CA2204608C - A composition and method of use for an internally-carbonating non-surfactant cleaning composition - Google Patents

A composition and method of use for an internally-carbonating non-surfactant cleaning composition Download PDF

Info

Publication number
CA2204608C
CA2204608C CA002204608A CA2204608A CA2204608C CA 2204608 C CA2204608 C CA 2204608C CA 002204608 A CA002204608 A CA 002204608A CA 2204608 A CA2204608 A CA 2204608A CA 2204608 C CA2204608 C CA 2204608C
Authority
CA
Canada
Prior art keywords
solution
acid
carbonate
urea
carbonate salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002204608A
Other languages
French (fr)
Other versions
CA2204608A1 (en
Inventor
Robert D. Harris
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Research Inc
Original Assignee
Harris Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23310320&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2204608(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Harris Research Inc filed Critical Harris Research Inc
Publication of CA2204608A1 publication Critical patent/CA2204608A1/en
Application granted granted Critical
Publication of CA2204608C publication Critical patent/CA2204608C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0052Gas evolving or heat producing compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0031Carpet, upholstery, fur or leather cleansers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • C11D7/12Carbonates bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • C11D7/265Carboxylic acids or salts thereof

Abstract

Carpeting, upholstery, drapery and other textile fibers are cleaned by applying to the fibers, at ambient pressures, an aqueous, chemically carbonated cleaning composition prepared by admixing a carbonate salt solution, and an acid solution, such that the acid reacts with the carbonate salt to produce carbon dioxide coincident with applicatio n to a textile to be cleaned. Citric acid and sodium carbonate are the preferred acid and carbonate salt. In a preferred embodiment, urea i s added to the acid solution to prevent yellowing and to improve cleaning ability. The compositions are preferably prepared and applied at an elevated temperature in the range of between about 140 and 200 .degree. F.

Description

A COMPOSITION AND METHOD OF USE FOR AN INTERNALLY-CARBONATING NON-SURFACTANT CLEANING COMPOSITION
FIELD OF THE INVENTION
This invention relates to internally-carbonating non-surfactant compositions for cleaning textile fibers. More particularly this invention relates to non-surfactant compositions which are internally carbonated by mixing the components of the composition coincident with their application to a textile to be cleaned so as to develop a carbonating or carbon dioxide producing reaction on the textile resulting in the removal of soils and other materials from the textile. This carbonating composition has an improved ability to penetrate textile fibers and dissolve and/or lift both inorganic and organic materials from the fibers, and the ability to use carbon dioxide effervescence even when the components are applied at relatively high temperatures.

BACKGROUND OF THE INVENTION
There are myriad types of cleaning compositions for cleaning textile fibers such as carpets, upholstery, drapery, clothing, bedding, linens, and the like. Most of these are based on soaps or other detergents which are generically referred to as "surfactants." By "surfactant" is meant a synthetic amphipathic molecule having a large non-polar hydrocarbon end that is oil-soluble and a polar end that is water soluble. Soap is also an amphipathic molecule made up of an alkali salt, or mixture of salts, of long-chain fatty acids wherein the acid end is polar or hydrophilic and the fatty acid chain is non-polar or hydrophobic. Surfactants are further classified as non-ionic, anionic or cationic. Anionic or nonionic detergents are the most common.
Surfactants and soaps are formulated to loosen and disperse soil from textile fibers either physically or by chemical reaction. The soil can then be solubilized or suspended in such a manner that it can be removed from the fibers being cleaned. These function because the hydrophobic ends of the molecules coat or adhere to the surface of soils and oils and the water soluble hydrophilic (polar) ends are soluble in water and help to solubilize or disperse the soils and oils in an aqueous environment. A major problem associated with the use of surfactants in cleaning fibers is that large amounts of water are generally required to remove the surfactants and suspended or dissolved particles. Also, surfactants generally leave an oily hydrophobic coating of the fiber surface. The inherent oily nature of the hydrophobic end of the surfactants causes premature resoiling of the fiber surface even when the surfaces have a surfactant coating which is only a molecule thick.
The greater the concentration of surfactants used, the greater the potential for resoiling after cleaning.
The residues left by surfactants also sometimes cause irritation or allergic reactions to people who are sensitive to these chemicals.
There are also environmental problems associated with the use of soaps and other surfactants. In addition to requiring relatively large amounts of water, some are non-biodegradable and some contain excessive amounts of phosphates which are also environmentally undesirable. Up to now, however, the inherent benefits of surfactants have outweighed the disadvantages of resoiling, skin, membrane or eye irritation, allergic reactions and environmental pollution.
This concern over health and the environment has prompted an emphasis on the use of less toxic, more natural cleaning components. The quest for carpet cleaning compositions that have a balance of cleanability and resoiling resistance, however, has sometimes resulted in compositions containing unnatural components that have a greater potential to cause allergenic reaction and other health and environmental problems. Normal soaps prepared from the base hydrolysis of naturally occurring fats and oils are not suitable for carpet cleaning because of the propensity of their residues to attract soils. In order to make these residues less soil attracting, detergents are synthetically modified.
Another long existing problem in carpet cleaning is oxidative yellowing or "brown out" as it is commonly called. The usual conditions that increase the potential for brown out are a higher pH cleaner and/or prolonged drying times. Ordinarily the higher the concentration of solids in the cleaning composition the greater the potential for this oxidative yellowing to produce a noticeable discoloration on the carpet. Thus, by having a high pH and requiring large quantities of water to flush out residue, soaps and other surfactants tend to increase the risk of brown out.
Urea has been added to synthetic detergent compositions which contain, as the active ingredients, monoalkyl ethers of polyoxyalkylene glycols, monoalkyl ether of polyethylene glycol, glycerine and/or propylene glycol, and disodium edetate (Soviet Union Patent 1618758, January 7, 1991). Urea is an optional additive to a low temperature detergent containing nonionic or anionic surfactants and a host of other ingredients such as solvents, enzymes and the like.
See for example the following German Democratic Republic Patents (GDR) Patents 286178, 286179, 286180, and 286181, all dated January 17, 1991. German Republic Patent 4001688, August 16, 1990, discloses a creamy powder containing an adsorptive organic or inorganic powder mixture, water and antistatics with 1-10o weight of urea or urea derivatives, and/or cyclic carboxamides dissolved in water. None of the above references disclose non-detergent cleaning compositions containing the combination of carbon dioxide and urea as being the active cleaning ingredients in an aqueous solution.
The combination of a silicate fabric softening agent, a neutralizing or "souring" agent such as citric acid, a disintegrating agent comprising citric acid, hydrogen, carbonate and a filler material which may be ammonium sulfate, zeolite A or urea has been described in connection with the laundering of fabrics. In United States Patent, No. 4,814,095, "After Wash Treatment Preparation Based On Layer Silicate" the use of these compounds is demonstrated for use as a fabric softener. However, as noted on col. 3, lines 21-25 of that patent, the crucial performance feature of the composition, i.e. the fabric-softening property, is distinguished by the presence of a suitable layer silicate. As the patent discusses, the silicate layer is deposited on the textile fibers. While this may be advantageous for softening fabrics, it is undesirable for cleaning carpets, upholstery and other fabrics which are not thoroughly rinsed due to the fact that the excessive silicate residue can be abrasive. In addition, the residue leaves the carpet, upholstery or other material more prone to resoiling than carpet or upholstery without the residue. Furthermore, the large amounts of water required to flush silicate particulates from the carpet or upholstery increases the textile's drying time and increases the risk of brown out.
A significant improvement in the art of cleaning textile fibers, and carpets and upholstery in particular, is taught in U.S. Patent 4,219,333. This patent shows that, when detergent solutions are carbonated and applied to the fibers, the solution rapidly penetrates the fibers and, through the effervescent action of the carbonation, quickly lifts 5 the suspended soil and oil particles to the surface of the fiber from which they can be removed by vacuuming or transfer to an adsorptive surface such as to a rotating pad. Moreover, because less soap or other surfactant needs to be applied to the fibers, less water is needed to affect the cleaning, the fibers dry more rapidly than do fibers treated with conventional steam cleaning or washing applications, and little residue is left on the fibers. This results in less resoiling due to the reduced residue and in a decreased likelihood of brown out because of the more rapid drying of the fibers. Although this process is clearly advantageous over prior art methods, it still requires the use of some surfactant and, in some instances, added phosphates, which are undesirable in today's environmentally conscious society.
The invention as claimed in U.S. Patent 5,244,468 provides some resolution to the surfactant problem in that it claims the use of carbonated urea containing non-detergent compositions formed from the reaction between a carbonate salt and a naturally occurring acid or acid forming material but still requires the presence of a positive gauge pressure to retain the proper degree of carbonation.
In the past, in order to prepare a carbonated solution it was necessary to pressurize the cleaning solution in a container with carbon dioxide from an outside source, e.g. a CO2 cylinder, and shake the container, preferably during CO2 introduction, to insure that the solution was carbonated. Carbon dioxide tanks necessary to accomplish this pressurization are heavy and inconvenient to have on site for attachment to sprayers when cleaning solution is being applied to carpets. The benefits of carbon dioxide as a volatile builder salt have outweighed the inconvenience of having a carbon dioxide tank on location during cleaning. In addition, a disadvantage of externally carbonating a solution is that excess carbon dioxide may be expelled into the air or surrounding atmosphere, and there is always the danger that carbon dioxide can be expelled accidentally from the pressurized cylinder in which it is contained.
It has also been known for a significant amount of time that hot cleaning solutions will clean textiles and other materials better than cool solutions. Many currently available carpets require an elevated temperature for proper cleaning. However, until the present invention, it has been unclear how to achieve the cleaning advantages of a carbonated solution combined with those of a heated solution.
When a carbonated solution is heated, the cleaning efficiency gained by heating the solution is offset by the diminished solubility of the carbon dioxide in the solution. Thus, the more the solution is heated, the less carbonation it will carry for cleaning.
Additionally, it has also been known that the pH
of a cleaning solution may significantly affect its cleaning efficiency. As was discussed above, new generation carpets are sensitive to elevated pH
solutions, and will be damaged if an alkaline solution stays on the carpet for any significant length of time. Until the present invention, it has been difficult to obtain the benefits of elevated pH
solutions without affecting the stain resistance of new generation carpets, or causing brown out.
Thus, there is a need for a cleaning solution which combines the benefits of a carbonated solution and those of a heated solution, without the many problems associated with surfactants, silicates and other fillers.

OBJECTS AND SUMIlKARY OF THE INVENTION
Thus, the present invention provides an internally-carbonating cleaning composition at ambient pressure and at an elevated temperature of at least 1400 F, the composition being prepared coincident with the application by combining solutions at the elevated temperature consisting essentially of:

(a) an aqueous carbonate salt solution comprising 0.1 to 16% by weight of a carbonate salt, the carbonate solution having a pH of between 8 and 11; and (b) an aqueous acidic solution comprising 0.1 to 16% by weight of an acid, the acidic solution comprising an acid having a pH of between 3 and 6, wherein the carbonate salt and the acid are contained at such relative proportions that the carbonate reacts with the acid when the solutions are combined so as to create an aqueous composition having a generally neutral pH and from which carbon dioxide is released into the surrounding atmosphere causing carbon dioxide to come into contact with the textile fibers.

The present invention also provides a method of cleaning textile fibers, which comprises applying the above-described cleaning composition to the textile fibers.

The cleaning solution is not maintained under a positive gauge pressure by means of an externally applied gas and is prepared by combining an acid or acid forming material containing aqueous solution which is natural and non-polluting to the environment, and a carbonate salt solution that produces carbon dioxide when reacted with the acid solution. Applying the acid and carbonate salt solutions to a textile simultaneously or in close succession, and preferably at an elevated temperature, results in a carbonating reaction which provides a unique cleaning ability that is unexpected since there are no detergents or other cleaning agents in the solution. To further enhance cleaning and reduce the risk of brown out, urea or an urea analog may be added to the solution.

The present composition removes soils and oils from fibers by suspending the soil in the freshly carbonated solution until it can be removed. This composition is concurrently internally carbonating and applied at ambient pressure, thereby avoiding the extra step of precarbonating the solution by external means such as highly pressurized carbon dioxide tanks or maintaining the pressure by means of externally applied carbon dioxide or other gases.
Additionally, the present composition does not leave soil attracting residue on the fibers and therefore does not attract or retain soils or oils which come into contact with the fibers following cleaning. Furthermore, because the carbonating reaction occurs infinitesimally before or at the time of application on the textile, the ingredients may be heated to achieve a heated composition while retaining the effervescent action of freshly prepared carbon dioxide bubbles. The reaction of the ingredients causes the newly prepared carbon dioxide to penetrate the fibers, thereby making the carbon dioxide solubility or temperature of the composition of little importance.
The combination of urea or an urea analog with carbon dioxide produces an interactive substance that either adheres to fabric fibers by hydrogen bonding or which may surround soil and oil particles imbedded in the fibers with negative ions, allowing such particles to disperse and be suspended in the surrounding aqueous environment from which they can be removed by vacuuming or by adsorption onto a soft fabric pad or towel. In either event, the carbonation allows the solution to penetrate the fibers more rapidly and, with its accompanying effervescent action, break up and lift the suspended particles away from the fibers for more efficient removal.
The cleaning mechanism of the instant invention is quite different from the well-understood surfactant cleaning approach. Rather than the formation of micelles, the composition, particularly when urea or an urea analog is present, is believed to hydrogen bond to the textile fiber as stated above. Once loosened, the soil and oils can be transferred to an absorbent pad or other removal means.
In addition to the cleaning action described above, the composition also serves to prevent resoiling. Unlike surfactants, which increase the risk of resoiling with increased concentrations, the cleaning composition of the instant invention actually reduces resoiling due to the strength of the bond between the components in the composition and the textile fiber. This supports the position that the composition is bonding to the fiber surface and that soils demonstrate less adhesion to this combination than to the fibers itself.

5 The composition can also be used with other protectors such as fluorochemical and other polymers such as are marketed under trademarks such as "Teflon"
or "Scotchgard". When other 'cleaning agents are used with protectors, they tend to diminish the 10 effectiveness of the protector. When the cleaning composition of the instant invention is used, however, the soil protection is actually enhanced rather than diminished.
The compositions of the present invention can be applied to fibers as internally carbonated solution, the degree of carbonation which will depend upon whether the solutions are mixed immediately before being applied (i.e. mixed as they are sprayed on the textile) or whether one of the solutions is applied to the textile, and then followed by the other solution.
DETAILED DESCRIPTION OF THE INVENTION
As used herein the term "acid" or "acid forming material" shall mean a member selected from the group consisting of citriC acid, succinic acid, tartaric acid, adipic acid, oxalic acid, glutaric acid, malic acid, maleic acid and mixtures thereof. Citric acid or a citrate salt are preferred.
The term "carbonate salt" shall mean a member selected from the group consisting of sodium carbonate, sodium percarbonate, sodium bicarbonate, lithium carbonate, lithium percarbonate, sodium bicarbonate, potassium carbonate, potassium percarbonate, potassium bicarbonate, ammonium carbonate and ammonium bicarbonate and mixtures thereof. Sodium carbonate, sodium bicarbonate or mixtures of sodium carbonate and sodium bicarbonate are preferred.
The term urea or urea analog shall mean urea or a nitrogen containing compound which may interact and or dissociate to form urea. For example ammonia and carbon dioxide can interact to form urea, cyanamide and water interact to form urea, heating of urea forms biuret. Therefore, in a heated carbonating atmosphere the term urea analog may be represented by a member selected from the group consisting of ammonia, cyanamide, dicyanoamide, and biuret. However, urea is preferred.
Prior to the issuance of U.S. Patent 5,244,468, the ability of a solution of an acid or acid forming materials , and a carbonate salt that produces carbon dioxide when reacted with the acid to surround and suspend soil and or hydrophobic particles such as greases, oils and the like is not believed to have been previously known or used in the cleaning arts.
Such combinations, along with other ingredients, have been used in association with surfactants to control or maintain the pH of the cleaning solution.
Moreover, the carbonating of such combinations coincident with their use as cleaning agents per se is novel and unexpected particularly when the carbonating is effected at elevated temperatures at the time of utilization.
The addition of additives such as urea or an urea analog further increases the cleaning ability of the carbonated solution. The reaction resulting from the admixture of carbonate salts and acids produces carbon dioxide which associates with the urea to either hydrogen bond to the fibers or produce an interactive substance or complex that lifts the soil from the fabric. While it is not known for a certainty, as an adjunct to the discussion relative to hydrogen bonding to the fibers as given above, it is also possible that the urea in the composition functions to form an overcoat over the soil and/or oil particles. The urea coating acts like a primer to which the carbon dioxide and ionic materials present in the solution either physically or chemically adhere, e.g. by hydrogen bonding, etc. In a way, the urea may function as the hydrophobic end of a detergent and the carbon dioxide and ionic materials function as the hydrophilic (polar) end of the detergent such that the soil or oil particle is surrounded and then suspended into the solution. It is not known whether the interaction between the urea and carbon dioxide actually produces a complex or just sufficient physical interaction to accomplish the cleaning purpose. Regardless of the theory or mode of operation, it is known that the carbon dioxide suspends the soil particles in the solution so they can be vacuumed or collected on an absorbent material.
Other additives commonly found in commercial cleaning compositions may be added without departing from the scope of this invention provided they do not interfere with the carbonating reaction and, when used with urea, the interaction of the urea with the carbon dioxide. These may include compatible bleaches, optical brighteners, fillers, fragrances, antiseptics, germicides, dyes, stain blockers and similar materials.
The coincident carbonating and application of the composition results in a rapid lifting action due to the presence of a multitude of effervescent carbon dioxide bubbles. The soils or oil on the fibers being cleaned are either surrounded by the complex of carbon dioxide and urea (if added), or prevented from adhering to the fibers by the hydrogen bonding of the carbon dioxide and urea to the fibers. In either event, the soils are freed and can be lifted from the fibers into the surrounding carbonated aqueous environment. By "aqueous" is meant the presence of water, but that does not suggest that copious amounts of water need to be present. A slight dampening of the fiber may be sufficient to promote the lifting action of the effervescent carbonating solution and to loosen or dislodge the soil or oil particle from the fiber. The urea and carbon dioxide interactive substance or complex holds the soil particles in suspension for a time sufficient for them to be removed from the fiber by means of vacuuming or adsorption onto a textile pad, toweling or similar adsorbent material. An important advantage of this invention is that only minimal amounts of solution are required to effect a thorough cleaning of textile fibers without leaving any soil attracting residue.
Normally, excess amounts of water are used to remove unwanted detergent residues.
The terms "coincident", "concurrent", "simultaneous", "infinitesimally before", "immediately after" and the like, when referring to the carbonating reaction and application of the carbonated solution to a fiber substrate, means that the acid and carbonate salt components, along with urea, are brought together in an aqueous admixture just prior to application to the fiber substrate, at the time of application on the fiber substrate or by sequential application of the acid and carbonate components on the fiber substrate.
Obviously, when mixed just prior to application, the carbonating reaction begins infinitesimally before the carbonated solution contacts the substrate. On the other hand, if a solution of acid or carbonate salt is placed on the fiber substrate prior to the other solution being applied, i.e. sequentially, the carbonating occurs "on" the substrate fibers "upon" or "immediately following" the application of the second solution. Another option is to apply an acid containing solution and a carbonate containing solution simultaneously or in such a manner that the carbonation reaction occurs at the time the solutions reach the fiber substrate. In any event, the time lapse between bringing the acid solution and carbonate solution together and the concurrent release of carbon dioxide is minimal and all embodiments are encompassed by the above terminology. What is important is that the release of carbon dioxide, with or without the presence of urea or a urea analog, at an appropriate pH occurs in such a manner as to promote carbon dioxide expansion, contact between the fibers to be cleaned with carbon dioxide and urea, if present, from the solution resulting in the maximum cleaning ability of the non-detergent solution.
As noted above the components of the cleaning composition may be applied to the textile simultaneously, e.g. mixed immediately before application, or during application. In the alternative, the components of the cleaning composition may be applied, and thus mixed, in any desired order. For example, a solution containing urea and an acid can be sprayed directly on the textile, followed by the carbonate solution.
Alternatively, the carbonate solution could be sprayed first and then the solution containing the acid and the urea. Either procedure works well because solutions with a pH which is not neutral tend to clean much better than those that are neutral. By applying one of the solutions first and then the other, the solution on the carpet is temporarily moved from a neutral pH and cleans the carpet more efficiently.
While the solutions could also be mixed before application to the carpet or other textile, the components should not be mixed a significant amount of time before application (i.e. precarbonated), as the carbon dioxide will escape over time unless maintained under a positive gauge pressure. Those skilled in the art will recognize that numerous combinations and spraying sequences could be applied, and that some or all of the ingredients could be heated prior to being applied to the carpet. The acid, carbonate salt and urea components of the invention are all products commonly found in nature and, when properly utilized, are non-polluting to the environment.

Typically, the urea is added to the citric acid due to increased solubility in acidic solutions. However, 5 it could be added independently (i.e. three solutions being mixed) or could even be mixed with the carbonate solution.
In a preferred embodiment, the acid solution and carbonate salt solution will be brought together just prior to or at the time of contact with the textile fibers being 10 cleaned. In this preferred embodiment, the acid and carbonate salt solutions are heated in separate reservoirs or containers to about 140-200 F. and pumped from their respective reservoirs to a valve means for each solution.
When the valves are simultaneously opened, the hot solutions 15 enter a small mixing chamber through a restricted orifice for each solution. There is a pressure differential across the orifice which causes the hot solutions to enter and combine in the mixing chamber at essentially ambient pressure. The lowering of the pressure across the orifices prompts the hot solutions to enter the chamber with turbulence or mixing to begin the carbonating reaction. The mixture then exits the chamber through a larger exit orifice which does not restrict the pressure but merely directs the flow of the mixed carbonating solution through a line to a manifold directly above the textile fibers for deposit on the fibers in sheet or large droplet form. The time lapse between the valves being opened, the two solutions entering the mixing chamber, passing to the manifold and onto the textile fibers is momentary, i.e. from fractions of a second up to a few seconds. The carbonating reaction begins immediately and lasts for up to 10 to 15 seconds. The temperature drop between the hot solutions at the valves and the carbonating solution exiting the manifold is only a few degrees, i.e. about 2 to 15 degrees depending on the length of the lines feeding the hot solutions from the reservoirs to the valves and the distance from the mixing chamber to the manifold.
Another method of practicing the invention is to apply a buffered solution containing the carbonate to the textile first. The buffered carbonate solution may provide for a greater degree of cleaning due to the relatively high pH of the solution in that stains, greases, and other materials may be more readily removed at an elevated or more alkaline pH. However, high pH solutions may damage some new generation carpets if prolonged contact is permitted. Thus by adding a sufficient amount of citric or some other weak acid to the carbonate solution as a buffer, the pH can kept between about 8 and 11. This range prevents the carpet from being damaged in the event that the acid solution is not applied immediately after the carbonate solution, as may be the case if the operator runs out of acid solution. While buffering the carbonate solution may somewhat lessen the total amount of carbon dioxide that is generated by reacting the acid and carbonate solutions, keeping the carbonate solution at a pH level between 8 and 11 enables the mixture to produce enough carbon dioxide to thoroughly clean the carpet or other textile.
Likewise, the acid solution, usually citric acid, may be buffered by a small amount of carbonate salt to a pH of between about 3 to 6. This pre-buffering of the two solutions provides a means that, should either solution be applied to a fiber substrate without the other, the substrate will not be harmed. Moreover, when the two solutions do combine they will have a relatively neutral pH. By the terms "relatively" or "generally" neutral pH is meant a pH that will not harm the fabric due to either an acidic or basic nature if left on the fabric for an extended period of time. Such a pH will usually be in the range of 6 to 8 and will preferably be about 7. Thus, the textile being cleaned undergoes a momentary increase in pH, to improve cleaning, followed by significantly more effervescent activity than has been achieved with prior methods utilizing physically generated carbon dioxide (e.g. from a pressurized container). Each of these results in a cleaner textile, without the use of surfactants and without damaging the carpet. The application of the acid helps reduce the risk of brown out or other damage to the carpet.
It may also be desirable to buffer the acid and carbonate salt solutions in their respective reservoirs even if they are to be applied simultaneously just as a precaution against any adverse consequences resulting from either too high or low pH.
The carbonating solution, whether applied as a carbonate solution and an acid solution or brought together as a single solution for contact with the fiber substrate, will preferably be applied as a "sheet". By "sheet" is meant a thin sheet, film, large droplet or tear of solution as contrasted to an atomized spray or mist of small droplets. It is difficult to contact a fiber substrate with an atomized mist or spray of small droplets at an elevated temperature because the large surface area to mass of the atomized particles. Such large surface areas causes the solution to cool rapidly between the time the droplet leaves a spray head or atomizer and contacts a fiber substrate. However, when utilized as a sheet, the temperature of the solution may be more precisely controlled. Because of the rapid generation of carbon dioxide resulting from the combining of heated solutions, the carbon dioxide expands rapidly to produce greater volume and surface and thus cover a fiber substrate as effectively as an atomized solution. Furthermore, application of a sheet, as contrasted to an atomized mist, is safer from a health standpoint since the chances of inhaling the composition are greatly reduced. In accordance with the preferred method, both of the carbonate and acid solutions may be applied to the carpet or other textile in sheets of solution at a temperature ranging from ambient up to about 200 F. Many "Extra Life"
carpets require that the carpet fiber be momentarily increased to a temperature in excess of about 140 F.
in order to restore its "memory" i.e. reset the yarn fibers to their original orientation. Therefore, it may be desirable to apply solutions at temperature ranges of between about 140 to 200 F. Because the carbonating reaction occurs just before or on the carpet or other textile, the lack of carbon dioxide solubility in a heated solution is of minimal importance, as the carbon dioxide bubbles still form and fully penetrate the carpet. As noted above, the carbonating action lasts for up to about 15 seconds even in hot solutions. Furthermore, the previously unavailable cleaning advantages of a heated composition are gained.
Normally, the acid-base reactions have very fast reaction rates which are controlled by diffusion.
However, the reaction rate may be slowed by a number of equilibria involved. For example, in the reaction of citric acid with sodium carbonate, the release of carbon dioxide is controlled by the following equilibria:
H3C6H507 H' + H2C6H50,_ H2C6H50,- H' + HC6H507 2-HC6H5072- H' + C6H507 3-Once these protons are released from the weak acid, they must then react with the carbonate ion before carbon dioxide can be released. These equilibria are as follows:
H' + C032- HCO3-H' + HC03 H2CO3 H2C03 V+ H20 + COZ
These complex equilibria slow the production of CO2 enough to allow considerable chemical release of COz to occur after the cleaning solution has been applied to the carpet or other fiber substrate to be cleaned.
Thus, chemically produced and released carbon dioxide is more effective than physically released carbon dioxide (i.e. from a pressurized container) in that the cleaning solution can be hot, and more carbon dioxide can be released once the solution has been absorbed into the soil that is to be removed from the carpet. Similar results may be obtained using any of the polybasic acids and carbonate salts listed above.
In some instances it is not visually apparent that the carbonating reaction is occurring when the heated solutions are combined. However, when a textile fiber is immersed in a hot admixed acid/carbonate salt solution there is an immediate presence of effervescence on the surface of the fibers, indicating that the carbonating reaction is present.
A distinct advantage of the present invention is that the solution is self-neutralizing. In the embodiment wherein the carbonate solution is applied first followed by the acid containing solution, the temporary higher pH attributable to the carbonate salt solution allows the solution to clean more efficiently due to the pH elevation. Because the pH drops to a safe, neutral pH within a short period of time, the safety for pH sensitive stain resistant carpets is maintained. The chemical reaction which produced the carbon dioxide also lowers the pH. Therefore, the 5 carbonate solution is effectively neutralized by the weak acid solution. Also, these two reactants produce a third material, sodium citrate, which acts as a buffer to maintain the pH at a near neutral level.
The overall reaction may be depicted as follows:
2H3C6H5O7 + 3Na2CO3 ~ 3H2O + 3CO2 + 2Na3C6H5O7 It is critical that the amounts of acid and carbonate salt along with urea which mix together are carefully controlled and are consistent to produce a neutral solution containing the proper amount of urea.
Therefore, concentrations of solutions and flow rates must be monitored and controlled and adjusted as necessary to provide a neutral environment having the proper degree of carbonation and neutralization.
The ratio of acid to carbonate salt to urea may vary somewhat depending on the specific carbonate salt and acid utilized. Typically, the acid and carbonate salts will each be present in their respective solutions in amounts ranging between about 0.1 and 16%
by weight in each. Preferably these will be present in amounts ranging between about 0.5 and 10.0% by weight in each solution. Therefore, assuming that each solution is combined on an equal volume basis, the combined solution would contain each ingredient in amounts ranging from between about 0.05 and 8.0% each with amounts of between about 0.25 and 5% being preferred. However, these are guidelines only and the only limitation relative to concentration is what is functional as any amount may be used which will not require copious amounts of water to be removed from the carpet or other textile. The actual amounts of each ingredient in said combined solution is not readily determined due to the reaction between the acid and carbonate salt and the accompanying release of carbon dioxide.

Ratios of dibasic acids to carbonate salt will be different from ratios of tribasic acids to carbonate salts as will the ratios of acids to carbonates, bicarbonates and percarbonates, etc.' What is important is that the ratio of acid to carbonate salt be such that the overall reaction results in solution having an essentially neutral pH following the release of carbon dioxide from the reaction mixture. When used as an additive, the quantity of urea or urea analog added typically will be between 0.1 and 5 percent by weight of the combined acid and carbonate solutions at the time of combination, e.g. not taking into consideration the loss of weight caused by the carbon dioxide release and attendant evaporation of solution.
In accordance with the principles of the invention, ingredients such as bleaches, optical brighteners, stain blockers and the like, may be added to the solutions provided that these ingredients do not significantly interfere with the ability of the mixture to clean the textile and impart anti-resoiling properties to the textile fibers. Therefore, ingredients such as silicates for fabric softening and filling agents such as zeolites and other components which leave a residue on a textile fiber unless removed by copious amounts of water are not permissible additives.
The solution can also applied to the textiles, particularly carpeting or upholstery, in any other suitable manner, i.e. by pouring the composition onto the textiles or submerging the textile in the composition. When so applied the carbonated cleaning composition breaks into a myriad of tiny effervescent bubbles which rapidly penetrate into the textile fibers.
Preferably, following application of the carbonating solution, it may be mechanically worked into the fibers by a carpet rake, agitation or similar means. The effervescent action lifts the soil or oil particles to the surface of the fibers where they can be readily removed by vacuuming or adsorption onto a different, but more adsorbent textile, such as a rotating pad or piece of toweling. Because the carbon dioxide bubbles promote rapid drying, little or no solution is left on the fibers being cleaned. This contributes to the anti-resoiling properties of the invention. In addition to being a key ingredient to enhance cleaning, it is believed that urea also plays an important role in preventing yellowing, and resisting resoiling.
As stated above, the acid solution, carbonate solution and urea can be mixed and applied to make a composition in any desired order. It is the resulting internally-carbonating composition to which the present invention is drawn.
In addition to the above, it has been found that using "hard" water to form the carbonate solution causes calcium carbonate to precipitate from the solution. Over time, the precipitate interferes with the valves and filters of cleaning machines. It has been found that adding a small but effective amount of a chelating agent, such as EDTA (ethylene diamine tetraacetic acid) prevents the calcium carbonate precipitate from interfering with the practice of the other aspects of the invention.
EXAMPLES
A light, cream colored, level loop, nylon carpet was selected for purposes of testing. One section of the carpet was removed as the control. The remainder of the carpet was soiled extensively with crankcase oil and dirt, and the soiled carpet was trampled repeatedly with foot traffic over a 24 hour period.
The carpet was irreparably soiled but was considered a useful material for purposes of showing cleaning effectiveness of various test solutions within the scope of the invention. This carpet was divided into four 2 x 2 foot sections. The reflectometer used was a Photovolt* 577 Reflectance and Gloss Meter with a"D
search unit. The reflectometer was set at 99.901 by using the control sample. All four sections had an average reflectance within 1%. All sections were cleaned using solutions prepared with the same set of ingredients.
Example 1 A solution containing 2.6 % citric acid and 1.30 o urea was heated to 180 F. Another solution containing 2.6 % sodium carbonate was also heated to 180 F. A 90 ml sample of each heated solution was mixed and metered immediately onto the carpet as a sheet of liquid at ambient pressure as described above. There was noticeable effervescence as the solution reached the carpet fibers.
Example 2 The second section was treated with identical equipment and solutions as described in the first section except that the solutions were mixed and applied at room temperature. There was still noticeable effervescence resulting from the carbonating reaction on the surface of the carpet fibers but not as pronounced as in Example 1.
Example 3 The third section was cleaned using 90 ml of the same two solutions, but the solutions were mixed in a single container 30 minutes before application. The resulting solution was heated to 180 F before application. There was no noticeable bubbling indicating that carbonation was present in the solution.
Example 4 The fourth section was cleaned using the same solution and conditions as described in section three *Trade-mark except that the solution was applied at room temperature.
Results:
Each carpet sample was then rubbed fifty times with a terry cloth within five minutes of application and let stand for about 30 minutes until dry to the touch. Three reflectometer reading were then taken of each sample. The results reported were the average of three readings which did not vary more than 20. The average reflectance for each section after cleaning was the following:
Example 1 63.3 %
Example 2 47.8 %
Example 3 49.2 0 Example 4 45.9 %

In considering the above results it is to be remembered that the treated sections were soiled beyond recovery. However, the results indicated that the hot carbonated solutions of Example 1, applied at ambient pressure, clearly removed the most soil. The solutions of Example 3, precarbonated but not immediately used, were still somewhat more effective when applied at ambient pressure as a hot solution.
There was probably some residual carbonation remaining in the Example 3 solutions when used. The solutions carbonated and applied at ambient pressure and temperature as shown in Example 2 were almost equivalent to those of Example 3 showing that carbonation at the time of application (Example 2) and application of a heated precarbonated solution (Example 3) each contributed to the cleaning properties as they were somewhat better than the 5 precarbonated solutions allowed to set for a time and then applied at ambient temperature and pressure as shown in Example 4.

Had the solutions of Examples 1-4 been applied to a less soiled carpet, as would be found in actual use, 10 the reflectometer readings would have been considerably higher.

However, the ranking of the order of cleaning effectiveness would have been the same.

Example 5 15 To avoid solutions with high and low pH, buffered solutions were prepared and tested as described in Example 1. The first solution in this test contained 1% citric acid, 0.65 % urea, and 0.3 o sodium carbonate as a buffer. The second solution contained 20 1% sodium carbonate and 0.3 o citric acid as a buffer. The pH of the first solution was about 5.

The pH of the second solution was about 9.5. The same procedure used in Example 1 was followed except that a normally soiled light colored carpet removed from a 25 hallway was used to evaluate these solutions when admixed and applied as a carbonating solution. The reflectance after cleaning was found to be 90.8 0.

Example 6 An acid solution and a carbonate salt solution at a temperature of about 140-200 F. were mixed in equal volume in such a way as to produce an internally carbonating reaction when applied as a sheet at the surface of the fiber in the manner as described for Examples 1-4.

ACIDS
Solution A contained 2.6o citric acid Solution B contained 2.6o citric acid and 1.3%
urea.

Solution C contained 2.6% citric acid and 1.30 urea and 0.2% EDTA.

Solution D contained 2.7% malic acid.

Solution E contained 2.7% malic acid, and 1.30 urea.

Solution F contained 3.0% tartaric acid.
Solution G contained 3.0% tartaric acid and 1.3%
urea.

Solution H contained 3.0% tartaric acid and 1.3%
urea and 0.2o EDTA.

Solution I contained 2.4% succinic acid.
Solution J contained 2.4% succinic acid and 1.3%
urea. and Solution K contained 2.4% succinic Acid and 0.2%
EDTA.

BASES
Solution L contained 2.6% sodium carbonate.
Solution M contained 2.6o sodium carbonate and 0.2% EDTA.

Solution N contained 2.6% sodium carbonate and 1%
sodium borate.

Solution 0 contained 3.4% potassium carbonate and 0.2% EDTA. and Solution P contained 3.4% sodium bicarbonate.
The first column represents the acid solution used in a particular mixture; the second the carbonate; and the third indicates the relative reflectometer results achieved.

Acid Base Result B M 63.3 0 B L 62.8 %

B N 60.2 a B 0 63.1 %
B P 58.2 %
A L 55.4 %

C M 63.2 %
D M 55.4 %
E M 62.7 0 F M 56.9 0 G M 61.7 %

H M 62.0 0 I M 54.1 %
J M 60.3 0 K M 56.8 %
E L 62.9 0 A M 55.8 0 H 0 61.4 0 J P 58.3 %

Although this invention has been described and illustrated by reference to certain specific formulation, these are exemplary only and the invention is limited only in scope by the following claims and functional equivalents thereof.

Claims (25)

CLAIMS:
1. A method of cleaning textile fibers which comprises an application to the fibers, of an internally-carbonating cleaning composition at ambient pressure and at an elevated temperature of at least 140° F, the composition being prepared coincident with the application by combining solutions at the elevated temperature consisting essentially of:

(a) an aqueous carbonate salt solution comprising 0.1 to 16% by weight of a carbonate salt, the carbonate solution having a pH of between 8 and 11; and (b) an aqueous acidic solution comprising 0.1 to 16% by weight of an acid, the acidic solution comprising an acid having a pH of between 3 and 6, wherein the carbonate salt and the acid are contained at such relative proportions that the carbonate reacts with the acid when the solutions are combined so as to create the aqueous composition having a generally neutral pH of 6 to 8 and from which carbon dioxide is released into the surrounding atmosphere causing carbon dioxide to come into contact with the textile fibers.
2. The method according to claim 1, wherein the carbonate salt is a member selected from the group consisting of sodium carbonate, sodium percarbonate, sodium bicarbonate, lithium carbonate, lithium percarbonate, lithium bicarbonate, potassium carbonate, potassium percarbonate, potassium bicarbonate, ammonium carbonate and ammonium bicarbonate.
3. The method according to claim 2, wherein the acid solution contains an acid selected from the group consisting of citric acid, succinic acid, tartaric acid, adipic acid, glutaric acid, malic acid and oxalic acid.
4. The method according to claim 3, wherein the carbonate salt is sodium carbonate.
5. The method according to claim 4, wherein the acid is citric acid.
6. The method according to any one of claims 1 to 5, wherein the composition also contains urea or an urea analog.
7. The method according to any one of claims 1 to 5, wherein the composition also contains urea.
8. The method according to claim 7, wherein the urea is contained in an amount of 0.1 to 5 percent by weight of the composition.
9. The method according to any one of claims 1 to 8, wherein the acid solution is buffered by a carbonate salt to a pH of between 3 and 6 and the carbonate salt solution is buffered by an acid at a pH of between 8 and 11 prior to the coincident preparation and application of the composition to textile fibers.
10. A method of cleaning textile fibers, which comprises:

(a) providing an aqueous carbonate salt solution comprising 0.1 to 16% by weight of a carbonate salt at an elevated temperature of at least 140 F, the solution having a pH of between 8 and 11;

(b) providing an aqueous acid solution comprising 0.1 to 16% by weight of an acid at an elevated temperature of at least 140° F, the acid solution having a pH of between 3 and 6;

(c) directing the carbonate salt solution at the elevated temperature directly onto the textile fibers at ambient pressure as a spray or sheet of solution; and, (d) immediately directing the acid solution onto the same textile fibers at the elevated temperature at ambient pressure as a spray or sheet of solution whereby the carbonate salt solution and the acid solution are combined on the fibers to form a neutral carbonating solution having a pH of 6 to 8 such that the carbonating solution and the carbon dioxide produced by the carbonating solution comes into contact with and clean the textile fibers.
11. The method according to claim 10, wherein the carbonating solution is formed on and comes into contact with the textile fibers at an essentially neutral pH.
12. The method according to claim 11, wherein the carbonate salt solution contains a member selected from the group consisting of sodium carbonate, sodium percarbonate, sodium bicarbonate, lithium carbonate, lithium percarbonate, lithium bicarbonate, potassium carbonate, potassium percarbonate, potassium bicarbonate, ammonium carbonate, ammonium bicarbonate and mixtures thereof.
13. The method according to claim 12, wherein the acid solution contains an acid selected from the group consisting of citric acid, succinic acid, tartaric acid, adipic acid, glutaric acid, malic acid, oxalic acid and mixtures thereof.
14. The method according to claim 13, wherein urea or an urea analog is contained in at least one of the acid and carbonate salt solutions.
15. The method according to claim 14, wherein the urea is contained in at least one of the acid and carbonate salt solutions.
16. The method according to claim 15, wherein the urea is contained in the acid solution.
17. The method according to claim 16, wherein the urea is present in an amount sufficient to be present in the carbonating solution in an amount of between 0.1 to 5% by weight.
18. The method according to claim 17, wherein the carbonate salt is sodium carbonate.
19. The method according to claim 18, wherein the acid is citric acid.
20. The method according to claim 19, wherein the acid solution is buffered at a pH of between 3 and 6 by a carbonate salt and the carbonate salt solution is buffered at a pH of between 8 and 11 by an acid.
21. The method according to claim 17, wherein the amount of carbonate salt solution and acid solution applied to form the carbonating solution is sufficient to contact the textile fibers with carbon dioxide and urea without saturating the fibers.
22. The method according to claim 21, wherein, following formation of the carbonating solution, the fibers are contacted with absorbent means to remove remaining carbonating solution and soil and residue released from the fibers by the solution.
23. The method according to claim 22, wherein the absorbent means is in the form of a rotating absorbent pad.
24. The method according to any one of claims 1 to 9, wherein the elevated temperature is from 140 to 200° F.
25. The method according to any one of claims 10 to 23, wherein the elevated temperatures of the aqueous carbonate salt solution (a) and the aqueous acid solution (b) are each from 140 to 200° F.
CA002204608A 1994-11-07 1995-11-06 A composition and method of use for an internally-carbonating non-surfactant cleaning composition Expired - Lifetime CA2204608C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/335,114 1994-11-07
US08/335,114 US5718729A (en) 1994-11-07 1994-11-07 Composition and method of use for an internally-carbonating non-surfactant cleaning composition
PCT/US1995/014257 WO1996014381A1 (en) 1994-11-07 1995-11-06 A composition and method of use for an internally-carbonating non-surfactant cleaning composition

Publications (2)

Publication Number Publication Date
CA2204608A1 CA2204608A1 (en) 1996-05-17
CA2204608C true CA2204608C (en) 2007-05-08

Family

ID=23310320

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002204608A Expired - Lifetime CA2204608C (en) 1994-11-07 1995-11-06 A composition and method of use for an internally-carbonating non-surfactant cleaning composition

Country Status (12)

Country Link
US (1) US5718729A (en)
EP (1) EP0792339B1 (en)
AT (1) ATE206751T1 (en)
AU (1) AU4101296A (en)
CA (1) CA2204608C (en)
CO (1) CO4600705A1 (en)
DE (1) DE69523168T2 (en)
DK (1) DK0792339T3 (en)
NZ (1) NZ296412A (en)
PE (1) PE36296A1 (en)
WO (1) WO1996014381A1 (en)
ZA (1) ZA959391B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839901A3 (en) * 1996-10-25 1998-05-13 Egon Erbel Cleaning composition
CA2227672A1 (en) * 1997-01-29 1998-07-29 Toyota Jidosha Kabushiki Kaisha Method for producing a laminated object and apparatus for producing the same
SE508954C2 (en) * 1997-03-21 1998-11-16 Eriksson Jan Olof Detergent, free from surfactants
DE69731189T3 (en) * 1997-05-27 2009-12-24 The Procter & Gamble Company, Cincinnati Tablets and process for their preparation
US6190419B1 (en) * 1997-07-07 2001-02-20 Ales M. Kapral Method of washing garments utilizing fluoric acid
US6063390A (en) * 1998-08-07 2000-05-16 Chesebrough-Pond's Usa Co., A Division Of Conopco, Inc. Cosmetic effervescent cleansing pillow
US6569210B1 (en) 1999-07-14 2003-05-27 Raytheon Company Gas jet removal of particulated soil from fabric
US6126697A (en) * 1999-04-01 2000-10-03 Ebberts; Jeffrey N. Multiple carbonate cleaning compound
US6827792B2 (en) 1999-06-25 2004-12-07 Strategic Environmental Solutions, Llc Liquid waste absorbing compositions
US6326344B1 (en) 2000-01-27 2001-12-04 Ecolab Inc. Carpet spot removal composition
US6451331B1 (en) 2000-01-31 2002-09-17 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Pleated cosmetic effervescent cleansing pillow
US6554207B2 (en) 2000-03-20 2003-04-29 Jeffrey N. Ebberts Application apparatus for multiple solution cleaner
ES2264926T3 (en) * 2000-06-19 2007-02-01 THE PROCTER & GAMBLE COMPANY PROCEDURE TO TREAT A TISSUE GENERATING HEAT.
AU2002312151A1 (en) * 2001-06-01 2002-12-16 Genencor International, Inc. Methods and formulations for enhancing the dissolution of a solid material in liquid
US7229505B2 (en) 2001-09-14 2007-06-12 Clean Control Corporation Methods and compositions for surfactant-free cleaning
US8375494B2 (en) * 2001-09-14 2013-02-19 Clean Control Corporation Cleaning compositions containing a corrosion inhibitor
US6835704B2 (en) * 2001-09-14 2004-12-28 Clean Control Corporation Surfactant-free cleaning compositions and processes for the use thereof
US20040005992A1 (en) * 2002-07-05 2004-01-08 Ebberts Jeffrey N. Composition and method of use for self-carbonated fabric cleaner and fabric pre-sprays
US6583103B1 (en) * 2002-08-09 2003-06-24 S.C. Johnson & Son, Inc. Two part cleaning formula resulting in an effervescent liquid
US7001875B2 (en) * 2002-11-21 2006-02-21 S.C.Johnson & Son, Inc. Dual colorants
US6939841B2 (en) 2002-11-21 2005-09-06 S.C. Johnson & Son, Inc. Effervescent compositions
US20050244212A1 (en) * 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Foam generating article
US7179772B2 (en) * 2004-06-24 2007-02-20 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Extended lathering pillow article for personal care
US20060005316A1 (en) * 2004-07-07 2006-01-12 Durrant Edward E Carbonated cleaning composition and method of use
US8097575B2 (en) * 2004-12-02 2012-01-17 Harris Research, Inc. Composition and method for cleaning and neutralizing a surface
US7757340B2 (en) * 2005-03-25 2010-07-20 S.C. Johnson & Son, Inc. Soft-surface remediation device and method of using same
US20060288516A1 (en) * 2005-06-23 2006-12-28 Sawalski Michael M Handheld mechanical soft-surface remediation (SSR) device and method of using same
US20060288495A1 (en) * 2005-06-28 2006-12-28 Sawalski Michael M System for and method of soft surface remediation
US10099264B2 (en) * 2008-02-11 2018-10-16 Ecolab Usa Inc. Bubble enhanced cleaning method and chemistry
US20130111675A1 (en) * 2011-11-03 2013-05-09 Ecolab Usa Inc. Sustainable laundry sour compositions with iron control
US20170313961A1 (en) * 2016-05-02 2017-11-02 Electrolux Home Products, Inc. Steam clean booster powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219333A (en) * 1978-07-03 1980-08-26 Harris Robert D Carbonated cleaning solution
US4304610A (en) * 1979-06-22 1981-12-08 S. C. Johnson & Son, Inc. Carpet cleaning method
DE3064762D1 (en) * 1979-09-21 1983-10-13 Procter & Gamble Washing and softening compositions and methods for their manufacture
DE3641314A1 (en) * 1986-12-03 1988-06-09 Henkel Kgaa LAUNDRY TREATMENT AGENT BASED ON LAYERED SILICATE
US5244468A (en) * 1992-07-27 1993-09-14 Harris Research, Inc. Urea containing internally-carbonated non-detergent cleaning composition and method of use
WO1995007973A2 (en) * 1993-09-13 1995-03-23 Harris Research, Inc. A composition and method of use for an internally-carbonated non-surfactant cleaning composition containing urea
US5624465A (en) * 1994-11-07 1997-04-29 Harris Research, Inc. Internally-carbonating cleaning composition and method of use

Also Published As

Publication number Publication date
DK0792339T3 (en) 2002-02-04
ZA959391B (en) 1996-07-09
EP0792339A1 (en) 1997-09-03
WO1996014381A1 (en) 1996-05-17
EP0792339B1 (en) 2001-10-10
NZ296412A (en) 1999-05-28
PE36296A1 (en) 1996-09-13
CO4600705A1 (en) 1998-05-08
ATE206751T1 (en) 2001-10-15
AU4101296A (en) 1996-05-31
US5718729A (en) 1998-02-17
DE69523168D1 (en) 2001-11-15
CA2204608A1 (en) 1996-05-17
DE69523168T2 (en) 2002-02-07
EP0792339A4 (en) 1999-08-04

Similar Documents

Publication Publication Date Title
CA2204608C (en) A composition and method of use for an internally-carbonating non-surfactant cleaning composition
US5244468A (en) Urea containing internally-carbonated non-detergent cleaning composition and method of use
US5624465A (en) Internally-carbonating cleaning composition and method of use
US4219333A (en) Carbonated cleaning solution
EP1817270B1 (en) Method of use of a carbonated cleaning composition
EP0581853A1 (en) Method for removing stains from carpet and textiles.
EP0677577B1 (en) Foamed cleaning compositions and method of treating textile fabrics
JPH06503371A (en) carpet cleaning agent
KR100736639B1 (en) A cleaning solution and method
US6126697A (en) Multiple carbonate cleaning compound
US4938893A (en) Detersive systems and low foaming aqueous surfactant solutions containing a mono (C1-4 alkyl)-di(C6-20 alkyl)-amine oxide compound
WO1995007973A2 (en) A composition and method of use for an internally-carbonated non-surfactant cleaning composition containing urea
US4588516A (en) Cleaning liquid and process of using same
EP0753559B1 (en) Method of cleaning textile fabrics
US5968202A (en) Method of cleaning textile fabrics
US4637892A (en) Cleaning solution
JPH11508948A (en) Package forming composition
JPS5823899A (en) Soap-blended automatic dishwashing detergent
JPH06200295A (en) Exothermic and foamable detergent composition
JP2000109893A (en) Acidically coating detergent composition
CN1060494A (en) Paper handkerchief soap and manufacture method thereof

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20151106