resultant modified nucleotidic unit may form a base pair with other such modified nucleotidic units but not with A, T, C, G or U. Standard A-T and G-C base pairs forrn under conditions which allow the formation of hydrogen bonds between the N3-H and C4-oxy of thymidine and the N
5 and C6-NHz, respectively, of adenosine and between the C2-oxy, N3 and C4-NH2, of cytidine and the C2-NH2, N'-H and C6-oxy, respectively, of guanosine. Thus, for example, guanosine (2-amino-6-oxy-9-~-D-~iburu~ - ~I-purine) may be modified to form i ", (2-oxy-6-amino-9-,~-D-.iburul yl-purine). Such ".~S,~ ... results in a nucleoside base which will no longer effectively form a standard base pair with cytosine. However, . ,.~ O. .., of cytosine (1-,B-D-ribofuranosyl-2-oxy-4-amino-pyrimidine) to form isocytosine (1-l3-D-ribofiuranosyl-2-amino-4-oxy-pyrimidine) results in a modified nucieotide which will not effectively base pair with guanosine but will form a base pair with is~,L, Isocytosine is available from Sigma Chemical Co. (St. Louis, MO), isocytidine may be prepared by the ~ method described by Switzer et al. (1993), s11pra and references cited therein; 2'-deoxy-5-15 methyl-isocytidine may be prepared by the method of Tor et al. (1993), s~rpra, and references cited therein; and isoguanine nucleotides may be prepared using the method described by Switzer et al., s1/pra, and Mantsch et al. (1993) Biochem. 14:5593-5601, or by the method described in detail below. The nonnatural base pairs depicted in structure (II), referred to as K
and 7t, may be synthesized by the method described in Piccirilli et al. (1990) Na7r re 343 :33-37 for tEie synthesis of 2,6-dh~"l;.. u~ i"~;d;~le and its s - , ~ (1-methyl~ ,Lulo[4,3]-pyrimidine-5,7-(4H,6H)-dione. Other such modified nucleotidic units which form unique base pairs have been described in Leach et al. (1992) J. Am. ~.hen7. ~S'oc. 114:3675-3683 and Switzer et al., s1~pra or will be apparent to those of ordinary skill in the art.
The term "polynucleotide analyte" refers to a single- or double-stranded nucleic acid 25 molecule which contains a target nucleotide sequence. The analyte nucleic acids may be from a variety of sources, e.g., biological fluids or solids, food stuffs, environmental materials, etc., and may be prepared for the hyl"idi~l;u" analysis by a variety of means, e.g., proteinase K/SDS, chaotropic salts, or the like. The term "pol~ .,uclcu1;.ic analyte" is used i..te., ' ~ ' 'y herein with the terms "analyte~" "analyte nucleic acid" and "target."

~'~ .~., .,-W096106950 2 1 9 7 9 ~ ~PCT/US95/11115 As used herein~ the term ''target region" or "target nucleotide sequence'' refers to a probe binding region contained within the target molecule. The term "target sequence" refers to a sequence with which a probe will form a stable hybrid under desired conditions.
As used herein, the term ''probe" refers to a structure comprised of a pvl~ vL;de, as defined above. which contains a nucleic acid sequence f.ol~,l,l..... :A y to a nucleic acid sequence present in the target analyte. The pol~,.Julcvl;dc regions of probes may be composed of DNA, and/or RNA, and/or synthetic nucleotide analogs.
It will be appreciated that the binding sequences need not have perfect . .u- - ~ Al ;Ly to provide stable hybrids. In many situations. stable hybrids will form where fewer than about 10 10% ofthe bases are rriC~:ltfhes, ignoring loops offour or more nucleotides. Accordingly. as used herein the term "1 ,....,.1..,.... Alyll refers to an ul;gv...,clcv~;de that forms a stable duplex with its "-...,..1 ,1~ ., .. ~ " under assay conditions, generally where there is about 90% or greater homology.
The terms "nucleic acid multimer" or ~ ;fl~ nn multimer" are used herein to refer 15 to a linear or branched polymer of the same repeating single-stranded 'i,, ' ' ~ segment or different single-stranded polynucleotide segments, each of which contains a region where a labeled probe can bind, i.e., contains a nucleic acid sequence f.<.. l.l.. : .. y to a nucleic acid sequence contained within a labeled probe; the . .':~,. .- -- f 1~ v~ segments may be composed of RNA, DNA, modified nucleotides or, ' thereof At least one of the segments has a sequence, length, and ~,u~ u~;~;un that permits it to bind specifically to a labeled probe;
additionally, at least one of the segments has a sequence, length, and cul~ o~;l;ull that permits it to bind specifically to a label extender or p., , I'r . Typically, such segments will contain f~ J-u~hl-dl~ly 15 to 50, preferably 15 to 30, nllflfotj~ c, and will have a GC content in the range of about 20% to about 80%. The total number of r~l;g- ~ ~ 1 vl ;-~f segments in the multimer will usually be in the range of about 3 to 1000, more typically in the range of about 10 to 100, and most typically about 50. The c'i g ~'~ ~I;dc segments ofthe multimer may be covalently linked directly to each other through 1~ pl..,~l,; url bonds or through interposed linking agents such as nucleic acid, amino acid, carbohydrate or polyol bridges, or through other cross-linking agents that are capable of cross-linking nucleic acid or modified nucleic 3 0 acid strands. Alternatively, the multimer may be comprised of vli~;um~,lcv~;J~, segments which are not covalently attached. but are bonded in some other manner. e.g.. through h~bl;d;L~II;UII

~V096/06950 2 1 9~9 ~ 1 PCTJUS95/11115 Such a multimer is described, for example. in U.S. Patent No. 5,175,270 to Nilsen et al. The site(s) of linkage may be at the ends of the segment (in either normal, 3'-5' orientation or - randomly oriented) and/or at one or more internal nucleotides in the strand. In linear multimers the individual segments are linked end-to-end to form a linear polymer. In one type 5 of branched multimer three or more . ~ f segments emanate from a point of origin to form a branched structure. The point of origin may be another nucleotide segment or a mnltifilnnti~n ~ molecule to which at least three segments can be covalently bound. In another type, there is an ol.~ u~,lcvl;Jf segment backbone with one or more pendant ~ 'i,, ' ' segments. These latter-type multimers are "fork-like," "comb-like" or ' "fork-" and 10 "comb-like" in structure, wherein "comb-like" multimers, the preferred multimers herein, are pvl~ L;dci having a linear backbone with a multiplicity of sidechains extending from the backbone. The pendant segments will normally depend from a modified nucleotide or other organic moiety having appropriate functional groups to which ol:,~" .. 1~ ~a ;~ may be conjugated or otherwise attached. The multimer may be totally linear, totally branched, or a c.. l .~ .. , of linear and branched portions. Typically, there will be at least two branch points in the multimer, more preferably at least three, more preferably in the range of about 5 to 30, although in some . S.o.l;,... l~ there may be more. The multimer may include one or more segments of double-stranded sequences. Further information concerning multimer synthesis and specific multimer structures may be found in commonly owned U.S. Patent No. 5,124,246 2 0 to Urdea et al.
PCT Publication No. W092/02526 describes the comb-type branched multimers which are particularly preferred in conjunction with the present method, and which are composed of a linear backbone and pendant sidechains; the backbone includes a segment that provides a specific hrb.iJ;~L;on site for analyte nucleic acid or nucleic acid bound to the analyte, whereas 25 the pendant sidechains include iterations of a segment that provide specific h~b,;d;~l;on sites for a labeled probe.
As noted above, a "~ molecule may also be used, which serves as a bridging moiety between the label extender molecules and the l .-r ' multimers. In this way, more amplifier and thus more label is bound in any given target-probe complex. P~ ."l;L, 3 0 molecules may be either linear or branched, and typically contain in the range of about 30 to about 3000 nll~lf oti~l~ c In the preferred ~ ,l.o~ herein, the ~,-~,....,~I;fi." molecule binds WO 96/06950 2 1 9 7 9 ~1 PcT/U595/~ 5 to at least two different label extender molecules, such that the overall accuracy of the assay is increased (i.e., because, again, a plurality of LJbfiJ;~L;Un events are required for the probe-target complex to form).
As used herein, a "biological sample" refers to a sample of tissue or fluid isolated from 5 an individual, including but not limited to, for example, plasma, serum, spinal fluid, semen, iymph fluid, the external sections of the skin, respiratory, intestinal, and ~ ,y tracts, tears, saliva, milk, blood cells, tumors, organs, and also samples of in vitro cell culture r.~ l ;l ". ,1 ~ (including but not limited to conditioned medium resulting from the growth of cells in cell culture medium, putatively virally infected cells m CCUIII' ' cells, and cell 10 . .1:1...1 ..,, - : ~). Preferred uses of the present method are in detecting and/or ril~ rifAting nucleic acids as follows: (a) viral nucleic acids, such as from hepatitis B virus ("HBV"), hepatitis C
virus ("HCV"), hepatitis D virus ("HDV"), human ;""",l,..~d ~r:. .,ry virus ("HIV"), and the herpes family of viruses, including herpes zoster (chicken pox), herpes simplex virus I & II, cyi ~ ~o-irus, Epstein-Barr virus, and the recently isolated Herpes Vl virus; (b) bacterial 15 nucleic acids, such as Chlamydia, My~,ubdctc~iu~ Lub~,ulu~;a, etc.; and (c) numerous human sequences of interest.
As used herein, the term ~ u~ flL~ h~bl ki;~a~iOIP~ iS used to refer to those o~,u, . ~ i, in which a segment of a first poh,~ ,k.~,Lidc which is intended to hybridize to a segment of a selected second pol ,..u~ id~, also hybridizes to a third pol,~ cl.,~lLid~"
20 triggering an erroneous result, i.e., giving rise to a situation where label may be detected in the absence of target analyte. The use of the term "hyl,l i i;~ol' is not meant to exclude non-Watson-Crick base pairing.
As used herein, the term ''nonspecific binding'' is used to refer to those ou..u~ic...,eO in which a polynucleotide binds to the solid support, or other assay component, through an 25 interaction--which may be either direct or indirect--that does not involve hydrogen bonding to support-bound poly,..lrl~ol;d -Referring now to the preferred ~ ~ ' represented in Figure l, the following terms apply to the h,,b~ aliull assay depicted therein. Note that, in Figure l, the universal sequences are indicated by heavy lines for clarity.
3û "Label extender molecules (LEs)," also referred to herein as "label extenders," contain regions of c",u~ y vis-à-vis the analyte polynucleotide and to the nl l~ f~ n WO 96/06950 2 1 9 7 9 0 t PCTIUS95111115 ~ --13-IA~ .!
multimer ("AMP"). If a ~" ~a~ ,l;l..,. is used (not shown in the figure), the label extender molecules will bind to this intermediate species rather than directly to the A~
multimer. If neither ~, e,l,.,L l;fi~,l or amplifier is used. the iabel extender molecules will bind directly to a sequence in the labeled probe ("LP"). Thus, label extender molecules are single-5 stranded pv~ e~)Lidc chains having a first nucleic acid sequence L-l . ' y to a sequence of the analyte poly~ ide, and a second universal region having a multimer recognition sequence L-2 ~v, .l 1. . . ~ Y to a segment M-l of label probe, A~ ln multimer or 1~ e~.-"~ I;&el .
"Labeled probes (LPs)" are designed to bind either to the label extender, or, if an 10 ~mplifir~firn multimer is employed in the assay, to the repeating .,1:~,.. .. Ir.a;.l. segments of the multimer. LPs either contain a label or are structured so as to bind to a label. Thus, LPs contain a nucleic acid sequence L-3 ~.. ~.l.. ,.. :A y to a nucleic acid sequence M-2 present within the repeating niig~ ricofirie units ofthe multimer and are bound to, or structured so as to bind to, a label which provides, directly or indirectly, a detectable signal."Capture extender molecules (CEs)," also referred to herein as "capture extenders,"
bind to the analyte pvl~ clc~ de and to capture probes, which are in turn bound to a solid support. Thus, capture extender molecules are single-stranded pvl,r~u~l~.vlide chains having a first poly,.,J~,levLi;i~, sequence region containing a nucleic acid sequence C-l which is ar . ' y to 8 sequence of the analyte, and a second, r I ' y region having a 20 capture probe recognition sequence C-2. The sequences C-l and L-l are ' l, n~ r .~IAIY sequences that are each . . ' y to physically distinct sequences of the analyte.
"Capture probes (CPs)" bind to the capture extenders and to a solid support. Thus, as illustrated in Figure ], capture probes have a nucleic acid sequence C-3 ~.-- ."l. ".. .IIA~y to C-2 25 and are covalently bound to (or capable of being covalently bound to) a solid support.
Generally, solution phase hybridization assays carried out~using the system illustrated in Figure I proceed as follows. Single-stranded analyte nucleic acid is incubated under h yl" i;i~livn conditions with the capture extenders and label extenders. The resulting product is a nucleic acid complex of the analyte polynucleotide bound to the capture extenders and to 3 0 the label extenders. This complex may be subsequently added under hybridizing conditions to a solid phase having the capture probes bound to the surface thereof; however, in a preferred .. =~, . ~

W096/06950 2 ~ 9 7 9 o ~ PCTNS95111115 ~mhorfimr~nt the initial incubation is carried out in the presence ofthe support-bound capture probes. The resulting product comprises the complex bound to the solid phase via the capture extender molecules and capture probes. The solid phase with bound complex is then separated from unbound materials. An A",~ .., multimer, preferably a comb-type multimer as 5 described above, is then optionally added to the solid phase-analyte-probe complex under hybridization conditions to permit the multimer to hybridize to the LEs; if 1.. c~ ,lif.~,. probes are used, the solid phase-analyte-probe complex is incubated with the ,~ . ' '' probes either along with the A~ 'r~ -I;n~ multimer or, preferably, prior to incubation with the .. multimer. The resulting solid phase complex is then separated from any unbound 0 IJI CA~,UIiS~" and/or multimer by washing. The labeled probes are then added under conditions whicb permit IIYbI;d;~ to LEs, or, if an ~ -I;UI~ multimer was used, to the repeating nlig~ clc~l;rl~ segments ofthe multimer. The resulting solid phase labeled nucleic acid complex is then washed to remove unbound labeled ~ ' ' ', and read. It should be noted that the ..u...~,u...,.,t~ represented in Figure l are not necessarily drawn to scale, and that 15 the , ' ~ multimers. if used, contain a far greater number of repeating ~ ' ' ' segments than shown (as explained above), each of which is designed to bind a labeled probe.
The primary focus of the present method is on eliminating the sources of 1~..,Lg. ~ ' noise, by minimizing the interaction of capture probes and capture extender molecules with the labeled probes, label extender molecules and amplifiers, reducing the likelihood that incorrect 20 moieties will bind to the support-bound capture probes.
IIyb.;d;~;u., between ~:o - l~ y ~ I;dl' sequences is premised on the ability of the purine and pyrimidine nucleotides contained therein to form stable base pairs.
The five naturally occurring nucleotides adenosine (A), guanosine (G), thymidine (T), cytidine (C) and uridine (U) form the purine-pyrimidine base pairs G-C and A-T(U). The binding 2 5 energy of the G-C base pair is greater than that of the A-T base pair due to the presence of three hydrogen-bonding moieties in the former compared with two in the latter, as shown below:

WO 96106950 2 ~ ~ ~ 9 0 ~ PCTIVS9~/11115 ~ -15-~ ~ ,.
,H
H3C~_ bO H--N ~N~
~/ N--H~ .,."N' \~_N
N ~ \~ N R

o ~ T A

and H~
~N- H 0~$~

C G

. Thus. in a c u~ ;ul~al solution phase nucleic acid sandwich assay, r.l;~ r molecules 2 û are designed to contain nucleic acid sequences which are , ' y to and. therefore, hybridize with nucleic acid sequences in other assay ... 'l'~"" .,l~ or in the target analyte, as explained in detail above. The method of the invention reduces nonspecific h~b. ;.I;~l;on by ;II~,UI UOI~I~illg nonnatural nucleotidic units into universal ~ 'iv ' JliJ. segments of assay f.. . ~ which are capable offorming unique base pairs. r~ h~l"u,~ the method ofthe 25 invention reduces the contribution of nonspecific binding of assay uu~,u~ by separating detectably labelled assay .:..:,...l.u.,. :~ which are associated with the presence and/or quantity of a target analyte from those which are r ~ bound and contribute tû assay b~,~,h~;,uu"J noise.
In a first ~u~bo.lhu~,.,t of the invention, a hybl ;J;4~;u~ assay is provided in which 3 û nucleotidic units other t~an A, T, C, G and U which are capable of forming unique base pairs . ,.. , . ~

W096/06950 2 1 ~ 7 9 0 1 PCTmsgSIllll5 are ill~.UI pUI .II~Li into hybridizing oligonucleotide segments of assay .. pnl, l ~ which are not target analyte specific and thus will be iess likely to form stable hybrids with target-specific probe sequences or with extraneous nontarget nucleic acid sequences. Thus, as shown in Figure 1, for example, such nucleotidic units may be in~,ul,uuldled in c.n ~ .y nucleic acid sequences C-2/C-3, L-2~ 1 and L-3~-2. The hybridizing "I b''''''~l ul;d~ segments of assay ~ J~ which are ' U I i' 1 1- I A Y to nucleic acid segments of the target analyte are constnucted from naturally occurring nucleotides (i.e., A, T, C, G or U). O!i" ~' ' ' segments which contain nucleotidic units may be csnstructed by replacing firom about 15% to about 100% ofthe naturally occurring nucieotides with the nucleotidic unit counterpart.
10 Preferably, every third or fourth base in an c.l'.~,". l ul;~lf will be replaced with a nucleotidic unit capable offorming a unique base pair. It will be apparent to those skilled in the art that as the percent of I ~ cell,.,..l nucleotidic units is increased, nonspecific h~l"; iiL~liull is decreased ;- ' 'y However, complete l~:pld~,cln~,." will require at least two new base pairs in order to maintain suffcient sequence diversity tû preclude nonspecific .,~bl idiL~liull among the 15 universal sequences.
Inanother~ I-o-l:--- loftheinvention,the pl....n.... I.~nof1~ 1 I'i ' signal generation is addressed by providing a h,~,JIid;L~lliull assay which is configured such that the melt temperature Tml of the C-2/C-3 hybrid or the L-2/M -I hybrid is significantly lower than the melt l~"..".,. ~lu, ~ Tm2 of the L-31M -2 hybrid. This method is premised on the design and 20 .,u..~l-u~,l;c,-, of hybrid complexes such that the melt temperature Tml is at least about 5~C
lower than, preferably at least about 10~C lower than, more preferably at least about 20~C
lower than the melt Ltlllll.,. dLUl ~ Tm2 This stability difference is exploited by conducting the assay under stringency conditions which initially favor the formation of Tml and T~,2 hybrid complexes. The stringency 25 is altered at a subsequent step ofthe assay which thereby affords the physical separation ofthe target analyte from the capture probes or the physical separation of the amplifier-bound labeled probes from the target. Stringency can be controlled by altering a parameter which is a thermodynamic variable. Such variables are well known in the art, and include formamide 1on~l,lllldl;ull, salt UUIl~il..ldl;Ull, chaotropic salt CUU~ ;Ull, pH (hydrogen ion 3 0 c u ~ U ,~ ~.),'organic solvent content, and L~ lul ~. Preferred stringency controls are pH
and salt UUII~,.,Iltl.ll;Un. one assay step is conducted at a pH or salt uulll~..lldliull which w0 96/06950 ~ , 2 1 9 7 ~ U 1 PCT~Sg5)~ 5 ., *i .
destabilizes the hybrid complex formed between capture pluba/~ Lul~ extender or destabilizes the hybrid formed between label l,Alt,.d~./a..",l;G." (or ~ LG~.). A preferred step at which stringency is exercised is the addition of substrate. Thus, in a preferred ....vr ' ~, the hybridization assay is conducted under conditions which favors tbe stability of hybrid 5 complexes formed between all assay . ~ and thereaf er, with the addition of label substrate, the stringency is altered to destabilize hybrid complexes such as the capture probe/capture extender, or label ~,AL.".d~,./~.l.~,l;r.~ ult~ l;G~ and the like, with the proviso that the labeled probe is not released from the label extender or amplifier.
Another l~mho~' of the invention represents one means by which the above 10 ~ulbodhl..,..; of the invention may be effected is by configuring the h~ "Gd;~l;vn assay such that the u~.."L~I. .". .~n~y nucleotide sequences which form Tml hybrid complexes are shorter than those which form T~2 hybrid complexes. It will be appreciated by those of skill in the art that, with shorter . O ~ Y nucleotide sequences. the opportunity for sequence diversity therein decreases. This diversity may be maintained, however, by ;n~,Vl~)Uld~ into the ~.. .~.1.. ,l ., y sequences a nonnatural base pair, e.g., an isoC-isoG base pair.
It will be readily apparent to one skilled in the art that the greater the i , d~UI ~:
difference between T"~, and Tn~2~ the greater the "effciency" of this technique in removing l,a~,h~;l vu..d noise. Thus, one skilled in the art will recognize that temperature differentials of less than 10~C, even less than S~C, would also permit reduction of b~,h~;~uLn~d noise, albeit to 2 0 a lesser extent.
The method of the disclosed invention, whereby nonnatural nucleotidic units are ;.,~,ullJu.dltd into hybridizing r.l;~,~....,. L . ~I;df sequences to increase the specificity ofthe hyl,l ;di~al;UII with a target analyte, finds utility in a variety of rr~
In the basic or amplified solution phase nucleic acid sandwich assay, a plurality of 25 capture probes are affixed to a solid surface. Most often, the surface area available for nonspecific binding is controlled by incubating the surface with DNA from, e.g., salmon sperm or calf thymus. However, the presence of this DNA increases the potential for nonspecific hylJl ;d;~dl;vll of assay ~ to the solid support and~ therefore, increased background noise. l~ ~p~ m~nt of these natural DNAs with synthetic DNAs containing nonnatural bases 30 will minimize the nonspecific h~l,.;.l;,:.l~;uu and the nonspecific binding.

w096t06950 2 1 q 7 9 ~ ~ PCT/IIS95/11115 Preferably, these polynucleotides will be prepared by 3' tailing short ol O ~
with mixtures of nucleotides by methods well known in the art. Aiteratively, short, nearly random-sequence oligonucleotides containing nonnatural nucleotides can be joined together to form poly, ICl~ Branched DNAs can be ~ou~ .,Lly used for this purpose. For 5 exampie, the block sequence -TNVN-F-TNVN-J-TNVN-, wherein F is isoC and J is isoG, can be prepared and chemically joined to form a polymer. The advantage of using this approach over using the enzymatic 3' tailing approach is the elimination of homopol,~ r,l L,'~' - -sequences Another application in which the ~,u..~u u"l;un of hybridizing u' L ~ ~ 4 oti~
1 0 containing nonnatural nucleotidic units finds utility is in the design of antisense compounds.
Antisense ~nmpollntlc~ as explained~ for example, in Ching et al. (1989) Proc NatL Acad 5'ci.
~.S.A. 86:100Q6-10010, Broder et al. (1990)An)~ fnt ML~L/. 1 13:604-618~ Loreau et al.
(1990) FFB.S'Letlers ~ L:5~-56~ and PCT Publication Nos. W091/11535, WO91/09865.WO91/04753~ WO90/13641, WO91/13080 and, W091/06629, are, Ij,, ~ ' that bind 15 to and disable or prevent the production of the mRNA responsible for generating a particular protein. Conventional antisense molecules are generally capable of reacting with a variety of oli~,...,..r.l. ~ a ;rlr- species However, due to their length (generally -li g '1 ' ' sequences of up to 30 nucleotidic units), such antisense molecules present problems associated with nonspecific hybridization with nontarget species. One solution is to use short regions of 20 hybridization between multiple probes and the target; to strengthen the overall complex, short ~dll~l..l ;~I;UII domains" between the probes are used, as described by Distefano et al. (1992) J:
Am. Chem ~5'oc 114: 1006-1007 The u;,.,~ ;UII domains may be designed to have tails with , ' ' y sequences containing nonnatural nucleotidic units and thereby provide highly efficient and specific binding to the target analyte without increasing nonspecific h Yl/~;d;~aL;WI
25 to non-target analytes. The idea is illustrated in Figure 2 with a double-stranded DNA target.
As illustrated in Figure 2, strand ~ 7~ . t may be used to pry apart double-stranded DNA. AT-rich promoter sequences under superhelical stress, which are S 1 nuclease-sensitive and are thus already partially single-stranded, are a particularly preferred site for this type of antigene application. Short .~ L, . ..1. .,1;,1., would be used to maximize specificity;
3 0 their binding energy to the target would be enhanced by joining them together to form a network of r~l g,.."" 1, ~,1;.1. ~

wo96106950 2 1 q79~ I PCT/l~S95~ 5 In this construct, the short universal sequences, which will not form stable base-pairs in the absence of target, contain isoC and isoG to limit nonspecific hybridization of the probes with the human sequences. Upon binding of probes 1. 2 and 3 to the target, the universai sequences will be in suffciently close proximity that their effective l,u..~G-lLlaliull will be 5 significantly increased. The universal sequences will then pair, resulting in a further increase in the strength of the binding. RiiA targets may also be used in conjunction with this approach.
The SELEX procedure. described in U. S. Patent No. 5.270.163 to Gold et al.. Tuerk et al. (1990) ~cience 249:505-510. Szostak et al. (1990) Nafure 346:818-322 and Joyce (1989) Gelle 82:83-87. can be used to select for RNA or DNA sequences that recognize and bind to a 1 0 desired target molecule by virtue of their shape. The term "aptamer" (or nucleic acid antibody) is used herein to refer to such a single- or double-stranded DNA or a singlc-stranded RNA
molecule. See. e.g.. PCT Publication Nos. WO92/14843. WO91/19813. and W092/05285.
the disclosures of which are h~,ullJu,_lc;i by reference herein. "Target moiecules," as distinct from "target analytes." include polymers such as proteins, poly .~ ..;d.,.. ' ~ ' ' or 15 other ma.,~. .,n. ,1~ , and small molecules such as drugs. n..,._l, ' , toxins. or the like. to which an aptamer is designed to bind.
In the SELEX procedure. an ~ ,.. ll 1. Ul;rl~ is constructed wherein an n-mer, preferably a randomized sequence of nucleotides thereby forming a "randomer pool'' of v~ .l;.1. , is flanked by two polymerase chain reaction (PCR) primers. The construct is 2 0 then contacted with a target molecule under conditions which favor binding of the ~llyll~ IrU~ to the target molecule. Those ~ I;g~ rl~ c which.bind the target molecule are: (a) separated from those: 'i,, ' ' which do not bind the target molecule using ~,u~ ,ul;u~al methods such as filtration, Cclltl;fu~5dt;Vll, IlllUlll~lLUr,lh~lly, or the like; (b) dissociated from the target molecule; and (c) amplified using .,u"~, ' PCR technology to 25 form a ligand-enriched pool of olip,--, l- I;u~;d~ c Further rounds of binding. separation.
u ~ \ and Alllll~ ;ull are performed until an aptamer with the desired binding affinity.
specificity or both is achieved. The final aptamer sequence identified can then be prepared chemically or by in vi~ro IlAnjcl ;~liuu. When preparing such aptamers. selected base pairs are replaced with nonnatural base pairs to reduce the likelihood of the aptamers hybridizing to 30 human nucleic acids.

WO 96/06950 PC~IUS95111115 -20- 21 979~1 One can use the present invention in at least two general ways in SELEX. First, isodG
and isodC can be included among the sequences in the randomer DNA sequence pool. The number of possible randomeric structures that may recognize proteins or other important 1~; ,"~e~le~ iS increased by ~yuLlL.;~ g strands of DNA out of six or more nl~lPoti~lPc 5 rather than the Co.,~,.,iiu,.GI four nucleotide A, T, G and C. This is turn improves the chances of identifying a sequence which binds with greater affinity and/or specificity to the target molecule.
In SELEX, the conserved c'i g ' 1e sequences selected for may have unwanted hybridization to cellular sequences. This nonspecific h~b. idi~liull can be reduced using l 0 nonnatural bases in the selection process. Nucleotides that are not recognized by human RNA
and DNA polymerases but which are recognized by certain phage or bacterial PUI~ G~C~ are particularly useful in this application.
A second use for the instant invention in the SELEX process is in the preparation of a final aptamer construct with minimized nonspecific hJbfid;~Gliull. For example, aptamers I 5 which display p, ~Ih,lel ...;..ed binding affinity, specificity or other target molecule recognition UIIGI GUI~ are selected from a pool of RNA or DNA sequences using the SELEX process.
These target molecule recognition CIIGIG~ are determined by the secondary structure of the aptamer which is maintained, in part, by the formation of h~
hybrid complexes. Upon elucidation of the secondary structure of the aptamer, it will be 2 o apparent to one of ordinary skill in the art that the specificity of base pairs in certain illllGmGlc~,ula, hybrid complexes is highly preferred for maintaining the secondary structure and, therefore, the target molecule recognition and binding CIIGIG~ ofthe aptamer, i.e., there will base pairs which are preferably G-C or A-T. There will be other.base pairs in these -' ' hybrid complexes, for example, in the base-pairing portion ofthe stem loop,25 which may be replaced by any pair of e~ y m~rlpcltirlpc~ referred to herein as N-N' base pairs, without altering the secondary structure of the aptamer.
A simple, C;~IGI~ II of selected N-N' base pairs and G-C and C-G base pairs in the final aptamer construct with isoG-isoC or isoC-isoG will reduce nonspecific hybridization to nontarget ~ Irkul;~1e sequences. Since the isoC-lsoG base pair is i~u~ lic with the C-3 0 G base pair, the basic shape of the molecule and the strength of the hairpins will be verysimilar. A base pair i~tU~.U~ ,iiU with A-U would be desirable for replacing base pairs where w096106950 21 21979~

the winning sequences show a strong preference for A-U or U-A over C-G. These l; n, l ;~ have the effect of makine the aptamers more specific for the target molecule by limiting their potential for unwanted hybridization to celiular RNA and DNA sequences.
In the basic process, selected base pairs are repiaced with IsoC-isoG or isoG-isoC base 5 pairs. In the final construct, isoC-isoG base pairs can comprise l ;bu~ ul; L ~ or dcu"y~ u~u~,lcuLid~,~. A chimeric aptamer (composed of both fil,, ~t " ' and dcu7.ylilJ....~ u~ ;) molecule can be made chemically. A]ternatively, the ribo-~soGTP and ribo-isoCTP (with suitable 2' protection) can be used to prepare the aptamer by in vitro fiuLiull of DNA templates containing isoC and isoG.
~ther .. ~ in which the present invention may find utility include m sittl hyl)lkl;~liullb. in reducing of nonspecific binding in hJblidi~Liu-l assays ar.d in polymerase chain reaction (PCR) assays.
fns/~t/'.,~.,l;d;~iy.,lackssuffcientsensitivitytodetectasinglemoleculeoftarget analyte. Insittl PCR (see, e.g., Bagasra et al. (l993) J. Immt~nologicalMethods l53:131-145) 15 has been developed to meet this sensitivity need; however, qllllntit~tinn iS not as precise with the PCR method. An alternative would use multiple label extender probes to bind the target analyte. The label extenders would bind either 1, u , '' ~ ~ or amplifiers. If used, ,..~11 , '''' b would bridge label extenders and amplifiers. The amplifiers would bind labeled probes, which would preferably be detected by 1. . " ,: ", r~ (nuol t~ Cll.~C if the sensitivity is 20 high enough). As before, the universal sequences, L-2/M-I and M-21L-3 would consist of short oligr~n~lcleot~ c containing optimally between 15-30% i.soC and isoG to reduce unwanted h~u~ kl;~lion to human sequences. A fourth base-pair could be used to further reduce the I C~Jl cb~n~ iull of the natural bases in these sequences.
As noted earlier, nonspecific binding as well as nonspecific h~blid;~ . can be 25 reduced by using nonnatural base pairs. Random polymers or nearly random block copolymers cûnsisting of 6-8 different nucleotides could be used to reduce nonspecific binding of the amplifier and labeled probes to the cellular ...,.. u ;n ... ,l ~ that have high affinity for pol~ ul;~; Thus nonspecific binding will be reduced without risking an increase in ~ nonspecific hyl,.i.~ ioll by introducing natural sequences from calfor salmon, as is commonly 3 o done.

-~- 21 979~ ~

One skilled in the art will recognize that the same strategy could be applied to blot assays, such as dot blots, Southerns, and Northerns, to reduce nonspecific hybridization and nonspecific binding of the probes to the solid supports.
The present invention also finds several uses in PCR and other exponential ~ ;u" Ir~ For example, in nested PCR after the target analyte is initially amplified and then diluted several thousand-fold, it is common to use a 5' overhang on one primer for capture and a 5' overhang on the other primer for labeling. A spacer that cannot be read by the polymerase is inserted so that the overhangs remain single-stranded (see, e.g., Newton et al. ( 1993) NucL Acl~5 i~e.~. 21:1 155-~ 162). The generic sequences in these 5' 1 û overhangs can be prepared to contain modified base-pairs to reduce the frequency of priming on nontargets. Indeed, the presence of ~sodC or i.sodG in the first base of the S' overhang can be used in place of the currently used spacers; the polymerase cannot read isodC or isodG
because it will have no isodGTP or isodCTP to put in place of it. Because the polymerase may put T into the polymer at a low frequency when it detects i.sodG in what was the primer, it is preferable to use isoC as the first base in the S' overhang.

E~.y.,l ' ,. . ~
The practice of the present invention will employ, unless other vise indicated, conventional techniques of synthetic organic chemistry, I,io~,h.,.ll;.L~y, molecular biology, and the like, which are within the skill ofthe art. Such techniques are explained fully in the literature. See, e.g., Sambrook, Fritsch & Maniatis~ Molecular Cll~nin~ A Laboratorv Manual, Second Edition ~1989); C'i~ ' ' '~ Synth~cic (M.J. Gait, ed., 1984); Nucleiç
Acid H~IJI; I ~AI8lll (B.D,.~ames & $.J. Higgins, eds., 1984); and the series, Methods in YII~OIUaY (Academic Press, Inc.) All patents, patent ~, r 1 ' . and l ' ' mentioned herein, both supra and i~,7fra, are hereby i.,.,V~ Ltid by reference.
It is to be understood that while the invention has been described in conjunction with the preferred specif c ~illlbo.l;lll.,.lL~ thereof, that the description above as well as the examples which follow are intended to illustrate and not limit the scope ofthe invention. Other aspects, 3 0 advantages and l o ~ ;rl"~ within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.

WO 96106950 PCI /Us9s~
~3 219~90 A~
In the foilowing examples, efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature~ etc.) but some . A~ "lLdl error and deviation should be accounted for. Temperature is always given in degrees C and, unless otherwise indicated, pressure is at or near atrn- ' ;c.

Svnthesis of l.SUU!I 1~ cr 2'-DPr~SY~
Few procedures have been reported for the synthesis of i~u~ v~hle or 2'-deoxy-i~vL For example, 2'-deoxy-l~-~g,.A...~ has been synthesized: I) from 2'-dcuA-y_;L~,.oa;,,e via 2'-deoxyadenosine-(N~-oxide) by direct photolysis under basic conditions (Switzer et al. (1993), s7lpra); 2) from 2-chloro-2l-d~)A~ oainc by direct photolysis under basic conditions (Seela et al. (1992) ~elv. (.'him. Ac~a 75:2298-2306); and 3) by a chemical routefrom 6-amino-1-(2'-deoxy-beta-D-erylh~u~ ,tulu, ~~ yl)-lH-;~;d~lc ~ carbonitrile [AICA 2'-deoxy~Jclcus; i.,], which was reacted with benzoyl isocyanate followed by treatment with ammonia to affect annealation ofthe pyrimidine ring (lC ~,~uh et al. (1991) Helv.
Chim. Acta 74:;742-17g8) However, because the photolytic conversion of 2'-deuAy ..t' ~ ~ -oxide) to 2'-deoxy-iso-guanosine does not lend itself readily to scaie-up, a convenient, chemical route to 2'-deoxy-~u~;u_..va;"c from readily available 2'-d~,uAyl;b . ~ L ~ .1 starting materials was developed.
2 0 Several procedures for the conversion of 2'-dcuAyL into 2,6-P
nucleoside and N6-alhyl-2,6- ' , ;"c nucleoside via special "c~ ,. L;bl~ 2'-dc~)Ay~ a~lua;~ derivatives, such as O6-phenyl-2'-dcuA~,~na.~u~:..c, have been described ~acMillanetal. (1991) Tetrahedlon D,1:2603-2616;Gaoetal. (1992)J. Org. Chem.
57:6954-6959; and Xu et al ~1992~ Tetrahedrott 48 1729-1740). Further, Fathi et al. (1990) retrahedror~ Letters 31 :319-322 described a convenient synthesis of O6-phenyl-2'-deoxyguanosine using a procedure involving treatment of 21-d~uAAy~;u_~lua;llc with ilinu~llua~cLi~; anhyl~; ic'~ ;d;,.e followed by D75i7U d~ with phenol. Alternatively, the introduction of O6-phenyl moieties into 2'-deoxyguanosine has been described by Reese et al. (1984) .~. (.'hen7. .S'oc., Perlrin Trans. 1, 1263-1271, where the int~ Ate o6_(4_ 3 0 1 ~ .1, .. . ~1 r.. yl)-2'-deoxygl~anosine was treated with trimethylamine followed by phenol to 7~ffect.1,~p~ .. 1 of o6 (4 1,.l.. , ~lr~arl)togiveo6-phenyl-2~-d~AyL~ An ~ .

WO 96/06950 ~ 2 1 9 7 q ~ IPCrIUS9SI~ S

i~a~ -like compound was Benerated from 2-(methylmercapto)-6-amino-pyrazolopyrimidine l;b, ~ by S-oxidation, producing 2-(~ ,.l,yl~u:fv..~1)-6-amino-pyrazolopyrimidine . ;b,. ~ ci~i~, followed by ~ j ~yl ~ with NaOH to give the ;uanu~;lle analogue (Cottam et al. (1983) N~/cl~icAcids l~es~arch 11:871-882).
Transformation of the 2-amino group in guanosine and 2'-dev~yg - using alkyl nitrites have been described. These include conversion to 2-halo (Nair et al.(l 982) Synthesis 670-672), and 2-(methylmercapto)-6-chloro-purine 1;~ v~ e (Trivedi (1991) in Nucleic Acid ('h"mictrv~ Townsend et al. (eds.) Wiley Inter-Science, Part 4, 269-273), in radical reactions. Oxidation of OG-(p-u;ll u~Jhe..~ llyl)-3',5'-O-di-~-butyl-dimethyl silane-2'-10 dev~y~u~.lo:~;,.c with neat pentyl nitrite to yield O6-(p-u;L~u,cll~ Lllyl)-3',5'-O-di-TBDMS-2'-deoxyxantosine has been reported (Steinbrecher et al. (1993) Angew. Chem. Int. ~ gl.
~:404-406).
A procedure for the synthesis of 2'-deoxy-i~ , - has been described in Seela et al. (1994) ~h~. C.him. Acta 77:622-30. In a first step, 2'-d~,v~y~, was converted to 2-15 amino-2'-deoxyadenosine. In a second step, 2-amino-2'-dcv~.y~.d~,..vD;..c was deaminated by .1: ,..1;, ~;.", ofthe 2-amino group with sodium nitrite to give 2'-deoxy-~.~o~, -The method disclosed and claimed herein for ,~ h.,~;~;--g a compound having the structural formula 2û NH2 <N~NH

Hol/o\~ N~O

HO R

wherein R' is selected from the group consisting of hydrogen, hydroxyl, sulfhydryl, halogeno, amino, alkyl, allyl and -oR2, where R2 is alkyl, allyl, silyl or phosphate, comprises:
a) reacting a compound having the structural formula W0 96/06950 2 ~ 9 7 9 0 ~ Pcr~sgs~

~C

HO~ N~NH2 H

15 with a reagent suitable to protect both the 3' and 5' hydroxyl groups;
b) reacting the product of step (a) with a reagent suitable to convert the o6-oxy moiety into a functional group which is susceptible to ~luclev~ thereby producing a filn~ti- n~li7.~d o6 moiety;
c) oxidizing the 2-amino group of the product of step (b);
2 ~ d) reacting the product of step (c) with a . ~ - reagent to displace the o6 moiety; and e) reacting the product of step (d) with a reagent suitable to deprotect the protected 3' and 5' hydroxyl groups.
The conversion of guanosine or 2l-d~ y~5ua~v~hle to; g ~ or 2'-deoxy-~aguall~slllc, respectlvely, may be effected by protecting the hydroxyl groups on the sugar moiety using a suitable reagent, e.g., TBDMS, benzoyl chioride, acetic anhydride, or the like.
As previously noted~ one or more of the hydroxyl groups on the sugar moiety may be replaced by halogen, aliphatic groups, or may be ~ ' ' as ethers, amines, or the like. The product is isolated and the o6 is modified such that it can be displaced by a suitable 3 0 lluclco, ' ' - Examples of such ~ groups include, for example, CH3-S-C6HJ-06-, C6H~-SO2-06-, C6H5-O~-, 4-nitro-C6H~-06-, 2,4,6-trinitro-C6H2-06-, or the like. The 2-amino group is then ~ fv~ ,J to the oxy function using an alkyl nitrite, or other suitable agent as known in the art (see, Nair et al. (1982), s71pra; Trevidi (1991), ~7/pra; or S~;.ll,.t.,h~,. et al.
(1993), s71pra). The product is reacted with a suitable _ 1~ a~' 'e, e.g., NH~OH, or other 35 aminoalkyl, aminoaryl, a~lhlvll. t~ " yl, ~Il.;ohctel~a.yl containing a terminal -NH2, -SH, -WO 96106950 P~TII~S95/11115 -2G- 2 1 ~ 7 9 0 i COOH, or the like, thereby dispiacing the modified o6 leaving group. Deprotection of the protected hydroxyl groups may be effected by treatment with, for example, base or fluoride.
In the following discussion, O6-(4-methylthiophenyl) will serve as an exemplary f ~ group. However, its use is for the purpose of describing particular ~,ul,r '5 oniy and is not intended to be limiting.
N6-alkylated i~l~gur.~u~hle derivatives can be readily synthesized by using an alkyl amine as the ~ For example, l ' - may be used to displace the o6_(4_ ' ~' ' ~ ~; yl) to form N6-(6-aminohexyl)-i~uL - Protection of the aminohexyl group (e.g., as the Ll;lluulua~,eLr~u,;Jo derivative) and subsequent conversion into a 10 pl.o",ho, ~ ' reagent provides a r ' ~ J~;Url10~ analog which may be incorporated in any desired position in an ol;gu.~u~ ,uliJc for further post-synthesis derivatization. Thus, it would be possible to label specifically the ~s~bll . ..c moiety of selected i..~,t u~ o~ is~cytidine base pairs. It would also be possible to synthesize a series of N6-derivatives of i~Og~ - - which carry any desired r ' ~ 'y simply by displacing the 15 O6-(4-~u"llly' ' ~' ~l) group with a suitably terminated . ' ~ ~ ' 'o, e.g., -COOH, -SH, -NH2, or the like, derivatives can be readily prepared.
Eul ~h~,~ u~ul c, O2-(4-methylthiophenyl)-2'-dcuAyA~ltu~ in its fully protected p Lv~Jllulrlll;J;lc form (O2-(4-m~lllylll-;u~ .yl)-S'-O-DMT-3'O-(BCE-J;;~u~ u~ylpho~hù~ ~ ' )-2'-dcu~yA_.P~ c) may be used as a convertible derivative 20 following h~.ul~ul~;ull into an r~ Ul;~l Post-synthesis 'i ~ '; ofthe o2_(4_ ,lhylll.;u~ yl) from the o2-(~ Yl) 2' J~VAY with an or other filnrfil ' l alkyl amine, produces N6-(aminoalkyl)-2'-deoxy .~ ~g ~-containing Cl;gUllU~lcUl; L~o. The derivatized /SUG~ - r can serve as a site for uJu~.~;ou of a label or other reporter molecule specifically at the r . ~ I ~; ~. ~ ~ residue.
_ ., .
Ol'tlinP of syntheeiG approach. As depicted in Scheme l, the synthesis of 2'-deoxy-i~ubua~u:~;lle was i-- ,.u. l~ rl in five steps from 2'-deoxyguanosine as follows:
I) conversion of 2'-deoxyguanosine to 3',5'-O-(i-buly' '- ' yl :!yl)2-2'-d~,UAyb ~ (Ogilvieetal.(1973)~.'anJ.(.~ie/1l.51:3799-3807),withpurificationbylccly 1-' -, 3 0 2) conversion to o6 (4 ~-h~ r .. lyl)-3',5'-O-TrsDMSz-2'-d~,uA,~,Jr"u~;llc~

wo 96/069~0 ; PC~A~Sg~~
-27- 2~ 9~ 90~

;.i. ~, 3) ~ ", .,. of 4 n .1u~ r~" ~yl group at o6 with a suitable phenol, e.g., 4-(methylthio)phenol or phenta.,Llbl u~L.,I~yl, using Reese's procedure to give o6_(4_ (methylthio)phenyl)-3',5'-O-TBDMS2-2'-dc~,,.y~uanu,;l.e (Reese et al. (1984), s7upra);
4) oxidation of the 2-amino group to the oxy function with tert-butyl nitrite under neutral conditions to give O6-(4-(methylthio)phenyl)-3',5'-O-TEsDMS2-2'-dcu,.y (SL_h.b,~ et al. (1993), s7~pra); and 5) .1;~ . . a of 02-(4-11lc LIIylLll;bl ' J ) group with ammonium hydroxide at elevated temperature to give 3'~5'-O-TBDMS2-2'-deoxy rs(~g..---The synthesis of isl>,~;u~lllu~;lle from guanosine may be effected using a similar reaction 1 û scheme.

~o 96,069~ljo -28 2 1 9 7 9 a t PCr~usgs/llllS

Sc}~E ) ~~y N--~NH

ClH

IStep 1.

~ <' ~N

,y lV NH2 Si-~ I
~ I Ste 2~ o~S

~,~ <~ O
~S;_o_, N

~-o Step 3. ¦

wo 96/06950 -29- 2 1 9 ~ 9 ~ 1 PC~JUsg.~115 SCHEME 1 (continued) OJ~
,~

Si-0 Step 4.
O~S~

~ N ~N
j5 j--o~N N O

3 o ~-0 Step S.

w096/069s0 ~ 7 9 a iPcTlusgsl~ s SCH~ME 1 (continued) ~\~
1 0 ~ ~

The material obtained was identical in every respect (TLC, HPLC, W, and NMR) to an authentic sample prepared by a published, photolytic route (Switzer et al. (1993), s71pra).

Preparation of ~socvtidine or 2'-Deoxv-i.socytidine Derivatives Derivatives of isocytidine or 2'-deoxy-isocytidine may be prepared in which the glycosidic bond is stabilized against exposure to dilute acid during ~'ig 'I ' synthesis.
N2-amidine derivatives have been described for 2'-deoxyadenosine by, for example, McBride et al. (1986).1. Am. (.'hem. 5'oc. 108:2040-2048, Froehler et al. (1983) NucleicAciLls.Res.
2 5 11 :8031 -8036 and Pudlo et al . (1994) Blor~. Med. Chem. Lett. _: 1025- 1028. N2-(N,N-di(X)ru, ' - )-2'-deoxy-isocytidine was synthesized by the following procedure, As exemplifed herein, X is n-butyl. However, X may be C2-C~o alkyl, aryl, heteroalkyL
heteroalkyl, or the like.
N-di-n-butylformamide dimethylacetal was synthesized by Ll~ 01... of N,N-30 ~ hylru~ ;de .' ' ,: I with di-n-butylamine as described in McBride et al. (1986), supra, Froehler et al. (1983), s7~pra, and Pudlo et al. (1994), s7~pra. Ten mmole of 2'-deoxy-5-wo 96/069s0 2 ~ 9 7 9 ~ ~ PcT~s9s/~
~ -31-methyl-isocytidine was suspended in 100 ml methanol and 10 mmole of N,N-di-n-butylrv~ d~n;Jc dimethylacetal was added. After 2 hours at room Lenl~ dLul e with stirring, a clear solution resulted. Thin layer chromatography analysis on silica 60H developed using 10~/c methanol in methylene chloride indicated that the starting material was completely 5 consumed. Water (10 ml) was added to destroy excess reagent, and the solvents were removed in vacuo to give 3.8 grams of crude N2-(N,N-d;bulylrv~ ~ ' )-2'-deoxy-isocytidine. This derivative can be directly converted to S'-O-DMT-N2-(N,N-d;buLylru~ dln;J;llo)-2'-deoxy-isocytidine for hl~,ull~u~dLiull into .,I~
Other isocytidine derivatives may be prepared which provide 5 ' ' ' lû ~ u .a~ by which detectable labels may be in.,u-~u~Ltd into a specific position of an . ~1:~,. . 1.1 ~ a ;,1l~ For example, S-alkylated 2'-d~ yul hl;llt derivatives have been described, e.g, S-[N-(6-Lfilluulu~ ,L~' ' yl)-3-(E)acrylamido]-2'-JeuAyul;Llle,byRuth(1991) Oll~,u~v~;. ' ' wlth ~eporter Groups Attached to the Base, in Eckstein (ed.) Olj~. "",. Ir.~ l/ C Anri ~n~ c IRL press, p. 255-282. Such 5-position derivatives have 15 been found not to obstruct base pair hJb-;d;~dL;u~l patterns. The chemistry described by Ruth can be used to synthesize S-[N-(6-L~inuu~ua~eL~' ' yl)-3-(E)acrylamido]-2~-deoxy-isocytidine, thereby providing a 5 ' ' isocytidine which may be detectably labelled at selected isu~ u-,y~id;ll~ base pairs.
These and other S-position derivatives of isocytidine and 2'-deoxy-isocytidine provide 2 o additional c~ for base pair formation. Such derivatives include: S-~-propynyl (see, Froehler et al. (1993) Tetrahedron I ett. 34:1003-1006), 5-~-propenyl or other S-alkyl isocytidine or 2'-deoxy-isocytidine derivatives.

Kits for carrying out nucleic acid h tbl ;~ dl;OII assays according to the invention will 25 comprise in packaged ~... 1: -';..ll at least one hybridizing olig- ' ' probe, a segment of which is capable of forming a hybrid complex with the analyte, and a means for detecting the hybrid complex, wherein the at least one hybridizing ~ gnn~lclellticl~ probe comprises a first nucleotidic unit which, under conditions in which A-T and G-C base pairs are formed, will not effectively base pair with adenosine (A), thymidine (T), cytidine (C), guanosine (G) or uridine 3 0 (1~. The reagents will typically be in separate containers in the kit. The kit may also include a t . ~

WO 96/06950 2 ~ ~7 7 ~ ~ ~ PCT/I~S9S/IIIIS

d~ u~ ;oll reagent for denaturing the analyte, hybridization buffers, wash solutions, enzyme substrates, negative and positive controls and written instructions for carrying out the assay.
The poly,lucleul;des of the invention may be assembled using a .... 5, - -~;.... of solid phase direct niignrlllcleoti~e synthesis, enzymatic ligation methods, and solution phase 5 chemical synthesis as described in detail in commonly assigned U.S. Patent Application Serial No. 07/813,588.
All chemical syntheses of oligonucleotides can be performed on an automatic DNA
synthesizer (Perkin Elmer/Applied Biosystems Division model 380 B). PLu~pl~u~a~
chemistry ofthe ,~-cyanoethyl type was used including ~'-phu ~hulyL~L;ull which employed lû PHOSTELlM reagent (DMT-O-CH2CH2-(SO2)-CH2CH2-O-P(N(iPr)z)(-O-CH2CH2CN) wherein DMT is dimethoxytrityl and iPr is isopropyl). Standard r ~ protocols were used unless otherwise indicated Example I
Assav Backr,round Noise Caused bv Nonspecific Hvbridization of Tar~et-Specific Extender Sequences with ~eneric Assay Components In order to determine how assay l,.,~,k~;" ' noise can be caused by cross-h~b,;d;~l;onoftarget-specificextendersequenceswithgenericassaycv,.",u..~ , an 20 amplified DNA hybridization assay was performed to quantitate M13 phage using the pools of capture extenders and label extenders as shown in Tables 1, 2 and 3.

w0961069so ; 2 ~ 9 790 ~ PCT~S9S~ S
~ -33-SEQ Table I
ID Capture Extender Pool A
N0:
I ATTGCGAATAATAATTTTTTCACGTTGAAAATC
~ IGGAAAGAAAGTGAT

Il~l~ll~GAAAGAAAGTGAT

II~I~IIGGAAAGAAAGTGAT

GCTGAGGCTTGCAGGGAGTTAAAGGTTCTCTTGGAAAGAAAGTGAT
6 ATGAGGAAGTTTCCATTAAACGGGTIl~l~llGGAAAGAAAGTGAT
7 TCGCCTGATAAATTGTGTCGAAATCCII~l~ll~GAAAGAAAGTGAT

wo 96106950 2 ~ 9 7 9 0 1 PCT/US9~

SEQ Table 2 ID Capture Extender Pool B
NO:
llGGAAAGAAAGTGAT
9 CGCCGACAATGACAACAACCATCGC TTCTCTTC,.=

SEQ Table 3 ID Label Extender Pool NO:
ATGAGGAAGTTTCCATTAAACGGGT ITAGGCAl~
Il GAGGCTTTGAGGACTAAAGAcrmTc TTAGGC~ --12 CCCAGCGATTATACCAAGCGCG TTAGGCATAGt~=

TTAGGCATAGGACCCGTGTCT
14 CTTTGAAAGAGGACAGATGAACGGTG TTAGGCr~_ GGAACGAGGCGCAGACGGTCA TTAGGCATAGG-~--16 ACGAGGGTAGCAACGGCTACA TTAGGCATAGGr~
17 GCGACCTGCTCCATGTTACTTAGCC TTAGGCA'I~_ 18 CTCAGCAGCGAAAGACAGCATCGGA TTAGGCAl~
19 ATCATAAGGGAACCGAACTGACCAATTAGGCAI ~2 CCACGCATAACCGATATATTCGGTC TTAGGCAlt 21 TACAGACCAGGCGCATAGGCTGGC TTAGGCATr~
22 AAACAAAGTACAACGGAGATTTGTATCA TTAG(,_- --23 CACCAACCTAAAACGAAAGAGGCGA TTAGGCA~
24 AAAATACGTAATGCCACTACGAAGG TTAGGCAl~

For the purpose of illnch~rion, a space separates the 3' nontarge -~5 target-binding region of each probe.
The assay was run essentially as described in PCT Publica Briefly, after overnight hybridization at 63~C in microtiter web~
~.",pl.. I- y to the nontarget binding region of the capture ex~

WO 96/06950 PCTII~S95/1111 ~ 35 2197901 cooled at room t~,lU~ Lul~ for 10 min, washed twice with a buffer containing O. lx SSC
(15 mM NaCI; I .5 mM sodium citrate; pH 7.0), 0.1 % sodium dodecyl sulfate. A 15 x 3 (15 "arms" each with 3 alkaline pl.o~ probe binding sites) branched DNA amplifer (100 fm), u ~ .y to the 3i nontarget binding region of the label extender was added 5 to the wells and the incubation was continued for 30 min at 53~C after which the plates were cooled and washed as above. After the addition of an alkaline ~u' u~ probe (200 fm) to the wells and a further incubation for 15 min at 53~C, the plates were again cooled and washed as above. Three additional washes were done with a 0. Ix SSC buffer. The signals were detected in a Chiron 1 ,. ~ . after 20 min in the dioxetane phosphate 10 substrate solution Lumiphos 530 (Lumigen). The results are shown in Table 4.

Table 4 Nonspecific Binding Assay Ba.,h~,-uu.,d Noise Signal Noise Capture Extender Pool (+ M13 phage) (- M13 phage) Pool A alone 293, 306, 337, 359 1.1, 0.9, 1.1, 2.0 Pool A + Pool B 390, 393, 379, 376 103, 130, 436, 172 The addition of the pool B capture extenders does not increase the net signal, but does increase the noise about one hundred-fold. Computer analysis of the sequences 1 5 involved showed that capture extender #8 of pool B has extensive homology with the T20--LLA2 sequence of the branched DNA amplifier (including a 9mer oligo(dA)--oligo(dT)), while capture extender #9 of pool B has extensive homology with the BLA3c sequence of the branched DNA amplifier.
The present invention addresses the problem of hyl)lhliLdLiun-dependent assay 20 I-~L,h~;-. ' noise. Nucleotide sequences are constructed which are interrupted by nucleotides that do not form stable base pairs with "natural" ' ' , thereby inhibiting the hybridization of such sequences with natural sequences. Ideally, every third or fourth base in the universal sequence would be a modified nucleotide that does not pair with A,C, G, or T(U). By using base pairs isoenergetic with the C*G base pair, one can also reduce 25 tbe length of the universal sequences. Statistical arguments show that this should also W0 961069s0 2 1 9 7 9 ~ ~ PCTlusgs/~ 5 reduce the frequency of undesirable cross-hybridization among universal sequences and between universal sequences and nontarget sequences in the sample and between universal sequences and the target-specific sequences in the extender probes. By relying on "~ binding to form stable hybrids, the lengths of the universal sequences can befurther reduced (see WO95/16055). All universal sequences would be designed with at least 6 and preferably 8 ~ S capture probe, capture extender tails, label extender tails, amplifiers, labeled probes, and p-~d~--plirl."~ (when applicable).

Examp!e 2 ~ Specificity and StrPnprh of isoC-isoG R:ICP Pairs In order to determine the specificity and strength of the isoC-isoG base pair, thermal melt analysis was done on the following r' O
1) 5' (L) CA CCA CTT TCT CC (T) 3' [SEQ ID NO: 25];
2) 5' (L) CA CFA CTT TCT CC (T) 3' [SEQ ID NO: 26~
3) 3' (T) GT GGT GAA AGA GG 5' [SEQ ID NO: 27];
4) 3' (T) GT GJT GAAAGA GG 5' [SEQ ID NO: 28]; and 5) 5' CA CTA CTT TCT CC (1-) 3i [SEQ ID NO: 29].
The core hybrid of these ulig- -' ' consists of thirteen nnrll~otitlPC
Nuclcvliulj not involved in the base-pairing are indicated in parentheses. L = a primary arnine, F = isoC, J = isoG. Thermal melt analysis was done on a Cary 3E
SP~IIUIJI O~ lrl in 3x SSC (0.45 M NaCI,~0.045 M sodium citrate), pH 7.9. Each of the two ..l ~ l~ ' incubated together was present at dlJIJU ~ ~ 1~, 1.5 yM. The Tm was calculated as the maximum in a plot of dA260/dT vs t~,Ul~J~,ld~ . The results shown in Table 4 indicate that the isoC*isoG base pair is i~v~ ,liC with the natural C*G base pair.

wo 961069502. 3 9 7 ~ O 1 PcT~usg fllll ~ ~p A

Table 4.
- Tm Analysis of Specificity of isoC*isoG Base-pairin -Avg - Match/Mismatch, Paired Olig.~ irlf ~ Tml Tm2 Tm C * G match, 1*3 60 60 60 isoC * isoG match, 2*4 60 61 60 isoC * G mismatch, 2*3 52 52 52 isoG * C mismatch, 1*4 52 52 52 G * T mismatch, 3~5 50 49 49 i.~oG * T mismatch, 4~5 53 53 53 Accordingly, universal sequences containing a~ u~hllat~,'y equimolar C, G, isoC,isoG, A, and T, can be shorter than sequences containing only A, T, C, G in a~rlJIu~dln,lt~ly 5 equal ratios. This limits the potential for cross-reactivity with natural nontarget sequences im the sample and with LE and CE target-binding sequences that are more or less ' to be composed of A, T(U), C, and G.
The data also show the specificity of the isoC~isoG base-pair. The isoC*G and isoG*C pairs behave as ~ ' Classically, the rlr-ct~hili7:1~ir)n in degrees C is 10 alrlJII ' by the percent ' lg Thus, about a 7.5~C change in Tm would be predicted to occur for I mismatch in 13 nucleotides (7.5% mismatch). The observed 8~C
change when the C*G or isoC*isoG matches are compared with the l ' is similar to the change which would occur in an average mismatch with A, T, C, and G code.
- IsoG exists in at least two tautomeric forms, the keto and the enol. The keto form is 15 favored in aqueous solvents and the enol is favored in organic solvents (Sepiol et al. (1976) ~eitschrift fuer N~lu~Ji~r ' ~,r 31 C:361-370). The isoG enol tautomer can, in principle, form two hydrogen bonds to dT, making it analogous to the A*T base pair. If the enol tautomer were present at signif cant levels in the hyl,liJi~a~ion buffer, the specificity of isoC*isoG base pair would be limited. However, the observed Tm in the isoG*T mismatch 20 was 53~C, essentially the same as the other ,.,i~

i '~

wo 961069s0 2 1 9 7 q G ~PcrluS95/~ S

These data support the conclusion that the enol tautomer is present at very low n ~lln,.l-k.l. in 3X SSC at pH 7.9 or, if present, it still forms a hybrid with 7-8~C lower Tm than the isoC-isoG hybrid. The control with a G*T mismatch had a Tm of about 49~C.
This is somewhat lower than expected for the average G*T mispair, but is close to the isoG-T rnispair.
One skilled in the art will appreciate that having still another base-pairing ~nmh~ tifm (i.e., 8 bases, 4 pairs), whether i~V~ .Lic with C*G or not, would further improve the specificity of the base-pairing among universal sequences. In this case, one could nearly eliminate A, T, C, and G from the universal sequences. However, having a smalMclnc:~c~ iull of these bases adds to the diversity of the library of possible universal sequences, which enables one to design universal sequences that are as ,~ ;n~ ~ l;ng as possible among themselves.
For example, with a 4 base code one can design only two pairs of universal 15mers that do not have even a single 3mer cross hybrid. That is, with the addition of a third pair of 15mer sequences, there must be at least some 3 nucleotide cross hybrids. With a six base code, one can design 8 pairs of ISmer sequences without even one 3mer Watson-Crick type of cross-hybrid. With an eight base code, one can design 19 such pairs of l5mers.

Example 3 The F.ffect of pH on isoC*isoG R~ Pairin~
In order to examine the behavior of the isoC*isoG base pair as a function of pH, Tm analysis was conducted on the c' " '~: ' provided in Example 2. The effect of pHon the Tm of the ~'i g ' ' containing the . . ' y isoC*isoG base pair (sequences 2 and 4, respectively) and C*G base pair (sequences I and 3, respectively) was determined (n = 2 or 3) at 0.5 M salt and ~:~"", 'y 1.5 fLM oli~ , and the results are shown in Table 5.

W0 96106950 2 1 9 7 9 o ~CTIUS9~

~ -39-i. ~
Table 5 Tm Analysis of pH-sensitivity of isoC*isoG Base Pair Avg Hybrid, Paired Ol;g~ .J~ pH Tml Tm2 Tm3 Tm isoG*isoC, 2*4 7.9 62 60 62 61 isoG*isoC, 2*4 5.1 60 59 60 60 isoG*isoC, 2*4 9.5 53 51 52 52 G*C, 1*3 9.5 52 52 52 Generally, fl~ u~ fl~ u~ hybrids are stable at pH 5 and pH 10. Below pH 5, C
and A become protonated, whi!e above pH 10, G and T begin to lose their imino protons.
Thus, below pH 5 and above pH 10, nucleic acid hybrids show reduced stability. The data 5 of Table 2 show that the isoC*isoG base pair has normal acid stability. However, both the isoG*isoC hybrid and the G*C hybrid show an unusual -9~C change in Tm over a 1.6 unit pH increase. This is probably due to their very short length.
Theoretically, one could select hybrids with still greater pH-sensitivity using the SELEX protocol, described in U.S. Patent No. 5,270,163 to Gold et al., Tuerk et al.
(1990) Science ~:505-510, Szostak et al. (1990) Nolure ~:818-822 and Joyce (1989) Gene ~:83-87, in which a population of DNA or RNA randomers would be selected for binding at neutral pH and for ~ u- ~ i. ", from the target se~uence at mildly alkaline or mildly acid pH. Following ~ fm~ the selection process would be iterativelyrepeated. After the final iteration, those oligomers which show the desired pH sensitivity 15 would be cloned and se~uenced. Those se~uences would be synthesized and the best performers selected in a direct ~u i~ ;- " assay.
Lability in mild base can be exploited in the current amplifed DNA assay format to reduce assay IJGCk~lU ..d noise. In the final step, the substrate buffer used is typically pH
9.5 to 10.5. With a capture probe with the proper base lability, the target will come off the 2 0 surface and could be detected in another well. The l,~l. k~ l~ ' will be left behind.
Mi"i".,,~ " of capture extender binding to the support by the methods disclosed in WO95/16055 w;ll reduce bd~ ky,luu~d noise caused by release of molecules n~ lly bound to capture probes through capture extenders.

WO 96106950 2 1 q ~ 9 ~ ~ PCTNS95/11115 ~0- ~

Since one would not want to reiease alkaline IJ~ P probes hybridized to ~""''1'' i ri~ ~liy bound amplifiers, preferably the capture probe-capture extender hybrids would be selected to have c~,..,; i~,.,ll,ly more base lability (i.e., higher Tm at a given pH) than the amplifler and labeled probe and the amplifier and label extender hybrids.
5 Alternatively, L-21M-2 hybrid of Figure I could be the base-labile hybrid. In either instance, the M-2/L-3 hybrid must be the most stable; otherwise, labeled probe hybridized to noncrerifir~lly bound amplifier would be released.
As noted above, one could also c~"" e.v~.l,ly transfer the released target to fresh wells for reading. However, it would be preferable to read the released solution in the well 10 where it was generated. This would avoid additional pipetting steps and eliminate i1u~ ion associated with additional liquid transfer steps. There are several methuds by which well transfers may be avoided, as described below.
To further enhance the specificity of the assay, the specific release of the target could be coupled with masking the ba.,k~ on the surface. In this case, the transfer to 15 another support would be unnecessary. For example, the surface of the solid support could be coated with inhibitors of the labeled probe and/or various 1"- h.. . n~, inhibitors, absorbers, or quenchers. One surface coating currently in use is poly(phe-lys).
Ph~..yl~.kul;lle is a known inhibitor of alkaline rh ~ f . a p~ul;~,ul~ul.y preferred enzyme label. One could include in the polymeric peptide coating other inhibitors of alkaline 20 1 ' , ' such as tryptophan and cysteine. Examples of 1~ inhibitors include compounds with low quantum yields, i.e., any compound that preferentially gives off heat rather than light after being excited by collision with a ~'er~- . y dioxetiane.There are at least two other convenient ways to make detection of the released solution more selective to avoid transfer of the released target to another well. The target-25 associated signals can be read in solution by making the solid phase in~rPccihl-- to visualization reagents or by masking signal generating reactions which occur on the solid support. Isolating the solid phase from subsequent visualization steps could be done by adding a heavier-than-water immiscible oil to the reaction vessel. This oil would cover the bottom of the vessel while allowing the solution of interest to float to the top. For simple W096106950 21 97~01 PcT~usgs~llll5 ~ , .

cnlnrinAPtric detection by visual or by reflectance Ill~aU~ lCIIL~ an opaque substance could be added to the oil to serve as a neutral l,~,~k~ luu.ld for vic~ li7~tinn For chf~nni1"",;... ~ detection the oil could be filled with an optically opaquesubstance. If a white solid such as titanium dioxide were used, light emitted from the 5 floating aqueous layer would be reflected upward out of the container for detection. A dark solid or dye molecule dissolved in the oil could also be used to mask the stationary phase.
Even if the oil solution does not completely isolate the solid phase from visuali_ation reagents, the suspended solids or dissolved dyes would block the i of this light from the surface.
It is also possible that a stationary phase could be colored with a dye that would block emission of light from reactions that occur near its surface. This would be Li~,uL:uly convenient with a colored bead as a solid phase contained within an opaque well.

ample 4 The Fffect of Salt on i~nc*isoG R~cf~ Pllir At ~ tr~ ntl A~ nr l~H
In order to examine the behavior of the isoC*isoG base pair as a function of salt ~.A~ ;nnl Tm analysis was conducted of the nlig~r 1. .J~ provided in Example 2.
20 The effect of salt cun~ ~ u..l;.~ - on the Tm of the ~ ' ' containing they isoC*isoG base pair (sequences 2 and 4, respectively) and C*G base pair (secluences I and 3, respectively) was determined (n = 3) at pH 7.9 or 9.5 and a~ 1.5 ~M ~,l;g~ f~, and the results are shown in Table 6.
Classically, polyl.u, levLid~a show a change of d~ / 16-17~C in Tm for each 25 log change in salt u~ ~ - u~;,." O~ g ' ' often show somewhat reduced salt .1. pf ...1. rm. The 10-11 ~C change in Tm per log change in salt at pH 7.9 calculated for the isoC*isoG hybrid dp~ll ' ' what would be expected for a 13mer. However, the change at pH 9.5 of only about 3~C for the isoC*isoG hybrid and 5 degrees for the C*G hybrid per log change in salt was ~ulpli~ ,ly low.

w0 96/069s0 2 ~ ~ 7 ~ 3 ~ PCT~uS9S/~
~2- --This can be also exploited in a specific release of target. Generally, low salt is used for specific release of target. Unfortunately, often a significant fraction of the background is also released.
Table 6 IsoC*lsoG Stability as a Function of Salt C~ ,u;.
AVG
Salt Tm dT__ Hybrid, Paired Ol;g~ r (M) pH (~C) dlog[Na+]
isoC*isoG, 2*4 0.5 7.9 61 isoC*isoG, 2*4 0.177.9 56 10-11 IsoC*isoG, 2*4 0.5 9.5 52 isoC*isoG, 2*4 0.179.5 50 3 C*G, 1*3 0.5 9.5 52 C*G, 1*3 0.1 9.5 48.5 5 Because of the salt ;~ of the melt of the isoC*isoG base pair at mildly alkaline pH, there is no additional advantage gained from lowering the salt as well as increasing the pH. Thus one can use high salt (which is also preferred for alkaline 1~ ) for the release and minimize the release of the l,acL~Iuulld.
As explained in Example 3, the SELEX procedure could be used to find DNA or 10 RNA sequences that show enhanced salt-in~L-rl r~ nrP in their melting at any selected pH.

Thl Fffect of B:~c~ pqir M ~ -on H~l,-i-l;,~';''~' ~==
The previous examples showed that an oligomer with isoG base pairs specifically with its ~u~ containing isoC. The isoG-containing oligomer is ~l~c~qllili7~ by about 7-8CC when hybridized to another oligomer containing a single isoG*T or isoG*C
mismatch. Typically, there is about a tenfold decrease in binding for each 10~C degree change in Tm.

wo 96/0-6950 ;2 ~ 9 7 9 ~ ~ PCr/usss/lllls The effect of ",~ g two bases on binding of a 13mer hybrid was assessed using the probes shown in Table 7.
Table 7 SEQ
ID
NO: SEQUENCE~
5' GATGTG(~ lA(~llllGACACTCCACCAT
31 5' GATGTGGTTGTcGTA(~llllillGAcAFTccJccAT
32 ALK.PHOS.--CTACACCAACAGCATGAA 5' 33 3' TCACTAAGTACCACCTCACAG
34 5' AGTGATTCATGGTGGA~ GAAAGAAAGTGAT
3' GAGAAC~ ACTX

I F = isoC, J = isoG, ALK. PHOS. = alkaline ~, and X = a spacer sequence containing an amine for attachmenL to the solid support.
Labelled probe 32, the alkaline p~ o o~f conjugate, was made as described (Urdea et al. (1988) Nucl. Acids Res. 16:4937-4955). Labelled probe 32 was bybridized with control probe 30 to create the alk. phos.-probe 30*32. Labelled probe 32 was hybridi_ed with modified probe 31 to create the isoC,isoG-alk. phos.-probe 31*32.
Probe 35, the capture probe, was bound to microtiter welis as described (PCT
Publication No. W093/13224, the disclosure of which is i~ Jul~kd by reference herein) to create a solid support for hybridization. Probe 34, a capture extender, was hybridized to probe 35. This capture extender is: . . ' ~ ~ to the alk. phos.-probe 30*32 and partially i ~ . . I .f .~ l y to the alk. phos.-probe 31 *32. Probe 33 is a ll~ - - " that 15 can bind to the capture extender and block the binding of either alkaline 1 ' , ' probe.
The following incubations were done for 30 min at 53~C in ~,~"", ~ ly 1.0 M
NaCI:
(1) 250 fmoles probe 34 in wells containing I pmole of irnT-~-hili7fd probe 35;

,,, .. , ~: . .

W096/06950 2 ~ 979~31 PCT/US95111115 (2) 250 fmoles probe 34 + 5 pmoles probe 33 in wells containing I pmole of immnhiii7~: probe 35;
(3) 5 pmoles probe 33 in wells containing I pmole of ir.qmobili7PA probe 35; and (4) buffer only.
After2washeswithO.lxSSC,0.1%SDS,asdefinedinExamplel,eachofthe above first incubations was exposed to a second, 15 min. incubation under the same conditions with each of the following: ' (1) 25 fmoles probe 30 + 500 attomoles probe 32;
~2) 25 fmoles probe 31 + 500 attomoles probe 32;
(3) 500 attornoles probe 32; and (4) buffer only.
The plates were washed twice as above and three times with the same buffer ,"p~ .i with 10 mM MgCI2, I mM ZnC12, 0.1 % Brij-35. After a 25 min. incubation 15 with Lumiphos Plus (Lumigen), the plates were read on a Chiron I
The hybrids that can form are depicted in Figure 3, wherein Z, ~ ....,pl,l ;. A herein by isoC and isoG, represents a nonnaturai nucleotide. Probe 33, the, . , can form 21 base pairs with the capture extender and in theory can block both aikaiine ~ n~ph~
probes from binding. The modified IJluiJc~ldib~ llcd probe (31 *32) can hybridi7e to the 20 capture extender, forming 11 base pairs and two mismatches (e.g., G*isoC,isoG*T). The control l"ul,c~lal,clled probe (30*32) can form 13 base pairs with the capture extender.
As shown in Table 8, the capture extender (34) forms a strong hybrid with the control ~,lui,c~lal,clled probe (30*32) (Sample I = 399 Relative Light Units (RLU)).
~\c ~ nU,, of the capture extender with a 20-fold molar excess of ~ r ~ 7 sample 2, 25 reduced this bach~uul~d noise about tenfold (30 RLU). The modified ~,.ui,~ldl,~.lled probe C31*32) shows 40-fold less hybridi7ation (sample 3 = 9 RLU) to the capture extender than control l~ubc~ldl)clled probe (30*32). The two lld~ al~ accounted for a 40-fold change in hyiJIhli~dLion. This is as expected for 2 micmqt~ h~c each of which ~ C~qhili7f-C the Tm by 7-8~C (cf. 7x8 = 56-fold). The use of the l_Ulllp~ and the " ~ aik. phos.
probe (sample 4 = 0.4 RLU), reduced the bà~,hE;Iu ' noise about 1000-fold. Sample S is W096J06950 ;~ 1 ~3790 I PCT~US95)]]]]5 a control and has essentially no bd~,k~ùulld noise (0.1 RLU). This is as expected since the labelled probe 32 has no detectable homology with the capture extender.

Table 8 The Effect of Base Pair M,~ h:,.L on Hybridization AVG.
Sample First Second RLUI %
No. Hybli(l;~dtiOIl Hybridization (n = 6) cv2 34+35 30+32 399 7 2 33+34+35 30+32 30 9 3 34+35 31+32 9 6 4 33+34+35 31 +32 0.4 4 34+35 32 0.1 11 5 ~ RLU--Relative Light Units %CV = S.D./Avg. x 100 In hybridization assays, the use of r r~ hYI. ~ for all the capture extenders isimpractical since there are typically 5-10 capture extenders per assay. In addition, this 10 example shows that ~ b-~iu,~ with the r."..l~l;,-- . was not as efficient as simply using 15% base cllhctitl.tir)n (with isoC, isoG), e.g., 2 bases out of 13, in the universal sequences.
The use of 30% base C~lhcritlltion (3 out of 10) would be expected to reduce nonspecific hybridization of an otherwise perfectly base-paired rr~mpl~ by about 1000-fold (30%
mismatch equals d~ / 30~C change in T"~; there is about a tenfold decrease in 15binding for each 10~C change in Tn~)~

Example 6 ~hr-mir:ll Synthrcic sf2l-deoxy-i50~ ;llr ~The synthesis of 21-deoxy-isl",u/."u,;"c from 21-deoxyguanosine was ~ro ~ d 2 0by the following procedure.
StÇR 1. 2'-Dcu~y~ udulu~in~ ulunvllyl~ (50 mmole) and imidazole (200 mmole) were dried by COC~;~wuldl;ull with 500 mL dimethyl~uln,dl..;d~ (DMF) and the residue wo 96/069s0 2 1 ~ 7 ~ ~ I PCT/usgs/llll5 dissolved in 500 mL DMF. To this solution was added t-butyldimethylsilyl chloride (150 mmole), and the reaction mixture was left stirring at room L~ J.,.dLul~ for 18 hours.
Methanol (30 mL) was added and after 25 minutes the solvents were removed in vac~o.
The solvents were removed by c'i~llJoldLiuu, the residue dissolved in IL CH2C12, washed with IL 5% NaHCO3 and IL 80% saturated NaCI, the organic phase dried over Na2SO4, filtered and evaporated to dryness yielded crude product (30 grams) which was directly dissolved in 2L hot ethanol. Slow cooling to 20~C followed by storage at 4~C for 20 hours produced pure 3',5'-TBDMS2-2'-deoxyguanosine (65% yield).
Stev 2. 3',5'-TBDMS2-2'-deoxyguanosine (12 mmole) was suspended in 125 mL
CHlCI2 containing triethylamine (150 mmole) and N,N-dh~Lll~ldn-;llv~ ;d;lle (100 mg).
4-Toluenesulfonyl chloride (40 mmole) was at 0~C, and the reaction mixture stirred at room L~ ,.d~UIc: for 20 hours. At that time all solid material had dissolved resulting in a slighvy yellow solution. The reaction was quenched with 50 mL 5% NaHCO3 with stirring for I hour. The reacvon mixture was diluted with 300 mL CH2CI2, washed with 300 mL
5% NaHCO3 and 300 mL 80% saturated NaCI, the organic phase dried over Na2SO4, filtered and evaporated to dryness yielded crude product (8.9 grams). Silica gel flash ~h~ Pl~Y using a I % to 4% methanol/CH2CI2 gradient yielded 7.95 grams of pure O6-(4-LVII.~ Jlrullyl)-3~s~-o-TBDMs2-2~-d~r~ou~l~lu~ (11 mmole).
Step 3. Twelye grams of o6_(4_; ' '' yl)-3',5'-O-TBDMS2-2'-d~ u,v:.;"e (17 mmole) was suspended in 300 mL CH3CN. Then ' .~ --uli-i;,.~, (17 mL) was added and the suspension stirred for one hour to produce a clear solution.
TLC analysis showed that all starting material had been converted to base line material.
Eleven grams of 4-(methylthio)phenol (85 mmole) was added and the solution stirred for 60 hours. After evaporation to a small volume 600 mL ethyl acetate was added. This solution was extracted with 3x 400 mL of 0.3 M NaOH and 400 mL 80% saturated NaCI, the organic phase dried over Na2SO4, filtered and evaporated to dryness to yield 11.55 grams crude product. Silica gel flash ~,1", O . ' ~ using a 4~c to 5% methanol/CH2CI2 gradient yielded 8.16 grams of 06-(4-(methylthio)phenyl)-3 ' ,5 ' -O-TBDMS2-2 ' -deoxy-guanosine(ll mmole).

w096/06950 ~ 2 ~ PCrrUsssllllls ~ 9.
Step 4 . Four gram s of O6-(4-(methylthio)phenyl)-3 ' ,5 ' -O-TBDMS2-2 ' -dcv~yZju~lv~ c (6.5 mmole)~was dissolved in 65 mL CHlCl~ at 0~C and 6.5 mL of tert-butyl nitrite was added dropwise. The solution was allowed to warm to room t~ d~UIc and gas evolved from the mixture (Nl). After 40 minutes, when TLC analysis showed 5 complete ~v ~ L;~u of starting material and emergence of a newl slower migrating spot, excess t-butyl nitrite was removed by coevaporation with 2x 100 mL toluene in vacuo. The residue of crude product was purified by silica gel flash .,1.,1 , , ' y using a 4% to 5%
methanollCH1CI1 gradient to yield 2.75 grams of O6-(4-(methylthio)phenyl)-3'15'-O-TBDMSl-2'--l~y~d llua;llc (4.45 mmole).
10- : :SLe~ 5. All of the purified 2.75 grams of o6_(4_ (methylthio)phenyl)-3',5'-O-TBDMS7-2'-deoxyxantosine (4.45 mmole) was dissolved in 50 mL of methanol. Cr,n~Pnrra~r~l aqueous ammonium hydroxide (50 mL) was added and the mi~ture heated in a tightly sealed bomb at lOO~C for 4 hours. After cooling the solvents were removed by (:OCvdlJvldlivn with ethanol in vacuo to give 1.8 grams of crude product 15 (3.6 mmole). Pulificd~;ull by lc~ Ldlli,dLivll from hot ethanol yielded a sample of pure 3',5'-0-TBDMSl-2'-deoxy-is~,~u,ll,v~ . This material was in every respect (UV, TLC, NMR and MS) identical to a sample prepared by the published, photolytic route (Switzer et al. (1993), supra).

2 0~ ample 7 Control of N~ r;c Hybl h~ of Am~?lifiPr ~n~l A~ ne Phr~ Probe to (~tllre Fyrpn~prs A. (~-mcrruction of ;In jc~c~isoG bDNA ~ ' j.soC.ict-G ar probe.
A 15 site comb-like ~ multimer (amp) was constructed as described previously in PCT Publication No. W092/02526. Arms were ligated onto the comb using a 12 nucleotide linker and T4 DNA ligase as described. The alkaline 1~ (ap) probe was constructed from an olig. ' ' containing an amino ru~l;vl~dl;ly as described in U.S. Patent No. 5,124,246. The sequences used were:

wo 96/069s0 2 1 9 7 9 0 'i ~8-Sequence (5' -- > 3') Sequence ID
AGT FAJ CGC FGT AFC AAJ AMP REPEAT SEQUENCE (ARM) TJC
ATC ACG AAC TCA TCA CGA ACT C AMP LEADER SEQUENCE (COMB) GFA FTT GJT ACJ GCG FTJ ACT.. L AP PROBE SEQUENCE
F=iso C, J=iso G, L= long chain amine B. Preparation of (~z,,nhlre Extender (CE) sequences.
Capture extenders for TNF-alpha, interleuiun-2 (IL-2), IL~, IL-6 and gamma interferon (IFNl~) targets were prepared by standard ~ ,.,n;.1;~. methods. The capture extender sequences tested for were:

TNF alpha CE pool _ ~ -TccAGcTc~D~D~rrrTr~ArDTAr-ATGGGczcTcTTG~AAArAAA~TGAT 7140.tnf.21 CGATTGATCTCAGCGCTGAGTCGGTCALLL~4L~o~ ArAA~TGAT 7141.tnf.22 TGCCCAGACTCGGCAAAGTCGAGATAGTCGGGCZCTCTTGGAAAGAAAGTGAT 7142.tnf.Z3 ccTccT~D~Anr~ AATGATcccAAAGTAGAcczcTcTTcc~D~-AAr~TGAT 7143.tnf.24 ~.~cc~ ~,.. vvLAAGGTTGGAlvLlovl~Ll~.. ~ ~r~DD~TGAT 7144.tnf.25 TGTcTc~D~D~cccTAATDDD~llvGGv~Ll~ll~lA~ArAA~rTGAT 7145.tnf.26 cAAr~ Ar-crAr-AA~Ar-GTTGAv~Llvllvll~AArAnA~TGAT 7146.tnf.27 AAGTTCTAACL~ CrTDD~ Vllv~AA~A~rrTGAT 7147.tnf.28 2 0 IL-6 CE pool ~T~D~ ~CL~lvll~Ll~cTALl~l~bLl~ll~-~AAnAAA~TGAT 7270.il6.15 CTGCAGGAACTGGATCAGGACTTTTGTACTCAl~L.~..~ ADnDAAGTGAT 7271.il6.16 LLlv~l.~T.vLATCTAGA..~...vLLll.ll~Ll llv~-AAA~AAA~TGAT 7272.il6.17 CGTCAGCAGGCTGGCAll~ .vv~.vGu.~AGGzcTcTT~rAA~AAAOTGAT 7273.il6.18 GTCCTGCAGCCAL~vLll~lvl~LLlvLAvLll~Ll~ll~ AD~D~D~TGAT 7274.il6.19 cTTAAAGcTGcGcAGAATGAGATGAGTTGTcAl~Llo~ AAnAAAGTGAT 7275.il6.20 ccGAAGAGcccTcAGGcTGGAcTGcAGGAALl~Ll~ll~ AADnAAAnTGAT 7276.il6.21 IFNy CE pool cAILLlll~l~-AnA~AATTAAGrrAAAr~AA~ ol~ll~ ~D~AAf.TGAT 8013.infy.1 W096106950 ~ 2 1 9 7 9 0 I PCTnUsgs~ l5 ~ ~9 j~ , r.Ar.rT,rS'"'"~rP~"'TATAArTSGTATALlLL~ ,Ll. ;lAr~AAAr~TGAT 8ol4.iDfy~2 r~rAcTpArAr~rrAAnA~AArrrsAAArr~ATGcAzcTcTTc~D~''D~TGAT 8015.infg.3 AA~LLLL~L~.L~LLLL~CATATGGGTCCTGZCTCTTC~'D~ TGAT 8016.infg.4 ~ TA QTCTGAATGACCTGCATTAAAATATTTCTTZCTCTTC~ C'DD~TGAT 8017.infg.5 cAAAATGrrTArr~D~p~TTccALL~I~1~o~L~LL~ ~'P~'PD~TGAT 8018.infg.6 IL-2 CB pool GAGTTGAGGTTACTGTGAGTAGTGATTAAAGA~.~l. ADs~Ar.TGAT 8428.il-2.1 0 iinprArrAnTTGcATccTGTAcATTr~TGGrpl~7~ s~'D~rTGAT 8429.il-2.2 TGTTTGTGACAAGTGCAAGACTTAGTGCAATGCZCTCTTCC'~D~'~s~TGAT 8430.il-2.3 ~L~LLLL~LLL~L~GAAcTTGAAGTAGGTGcAczcTcTTr~ pD~TGAT 8431.il-2.4 GTAAATCCAGMAGTAAATGCTCCAGTTGTA~L~L~L. ~ AsnTcAT 8432.il-2.5 IL-4 CE pool ACACTTTGAATALlL~LoL~L~ATGAI~L~..~LoL.~,~nAArAAArTGAT B720.il-4.15 TCAAAAACTCATAAATTAAAATATTCAGCTCGAZCTCTTC~'~D~'a'~TGAT 8721.il-4.16 TATpD~TATATAAATArTTAAAAAATAAAr~rTA7cTcTTc~D~D~TGAT 8722.il-4.17 TAGATTrTATATATA~IllAILLl~TGATGA~L~ol~lL~-~-nps~'~p~TGAT 8723.il-4.18 Note: Z= ~ Lllyl~ lycol spacer c. r ~ for r~ Ifinp nonspecific I~YI" h~ !NSH~ between CE and, and Cl~ an~
2 5 A total of 100 r, ,~ of the individual capture extender probes or a pool consisùng of a total of 100 f ,~ of each catpure extender were incubated in the microwells for one hour at 53 degrees. After washing twice with wash A (0.1 x SSC, 0 1% SDS), the wells were incubated for 30 min in amplifier diluent +/- the non-isoC,isoG amp described in WO95/16055 or the isoC,isoG amp described in Example 7A, supra. After two additional washes with wash A, the wells were incubated for 15 min in amp diluent (5 x SSC, 50% proteinase K-digested horse serum) containing either the non-isoC,isoG ap probe desicribed in WO95/16055 or the isoC,iso'G ap probe described in l~xample 7A, supra~
T~he following definitions were used: AP NSB = I,A~L~ .,.d of the ap probe when no CE is present. Amp NSB = ba.,h~;l, ' of the amp and ap probe when no CE is . .

wo 96/069~0 2 1 9 7 9 9 1 PC}/US95/~
-~o-present, less the ap NSB. AP NSH = RLU from CE sample without amp, less the ap NSB. AMP NSH = RLU from the CE sample - AP NSH - AMP NSB- AP NSB.

D. ~1~
Five individual CE probes were tested for l~ h~luund nonspecific hybridization using 100 fm per well. The results are shown in the Table below.

Oligo Probe # AMP NSH iC AMP NSH AP NSH iC AP NSE~
7,273 1 1.2 (û.2) 6.1 (0.2) 7,274 1.2 (0.1) 0.1 (0.2) 7,144 13.1 0.1 0.1 (0.2) 8,015 37.4 0.1 (0.0) (0.2) 8,018 0.2 (0.1) 0.1 (0.1) AMP NSB: iC AMP NSB: AP NSB: iC 'AP NSB
NO DNA 1.1 0.6 0.7 0.5 Values in parenthesis are less than zero RLU. AMP = non-isoC~isoG amp, iC AMP =
isoC,isoG amp, AP = non-isoC,isoG ap, iC AP = isoC,isoG ap The nonspecific binding l,~l~,k~,,~,u..;l in the absence of CE probes (AP-NSB and AMP-NSB) is negligible ( < = I RLU) for all amp and ap probes. Three of the extenders show a strong (> 10 RLU) cross reactivity with the current amp probe, which is not seen with the isoC,isoG amp. One probe shows a 6 RLU cross-reactivity with the current AP
15 probe that is not seen with the isoC,isoG AP probe. In all cases, the NSH with the isoC,isoG probe is negligible. RLU values less than 1.0 are considered h~
relative to the NSB.
Five pools of CE probes were tested for nonspecific hybridization l:dcl~ ...d with the same molecules. The results are shown below.

wO 961069sO ~ 1 9 7 9 U I PCT~USg~~

~. .. .

Oligo CE pool AMP NSH iC AMP NSH AP NSH iC AP NSEI
(number CE) IL-2 (5) 2.3 0.2 1 2 0.0 IL-4 (4) (0.2) 0.2 0.0 o.0 IL-6 (7) 16.0 0.2 4.7 0.0 TNF ~8) 14.6 0.0 0.û 0.3 IFNg (6) 34.9 (0.1) 0.2 0.1 AMP NSB: iC AMP NSB AP NSB iC AP NSB:
No DNA 1.7 1.1 0.4 0.5 - See legend of the previous table for abbreviations Again, the NSB of all of the amps and ap probes is negligible compared to the NSH.
Four of the five pools show a significant amp NSH, ranging from 2.3 to 34.9 RLU, while 5 none of the CE pools has a sigificant NSH (< I) with the isoC,isoG amp. Two of the pools have a significant NSH with the ap probe, while none of the pools has a significant interaction with the isoC,isoG ap probe. In this experiment a total of 30 CE sequences were screened for cross reactivity.
One skilled in the art, armed with the ability to incorporate novel base pairs into 10 hybridization assay formats, will realize that .c~,lacell.. ,.L of the amp leader sequence with an isoC,isoG leader sequence would be expected to result in lower NSH values for the isoC,isoG amp used here.

E. Co~ Pr-~ TT~-2 ;mrl IT.-6 Drlc~-r~cnr~ncr rnrvrc wi~h jcnl~ icr~G ~rn3 ~nrl ~,n Complete dose-response curves were generated by assaying serial dilutions of human cells for IL-2 and IL-6 mRNA. The detection limit was calculated as the cell number at which delta = zero. Delta is defined as: pos RLU - 2 std dev - (neg RLU + 2 std dev).

w0 96106950 2 1 9 7 ~ 0 1 PCTlusg5~ 5 The results are shown in the Table below.

Assay Current Detect Limit IsoC/G Detect Limit Fold improvement IL-2 41,000 3,000 12.6 IL-6 34,000 l l ,000 3.0 Sensitivity was improved 12.6-fold with the IL-2 assay and 3-fold with the IL-6 assay by 5 using the isoC/G amp and ap in place of the current molecules, which have natural sequences. The greater the noise with the natural sequences, the greater the assay improvement .
Thus, novel methods for generating a more target-dependent signal in solution phase sandwich hybridization assays have been disclosed. In addition, a novel method for 10 :Iyl~LL~ g 2'-deoxy-i.~o~,u.l,,v~;,le has been disclosed. Although preferred, ..,I,o.li-"~
of the subject invention have been described in some detail, it is to be understsod that obvious variations can be made without departing from the spirit and the scope of the invention as defined by the appended claims.

Claims (13)

We claim:
1. In a nucleic acid hybridization assay for detecting a nucleic acid analyte in a sample using a plurality of assay components each of which comprises at least one hybridizing oligonucleotide segment, the improvement which comprises incorporating into at least one hybridizing oligonucleotide segment a first nucleotidic unit which will not effectively base pair with adenosine (A), thymidine (T), cytidine (C), guanosine (G) or uridine (U) under conditions in which A-T and G-C base pairs are formed.
2. The method of claim 1, wherein the first nucleotidic unit is capable of forming a base pair with a second, complementary nucleotidic unit.
3. The method of claim 2, wherein the first and second nucleotidic units are interchangeably selected from the group of complementary base pairs consisting of:

and wherein R is a backbone which will allow the first and second nucleotidic units to form a base pair with a complementary nucleotidic unit when incorporated into a polynucleotide, and R' is hydrogen, methyl, a- or b-propynyl, bromine, fluorine or iodine.
4. In a nucleic acid hybridization assay for detecting a nucleic acid analyte in a sample using a plurality of assay components each of which comprises at least one hybridizing oligonucleotide segment, the improvement which comprises incorporating T m1 hybrid complexes and T m2 hybrid complexes such that assay stringency can be controlled to selectively destabilize the T m1 hybrid complexes.
5. In a solution phase sandwich hybridization assay for detecting a nucleic acid analyte in a sample using a plurality of assay components each of which comprises at least one hybridizing oligonucleotide segment, comprising (a) binding the analyte directly or indirectly to a solid support, (b) labelling the analyte, and (c) detecting the presence of analyte-associated label, the improvement which comprises incorporating into at least one hybridizing oligonucleotide segment a first nucleotidic unit a first nucleotidic unit which will not effectively base pair with adenosine (A), thymidine (T), cytidine (C), guanosine (G) or uridine (U) under conditions in which A-T and G-C base pairs are formed.
6. In a solution phase sandwich hybridization assay for detecting a nucleic acid analyte in a sample using a plurality of assay components each of which comprises at least one hybridizing oligonucleotide segment, comprising (a) binding the analyte directly or indirectly to a solid support, (b) labelling the analyte, and (c) detecting the presence of analyte-associated label, the improvement which comprises incorporating T m1 hybrid complexes and T m2 hybrid complexes such that assay stringency can be controlled to selectively destabilize the T m1 hybrid complexes.
7 A method for synthesizing a compound having the structural formula wherein R1 is selected from the group consisting of hydrogen, hydroxyl, sulfhydryl, halogeno, amino, alkyl, allyl and -OR2-, where R2 is alkyl, allyl, silyl or phosphate, comprising:
a) reacting a compound having the structural formula with a reagent suitable to protect both the 3' and 5' hydroxyl groups;
b) reacting the product of step (a) with a reagent suitable to convert the O6-oxy moiety into a functional group which is susceptible to nucleophilic displacement, thereby producing a functionalized O6 moiety;
c) oxidizing the 2-amino group of the product of step (b);

d) reacting the product of step (c) with a nucleophilic reagent to displace the functionalized O6 moiety; and e) reacting the product of step (d) with a reagent suitable to deprotect the protected 3' and 5' hydroxyl groups.
8. A method for synthesizing 2'-deoxy-isoguanosine comprising:
a) converting 2'-deoxyguanosine to 3',5'-O-(t-butyldimethylsilyl)2-2'-deoxyguanosine by reacting 2'-deoxyguanosine with t-butyldimethylsilyl (TBDMS) chloride;
b) converting 3',5'-O-TBDMS2'-2'- deoxyguanosine to O6-(4-toluenesulfonyl)-3',5'-O-TBDMS2-2'-deoxyguanosine by reacting 3',5'-O-TBDMS2-2'-deoxyguanosine with 4-toluenesulfonyl chloride;
c) displacing the O6-(4-toluenesulfonyl) group by treating O6-(4-toluenesulfonyl)-3',5'-O-TBDMS2-2'-deoxyguanosine with a phenol to give O6-(4-(methylthio)phenyl)-3', 5'-O-TBDMS2-2'-deoxyguanosine;
d) oxidizing the 2-amino group of O6-(4-(methylthio)phenyl)-3',5'-O-TBDMS2-2'-deoxyguanosine to the oxy function by treating O6-(4-(methylthio)phenyl)-3',5'-O-TBDMS2-2'- deoxyguanosine with t-butyl nitrite under neutral conditions to give O6-(4-(methylthio)phenyl)-3',5'-O-TBDMS2-2'-deoxyxantosine; and e) displacing the O2-(4-(methylthio)phenyl) group of O6-(4-(methylthio)phenyl)-3',5'-O-TBDMS2-2'-deoxyxantosine with ammonium hydroxide at elevated temperature to give 3',5'-O-TBDMS2-2'-deoxy-isoguanosine.
9. A kit for detecting a nucleic acid analyte in a sample, comprising at least one hybridizing oligonucleotide probe, a segment of which is capable of forming a hybrid complex with the analyte, and a means for detecting the hybrid complex, wherein the at least one hybridizing oligonucleotide probe comprises a first nucleotidic unit which will not effectively base pair with adenosine (A), thymidine (T), cytidine (C), guanosine (G) or uridine (U) under conditions in which A-T and G-C base pairs are formed.
10. The kit of claim 9 comprising:
(a) a set of capture probes, wherein said capture probes comprise a first nucleotidic unit which will not effectively base pair with A, T, C, G or U under conditions in which A-T and G-C base pairs are formed;
(b) a set of capture extender molecules comprising first and second hybridizing oligonucleotide segments, wherein the first hybridizing oligonucleotide segment is capable of forming hybrid complexes with the capture probes and the second hybridizing oligonucleotide segment is capable of forming hybrid complexes with predetermined segments of the nucleic acid analyte;
(c) label extender molecules comprising third and fourth hybridizing oligonucleotide segments, wherein the third hybridizing oligonucleotide segment is capable of forming hybrid complexes with segments of the nucleic acid analyte other than those to which the set of capture extender molecules bind;
(d) an optional preamplifier molecule comprising fifth and sixth hybridizing oligonucleotide segments, wherein the hybridizing oligonucleotide segments comprise a first nucleotidic unit which will not effectively base pair with A, T, C, G or U under conditions in which A-T and G-C base pairs are formed, and wherein the preamplifier molecule is capable of forming hybrid complexes with the label extender molecules and a plurality of amplification multimers;
(e) an amplification multimer comprising seventh and eighth hybridizing oligonucleotide segments, wherein the hybridizing oligonucleotide segments comprise a first nucleotidic unit which will not effectively base pair with A, T, C, G or U
under conditions in which A-T and G-C base pairs are formed, and wherein the amplification multimer is capable of forming hybrid complexes with the label extender molecules or to the preamplifier molecules, and a plurality of identical oligonucleotide subunits; and (f) label probes comprising a label, which are designed to form hybrid complexes with the identical oligonucleotide subunits and which provide, directly or indirectly, a detectable signal.
11. An oligonucleotide useful as an aptamer, comprising an intramolecular oligonucleotide hybrid complex containing a plurality of complementary base pairs at least one of which comprises complementary nonnatural nucleotidic units that will not effectively base pair with adenosine (A), thymidine (T), cytidine (C), guanosine (G) or uridine (U) under conditions in which A-T and G-C base pairs are normally formed, and wherein the nonnatural nucleotidic unit is contained within an oligonucleotide segment in which specificity of the base pairs is not required for maintaining secondary structure of the aptamer.
12. A method for preparing an aptamer comprising:
(a) providing a target molecule;
(b) contacting the target molecule with a randomer pool of oligonucleotides under conditions which favor binding of the oligonucleotides to the target molecule;
(c) separating the oligonucleotides which bind to the target molecule and form an oligonucleotide-target complex from the oligonucleotides which do not bind to the target molecule;
(d) dissociating the oligonucleotide from the oligonucleotide-target complex;
(e) amplifying the oligonucleotide using a polymerase chain reaction;
(f) repeating steps (b) through (e) at least once to form a final aptamer construct; and (g) replacing one or more nucleotidic units in the final aptamer construct with nonnatural nucleotidic units that will not effectively base pair with adenosine (A), thymidine (T), cytidine (C), guanosine (G) or uridine (U) under conditions in which A-T and G-C base pairs are normally formed.
13. An antisense molecule comprising first and second hybridizing segments, wherein the first hybridizing segment is capable of forming a hybrid complex with a target oligonucleotide and the second segment comprises at least one nucleotidic unit which will not effectively base pair with adenosine (A), thymidine (T), cytidine (C), guanosine (G) or uridine (U) under conditions in which A-T and G-C base pairs are formed, and is capable of forming a hybrid complex with a second antisense molecule.
CA002197901A 1994-08-30 1995-08-30 Reduction of nonspecific hybridization by using novel base-pairing schemes Abandoned CA2197901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/298,073 1994-08-30
US08/298,073 US5681702A (en) 1994-08-30 1994-08-30 Reduction of nonspecific hybridization by using novel base-pairing schemes

Publications (1)

Publication Number Publication Date
CA2197901A1 true CA2197901A1 (en) 1996-03-07

Family

ID=23148897

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002197901A Abandoned CA2197901A1 (en) 1994-08-30 1995-08-30 Reduction of nonspecific hybridization by using novel base-pairing schemes

Country Status (21)

Country Link
US (4) US5681702A (en)
EP (2) EP0778898B1 (en)
JP (4) JP4461278B2 (en)
KR (1) KR100218113B1 (en)
CN (1) CN100335649C (en)
AT (2) ATE227778T1 (en)
AU (1) AU708194B2 (en)
BG (1) BG101246A (en)
BR (1) BR9508674A (en)
CA (1) CA2197901A1 (en)
CZ (1) CZ58997A3 (en)
DE (2) DE69528839T2 (en)
ES (2) ES2187571T3 (en)
FI (1) FI970803A (en)
HU (1) HUT77754A (en)
MX (1) MX9701419A (en)
NO (1) NO970884L (en)
NZ (1) NZ292451A (en)
PL (1) PL318933A1 (en)
SK (1) SK25497A3 (en)
WO (1) WO1996006950A1 (en)

Families Citing this family (295)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4140463A1 (en) * 1991-12-09 1993-06-17 Boehringer Mannheim Gmbh 2'-DESOXY-ISOGUANOSINE, THE ISOSTERAL ANALOGS AND THE APPLICATION THEREOF
CA2206451C (en) * 1994-12-09 2002-11-26 Wakunaga Seiyaku Kabushiki Kaisha Method for suppressing nonspecific hybridization in primer extension method
US5631146A (en) * 1995-01-19 1997-05-20 The General Hospital Corporation DNA aptamers and catalysts that bind adenosine or adenosine-5'-phosphates and methods for isolation thereof
AU726047B2 (en) 1995-11-15 2000-10-26 Gen-Probe Incorporated Nucleic acid probes complementary to human papillomavirus nucleic acid and related methods and kits
ATE232559T1 (en) * 1996-07-12 2003-02-15 Tm Technologies Inc METHOD FOR SIGNAL AMPLIFICATION
US7070925B1 (en) 1996-07-16 2006-07-04 Gen-Probe Incorporated Method for determining the presence of an RNA analyte in a sample using a modified oligonucleotide probe
DK0912767T3 (en) * 1996-07-16 2006-10-30 Gen Probe Inc Method for Tracking and Amplifying Nucleic Acid Sequences Using Modified Oligonucleotides with Enhanced Target Specific TM
US6009480A (en) * 1997-09-12 1999-12-28 Telxon Corporation Integrated device driver wherein the peripheral downloads the device driver via an I/O device after it is determined that the I/O device has the resources to support the peripheral device
US6518017B1 (en) * 1997-10-02 2003-02-11 Oasis Biosciences Incorporated Combinatorial antisense library
US20030165888A1 (en) * 2001-07-18 2003-09-04 Brown Bob D. Oligonucleotide probes and primers comprising universal bases for diagnostic purposes
JP4502502B2 (en) * 1997-10-28 2010-07-14 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Identification method of DNA polymorphism using flow cytometry
BR9814271A (en) * 1997-12-12 2001-03-20 Digene Corp Determination of diseases related to human papilloma virus
US20070166741A1 (en) * 1998-12-14 2007-07-19 Somalogic, Incorporated Multiplexed analyses of test samples
US6242246B1 (en) * 1997-12-15 2001-06-05 Somalogic, Inc. Nucleic acid ligand diagnostic Biochip
US6686150B1 (en) 1998-01-27 2004-02-03 Clinical Micro Sensors, Inc. Amplification of nucleic acids with electronic detection
CA2319170A1 (en) 1998-01-27 1999-07-29 Clinical Micro Sensors, Inc. Amplification of nucleic acids with electronic detection
US6458559B1 (en) 1998-04-22 2002-10-01 Cornell Research Foundation, Inc. Multivalent RNA aptamers and their expression in multicellular organisms
EP1161563A2 (en) * 1999-03-15 2001-12-12 PE Corporation (NY) Probe/mobility modifier complexes for multiplex nucleic acid detection
US20080318890A1 (en) * 1999-04-08 2008-12-25 Antisoma Research Limited Antiproliferative activity of G-rich oligonucleotides and method of using same to bind to nucleolin
US8114850B2 (en) * 1999-04-08 2012-02-14 Advanced Cancer Therapeutics, Llc Antiproliferative activity of G-rich oligonucleotides and method of using same to bind to nucleolin
DE60036700T2 (en) * 1999-04-08 2008-07-24 Antisoma Research Ltd. ANTIPROLIFERATIVE ACTIVITY OF G-rich OLIGONUCLEOTIDES AND METHOD TO USE THEM TO BIND NUCLEOTINE
EP1173614A4 (en) * 1999-04-08 2003-10-29 Oasis Biosciences Inc Antisense oligonucleotides comprising universal and/or degenerate bases
US7960540B2 (en) * 1999-04-08 2011-06-14 Advanced Cancer Therapeutics, Llc Antiproliferative activity of G-rich oligonucleotides and method of using same to bind to nucleolin
US20080318889A1 (en) * 1999-04-08 2008-12-25 Antisoma Research Limited Antiproliferative activity of G-rich oligonucleotides and method of using same to bind to nucleolin
US20060275782A1 (en) 1999-04-20 2006-12-07 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
EP1196630B2 (en) 1999-04-20 2018-10-17 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
US8080380B2 (en) 1999-05-21 2011-12-20 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US8481268B2 (en) 1999-05-21 2013-07-09 Illumina, Inc. Use of microfluidic systems in the detection of target analytes using microsphere arrays
US20020045182A1 (en) * 1999-07-16 2002-04-18 Lynx Therapeutics, Inc. Multiplexed differential displacement for nucleic acid determinations
US7122303B2 (en) 1999-09-17 2006-10-17 Agilent Technologies, Inc. Arrays comprising background features that provide for a measure of a non-specific binding and methods for using the same
US7078167B2 (en) * 1999-09-17 2006-07-18 Agilent Technologies, Inc. Arrays having background features and methods for using the same
US6428957B1 (en) * 1999-11-08 2002-08-06 Agilent Technologies, Inc. Systems tools and methods of assaying biological materials using spatially-addressable arrays
US20020009728A1 (en) * 2000-01-18 2002-01-24 Quantum Dot Corporation Oligonucleotide-tagged semiconductor nanocrystals for microarray and fluorescence in situ hybridization
US6235483B1 (en) 2000-01-31 2001-05-22 Agilent Technologies, Inc. Methods and kits for indirect labeling of nucleic acids
US20020006617A1 (en) 2000-02-07 2002-01-17 Jian-Bing Fan Nucleic acid detection methods using universal priming
AU2001238389B2 (en) 2000-02-16 2006-09-21 Illumina, Inc. Parallel genotyping of multiple patient samples
AU2001249386A1 (en) 2000-03-22 2001-10-03 Quantum Dot Corporation Methods of using semiconductor nanocrystals in bead-based nucleic acid assays
AU7125401A (en) * 2000-05-19 2001-12-03 David J Marshall Materials and methods for detection of nucleic acids
US6977161B2 (en) 2000-10-14 2005-12-20 Eragen Biosciences, Inc. Solid support assay systems and methods utilizing non-standard bases
ATE364722T1 (en) * 2000-06-02 2007-07-15 Bayer Corp METHOD FOR DETECTING AND LOCALIZING GENES IN SITU BY HYBRIDIZING A BRANCHED DNA
JP2003535599A (en) 2000-06-06 2003-12-02 ティーエム バイオサイエンス コーポレイション Nucleic acid capture unit and its use
US7601497B2 (en) * 2000-06-15 2009-10-13 Qiagen Gaithersburg, Inc. Detection of nucleic acids by target-specific hybrid capture method
US7439016B1 (en) * 2000-06-15 2008-10-21 Digene Corporation Detection of nucleic acids by type-specific hybrid capture method
US6548251B1 (en) 2000-09-05 2003-04-15 Fidelity Systems, Inc. Inhibition of molecular and biological processes using modified oligonucleotides
US20030044803A1 (en) * 2000-09-22 2003-03-06 Pedersen Finn Skou Methods for diagnosis and treatment of diseases associated with altered expression of JAK1
US20020115058A1 (en) * 2000-09-22 2002-08-22 Pedersen Finn Skou Methods for diagnosis and treatment of diseases associated with altered expression of Pik3r1
US20030077590A1 (en) * 2000-09-22 2003-04-24 Pedersen Finn Skou Methods for diagnosis and treatment of diseases associated with altered expression of neurogranin
WO2002026932A2 (en) 2000-09-26 2002-04-04 Duke University Rna aptamers and methods for identifying the same
ATE425457T1 (en) 2000-10-06 2009-03-15 Life Technologies Corp CELLS WITH A SPECTRAL SIGNATURE AND METHOD FOR THEIR PRODUCTION AND USE
US20050059031A1 (en) 2000-10-06 2005-03-17 Quantum Dot Corporation Method for enhancing transport of semiconductor nanocrystals across biological membranes
AU2002211624A1 (en) * 2000-10-10 2002-04-22 Genencor International, Inc. Information rich libraries
US7374882B2 (en) * 2000-11-28 2008-05-20 Riken Method for base sequencing and biologically active nucleic acids
US20030232334A1 (en) * 2000-12-22 2003-12-18 Morris David W. Novel compositions and methods for cancer
US7820447B2 (en) 2000-12-22 2010-10-26 Sagres Discovery Inc. Compositions and methods for cancer
US20030087252A1 (en) * 2000-12-22 2003-05-08 Morris David W. Novel compositions and methods in cancer associated with altered expression of PRDM11
US7645441B2 (en) * 2000-12-22 2010-01-12 Sagres Discovery Inc. Compositions and methods in cancer associated with altered expression of PRLR
US7892730B2 (en) 2000-12-22 2011-02-22 Sagres Discovery, Inc. Compositions and methods for cancer
US20030099963A1 (en) * 2000-12-22 2003-05-29 Morris David W. Novel compositions and methods in cancer associated with altered expression of TBX21
US7700274B2 (en) * 2000-12-22 2010-04-20 Sagres Discovery, Inc. Compositions and methods in cancer associated with altered expression of KCNJ9
US20030165878A1 (en) * 2000-12-22 2003-09-04 Morris David W. Novel compositions and methods in cancer associated with altered expression of MCM3AP
GB0101397D0 (en) * 2001-01-19 2001-03-07 Amersham Pharm Biotech Uk Ltd Suppression of non-specific nucleic acid amplication
US20030092157A1 (en) * 2001-03-16 2003-05-15 Hayden Michael R. Compositions, screening systems and methods for modulating HDL cholesterol and triglyceride levels
US20030191073A1 (en) 2001-11-07 2003-10-09 Challita-Eid Pia M. Nucleic acid and corresponding protein entitled 161P2F10B useful in treatment and detection of cancer
AU2002305019A1 (en) * 2001-05-25 2002-12-09 University Of British Columbia Diagnostic methods for cardiovascular disease, low hdl-cholesterol levels, and high triglyceride levels
ES2474192T3 (en) * 2001-05-25 2014-07-08 Duke University Modulators of pharmacological agents
CA2348042A1 (en) * 2001-06-04 2002-12-04 Ann Huletsky Sequences for detection and identification of methicillin-resistant staphylococcus aureus
WO2003006677A2 (en) 2001-07-12 2003-01-23 Illumina, Inc. Multiplex nucleic acid reactions
WO2003027328A2 (en) 2001-09-24 2003-04-03 Boston Probes, Inc. Methods, kits and compositions pertaining to the suppression of detectable probe binding to randomly distributed repeat sequences in genomic nucleic acid
US20070098728A1 (en) * 2001-09-24 2007-05-03 Pedersen Finn S Novel compositions and methods in cancer
US7070933B2 (en) * 2001-09-28 2006-07-04 Gen-Probe Incorporated Inversion probes
US20040126762A1 (en) * 2002-12-17 2004-07-01 Morris David W. Novel compositions and methods in cancer
US20040166490A1 (en) * 2002-12-17 2004-08-26 Morris David W. Novel therapeutic targets in cancer
JP2005508196A (en) * 2001-11-07 2005-03-31 アプレラ コーポレイション General purpose nucleotides for nucleic acid analysis
US20040180344A1 (en) * 2003-03-14 2004-09-16 Morris David W. Novel therapeutic targets in cancer
US20040197778A1 (en) * 2002-12-26 2004-10-07 Sagres Discovery, Inc. Novel compositions and methods in cancer
US20060040262A1 (en) * 2002-12-27 2006-02-23 Morris David W Novel compositions and methods in cancer
EP1463829A1 (en) * 2001-12-19 2004-10-06 Quantibact A/S A method and a kit for determination of a microbial count
US20070184474A1 (en) * 2002-01-10 2007-08-09 Nichirei Corporation Process for amplifying DNA
AU2003217379A1 (en) 2002-02-15 2003-09-09 Somalogic, Inc. Methods and reagents for detecting target binding by nucleic acid ligands
US20030194705A1 (en) * 2002-03-01 2003-10-16 Schroth Gary P. Methods of using unnatural nucleobases for decoding
ATE419536T1 (en) 2002-03-05 2009-01-15 Univ Texas BIOSPECIFIC CONTRAST AGENTS
DE10211321A1 (en) * 2002-03-14 2003-09-25 Gnothis Holding Sa Ecublens Use of capture probes for the detection of nucleic acids
CA2479730A1 (en) * 2002-03-21 2003-10-02 Sagres Discovery, Inc. Novel compositions and methods in cancer
CA2480673A1 (en) * 2002-03-29 2003-10-09 Genentech, Inc. Methods and compositions for detection and quantitation of nucleic acid analytes
US7094537B2 (en) * 2002-04-30 2006-08-22 Agilent Technologies, Inc. Micro arrays with structured and unstructured probes
US7144950B2 (en) 2003-09-17 2006-12-05 The Regents Of The University Of California Conformationally flexible cationic conjugated polymers
WO2004001379A2 (en) 2002-06-20 2003-12-31 The Regents Of The University Of California Methods and compositions for detection and analysis of polynucleotides using light harvesting multichromophores
US7435542B2 (en) * 2002-06-24 2008-10-14 Cornell Research Foundation, Inc. Exhaustive selection of RNA aptamers against complex targets
AU2003243151A1 (en) 2002-08-16 2004-03-03 Agensys, Inc. Nucleic acid and corresponding protein entitled 251p5g2 useful in treatment and detection of cancer
CN102021243A (en) 2002-08-26 2011-04-20 加州大学评议会 Methods and compositions for detection and analysis of polynucleotides using light harvesting multichromophores
US8394944B2 (en) * 2002-09-20 2013-03-12 Siemens Healthcare Diagnostics Inc. Dual-purpose primers and probes for providing enhanced hybridization assays by disruption of secondary structure formation
US20040157238A1 (en) * 2002-09-20 2004-08-12 Quinn John J. Method for detection of multiple nucleic acid sequence variations
EP1590482B1 (en) * 2003-01-17 2008-12-10 Eragen Biosciences, Inc. Nucleic acid amplification using non-standard bases
WO2004072263A2 (en) 2003-02-10 2004-08-26 Agensys, Inc. Nucleic acid and corresponding protein named 158p1d7 useful in the treatment and detection of bladder and other cancers
WO2004077014A2 (en) 2003-02-13 2004-09-10 The Regents Of The University Of California Methods and compositions for detection and analysis of polynucleotide-binding protein interactions using light harvesting multichromophores
US7767387B2 (en) * 2003-06-13 2010-08-03 Sagres Discovery, Inc. Therapeutic targets in cancer
US20070149449A1 (en) 2003-02-14 2007-06-28 Morris David W Therapeutic targets in cancer
US20040170982A1 (en) 2003-02-14 2004-09-02 Morris David W. Novel therapeutic targets in cancer
US20070218071A1 (en) * 2003-09-15 2007-09-20 Morris David W Novel therapeutic targets in cancer
EP1615942B1 (en) * 2003-04-01 2016-03-16 Luminex Corporation Polymerase inhibitor and method of using same
US20040241661A1 (en) * 2003-05-29 2004-12-02 Arindam Bhattacharjee Pseudo single color method for array assays
EP1629088B1 (en) 2003-05-30 2012-01-11 Agensys, Inc. Prostate stem cell antigen (psca) variants and subsequences thereof
WO2005001129A2 (en) * 2003-06-06 2005-01-06 Applera Corporation Mobility cassettes
US20040259100A1 (en) 2003-06-20 2004-12-23 Illumina, Inc. Methods and compositions for whole genome amplification and genotyping
DE20310332U1 (en) * 2003-07-04 2004-11-11 Mwg-Biotech Ag Device for automatic opening and closing of reaction vessels
US20080050357A1 (en) 2003-08-01 2008-02-28 Claes Gustafsson Systems and Methods for Antibody Engineering
EP1939779A3 (en) 2003-08-01 2009-04-01 Dna Twopointo Inc. Systems and methods for biopolymer engineering
US20090163375A1 (en) 2003-09-09 2009-06-25 Bowman Christopher N Use of Photopolymerization for Amplification and Detection of a Molecular Recognition Event
US7354706B2 (en) * 2003-09-09 2008-04-08 The Regents Of The University Of Colorado, A Body Corporate Use of photopolymerization for amplification and detection of a molecular recognition event
US20070281896A1 (en) * 2003-09-30 2007-12-06 Morris David W Novel compositions and methods in cancer
US20050136414A1 (en) * 2003-12-23 2005-06-23 Kevin Gunderson Methods and compositions for making locus-specific arrays
WO2005081776A2 (en) * 2004-01-30 2005-09-09 Eragen Biosciences, Inc. Materials and methods for the detection of sars
US7803931B2 (en) 2004-02-12 2010-09-28 Archemix Corp. Aptamer therapeutics useful in the treatment of complement-related disorders
EP2860251B1 (en) * 2004-02-12 2018-04-11 Archemix LLC Aptamer therapeutics useful in the treatment of complement-related disorders
WO2005082110A2 (en) * 2004-02-26 2005-09-09 Illumina Inc. Haplotype markers for diagnosing susceptibility to immunological conditions
WO2005106035A2 (en) * 2004-04-09 2005-11-10 Cornell Research Foundation, Inc. Modular design and construction of nucleic acid molecules, aptamer-derived nucleic acid constructs, rna scaffolds, their expression, and methods of use
SI1745062T1 (en) * 2004-04-22 2014-09-30 Regado Biosciences, Inc. Improved modulators of coagulation factors
US20090317873A1 (en) 2004-05-04 2009-12-24 Sridhar Govindarajan Design, synthesis and assembly of synthetic nucleic acids
CA2566519C (en) 2004-05-14 2020-04-21 Rosetta Genomics Ltd. Micrornas and uses thereof
EP2322660A1 (en) 2004-05-14 2011-05-18 Rosetta Genomics Ltd MicroRNAs and uses thereof
EP1774575A2 (en) * 2004-05-17 2007-04-18 Cambrios Technology Corp. Biofabrication of transistors including field effect transistors
EP1756562A1 (en) 2004-05-21 2007-02-28 Atonomics A/S Surface acoustic wave sensor comprising a hydrogel
AU2005250370B2 (en) 2004-05-28 2010-04-01 Agensys, Inc. Antibodies and related molecules that bind to PSCA proteins
US7827558B2 (en) * 2004-06-30 2010-11-02 Devicevm, Inc. Mechanism for enabling a program to be executed while the execution of an operating system is suspended
KR100663992B1 (en) 2004-07-05 2007-01-02 (주)바이오메드랩 The method selecting highly specific probes for HPV genotype analysis and the probes thereof
US20060024677A1 (en) 2004-07-20 2006-02-02 Morris David W Novel therapeutic targets in cancer
EP1838752B1 (en) 2005-01-10 2017-10-04 The Regents of The University of California Cationic conjugated polymers suitable for strand-specific polynucleotide detection in homogeneous and solid state assays
US8063196B2 (en) * 2005-02-01 2011-11-22 Siemens Healthcare Diagnostics Inc. Highly orthogonal universal sequences for use in nucleic acid assays
WO2006092063A1 (en) * 2005-03-03 2006-09-08 National Research Council Canada Methods and compositions for the detection and analysis of nucleic acids by signal amplification
WO2006101913A2 (en) * 2005-03-18 2006-09-28 Eragen Biosciences, Inc. Methods for detecting multiple species and subspecies of neiserria
AU2006230563B8 (en) 2005-03-31 2010-06-17 Agensys, Inc. Antibodies and related molecules that bind to 161P2F10B proteins
US20090220495A1 (en) 2005-04-07 2009-09-03 Abdallah Fanidi Cancer Related Genes (PRLR)
JP2008535857A (en) 2005-04-07 2008-09-04 ノバルティス ヴァクシンズ アンド ダイアグノスティクス インコーポレイテッド CACNA1E in cancer diagnosis, detection and treatment
US8628918B2 (en) * 2005-05-09 2014-01-14 Affymetrix, Inc. Multiplex capture of nucleic acids
US8632970B2 (en) 2005-05-09 2014-01-21 Affymetrix, Inc. Multiplex capture of nucleic acids
WO2006124771A2 (en) 2005-05-12 2006-11-23 Panomics, Inc. Multiplex branched-chain dna assays
EP2489746B1 (en) * 2005-06-07 2016-02-03 Luminex Corporation Methods for detection and typing of nucleic acids
WO2007001986A2 (en) * 2005-06-20 2007-01-04 Yuling Luo Methods of detecting nucleic acids in individual cells and of identifying rare cells from large heterogeneous cell populations
US20070087360A1 (en) * 2005-06-20 2007-04-19 Boyd Victoria L Methods and compositions for detecting nucleotides
ATE501277T1 (en) * 2005-07-01 2011-03-15 Dako Denmark As MONOMERIC AND POLYMERIC LINKERS FOR CONJUGING BIOLOGICAL MOLECULES AND OTHER MATERIALS
US7927798B2 (en) * 2005-10-05 2011-04-19 Panomics, Inc. Detection of nucleic acids from whole blood
US7838221B2 (en) 2005-10-11 2010-11-23 Geneohm Sciences, Inc. Sequences for detection and identification of methicillin-resistant Staphylococcus aureus (MRSA)
US11834720B2 (en) 2005-10-11 2023-12-05 Geneohm Sciences, Inc. Sequences for detection and identification of methicillin-resistant Staphylococcus aureus (MRSA) of MREJ types xi to xx
WO2007058898A2 (en) 2005-11-10 2007-05-24 Panomics, Inc. Detection of nucleic acids through amplification of surrogate nucleic acids
TWI507528B (en) * 2006-01-17 2015-11-11 Somalogic Inc Multiplexed analyses of test samples
US20070264694A1 (en) * 2006-04-07 2007-11-15 Eragen Biosciences, Inc. Use of non-standard bases and proximity effects for gene assembly and conversion of non-standard bases to standard bases during dna synthesis
US8383338B2 (en) * 2006-04-24 2013-02-26 Roche Nimblegen, Inc. Methods and systems for uniform enrichment of genomic regions
US7833716B2 (en) 2006-06-06 2010-11-16 Gen-Probe Incorporated Tagged oligonucleotides and their use in nucleic acid amplification methods
AU2007293187A1 (en) 2006-06-30 2008-03-13 Rosetta Genomics Ltd A method for detecting nucleic acids
JP2008043332A (en) 2006-08-17 2008-02-28 Panomics Inc Quantitative determination of nucleic acid from tissue slide
WO2009024834A2 (en) * 2006-12-05 2009-02-26 Rosetta Genomics Ltd Nucleic acids involved in viral infection
AU2007353522B2 (en) 2006-12-19 2013-09-26 Becton Dickinson Infusion Therapy Systems Inc. Detection of staphylococcus aureus and identification of methicillin-resistant staphylococcus aureus
US7855054B2 (en) * 2007-01-16 2010-12-21 Somalogic, Inc. Multiplexed analyses of test samples
US7947447B2 (en) 2007-01-16 2011-05-24 Somalogic, Inc. Method for generating aptamers with improved off-rates
US8975026B2 (en) 2007-01-16 2015-03-10 Somalogic, Inc. Method for generating aptamers with improved off-rates
US7964356B2 (en) * 2007-01-16 2011-06-21 Somalogic, Inc. Method for generating aptamers with improved off-rates
US20110136099A1 (en) * 2007-01-16 2011-06-09 Somalogic, Inc. Multiplexed Analyses of Test Samples
US20080241140A1 (en) 2007-02-12 2008-10-02 Medical College Of Georgia Gene amplification of coactivator coaa and uses thereof
CA2685202C (en) 2007-03-23 2017-11-28 The Board Of Regents Of The University Of Texas System Methods for treating allergic asthma
EP2511708B1 (en) 2007-10-05 2016-09-14 Affymetrix, Inc. Highly multiplexed particle-based assays
US8906700B2 (en) 2007-11-06 2014-12-09 Ambergen, Inc. Methods and compositions for phototransfer
US20090131351A1 (en) * 2007-11-16 2009-05-21 Antisoma Research Limited Methods, compositions, and kits for modulating tumor cell proliferation
US20090137405A1 (en) * 2007-11-16 2009-05-28 Christopher Bowman Detection of nucleic acid biomarkers using polymerization-based amplification
WO2010070380A2 (en) 2007-12-03 2010-06-24 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health Of Human Services, National Institutes Of Health Doc1 compositions and methods for treating cancer
US10365224B2 (en) 2007-12-06 2019-07-30 Genalyte, Inc. Label-free optical sensors
US20090215050A1 (en) * 2008-02-22 2009-08-27 Robert Delmar Jenison Systems and methods for point-of-care amplification and detection of polynucleotides
US9249455B2 (en) * 2008-04-18 2016-02-02 Luminex Corporation Methods for detection and quantification of small RNA
EP2292798B1 (en) * 2008-05-19 2013-12-25 Celish Fd, Inc. Rna in situ hybridization
US20090298709A1 (en) * 2008-05-28 2009-12-03 Affymetrix, Inc. Assays for determining telomere length and repeated sequence copy number
US8703416B2 (en) 2008-07-17 2014-04-22 Somalogic, Inc. Method for purification and identification of sperm cells
TWI417389B (en) 2008-10-27 2013-12-01 Qiagen Gaithersburg Inc Fast results hybrid capture assay on an automated platform
EP2347247B1 (en) 2008-10-27 2019-06-26 Genalyte, Inc. Biosensors based on optical probing and sensing
WO2010080566A1 (en) 2008-12-18 2010-07-15 Siemens Healthcare Diagnostics Inc. Methods and reagents for shortening incubation times in hybridization assays
ES2644516T3 (en) * 2009-01-28 2017-11-29 Qiagen Gaithersburg, Inc. Method and test for sample preparation of large sequence specific volume
EP2398921B1 (en) 2009-02-19 2015-08-05 Becton Dickinson Infusion Therapy Systems Inc. Methods for the detection and identification of extended spectrum beta lactamases
WO2010096574A1 (en) 2009-02-20 2010-08-26 Lisanti Michael P A method of diagnosis or prognosis of a neoplasm comprising determining the level of expression of a protein in stromal cells adjacent to the neoplasm
JP5419138B2 (en) * 2009-03-27 2014-02-19 Necソフト株式会社 Detection method of detection object and detection kit used therefor
ES2555389T3 (en) 2009-03-30 2015-12-30 Illumina, Inc. Analysis of gene expression in individual cells
CN102414327B (en) 2009-05-01 2015-04-08 奇亚根盖瑟斯堡股份有限公司 A non-target amplification method for detection of RNA splice-forms in a sample
US20100291706A1 (en) 2009-05-15 2010-11-18 Millipore Corporation Dye conjugates and methods of use
JP5826752B2 (en) 2009-09-14 2015-12-02 キアジェン ゲイサーズバーグ インコーポレイテッド Compositions and methods for recovering nucleic acids or proteins from tissue samples fixed in cytological media
WO2011038403A1 (en) 2009-09-28 2011-03-31 Yuling Luo Methods of detecting nucleic acid sequences with high specificity
JP5938348B2 (en) * 2009-10-23 2016-06-22 ルミネックス コーポレーション Amplification primers containing non-standard bases for increased reaction specificity
BR112012018545A2 (en) 2010-01-29 2016-05-03 Qiagen Gaithersburg Inc method of determining and confirming the presence of an hpv in a sample
ES2615728T3 (en) * 2010-01-29 2017-06-08 Qiagen Gaithersburg, Inc. Methods and compositions for purification and specific multiple nucleic acid sequence analysis
WO2011123246A2 (en) 2010-04-01 2011-10-06 Illumina, Inc. Solid-phase clonal amplification and related methods
US10232374B2 (en) 2010-05-05 2019-03-19 Miroculus Inc. Method of processing dried samples using digital microfluidic device
AU2011255638B2 (en) 2010-05-19 2016-08-25 Qiagen Gaithersburg, Inc. Methods and compositions for sequence-specific purification and multiplex analysis of nucleic acids
US20120003648A1 (en) * 2010-07-01 2012-01-05 Affymetrix, Inc. Signal Multiplexing and Signal Amplification
US9803236B2 (en) 2010-08-06 2017-10-31 Tsinghua University Microarray-based assay integrated with particles for analyzing molecular interactions
CN103261892A (en) * 2010-09-02 2013-08-21 海徳诊断学有限责任公司 Electrochemical detection of analyte
CN104849472A (en) 2010-10-21 2015-08-19 领先细胞医疗诊断有限公司 Ultra sensitive method for in situ detection of nucleic acids
EP2633067B1 (en) 2010-10-27 2023-06-28 CapitalBio Technology Corporation Luminophore-labeled molecules coupled with particles for microarray-based assays
EP3733866B1 (en) 2010-11-05 2023-11-15 Genalyte, Inc. Optical analyte detection systems and methods of use
EP2481812A1 (en) 2011-01-31 2012-08-01 Westfälische Wilhelms-Universität Münster Molecular sexing of avian subjects
CN103403188B (en) 2011-01-31 2016-03-30 伊鲁米那股份有限公司 For reducing the method for nucleic acid damaging
JP2014511182A (en) 2011-02-24 2014-05-15 キアゲン ガイサーズバーグ アイエヌシー. Materials and methods for detecting HPV nucleic acids
US9260753B2 (en) 2011-03-24 2016-02-16 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
WO2013067349A1 (en) 2011-11-04 2013-05-10 Ohmx Corporation Novel chemistry used in biosensors
CN104040238B (en) 2011-11-04 2017-06-27 汉迪拉布公司 Polynucleotides sample preparation apparatus
JP6307675B2 (en) * 2011-11-18 2018-04-11 タグシクス・バイオ株式会社 Nucleic acid fragments that bind to the target protein
MX2014006130A (en) 2011-11-22 2015-04-13 Intermune Inc Methods of diagnosing and treating idiopathic pulmonary fibrosis.
WO2013112881A1 (en) 2012-01-27 2013-08-01 Thomas Jefferson University Mct protein inhibitor-related prognostic and therapeutic methods
EP2825885B1 (en) 2012-03-12 2021-05-12 The Board of Trustees of the University of Illinois Optical analyte detection systems with magnetic enhancement
EP3428290B1 (en) 2012-07-26 2022-04-06 Illumina, Inc. Compositions and methods for the amplification of nucleic acids
US9783841B2 (en) 2012-10-04 2017-10-10 The Board Of Trustees Of The Leland Stanford Junior University Detection of target nucleic acids in a cellular sample
US20140322706A1 (en) 2012-10-24 2014-10-30 Jon Faiz Kayyem Integrated multipelx target analysis
US9957553B2 (en) 2012-10-24 2018-05-01 Genmark Diagnostics, Inc. Integrated multiplex target analysis
WO2014074785A1 (en) 2012-11-08 2014-05-15 Ludwig Institute For Cancer Research Ltd. Methods of predicting outcome and treating breast cancer
US9273349B2 (en) 2013-03-14 2016-03-01 Affymetrix, Inc. Detection of nucleic acids
US20140274811A1 (en) * 2013-03-14 2014-09-18 Lyle J. Arnold Methods for Amplifying a Complete Genome or Transcriptome
US20140272959A1 (en) * 2013-03-14 2014-09-18 President And Fellows Of Harvard College Methods of Hybridizing Probes to Genomic DNA
US9983206B2 (en) 2013-03-15 2018-05-29 The Board Of Trustees Of The University Of Illinois Methods and compositions for enhancing immunoassays
US9453613B2 (en) 2013-03-15 2016-09-27 Genmark Diagnostics, Inc. Apparatus, devices, and methods for manipulating deformable fluid vessels
EP2986290A4 (en) 2013-04-19 2017-01-04 Thomas Jefferson University Caveolin-1 related methods for treating glioblastoma with temozolomide
US10510435B2 (en) 2013-04-30 2019-12-17 California Institute Of Technology Error correction of multiplex imaging analysis by sequential hybridization
KR102368591B1 (en) 2013-04-30 2022-02-25 캘리포니아 인스티튜트 오브 테크놀로지 Multiplex labeling of molecules by sequential hybridization barcoding
US9498778B2 (en) 2014-11-11 2016-11-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
USD881409S1 (en) 2013-10-24 2020-04-14 Genmark Diagnostics, Inc. Biochip cartridge
US20150291975A1 (en) 2014-04-09 2015-10-15 Dna2.0, Inc. Enhanced nucleic acid constructs for eukaryotic gene expression
US20170362627A1 (en) 2014-11-10 2017-12-21 Modernatx, Inc. Multiparametric nucleic acid optimization
US10005080B2 (en) 2014-11-11 2018-06-26 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system employing electrowetting fluid manipulation
US9598722B2 (en) 2014-11-11 2017-03-21 Genmark Diagnostics, Inc. Cartridge for performing assays in a closed sample preparation and reaction system
WO2016077364A2 (en) 2014-11-11 2016-05-19 Genmark Diagnostics, Inc. Instrument and cartridge for performing assays in a closed sample preparation and reaction system
CN208562324U (en) 2015-06-05 2019-03-01 米罗库鲁斯公司 Digital microcurrent-controlled (DMF) device of air matrix
US10464067B2 (en) 2015-06-05 2019-11-05 Miroculus Inc. Air-matrix digital microfluidics apparatuses and methods for limiting evaporation and surface fouling
MX2018000729A (en) 2015-07-17 2018-09-06 Harvard College Methods of amplifying nucleic acid sequences.
US11078528B2 (en) 2015-10-12 2021-08-03 Advanced Cell Diagnostics, Inc. In situ detection of nucleotide variants in high noise samples, and compositions and methods related thereto
DK3394093T3 (en) 2015-12-23 2022-04-19 Modernatx Inc PROCEDURES FOR USING OX40 LIGAND CODING POLYNUCLEOTIDES
US20190241658A1 (en) 2016-01-10 2019-08-08 Modernatx, Inc. Therapeutic mRNAs encoding anti CTLA-4 antibodies
US10859562B2 (en) 2016-02-29 2020-12-08 Iridia, Inc. Methods, compositions, and devices for information storage
US10438662B2 (en) 2016-02-29 2019-10-08 Iridia, Inc. Methods, compositions, and devices for information storage
US10640822B2 (en) 2016-02-29 2020-05-05 Iridia, Inc. Systems and methods for writing, reading, and controlling data stored in a polymer
RU2022101599A (en) * 2016-02-29 2022-02-25 Айридия, Инк. METHODS, COMPOSITIONS AND DEVICES FOR INFORMATION STORAGE
EP3442590A2 (en) 2016-04-13 2019-02-20 Modernatx, Inc. Lipid compositions and their uses for intratumoral polynucleotide delivery
SG11201810256XA (en) 2016-05-18 2018-12-28 Modernatx Inc Polynucleotides encoding relaxin
WO2017201352A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Mrna combination therapy for the treatment of cancer
AU2017266929B2 (en) 2016-05-18 2023-05-11 Modernatx, Inc. Combinations of mRNAs encoding immune modulating polypeptides and uses thereof
US10905710B2 (en) 2016-05-24 2021-02-02 Emory University Particles with RNA cleaving nucleobase polymers and uses for managing inflammatory disorders
EP3481843B1 (en) 2016-07-05 2022-01-26 California Institute of Technology Fractional initiator hybridization chain reaction
EP3500660A4 (en) 2016-08-22 2020-03-04 Miroculus Inc. Feedback system for parallel droplet control in a digital microfluidic device
CA3036572A1 (en) 2016-09-19 2018-03-22 Genmark Diagnostics, Inc. Instrument for processing cartridge for performing assays in a closed sample preparation and reaction system
WO2018098363A2 (en) 2016-11-23 2018-05-31 Bioverativ Therapeutics Inc. Bispecific antibodies binding to coagulation factor ix and coagulation factor x
JP2020515815A (en) 2016-12-28 2020-05-28 ミロキュラス インコーポレイテッド Digital microfluidic device and method
US11623219B2 (en) 2017-04-04 2023-04-11 Miroculus Inc. Digital microfluidics apparatuses and methods for manipulating and processing encapsulated droplets
US11421011B2 (en) 2017-05-18 2022-08-23 Modernatx, Inc. Polynucleotides encoding tethered interleukin-12 (IL12) polypeptides and uses thereof
US20200268666A1 (en) 2017-06-14 2020-08-27 Modernatx, Inc. Polynucleotides encoding coagulation factor viii
CN110892258A (en) 2017-07-24 2020-03-17 米罗库鲁斯公司 Digital microfluidic system and method with integrated plasma collection device
CA3073058A1 (en) 2017-09-01 2019-03-07 Miroculus Inc. Digital microfluidics devices and methods of using them
EP3714045A1 (en) 2017-11-22 2020-09-30 Modernatx, Inc. Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia
MA50801A (en) 2017-11-22 2020-09-30 Modernatx Inc POLYNUCLEOTIDES CODING FOR PHENYLALANINE HYDROXYLASE FOR THE TREATMENT OF PHENYLKETONURIS
JP7423522B2 (en) 2017-11-22 2024-01-29 モダーナティエックス・インコーポレイテッド Polynucleotide encoding ornithine transcarbamylase for the treatment of urea cycle disorders
CN110577981B (en) * 2018-06-07 2023-04-07 北京福安华生物科技有限公司 Molecular beacon based on artificial simulation nucleic acid
US20220184185A1 (en) 2018-07-25 2022-06-16 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
WO2020047201A1 (en) 2018-09-02 2020-03-05 Modernatx, Inc. Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency
WO2020056155A2 (en) 2018-09-13 2020-03-19 Modernatx, Inc. Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease
MA53609A (en) 2018-09-13 2021-07-21 Modernatx Inc POLYNUCLEOTIDES ENCODED GLUCOSE-6-PHOSPHATASE FOR THE TREATMENT OF GLYCOGENOSIS
AU2019339430A1 (en) 2018-09-14 2021-04-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide A1 for the treatment of Crigler-Najjar Syndrome
EP3856233A1 (en) 2018-09-27 2021-08-04 Modernatx, Inc. Polynucleotides encoding arginase 1 for the treatment of arginase deficiency
KR20210094567A (en) 2018-11-14 2021-07-29 유로반트 사이언시즈 게엠베하 Compositions and methods for the treatment of smooth muscle dysfunction
EP3894598B1 (en) 2018-12-14 2024-01-03 Illumina Cambridge Limited Decreasing phasing with unlabeled nucleotides during sequencing
KR20210104555A (en) 2018-12-17 2021-08-25 일루미나 케임브리지 리미티드 Primer oligonucleotides for sequencing
CN112639125A (en) 2018-12-17 2021-04-09 伊卢米纳剑桥有限公司 Compositions for polynucleotide sequencing
CN111378746A (en) * 2018-12-27 2020-07-07 北京福安华生物科技有限公司 Artificial mimic nucleic acid molecular beacon and kit for detecting rs12415607 site polymorphism of CASP7 gene
US11738345B2 (en) 2019-04-08 2023-08-29 Miroculus Inc. Multi-cartridge digital microfluidics apparatuses and methods of use
US11655465B1 (en) 2019-05-02 2023-05-23 Iridia, Inc. Enzymes and systems for synthesizing DNA
WO2020227642A1 (en) 2019-05-08 2020-11-12 Modernatx, Inc. Compositions for skin and wounds and methods of use thereof
US11524298B2 (en) 2019-07-25 2022-12-13 Miroculus Inc. Digital microfluidics devices and methods of use thereof
EP3859012A1 (en) 2020-02-03 2021-08-04 Albert-Ludwigs-Universität Freiburg Methods for amplification of genomic dna and preparation of sequencing libraries
US20230174567A1 (en) * 2020-05-22 2023-06-08 Merck Sharp & Dohme Llc Synthesis of fluorinated nucleotides
EP4158005A1 (en) 2020-06-01 2023-04-05 ModernaTX, Inc. Phenylalanine hydroxylase variants and uses thereof
WO2022029159A1 (en) * 2020-08-04 2022-02-10 Theraxen S.A. Xeno-nucleotide based branched dna assay for the detection of nucleic acids
KR20230087443A (en) 2020-08-06 2023-06-16 모더나티엑스, 인크. Compositions for Delivering Payload Molecules to Airway Epithelium
US11837302B1 (en) 2020-08-07 2023-12-05 Iridia, Inc. Systems and methods for writing and reading data stored in a polymer using nano-channels
US11873485B2 (en) 2021-01-26 2024-01-16 California Institute Of Technology Allosteric conditional guide RNAs for cell-selective regulation of CRISPR/Cas
US11524023B2 (en) 2021-02-19 2022-12-13 Modernatx, Inc. Lipid nanoparticle compositions and methods of formulating the same
WO2022204370A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding ornithine transcarbamylase for the treatment of ornithine transcarbamylase deficiency
WO2022204380A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof
WO2022204371A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
WO2022204390A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof
WO2022204369A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
CA3213037A1 (en) 2021-03-31 2022-10-06 Colin Brown Blocking oligonucleotides for the selective depletion of non-desirable fragments from amplified libraries
WO2022271776A1 (en) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
TW202320736A (en) 2021-07-26 2023-06-01 美商現代公司 Processes for preparing lipid nanoparticle compositions
TW202320737A (en) 2021-07-26 2023-06-01 美商現代公司 Processes for preparing lipid nanoparticle compositions for the delivery of payload molecules to airway epithelium
US20230096386A1 (en) 2021-09-30 2023-03-30 Illumina Cambridge Limited Polynucleotide sequencing
WO2023056044A1 (en) 2021-10-01 2023-04-06 Modernatx, Inc. Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease
WO2023076605A1 (en) 2021-10-29 2023-05-04 Modernatx, Inc. Lipid amines
WO2023076598A1 (en) 2021-10-29 2023-05-04 Modernatx, Inc. Lipid amines
WO2023086465A1 (en) 2021-11-12 2023-05-19 Modernatx, Inc. Compositions for the delivery of payload molecules to airway epithelium
AU2022424380A1 (en) 2021-12-29 2024-01-18 Illumina, Inc. Methods of nucleic acid sequencing using surface-bound primers
US11857961B2 (en) 2022-01-12 2024-01-02 Miroculus Inc. Sequencing by synthesis using mechanical compression
WO2023154818A1 (en) 2022-02-09 2023-08-17 Modernatx, Inc. Mucosal administration methods and formulations
WO2023196399A1 (en) 2022-04-06 2023-10-12 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding argininosuccinate lyase for the treatment of argininosuccinic aciduria
CN115060912B (en) * 2022-06-23 2024-02-02 南京浦光生物科技有限公司 Reagent combination, kit, detection system and detection method for detecting target antibody

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1190838A (en) * 1981-07-17 1985-07-23 Cavit Akin Homogeneous nucleic acid hybridization diagnostics by non-radiative energy transfer
US4868105A (en) * 1985-12-11 1989-09-19 Chiron Corporation Solution phase nucleic acid sandwich assay
US5124246A (en) * 1987-10-15 1992-06-23 Chiron Corporation Nucleic acid multimers and amplified nucleic acid hybridization assays using same
US5270163A (en) * 1990-06-11 1993-12-14 University Research Corporation Methods for identifying nucleic acid ligands
US5135917A (en) * 1990-07-12 1992-08-04 Nova Pharmaceutical Corporation Interleukin receptor expression inhibiting antisense oligonucleotides
WO1992014843A1 (en) * 1991-02-21 1992-09-03 Gilead Sciences, Inc. Aptamer specific for biomolecules and method of making
DE4140463A1 (en) * 1991-12-09 1993-06-17 Boehringer Mannheim Gmbh 2'-DESOXY-ISOGUANOSINE, THE ISOSTERAL ANALOGS AND THE APPLICATION THEREOF
US5681697A (en) * 1993-12-08 1997-10-28 Chiron Corporation Solution phase nucleic acid sandwich assays having reduced background noise and kits therefor

Also Published As

Publication number Publication date
CN100335649C (en) 2007-09-05
DE69532565T2 (en) 2004-12-16
JPH10506270A (en) 1998-06-23
EP0778898A1 (en) 1997-06-18
CN1164260A (en) 1997-11-05
KR100218113B1 (en) 1999-10-01
BG101246A (en) 1998-03-31
BR9508674A (en) 1997-11-18
FI970803A (en) 1997-04-23
AU708194B2 (en) 1999-07-29
JP4461278B2 (en) 2010-05-12
NO970884D0 (en) 1997-02-27
JP2006217925A (en) 2006-08-24
SK25497A3 (en) 1997-12-10
KR970705644A (en) 1997-10-09
US6232462B1 (en) 2001-05-15
ES2215797T3 (en) 2004-10-16
US20010026918A1 (en) 2001-10-04
EP1097939A2 (en) 2001-05-09
ATE259374T1 (en) 2004-02-15
EP1097939B1 (en) 2004-02-11
NO970884L (en) 1997-04-28
JP2008048741A (en) 2008-03-06
NZ292451A (en) 1999-09-29
DE69528839D1 (en) 2002-12-19
HUT77754A (en) 1998-07-28
FI970803A0 (en) 1997-02-26
PL318933A1 (en) 1997-07-21
WO1996006950A1 (en) 1996-03-07
DE69532565D1 (en) 2004-03-18
CZ58997A3 (en) 1997-07-16
US5681702A (en) 1997-10-28
JP2008043341A (en) 2008-02-28
EP0778898B1 (en) 2002-11-13
ATE227778T1 (en) 2002-11-15
DE69528839T2 (en) 2003-03-27
US5780610A (en) 1998-07-14
ES2187571T3 (en) 2003-06-16
MX9701419A (en) 1997-05-31
EP1097939A3 (en) 2001-05-30
AU3463195A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
CA2197901A1 (en) Reduction of nonspecific hybridization by using novel base-pairing schemes
WO1996006950A9 (en) Reduction of nonspecific hybridization by using novel base-pairing schemes
KR100327610B1 (en) Solvent Nucleic Acid Sandwich Measurement with Reduced Background Noise
US8153365B2 (en) Oligonucleotide analogues
US4876335A (en) Poly-labelled oligonucleotide derivative
US20030144231A1 (en) Oligonucleotide analogues
JPS61115094A (en) Novel biotin nucleotide for labelling nucleic acid
JPH07506345A (en) oligothionucleotide
EP1228243A1 (en) Compositions and methods of synthesis and use of novel nucleic acid structures
Efimov et al. Convenient approaches to the synthesis of oligonucleotide macrocycles containing non-nucleotide linkers

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued