CA2213682C - Recyclable medication dispensing device - Google Patents

Recyclable medication dispensing device Download PDF

Info

Publication number
CA2213682C
CA2213682C CA002213682A CA2213682A CA2213682C CA 2213682 C CA2213682 C CA 2213682C CA 002213682 A CA002213682 A CA 002213682A CA 2213682 A CA2213682 A CA 2213682A CA 2213682 C CA2213682 C CA 2213682C
Authority
CA
Canada
Prior art keywords
dial assembly
housing
nut
dial
dosage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002213682A
Other languages
French (fr)
Other versions
CA2213682A1 (en
Inventor
Andrew Burroughs
David Hixson
Andrew Hodge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eli Lilly and Co
Original Assignee
Eli Lilly and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eli Lilly and Co filed Critical Eli Lilly and Co
Publication of CA2213682A1 publication Critical patent/CA2213682A1/en
Application granted granted Critical
Publication of CA2213682C publication Critical patent/CA2213682C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3155Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe
    • A61M5/31551Mechanically operated dose setting member by rotational movement of dose setting member, e.g. during setting or filling of a syringe including axial movement of dose setting member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • A61M5/31578Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod
    • A61M5/3158Constructional features or modes of drive mechanisms for piston rods based on axial translation, i.e. components directly operatively associated and axially moved with plunger rod performed by axially moving actuator operated by user, e.g. an injection button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/581Means for facilitating use, e.g. by people with impaired vision by audible feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/582Means for facilitating use, e.g. by people with impaired vision by tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31535Means improving security or handling thereof, e.g. blocking means, means preventing insufficient dosing, means allowing correction of overset dose
    • A61M5/31541Means preventing setting of a dose beyond the amount remaining in the cartridge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/31556Accuracy improving means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • A61M5/31548Mechanically operated dose setting member
    • A61M5/3156Mechanically operated dose setting member using volume steps only adjustable in discrete intervals, i.e. individually distinct intervals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31566Means improving security or handling thereof
    • A61M5/3157Means providing feedback signals when administration is completed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31566Means improving security or handling thereof
    • A61M5/31571Means preventing accidental administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/3159Dose expelling manners
    • A61M5/31593Multi-dose, i.e. individually set dose repeatedly administered from the same medicament reservoir

Abstract

A multi-use pen-shaped medication dispensing device (20) made of a plastic material that is recyclable after the contents of the medication cartridge (40) have been exhausted. The device (20) is made of a minimal number of parts, which include a housing (22), a dial assembly (34), a generally cylindrical button assembly (32) located within t he proximal end (50) of the dial assembly (34), an internally threaded nut (36), and an externally threaded leadscrew (38). The device (20 ) is arranged so that the dial (34) must be rotated to the zero dose position prior to setting a dose. The device (20) includes a lockout mechanism (52) that prevents the dial (34) from being depressed during dosing. The device (20) further includes a mechanism (157) that limit s the maximum dosage that can be dialed up and a mechanism (230, 234) that prevents the user from dialing up a dosage greater than that remaining in the cartridge (40).

Description

RECYCLABLE MEDICATION DISPENSING DEVICE
The present invention relates generally to medical dispensing devices and, more particularly, to a recyclable dispensing device that permits selectively measured dosages of a liquid to be dispensed.
Patients suffering from diseases such as diabetes must inject themselves several times each day with an insulin solution. Since the volume of insulin solution to be injected varies from injection to injection, it is necessary for such patients to be able to measure a precise volume of insulin. Diabetics have conventionally used a syringe for injection of insulin. However, it is difficult to control the operation of the syringe as well as the quantity of drug injected.
In order to permit a diabetic to measure and administer a more accurate and controlled dosage, injector pens have been developed which enable a particular dosage to be accurately and conveniently measured. Generally, these pens are secured onto a cartridge having a particular quantity of liquid medication sealed therein.
The cartridge includes a plunger and a mechanism for advancing the plunger in the cartridge in such a manner to dispense the medication. Injector pens may be reusable or disposable. In reusable pens, a user can change a spent cartridge and reset the leadscrew of the pen back to its initial position. In a disposable pen, the cartridge is permanently captured in the pen which is disposed of after the contents of the cartridge have been exhausted.
One such disposable pen that has functioned very adequately is disclosed in U.S. Patent No. 5,295,976.
Specifically, a dispensing device is disclosed and includes an internally threaded collar and an externally threaded plunger rod. In order to set a dosage of medication to be delivered, the collar is rotated thereby causing displacement of the collar toward the proximal end of the injection device. Rotation of the collar causes the integral cap to become effectively displaced both rotationally and axially toward the proximal end of the pen. As this displacement occurs, the segment of the dose-indicating scale which is visible through a window varies showing a linear increase in the number to indicate an increase dosage of liquid to be dispensed. Once the desired dosage is selected, a force is applied to the end of the cap causing a linear displacement of the cap, integral plunger rod, and piston to dispense liquid from the container. The dispensing displacement of the plunger rod is halted by abutting contact between the cap and a stop element.
In U.S. Patent No. 5,308,340, another recyclable injection device is disclosed. In particular, a plunger rod is received within the housing for exerting a force on a piston closing a second end of the container. The plunger rod has a noncylindrical cross section with a first surface including threads and a second surface which can, optionally, include a series of ratchet teeth. A
collar is received within the housing adjacent the second end of the container for permanently retaining the container of liquid within the housing. The plunger rod passes through the noncylindrical opening in the collar and is prevented from rotating with respect to the housing by the collar. A hollow cap envelopes the plunger rod opposite the container of liquid. The skirt of the hollow cap extends inside the housing. The cap includes a threaded interior surface which movably engages the plunger rod for calibrated adjustment relative thereto. A
stop is provided within the housing, and a distal facing surface is provided on the hollow cap for contacting the stop upon linear movement of the cap and plunger rod as a unit toward the container to dispense liquid therefrom.
In operation, the cap is rotated in a counterclockwise direction causing the threads of the cap to travel along =
the threaded portion of the rod. This rotation does not cause displacement of the plunger rod with respect to the housing, but backs the distal end of the proximal cap portion away from a stop shoulder on the inside of the housing. When the cap has been positioned to the desired dosage, pressure is applied to the end of the cap for causing it to move linearly toward the distal end of the housing until a shoulder defined by a radially exposed portion of the distal end contacts a stop.
The present invention provides a medication injection device comprising a housing, a dose setting mechanism within the housing, and a delivery mechanism within the housing for advancing a leadscrew. A liquid medication product is housed in a variable volume cartridge within the housing of the device. Upon actuation of the delivery mechanism, the leadscrew is advanced against a movable piston in the cartridge to advance the piston thereby causing a preset quantity of medication to be delivered out of the needle of the device.
In one embodiment, the device is made entirely out of a recyclable plastic material, except for the glass container, steel needle and label. The dose setting mechanism comprises a dial assembly including a clutching device for engaging and disengaging a generally cylindrical internally threaded nut, which is threaded onto an externally threaded leadscrew. A dose is set by rotating the nut with respect to the leadscrew. The nut is rotated by rotating the dial. However, the nut must be engaged with the dial so that rotating the dial also rotates the nut. The clutching device comprises a series of splines on the inner cylindrical surface of the dial which axially engage corresponding splines on the outer surface of the nut. The splines are engaged with one another by retracting the dial with respect to the nut after the dial has been rotated to its zero dose position.
The dial assembly includes a mechanism that prevents = the user from retracting the dial prior to rotating the dial to its zero dose position. This mechanism comprises a finger formed in the housing that rides within a groove formed at the distal end of the dial assembly as the dial assembly is rotated. The dial cannot be pulled out in any radial position other than the zero dose radial position due to the interference formed between the finger and the walls of the groove. In the zero dose position, the housing finger rides up within a spline that extends axially uninterrupted to enable the dial to be proximally retracted with respect to the housing only when the dial is in its zero dose radial position.
The device includes a mechanism that limits the maximum dosage that can be set. This mechanism comprises a helical groove formed in the housing and a pair of flexible fingers formed in the dial assembly. Upon rotating the dial to set a dose, the dial is retracted with respect to the housing because the dial fingers ride up the internal housing groove. Once the dial fingers reach the proximal end of the housing groove, further rotation of the dial is prohibited, thereby indicating to the user that the maximum dosage has been dialed.
The device further includes a mechanism for automatically locking out the dial from an inadvertent injection after the dial has been retracted to set a dosage. This lockout mechanism comprises the above-mentioned fingers in the dial assembly that fall into the helical groove in the housing upon retracting the dial with respect to the housing. The interference fit formed by the fingers in the groove prevents forward movement of the dial in the event of inadvertent pressure being applied to the end of the dial. The lockout mechanism is released by a button assembly that is disposed within the proximal end of the dial assembly. The button assembly is sized and configured so that it must be depressed upon initiating an injection. Upon depressing the button assembly, it bottoms out against the dial, whereupon the dial moves forwardly so that the flexible fingers move =
past the groove in the housing.
One of the two flexible fingers of the dial assembly has an extension which, when the button is pressed, is pushed radially out. This finger falls within a separate groove in the housing as the "end-of-dose" stop surface of the dial engages the corresponding stop surface on the housing, thereby producing an audible "click" indicating 5 that the entire dosage has been injected. The housing further includes radially inwardly extending tangs at the proximal end thereof which engage ratchet teeth in the leadscrew to prevent the leadscrew from backing up in the proximal direction. These tangs are in constant engagement with the leadscrew, thereby preventing the leadscrew from rotating upon rotation of the nut.
The device also includes a mechanism which indicates to the user that there is an insufficient dosage remaining in the container of medication. This mechanism prevents the user from setting a dosage greater than that available to be delivered. The insufficient dose remaining feature comprises a 350 helical thread on the inner cylindrical surface of the nut and a raised finger forward at the end of the leadscrew where the external thread terminates. As the nut rotates about the leadscrew, the ledge formed by the termination of the helical thread on the nut engages the finger, thereby positively preventing further rotation of the nut in that direction.
An advantage of the medication dispensing device of the present invention is that the dosing function is locked out until the dial has been rotated to its zero dose position, thereby ensuring an accurate dosage.
Another advantage of the present invention is that the device is an inexpensive recyclable pen that is designed to allow a user to dose in single unit increments, which are each displayed in a single unit = display.
Another advantage ofthe present invention is that the end-of-dose click arrangement is adjacent the end-of-dose stop to provide increased accuracy of an end of dose.
Another advantage of the present invention is that the device includes a dosage lockout mechanism that prevents an inadvertent delivery of a dosage of medication.
A further advantage of the present invention is that the insufficient remaining dose mechanism comprises a radial stop which ensures that the user cannot dial up a dosage greater than that remaining in the cartridge.
Yet another advantage of the present invention is that the device is made of inexpensive materials and is nearly 100% recyclable after the contents of the cartridge have been depleted.
The present invention, in one form thereof, comprises an apparatus for effecting delivery of an injectable product. The apparatus comprises a housing and a container secured to the housing and including a piston, an exit, and an injectable product between the piston and the exit. A drive stem is disposed in the housing and is in engagement with the piston. The length of axial movement of the drive stem with respect to the housing between a pre-injection position and a post-injection position defines the stroke length of the drive stem. A
manually adjustable dosage metering mechanism is disposed in the housing and is movable between a zero dose position, wherein the stroke length is zero, and a second dose position for enabling a user to selectively adjust the stroke length of the drive stem. The apparatus further includes means coupled to the dosage metering mechanism for preventing the stroke length of the drive stem from being adjusted until the dosage metering mechanism has been set to the zero dose position.
In another form of the present invention, the apparatus includes a drive assembly mounted to the housing and manually advanceable in the housing between a dose setting position and an injection position for manually moving the drive stem to drive the piston within a container. The drive assembly is locked from movement with respect to the housing along the axis of ejection while in the dose setting position. A disengaging device is secured to at least one of the drive assembly and the housing to unlock the drive assembly from the housing to enable the drive assembly to be axially advanceable with respect to the housing to move the drive assembly from the dose setting position to the injection position.
The present invention further includes a method of delivering a selected dosage of injectable product. The method includes the step of rotating a knob extending from an injector housing to establish a zero dose rotational position of the knob, wherein rotation of the knob causes rotation of the dial assembly attached to the knob. The knob and dial assembly are retracted while in the zero dose position to cause the dial assembly to engage an internally threaded nut with the housing. The knob is then rotated to cause rotation of the dial and the nut which causes axial translation of the dial and the nut, thereby setting a desired dosage of injectable product to be delivered. The knob is then manually depressed to depress the dial assembly and the nut and drive stem to cause the drive stem to advance the piston within the container of injectable product, thereby forcing a set dosage of injectable product to be delivered out of the exit of the container. The step of depressing the knob causes the dial assembly to become disengaged from the nut so that the knob may be rotated independently of the nut after delivery of the set dosage of injectable product has been completed.
Fig. 1 is a perspective view of one embodiment of a medication dispensing device in accordance with the present invention;
Fig. 2 is an exploded view of the device of Fig. 1;
= Fig. 3 is an enlarged longitudinal sectional view of a portion of the medication dispensing device of Fig. 1, particularly showing the button assembly disposed within dial assembly;
Fig. 4 is an enlarged perspective view, in partial section, of the medication dispensing device of Fig. 1, particularly showing the button assembly disposed in the dial assembly;
Fig. 5 is an enlarged cross sectional view of the medication dispensing device of Fig. 1, particularly showing the insufficient remaining dose stop on the nut approaching the corresponding stop on the leadscrew;
Fig. 6 is a view of Fig. 5, except that the insufficient remaining dose stop on the nut is in engagement with the stop on the leadscrew;
Fig. 7 is a perspective view, in partial section, of a housing part in engagement with the dial assembly, particularly showing the unit click finger in the zero position;
Fig. 8 is a view of Fig. 7, except that the unit click finger is behind the end-of-dose flange;
Fig. 9 is a view of Fig. 7, except that the unit click finger is shown in the dial splines during dosing;
Fig. 10 is an enlarged sectional view of a portion of the medication dispensing device of Fig. 1, particularly showing the relationship among the button assembly, dial assembly, and housing while the device is at the end of dose position;
Fig. 11 is a longitudinal sectional view of the medication dispensing device of Fig. 1, particularly showing the dial assembly after it has been rotated to the zero position;
Fig. 12 is a view of Fig. 11 except that the dial assembly has been retracted so that the splines of the nut are engaged by the splines of the dial assembly;
Fig. 13 is a view of Fig. 12, except that a desired dosage has been dialed up;
Fig. 14 is a view similar to Fig. 10, showing the =
dial assembly rotated 180 , and further showing the button initially depressed before dial movement takes place;
Fig. 15 is a view of Fig. 14, showing the dial having moved forward a small distance;
Fig. 16 is a view of Fig. 14, showing the dial having moved forward half of a thread pitch; and Fig. 17 is a view of Fig. 13, except that the pen is shown in its end-of-dose position.
For purposes of this application, the term "proximal"
shall designate a relative axial position toward the knob end of the delivery mechanism, and the term "distal" shall designate a relative axial position toward the delivery needle end of the delivery mechanism.
Referring to Figs. 1 and 2, there is shown an ~ injection medication device 20 having the general appearance of a pen or mechanical pencil. The device comprises a mechanism housing 22 having a first part 24 and a second part 26 (Fig. 2). Housing parts 24 and 26 are secured together in a suitable fashion, e.g. chemical bonding with a suitable adhesive or a solvent. A cap 28 is snapped onto the distal end of mechanism housing 22.
Cap 28 includes a clip 30 which cooperates with the side wall of cap 28 to provide a convenient means for holding the pen device 20 in a shirt pocket. Referring to Fig. 2, the major components of medication device 20 include a disengaging device 32, a dial assembly 34, a nut 36, and a drive stem 38. Together, dial assembly 34 and nut 36 form both a dosage metering mechanism and a drive assembly. A
cartridge, or container, 40 is inserted into a distal body 42 to which is attached a needle assembly 44 and needle cover 46. All of the components of medication device 20, except cartridge 40 and needle 44 may be made of a plastic material that is suitable for recycling. Suitable plastics are high flow polycarbonates resins which can be processed by conventional injection molding and extrusion.
In one embodiment, the housing parts 24, 26 and distal body 42 are made from an optically clear polycarbonate material, and the remaining plastic components are made from ABS resins. These plastics are recyclable, thereby making disposal of the device environmentally desirable.

'AMDED SHF", CA 02213682 1997-08-23 RCT)US
IPMS 03 JtiEY ig;:J f Referring to Fig. 4, disengaging device 32 comprises a hollow cylindrical portion 48 having a proximal end 50.
Cylindrical portion 48 includes a distal end 52 in the form of an annular bead and further includes an enlarged 5 diameter ring 54 comprising a tapered surface 56 and an enlarged diameter flat surface 58. The inner section of surfaces 56 and 58 forms an enlarged diameter shoulder surface 60. The proximal end 50 of disengaging device 32 comprises two flexible fingers 62, 64, each extending from 10 a base surface 66. As shown in Fig. 4, each finger 62, 64 ~ is L-shaped and includes a first leg which extends from base surface 66 and is parallel with the axis of medical device 20, and a second leg extending radially about 90 from the first leg. Proximal end 50 of button assembly 32 further includes a finger-engageable end 68 having a recessed surface 70. End 68 is integrally connected to hollow cylindrical portion 48 by connection portions 72 (Fig. 3). Proximal end 68 includes a surface 74 (Fig. 3) that is formed from reduced length portion 76.
Referring to Figs. 3 and 10, dial assembly 34 is shown in detail. Dial assembly 34 is generally cylindrical in shape and is hollow throughout its axial length. The diameter of dial assembly 34 is at a maximum at its proximal end and is at a minimum at its distal end.
Referring to Fig. 3, dial assembly 34 comprises a proximal knob portion 78, an intermediate portion 80, and a distal portion 82. Proximal knob portion 78 comprises an enlarged diameter portion 84, a tapered portion 86, and an end-of-dose ring 91 extending about the circumference of proximal knob portion 78 as shown in Fig. 3. Ring 91 includes a bottom surface 89 (Fig. 13) that constitutes a stop surface when engaged with the rear of the housing.
Ring 91 also includes an enlarged "zero-dose" protrusion 88. A generally U-shaped groove 90 (Figs. 2, 3) is formed in proximal portion 78 to form a flexible section 92. The proximal inner surface of flexible section 92 includes a tapered surface 96 adapted for engagement with tapered 'AlUfENDED SHEErI

CA 02213682 1997-08-23 RCT,US 96/ 0 1 9M

surface 56 of disengaging device 32 and a complimentary tapered surface 98. Surfaces 96 and 98 define the inner surface of finger 94.
Proximal portion 78 of dial assembly 34 further includes a first U-shaped groove 100 (Fig. 2) and a second U-shaped groove (not shown) which form flexible legs 102, 104. Referring to Fig. 10, each leg 102, 104, includes an inwardly extending finger 106, 108, and an outwardly extending finger 110, 112, distal to the inwardly extending finger. Inwardly extending finger 106 includes ~ proximal tapered surface 114, flat 116, and distal tapered surface 118. Likewise, finger 108 includes proximal tapered surface 120, flat 122, and distal tapered surface 124. Outwardly extending finger 110 comprises a proximal tapered surface 126, a flat 128, shoulder 130, enlarged diameter surface 132, and distal tapered surface 134.
Outwardly extending finger 112 includes a proximal tapered surface 136, a shoulder 138, an enlarged diameter surface 140, and a distal tapered surface 142.
Referring to Fig. 3, a series of axial splines 143 are arranged circumferentially about the inner surface of dial assembly 34 at the area where proximal portion 78 meets intermediate portion 80. The circumferential array of splines 143 is interrupted by legs 102 and 104. In one embodiment, there are ten splines 143 positioned about the inner circumference of dial assembly 34. Referring to Figs. 3 and 10, there is shown a plurality of splines 144 extending circumferentially about the proximal interior surface of intermediate portion 80 of dial assembly 34.
Unlike splines 143, splines 144 extend 360 about the inner circumference of intermediate portion 80. In one embodiment, eighteen splines 144 are positioned such that each spline is 20 circumferential degrees apart from an adjacent spline.
As best shown in Figs. 7-9, distal portion 82 of dial assembly 34 comprises a proximal flange 146, a reduced diameter portion 148, and a distal end comprising a series eAMENDED SH~

CA 02213682 1997-08-23 PCTIUS 96 / a 15 af IPEAIUS 3 JAN 19c of elongated splines 150 extending externally about the circumference of distal portion 82. Splines 150 are in alignment with splines 144. Therefore, in one embodiment, there are eighteen splines 150, each corresponding to a respective spline 144. As shown in Figs. 8 and 9, two of the splines 150 extend axially into reduced diameter portion 148. These extensions are indicated as splines 152.
Referring to Fig. 10, housing parts 24 and 26 form a proximal groove 154 having a tapered surface 156. Housing ~ parts 24 and 26 further form a helical spiral groove 158 and a tapered circumferential surface 160 as shown in Fig.
10. Housing part 24 further includes a semicircular ridge 164 near the distal end thereof. Two grooves are formed at the distal portion of housing part 24 to define a flexible finger 166. Housing part 26 includes grooves formed therein to define a flexible leg 168 having an inwardly extending finger 170 at the end thereof. Finger 170 includes a proximal tapered surface 172 which terminates in a flat 174 and a vertical edge 176. Housing parts 24 and 26 include transverse ledges 178, 180, respectively, to reduce the diameter through the proximal end of the housing. Ledges 178 and 180 include flexible tangs 182, 184, respectively.
As best shown in Figs. 11-13 and 17, medical delivery device 20 further includes nut 36 and drive stem 38. Nut 36 is generally cylindrical in shape and includes a pair of axially extending grooves 186 (Fig. 2) to form resilient proximal legs 188. Each leg 188 includes a proximal raised portion 190 and two small axially extending splines 192. The distal end of nut 36 comprises an enlarged gear-like member 194 having a plurality of teeth 196 thereon. The interior surface of the distal end of nut 36 includes a helical thread 198. Thread 198 extends about 350 about the inner surface of nut 36. A
groove 200 is formed at the distal end of drive stem 138 to form legs 226, 228 (Fig. 2). Ratchet teeth 204 are 'AMENDED SHEET

PCTjUS 96f0 1 5dt CA 02213682 1997-08-23 ,~EA/US 03 JAN 1990 located on two opposing sides of drive stem 38 and axially extend along the length of drive stem 38 from groove 200 to the distal end, which constitutes plunger engagement portion 206. Helical threads 208 extend along the axial length of drive stem 38 legs 226, 228. Drive stem 38 fits within the cylindrical opening of nut 36.
As shown in Figs. 11-14, plunger engagement portion 206 of drive stem 38 is in engagement with piston 210 of cartridge 40. Cartridge 40 is housed within cartridge retainer 42, which is permanently secured to housing parts ~ 24 and 26. Cartridge 40 is manufactured of glass and comprises a tube defining an inner chamber 212 which openly terminates at its distal end in a neck 214 having a cap 216 including a rubber disc 218 disposed thereover.
Needle assembly 44 comprises an internally threaded base 220 and a delivery needle 222. Internally threaded base 220 is threaded onto externally threaded distal portion 224 of body 42. Needle cap 46 fits over needle 222 to prevent an inadvertent insertion of needle 222 into the patient. Cap 28 snaps onto cartridge body 42 to complete the pen-like mechanism.
In order to set a dose for injection, it is first necessary to manually zero the dial from the initial radial position of the dial resulting from the previous injection. The initial axial position of dial assembly 34, in a non-zero initial radial position, with respect to housing part 26 is shown in Fig. 8. Specifically, finger 170 of housing part 26 is located in groove 148 of dial assembly 34. Groove 148 can be rotated by rotating dial assembly 34 with respect to the housing. Dial assembly 34 cannot be axially retracted due to the interference between a first element on the dose metering mechanism, i.e., ledge 149 of dial assembly 34, and a second element on the housing, i.e., vertical edge 176 of housing finger 170. Likewise, dial assembly 34 cannot be forced axially forwardly due to the interference between surface 89 on ring 91 and end surfaces 33, 35 (Fig. 4) of housing parts AMENDED SHEET;

CA 02213682 1997-08-23 PCT~US g ~ / ~ ~. ~ ~
lPEAIUS 0 3 JAN 19 a' 24, 26, respectively. If the user mistakenly believes that it is necessary to depress disengaging device 32 to pull out the dial, finger 94 falls into groove 154 (Fig.
10), thereby creating an interference that prevents the dial from being pulled out. Upon continued rotation of dial assembly 34 with respect to housing 26, splines 152 are moved into engagement with finger 170, as shown in Fig. 7. This is the zero dose radial position of dial assembly 34. This radial zero dose position is communicated to a user in four ways. The user hears a click as splines 152 engage finger 170. The movement of ~ finger 170 over the first spline 152 into the V-shaped recess 155 between splines 152 causes a vibration in device 20 that can be felt by the user. In addition, protrusion 88 on dial assembly 34 is in axial alignment with protrusion 153 of housing part 24, thereby providing a visual indication that the zero dose position has been reached. This is further visually communicated by the presence of a symbol in lens 25.
A series of numerals (not shown) are printed on the surface of intermediate portion 80 of dial assembly 34.
These numerals are helically spaced about the circumference of portion 80 and may number from 1 to 60, in single increments, to indicate a desired dosage. The lens 25 in housing part 24 is aligned with the numbers so that the appropriate number appears in the lens upon dialing up the dosage. A raised rectangular portion lens 162 (Fig. 10) of lens 25 is located at the base of lens 25 to enhance the numerals thus making them easier to read.
In its zero dose position, dial assembly 34 may be axially retracted a predetermined distance, e.g. 3 to 5 mm, as illustrated in Fig. 12 to a dose setting axial position. As dial assembly 34 is retracted, ledge 149 is moved past housing finger 170 resulting in housing finger 170 being in engagement with splines 150. In addition, splines 144 of dial assembly 34 are moved into engagement with splines 192 of nut 36, as shown in Fig. 12. When 'AMENDED SNEE'i' CA 02213682 1997-08-23 796b015 0 1~REAlUS 0 3 JAN 11)9' dial assembly 34 is in a dose-setting axial position, the clutching mechanism comprised of splines 144 and 192 is engaged and rotation of dial assembly 34 causes corresponding rotation of nut 36. Rotation of drive stem 5 38 is prevented by a key-keyway type of engagement between the anti-backup tangs 182 and 184 and drive stem 38. As shown in Fig. 6, tangs 182, 184 form a key, and drive stem 38 forms a keyway which comes into contact with the sides of the key.
10 Upon rotation of dial assembly 34 to a positive dose ~ radial position, fingers 110, 112 move within housing groove 158 in the proximal direction to retract dial 34, thereby increasing the axial distance between stop surface 89 of ring 91 and stop surfaces 33, 35 of housing parts i5 24, 26. Rotation of dial assembly 34 causes rotation of nut 36 so that internal helical raised groove 198 of nut 36 rotates along external threads 208 of drive stem 38 to cause nut 36 to axially retract a corresponding axial distance. As shown in Fig. 9, rotation of dial assembly 34 causes splines 150 to move past housing finger 170.
The rotation of each spline 150 past finger 170 constitutes a single unit of dosage. As each spline 150 moves past finger 170, it causes a click" to occur, thereby providing an audible indication of each unit of dosage dialed up. In addition, a single numeral appears in lens 25 after each unit rotation indicating the current dose selected. Once a dosage has been selected, that dosage may be made larger or smaller by rotating the dial assembly in either the clockwise or counterclockwise direction.
In one embodiment, dial assembly 34 includes eighteen splines 150 spaced 20 apart from one another. It is desired to limit the amount of dosage that can be dialed to prevent the entire contents of cartridge 40 to be delivered at once. For example, it may be desirable to limit a measured dosage to a maximum of 60 units. If the dial assembly includes eighteen splines, this would mean AMENDED SHEET, ~

CA 02213682 1997-08-23 pCTIUS 96/01 ';QF

that a user could rotate the dial assembly for nearly 3 1/2 rotations. As shown in Figs. 12 and 13, as a dosage is being set, outwardly extending fingers 110 and 112 of dial assembly 34 ride in helical groove 158 of housing parts 24 and 26. Once a predetermined maximum dosage has been dialed up, e.g. 60 units, fingers 110 and 112 have reached the proximal end of the helical groove 158. Dial assembly 34 cannot be additionally rotated to further increase this maximum dosage due to an iriterference ledge at the end of helical groove 158. Disengaging device 32 ~ prevents the dial assembly 34 from being inadvertently pushed forwardly during the dosing process due to the interference between fingers 110, 112 of dial assembly 34, button surface 52, and helical spiral groove 158 in housing parts 24, 26, as shown in Fig. 4. Fingers 110, 112 must be moved out of groove 158 before the dial may be moved axially forwardly. Fingers 110, 112 can be moved out of engagement with groove 158 only after fully depressing disengaging device 32, thereby moving distal surface 52 out of engagement with fingers 110, 112.
Once a desired dosage has been set, cap 28 is removed and needle cover 46 is removed to expose needle 222. The needle is inserted into the patient, and recessed surface 70 of disengaging device 32 is pushed. Figs. 14-16 illustrate the initial stages of the injection process.
Referring to Fig. 14, as surface 70 is pushed, disengaging device 32 moves forwardly independently of dial 34 until distal surface 52 bottoms out against internal dial shoulder 141. Thereafter, disengaging device 32 and dial 34 are moved together. Referring to Fig. 15, as dial 34 begins to move forwardly, tapered finger surfaces 134, 142 are forced out of their respective threads 158. This causes fingers 110, 112 to flex radially inwardly. As disengaging device 32 is further pressed, fingers 110, 112 move out of respective threads 158, as shown in Fig. 16.
As disengaging device 32 continues to be pressed, fingers 110, 112 move into and out of the remaining threads 158 in rwMENDED SHEETi CA 02213682 1997-08-23 PCTIUS 9 ~/ 015 08 1PEA/US 0 3 JAN 199' a like manner until dial 34 reaches its end of dose position shown in Figs. 10 and 17. The movement of edge 95 (Fig. 4) of dial finger 94 past housing edge 157 (Fig.
4) and into groove 154 (Fig. 10) creates an audible "click" sound, thereby providing an audible confirmation that the entire dosage has been injected. Finger 94 is in close proximity to stop surfaces 89 and 33, 35.
As dial 34 is initially moved forwardly the clutching mechanism comprised of splines 144 and 192 decouples as splines 144 move out of engagement with splines 192 of nut 36 to rotatably disengage dial 34 from nut 36 prior to any axial movement of nut 36. Dial 34 moves axially with respect to nut 36 until the distal end 193 (Fig. 13) of dial 34 engages nut flange 194 and moves nut 36 and drive stem 38 forwardly to deliver the set dosage of fluid.
Referring to Figs. 10 and 17, forward movement of dial assembly 34 and nut 36 is limited by the engagement of surface 89 of ring 91 with proximal end surfaces 33, 35 of housing parts 24, 26, respectively, as shown in Fig.
14. Referring to Fig. 14, there is a small clearance, e.g. 0.4 millimeters, between nut gear or flange 194 and internal ledges 178, 180 of housing parts 24, 26, respectively. In another embodiment, the end-of-dose stop may be designed to occur between nut flange 194 and ledges 178, 180.
Movement of drive stem 38 is prevented in the proximal direction due to anti-backup tangs 182, 184 being in engagement with ratchet teeth 204. This assures that head 206 of drive stem 38 remains at all times in constant engagement with piston 210.
Once a dosage has been completed, the user releases his finger from recessed surface 70. Upon releasing pressure from surface 70, the flexible fingers or springs 62, 64 return from their stressed conditions back to their relaxed conditions, thereby automatically retracting the disengaging device 32 back to the automatic lockout position shown in Fig. 11 to prevent the dial assembly 34 "AMEiVQEp SMEET

IPEAlC1S 0 3 JAN 199 from being inadvertently advanced when it is again moved to its retracted position.
Medication device 20 further includes a mechanism to indicate to the user that there is an insufficient dosage of medication 212 remaining in cartridge 40. Referring to Figs. 5 and 6, drive stem 38 comprises two legs 226 and 228. Leg 226 may be of a greater thickness than leg 228.
Leg 226 includes an axially extending raised ledge 230 at the end of external thread 208. Leg 228 contains the end 232 of external thread 208. The internal helical thread 198 of nut 36 defines a stop surface 234 due to the fact that thread 198 extends less than 360 in circumference.
As shown in Fig. 17, nut 36 moves toward legs 226, 228 of drive stem 38 as drive stem 38 moves within cartridge 40.
Once nut 36 has axially moved entirely along thread 208 of drive stem 38, stop 234 approaches axial ledge 230, as shown in Fig. 5. Additional rotation of nut 36 results in stop 234 engaging ledge 230, as shown in Fig. 6. This prevents the user from dialing up a higher dosage. Nut 36 may be rotated back in the opposite direction to reduce the dosage if desired. This rotational stop mechanism provides a very accurate indication to the user of the dosage remaining in the cartridge.

rAMENDED SHEET

Claims (5)

CLAIMS:
1. An apparatus for effecting delivery of an injectable product, comprising:
a housing;
a container secured to said housing and including a piston, an exit and an injectable product between said piston and said exit;
a drive stem disposed in said housing and being in engagement with said piston, wherein a length of axial movement of said drive stem with respect to said housing between a pre-injection position and a post-injection position defines a stroke length of said drive stem; and an internally threaded nut rotatably engaged with said drive stem said apparatus characterized by:

means for maintaining said drive stem in engagement with said piston;

a manually adjustable dosage metering mechanism disposed in said housing comprising a dial assembly axially movable to engage with said nut for rotation therewith, from an initial axial position, wherein the stroke length is zero, and a dose setting axial position for enabling a user to selectively adjust the stroke length of said drive stem;

means coupled to said dosage metering mechanism for preventing the movement of said dosage metering mechanism from said initial axial position to said dose setting axial position until said dosage metering mechanism has been set to a radial zero dose position; and a clutching mechanism operatively disposed between said nut and said dial assembly, said clutching mechanism disengaging said nut and said dial assembly in said initial axial position and engaging said nut and said dial assembly in said dose setting axial position whereby rotation of said dial assembly in said dose setting axial position rotates said nut to reposition it with respect to said drive stem.
2. The apparatus of Claim 1 wherein said means for preventing the stroke length of said drive stem from being adjusted until said dosage metering mechanism has been set to said zero dose position is characterized by a first element that is in interfering relationship with a second element on said housing while said dosage metering mechanism is in said dose setting axial position, thereby preventing said dosage metering mechanism to be moved from a non-dose setting position to said dose setting position, and wherein said first element is not in interfering relationship with said second element while said dosage metering mechanism is in said zero dose position, thereby permitting said dosage metering mechanism to be moved from said non-dose setting position to said dose setting position.
3. The apparatus of Claim 1 characterized in that said dosage metering mechanism is a generally cylindrical dial assembly disposed in said housing and movable axially with respect to said housing between a dose setting position, wherein rotation of said dial assembly adjusts the stroke length of said drive stem, and a non-dose setting position, wherein rotation of dial assembly does not change the stroke length of said drive stem, said dial assembly being rotatable with respect to said housing between a zero dose rotational position and a non-zero dose rotational position, rotation of said dial assembly while said dial assembly is in said dose setting axial position enables a user to selectively adjust the stroke length of said drive stem from zero to a selected set dosage, and said means for preventing stroke length adjustment includes a first element on said dial assembly in interfering relationship with a second element on said housing while said dial assembly is in said non-dose setting axial position and in said non-zero dose rotational position, thereby preventing said dial assembly from being moved from said non-dose setting position to said dose setting position, and wherein, upon rotation of said dial assembly to said zero dose rotational position, said first element is moved out of interfering relationship with said second element, thereby permitting said dosage metering mechanism to be moved from said non-dose setting position to said dose setting position.
4. A method of delivering a selected dosage of injectable product, the method comprising the steps of:
rotating a knob extending from an injector housing to establish a zero dose rotational position of said knob, wherein rotation of the knob causes rotation of a dial assembly attached to the knob;

retracting the knob and dial assembly while in the zero dose position to cause the dial assembly to engage an internally threaded nut with the housing;

rotating the knob thereby causing rotation of the nut to cause axial translation of the nut along an externally threaded drive stem that is received within the nut, thereby setting a desired dosage of injectable product to be delivered; and manually depressing the knob to manually depress the dial assembly and the nut and drive stem to cause the drive stem to advance a piston within a container of injectable product, thereby forcing the set dosage of injectable product to be delivered out of an exit of the container, wherein the step of depressing the knob causes the dial assembly to become disengaged from the nut so that the knob may be rotated independent of the nut after delivery of the set dosage of injectable product has been completed.
5. A method of Claim 4 further characterized by the steps of:

actuating an unlocking mechanism which unlocks a locking mechanism to enable the knob and dial assembly to be manually advanced.
CA002213682A 1995-03-07 1996-02-05 Recyclable medication dispensing device Expired - Lifetime CA2213682C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US39976495A 1995-03-07 1995-03-07
US08/399,764 1995-03-07
PCT/US1996/001508 WO1996027400A1 (en) 1995-03-07 1996-02-05 Recyclable medication dispensing device

Publications (2)

Publication Number Publication Date
CA2213682A1 CA2213682A1 (en) 1996-09-12
CA2213682C true CA2213682C (en) 2009-10-06

Family

ID=23580865

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002213682A Expired - Lifetime CA2213682C (en) 1995-03-07 1996-02-05 Recyclable medication dispensing device

Country Status (18)

Country Link
US (3) US6001089A (en)
EP (3) EP0730876B1 (en)
JP (2) JP3568959B2 (en)
AT (2) ATE246528T1 (en)
AU (1) AU696439B2 (en)
CA (1) CA2213682C (en)
CY (1) CY2179B1 (en)
DE (2) DE69608833T2 (en)
DK (2) DK0879610T3 (en)
ES (2) ES2147346T3 (en)
GR (1) GR3034256T3 (en)
IL (1) IL117319A (en)
NO (1) NO312228B1 (en)
NZ (1) NZ302558A (en)
PT (2) PT879610E (en)
SI (2) SI0879610T1 (en)
WO (1) WO1996027400A1 (en)
ZA (1) ZA961845B (en)

Families Citing this family (400)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU696439B2 (en) * 1995-03-07 1998-09-10 Eli Lilly And Company Recyclable medication dispensing device
US7445612B2 (en) * 1996-12-31 2008-11-04 Société de Conseils de Recherches et d'Applications Scientifiques, S.A.S. Safety injection device for a liquid or semi-solid composition
DE19723647C1 (en) 1997-06-05 1998-12-24 Disetronic Licensing Ag Fluid dosing unit indicator for e.g. insulin or for pipetting laboratory fluids
ATE240755T1 (en) * 1997-07-14 2003-06-15 Novo Nordisk As CYLINDRICAL AMPOULE
DE19730999C1 (en) 1997-07-18 1998-12-10 Disetronic Licensing Ag Injection pen dosing selected volume of fluid, especially insulin
DE29801168U1 (en) * 1998-01-24 1999-08-12 Medico Dev Investment Co Injection device
DE69900026T2 (en) 1998-01-30 2001-05-10 Novo Nordisk As AN INJECTION SYRINGE
US6096010A (en) * 1998-02-20 2000-08-01 Becton, Dickinson And Company Repeat-dose medication delivery pen
US6090082A (en) * 1998-02-23 2000-07-18 Becton, Dickinson And Company Vial retainer interface to a medication delivery pen
DE19821933C1 (en) * 1998-05-15 1999-11-11 Disetronic Licensing Ag Device for administering an injectable product
GB9812472D0 (en) * 1998-06-11 1998-08-05 Owen Mumford Ltd A dose setting device for medical injectors
US6110151A (en) * 1998-08-13 2000-08-29 Namic Usa Corporation Inflation device
DE19857395A1 (en) * 1998-12-12 2000-06-15 Trepel Joerg Olaf Components for improved handling of conventional insulin injector comprise supplementary components which increase effective size of release element and adjustment rings
US6083201A (en) * 1999-01-07 2000-07-04 Mckinley Medical, Llp Multi-dose infusion pump
DE29904864U1 (en) * 1999-03-17 2000-08-03 Braun Melsungen Ag Injection device with a pen
DE10032937A1 (en) * 1999-07-16 2001-01-18 Becton Dickinson Co Medicament dispensing unit, comprises a reservoir containing a prescribed amount of a medicament, and an auxiliary device whose operation ensures that the entire contents of the reservoir are dispensed
US6277099B1 (en) * 1999-08-06 2001-08-21 Becton, Dickinson And Company Medication delivery pen
TW453884B (en) 1999-09-16 2001-09-11 Novo Nordisk As Dose setting limiter
US6843781B2 (en) * 1999-10-14 2005-01-18 Becton, Dickinson And Company Intradermal needle
US6569143B2 (en) 1999-10-14 2003-05-27 Becton, Dickinson And Company Method of intradermally injecting substances
US20020193740A1 (en) 1999-10-14 2002-12-19 Alchas Paul G. Method of intradermally injecting substances
US6569123B2 (en) 1999-10-14 2003-05-27 Becton, Dickinson And Company Prefillable intradermal injector
US6382204B1 (en) * 1999-10-14 2002-05-07 Becton Dickinson And Company Drug delivery system including holder and drug container
US6494865B1 (en) 1999-10-14 2002-12-17 Becton Dickinson And Company Intradermal delivery device including a needle assembly
US6776776B2 (en) * 1999-10-14 2004-08-17 Becton, Dickinson And Company Prefillable intradermal delivery device
DE60021207T2 (en) * 1999-12-09 2006-05-24 Novo Nordisk A/S INJECTION DEVICE
US6663602B2 (en) 2000-06-16 2003-12-16 Novo Nordisk A/S Injection device
US6986760B2 (en) 2000-08-02 2006-01-17 Becton, Dickinson And Company Pen needle and safety shield system
EP1313520B1 (en) 2000-08-02 2016-08-31 Becton Dickinson and Company Pen needle and safety shield system
ES2267820T3 (en) 2000-10-09 2007-03-16 Eli Lilly And Company PEN TYPE DEVICE FOR THE ADMINISTRATION OF PARTIROID HORMONE.
US6387078B1 (en) * 2000-12-21 2002-05-14 Gillespie, Iii Richard D. Automatic mixing and injecting apparatus
DE10106368B4 (en) * 2001-02-12 2006-02-02 Tecpharma Licensing Ag An adjustment barrier for a device for administering an adjustable dose of an injectable product
DE10106367B4 (en) * 2001-02-12 2009-11-19 Tecpharma Licensing Ag A reading aid for a device for administering an adjustable dose of an injectable product
US6673049B2 (en) 2001-02-15 2004-01-06 Disetronic Licensing Ag Injection device for injecting fluid
EP1776975B1 (en) 2001-05-16 2011-06-22 Eli Lilly & Company Medication injector apparatus with drive assembly that facilitates reset
BR0210628A (en) 2001-06-29 2004-08-10 Becton Dickinson Co Intradermal release of vaccines and genetic therapeutic agents via microcannula
DE10163327A1 (en) 2001-07-30 2003-02-27 Disetronic Licensing Ag Reservoir module with piston rod
DE10163326A1 (en) 2001-07-30 2003-02-27 Disetronic Licensing Ag Administration device with dosing device
DE10163328B4 (en) * 2001-07-30 2005-08-11 Tecpharma Licensing Ag Administration device with anti-rotation device
DE10163325B4 (en) * 2001-07-30 2005-07-28 Tecpharma Licensing Ag Locking lock for connection of housing sections of an administering device
DE20112501U1 (en) * 2001-07-30 2002-12-19 Disetronic Licensing Ag Locking lock for connecting housing parts of an injection or infusion device
JP4224702B2 (en) * 2001-08-27 2009-02-18 ノボ・ノルデイスク・エー/エス Cartridge and drug administration system containing the cartridge
DE20209051U1 (en) * 2001-12-21 2003-04-24 Disetronic Licensing Ag Medicament administration device has dosage adjuster mounted on piston rod and end stop mounted at end of its path, locking system preventing adjuster from rotating and pressing against stop
GB0201689D0 (en) * 2002-01-25 2002-03-13 Dca Design Consultants Ltd Improvements in and relating to a medicament injection device
GB0201686D0 (en) * 2002-01-25 2002-03-13 Dca Design Consultants Ltd Improvements in and relating to a medicament delivery device
CA2475573C (en) 2002-02-11 2013-03-26 Antares Pharma, Inc. Intradermal injector
WO2003097118A2 (en) * 2002-05-15 2003-11-27 Aventis Pharma Deutschland Gmbh Adjusting element for an injection device
US6802824B2 (en) * 2002-06-17 2004-10-12 Scimed Life Systems, Inc. Catheter device and method for delivering a dose internally during minimally-invasive surgery
DE10229138B4 (en) 2002-06-28 2008-01-31 Tecpharma Licensing Ag Product diverter with piston rod emergency reset
US6945961B2 (en) * 2002-07-10 2005-09-20 Novo Nordisk A/S Injection device
WO2004007003A1 (en) * 2002-07-10 2004-01-22 Novo Nordisk A/S An injection device with a dose setting limiter
DE10232158A1 (en) * 2002-07-16 2004-02-05 Disetronic Licensing Ag Administration device with retracted piston rod
DE10232410B4 (en) * 2002-07-17 2006-12-21 Tecpharma Licensing Ag Administration device with dose indicator
DE10239784B4 (en) * 2002-08-29 2004-12-30 Tecpharma Licensing Ag Injection, infusion or inhalation device with dose display device
WO2004028598A1 (en) * 2002-09-24 2004-04-08 Shl Medical Ab Injecting device
WO2004030730A2 (en) * 2002-10-01 2004-04-15 Becton, Dickinson And Company Medication delivery pen
US7207971B2 (en) * 2002-12-23 2007-04-24 Boston Scientific Scimed, Inc. Pressure relief devices for use with balloon catheters
GB0304824D0 (en) * 2003-03-03 2003-04-09 Dca Internat Ltd Improvements in and relating to a pen-type injector
GB0304823D0 (en) 2003-03-03 2003-04-09 Dca Internat Ltd Improvements in and relating to a pen-type injector
US9205197B2 (en) 2003-03-03 2015-12-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device dose setting mechanism
GB0304822D0 (en) * 2003-03-03 2003-04-09 Dca Internat Ltd Improvements in and relating to a pen-type injector
GB0306642D0 (en) * 2003-03-22 2003-04-30 Dca Design Int Ltd Improvements in and relating to an injector for a medical product
GB0308267D0 (en) * 2003-04-10 2003-05-14 Dca Design Int Ltd Improvements in and relating to a pen-type injector
US20050027255A1 (en) 2003-07-31 2005-02-03 Sid Technologies, Llc Automatic injector
US8932264B2 (en) 2003-08-11 2015-01-13 Becton, Dickinson And Company Medication delivery pen assembly with needle locking safety shield
AU2004266131C1 (en) * 2003-08-12 2010-12-16 Eli Lilly And Company Medication dispensing apparatus with triple screw threads for mechanical advantage
WO2005021072A1 (en) * 2003-09-03 2005-03-10 Novo Nordisk A/S Threaded rod and nut assembly
UA86778C2 (en) * 2003-10-16 2009-05-25 Елі Ліллі Енд Компані Fixed dose medication dispensing device
DE20317377U1 (en) * 2003-11-03 2005-03-17 B D Medico S A R L injection device
JP4549079B2 (en) 2004-03-05 2010-09-22 パナソニック株式会社 Medical dosing device
ES2728788T3 (en) * 2004-03-30 2019-10-28 Lilly Co Eli Medication dispensing device with spring-activated locking activated by the administration of the final dose
US7857791B2 (en) * 2004-03-30 2010-12-28 Eli Lilly And Company Medication dispensing apparatus with gear set having drive member accommodating opening
DE202004006611U1 (en) 2004-04-23 2005-08-25 Tecpharma Licensing Ag Injection device for administering an injectable product with secured dosing device
DK3437682T3 (en) * 2004-09-02 2022-05-16 Sanofi Aventis Deutschland PHARMACEUTICAL ADMINISTRATIVE DEVICE
AT501250B1 (en) * 2004-09-22 2007-03-15 Pro Med Medizinische Produktio DEVICE FOR DOSED RECORDING AND DISTRIBUTION OF LIQUID
UA92707C2 (en) * 2004-09-24 2010-11-25 Санофи-Авентис Дойчланд Гмбх Cap for drug delivery device, drug delivery device and method of attaching/detaching a needle cover from the needle of a drug delivery device using the cap
AU2005291585B2 (en) * 2004-10-04 2011-04-07 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
DE602005016952D1 (en) * 2004-10-21 2009-11-12 Novo Nordisk As SELECTING MECHANISM FOR A PUSHPIN
CN101087626B (en) 2004-11-24 2012-11-14 贝克顿·迪金森公司 Automatic reconstitution injector device
DE102004059126B4 (en) * 2004-12-08 2014-01-16 Roche Diagnostics Gmbh Adapter for injection device
MX2007006975A (en) * 2004-12-09 2007-08-15 West Pharm Serv Inc Breech loaded fixed needle syringe and automatic injection device having the same.
DK3590569T3 (en) 2004-12-31 2021-04-06 Ypsomed Ag Device for dosed delivery of a liquid product with separation option for changing container
DE102004063648A1 (en) * 2004-12-31 2006-07-20 Tecpharma Licensing Ag Injection or infusion device with life-determining device
DE102004063649B4 (en) * 2004-12-31 2007-01-18 Tecpharma Licensing Ag Device for metered administration of a fluid product with dockable dose indicator
JP4903160B2 (en) * 2005-01-18 2012-03-28 ウォックハート アメリカズ インコーポレイテッド Pen-type drug injection device
CA2594764C (en) 2005-01-21 2014-01-14 Novo Nordisk A/S An automatic injection device with a top release mechanism
BRPI0614025A2 (en) 2005-01-24 2012-12-25 Antares Pharma Inc jet injectors
BRPI0607012A2 (en) * 2005-01-25 2009-12-01 Novo Nordisk As injection device
JP4954091B2 (en) * 2005-02-17 2012-06-13 ノボ・ノルデイスク・エー/エス Dose setting element for an injection device having a dose setting limiting mechanism
WO2006089768A1 (en) * 2005-02-28 2006-08-31 Novo Nordisk A/S A dose setting mechanism for an injection device
EP1855743B2 (en) 2005-02-28 2020-04-22 Novo Nordisk A/S Dose setting mechanism for an injection device capable of presetting a maximum dose
EP1890751A1 (en) * 2005-04-24 2008-02-27 Novo Nordisk A/S An injection device with a gearbox
US20090043264A1 (en) * 2005-04-24 2009-02-12 Novo Nordisk A/S Injection Device
US7727201B2 (en) * 2005-04-29 2010-06-01 Tecpharma Licensing Ag Dosing device with priming function
DE102005032705B4 (en) * 2005-05-24 2009-01-08 Tecpharma Licensing Ag Plastic spring
DE102005023823B4 (en) 2005-05-24 2022-11-17 Tecpharma Licensing Ag Dosing device for an injection device and injection device with such a dosing device
EP1907031A2 (en) 2005-05-31 2008-04-09 Novo Nordisk A/S Injection device with visual end-of-content indication
US9011386B2 (en) * 2005-06-01 2015-04-21 Shl Group Ab Device for delivering medicament
EP1904125B1 (en) 2005-07-18 2018-10-17 West Pharmaceutical Services, Inc. Auto-injection syringe having vent device
EP1909870B2 (en) 2005-07-27 2016-01-20 Novo Nordisk A/S Dose mechanism for an injection device for limiting a dose setting corresponding to the amount of medicament left
AU2006278928B2 (en) * 2005-07-27 2011-05-26 Novo Nordisk A/S Syringe device with a dose limiting mechanism and an additional safety mechanism
US7988675B2 (en) 2005-12-08 2011-08-02 West Pharmaceutical Services Of Delaware, Inc. Automatic injection and retraction devices for use with pre-filled syringe cartridges
EP1996260B1 (en) 2006-03-10 2015-09-23 Novo Nordisk A/S An injection device having a gearing arrangement
US8298194B2 (en) 2006-03-10 2012-10-30 Novo Nordisk A/S Injection device and a method of changing a cartridge in the device
US8118781B2 (en) * 2006-04-19 2012-02-21 Novo Nordisk A/S Fluid infusion system, a method of assembling such system and drug reservoir for use in the system
CN101420997B (en) * 2006-04-19 2013-03-27 诺沃-诺迪斯克有限公司 A fluid infusion system, a method of assembling such system and drug reservoir for use in the system
WO2007131025A1 (en) 2006-05-03 2007-11-15 Antares Pharma, Inc. Injector with adjustable dosing
WO2007131013A1 (en) 2006-05-03 2007-11-15 Antares Pharma, Inc. Two-stage reconstituting injector
EP2022736B1 (en) * 2006-05-16 2015-10-21 Rorze Corporation Shuttle type conveying device, microplate feeding and collecting device, pickup device for microplate, cassette for microplate, and shelf for receiving microplate
ATE458517T1 (en) 2006-05-16 2010-03-15 Novo Nordisk As TRANSMISSION MECHANISM FOR AN INJECTION DEVICE
BRPI0712028A2 (en) 2006-05-18 2011-12-20 Novo Nordisk As injector with a locking means so
US7673819B2 (en) * 2006-06-26 2010-03-09 Battelle Memorial Institute Handheld sprayer with removable cartridge and method of using same
WO2008002556A1 (en) * 2006-06-26 2008-01-03 Battelle Memorial Institute Cartridge having self-actuating seal for a wetted lead screw
US8632506B2 (en) * 2006-06-30 2014-01-21 Novo Nordisk A/S Medical delivery system comprising a coding mechanism
US8708972B2 (en) 2006-07-15 2014-04-29 Novo Nordisk A/S Medical delivery system with a rotatable coding element
US8613731B2 (en) * 2006-07-15 2013-12-24 Novo Nordisk A/S Medical delivery system with asymmetrical coding means
JP4131001B2 (en) * 2006-07-28 2008-08-13 大成化工株式会社 Metering device
WO2008025772A1 (en) * 2006-08-28 2008-03-06 Novo Nordisk A/S A medical delivery system adapted to be locked axially and unlocked rotationally
EP2083888A1 (en) * 2006-11-17 2009-08-05 Novo Nordisk A/S A medical delivery system comprising a coding mechanism between dosing assembly and medicament container
EP1923085A1 (en) 2006-11-17 2008-05-21 Sanofi-Aventis Deutschland GmbH Dosing and drive mechanism for drug delivery device
EP2121086B2 (en) 2006-11-21 2015-12-23 Novo Nordisk A/S Medical delivery system comprising locking ring with l-shaped grooves
JP2010512817A (en) * 2006-12-15 2010-04-30 ノボ・ノルデイスク・エー/エス Medical delivery system comprising a container and a dosing assembly having a radially moving fastening means
JP5213875B2 (en) * 2006-12-21 2013-06-19 ノボ・ノルデイスク・エー/エス Injection device
DE602008002896D1 (en) 2007-02-05 2010-11-18 Novo Nordisk As INJECTION BUTTON
EP2134391B1 (en) * 2007-03-09 2017-12-13 Eli Lilly and Company Delay mechanism for automatic injection device
AU2008231897B2 (en) 2007-03-23 2012-11-29 Novo Nordisk A/S An injection device comprising a locking nut
DE102007018696A1 (en) 2007-04-18 2008-10-23 Sanofi-Aventis Deutschland Gmbh Injection device for dispensing a medicament
MX2009011191A (en) * 2007-04-20 2010-01-20 Jennifer Barbour Ergonomic syringe.
DE102007019124A1 (en) * 2007-04-23 2008-11-06 Tecpharma Licensing Ag Reversible metering device for an injection device
US20090020639A1 (en) * 2007-07-18 2009-01-22 Mark Myrowich Methods and apparatus for configuring an erosion control system
US7836885B2 (en) * 2007-09-18 2010-11-23 Robert Abrams Semi-automatic emergency medication dose nebulizer
US20090071470A1 (en) * 2007-09-18 2009-03-19 Robert Abrams Emergency medication dose nebulizer
US7814902B2 (en) * 2007-09-18 2010-10-19 Robert Abrams Semi-automatic emergency medication dose nebulizer
US20090151716A1 (en) * 2007-09-18 2009-06-18 Robert Abrams Semi-automatic emergency medication dose nebulizer
US8015969B2 (en) * 2007-09-18 2011-09-13 Robert Abrams Semi-automatic emergency medication dose nebulizer
US8291902B2 (en) 2007-09-18 2012-10-23 Robert Abrams Enhanced semi-automatic emergency medication dose nebulizer
US7883033B2 (en) * 2007-12-10 2011-02-08 Battelle Memorial Institute Lead screw locking device
US8390174B2 (en) * 2007-12-27 2013-03-05 Boston Scientific Scimed, Inc. Connections for ultrasound transducers
BRPI0923666A2 (en) * 2008-01-23 2012-12-25 Novo Nordisk As injection device for delivering distributed doses of liquid drug
US8992484B2 (en) 2008-01-23 2015-03-31 Novo Nordisk A/S Device for injecting apportioned doses of liquid drug
US20090198199A1 (en) * 2008-02-01 2009-08-06 Drug Enhancement Company Of America, Llc Inert container and dispenser
CA2718053C (en) 2008-03-10 2016-09-27 Antares Pharma, Inc. Injector safety device
US8206353B2 (en) 2008-04-11 2012-06-26 Medtronic Minimed, Inc. Reservoir barrier layer systems and methods
RS52103B (en) 2008-05-02 2012-06-30 Sanofi-Aventis Deutschland Gmbh Medication delivery device
GB2460398A (en) * 2008-05-20 2009-12-02 Owen Mumford Ltd Auto-injector having a magnetic injection indicator and a needle sheath retainer
GB2461694A (en) * 2008-07-08 2010-01-13 Weston Terence E Side-loaded pen injector
JP5611208B2 (en) 2008-08-05 2014-10-22 アンタレス・ファーマ・インコーポレーテッド Multiple dose injection device
US8133199B2 (en) * 2008-08-27 2012-03-13 Boston Scientific Scimed, Inc. Electroactive polymer activation system for a medical device
BRPI0920191B8 (en) 2008-10-13 2021-06-22 Sanofi Aventis Deutschland drug delivery device
CA2738877A1 (en) 2008-10-24 2010-04-29 Claus Schmidt Moller Dial-down mechanism for wind-up pen
CA2742810C (en) * 2008-11-07 2016-11-29 Min Wei Injection pen for intradermal medication injection
US8366680B2 (en) 2008-12-12 2013-02-05 Sanofi-Aventis Deutschland Gmbh Resettable drive mechanism for a medication delivery device and medication delivery device
ES2572362T3 (en) 2008-12-12 2016-05-31 Shl Group Ab Medication delivery device
EP2196232A1 (en) 2008-12-12 2010-06-16 Sanofi-Aventis Deutschland GmbH Drive mechanism for a medication delivery device and medication delivery device
EP2201970A1 (en) * 2008-12-23 2010-06-30 Sanofi-Aventis Deutschland GmbH Drug delivery device
WO2010076275A1 (en) 2008-12-29 2010-07-08 Sanofi-Aventis Deutschland Gmbh Medical injection device with electric motor drive control
WO2010084084A1 (en) * 2009-01-23 2010-07-29 Sanofi-Aventis Deutschland Gmbh Medicament identification system for multi-dose injection devices
ES2608279T3 (en) * 2009-02-06 2017-04-07 Becton, Dickinson And Company Lubricated pen needle
CA2753214C (en) 2009-02-27 2017-07-25 Tandem Diabetes Care, Inc. Methods and devices for determination of flow reservoir volume
US9250106B2 (en) 2009-02-27 2016-02-02 Tandem Diabetes Care, Inc. Methods and devices for determination of flow reservoir volume
EP2405961A4 (en) 2009-03-09 2012-08-08 Purdue Research Foundation Compact device for rapidly mixing and delivering substances to a patient
KR101597672B1 (en) 2009-03-20 2016-02-25 앤태어스 파머, 인코퍼레이티드 Hazardous agent injection system
CN102448706B (en) * 2009-03-31 2014-07-16 赛诺菲-安万特德国有限公司 Method for manufacturing a composite work piece for a drug delivery device and composite work piece for a drug delivery device
BRPI1012554A2 (en) 2009-03-31 2016-10-18 Sanofi Aventis Deutschland pen cap
WO2010115818A1 (en) 2009-03-31 2010-10-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device
JP5898612B2 (en) 2009-03-31 2016-04-06 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Dosing button for drug delivery device and method of manufacturing the dosing button
EP2414002B1 (en) 2009-03-31 2019-10-30 Sanofi-Aventis Deutschland GmbH Mounting arrangement and coupling assembly for a drug delivery device
EP2415041B1 (en) 2009-03-31 2018-11-21 Sanofi-Aventis Deutschland GmbH Method for manufacturing a drug delivery device body using an adhesive and drug delivery device body
BRPI1016143A2 (en) 2009-04-30 2016-04-19 Sanofi Aventis Deutschland axially adjustable piston rod connection for triggering mechanism of a drug delivery device
US20110023281A1 (en) * 2009-04-30 2011-02-03 Stat Medical Devices, Inc. Pen injection device cap with integral pen needle quick release and/or removal system
US9855389B2 (en) 2009-05-20 2018-01-02 Sanofi-Aventis Deutschland Gmbh System comprising a drug delivery device and a cartridge provided with a bung and a method of identifying the cartridge
US9623187B2 (en) 2009-06-01 2017-04-18 Sanofi-Aventis Deutschland Gmbh Resettable drug delivery device
US8672896B2 (en) 2009-06-01 2014-03-18 Sanofi-Aventis Deutschland Gmbh Inner housing for a drug delivery device
US10034982B2 (en) 2009-06-01 2018-07-31 Sanofi-Aventis Deutschland Gmbh Spindle for a drug delivery device
US9108007B2 (en) * 2009-06-01 2015-08-18 Sanofi-Aventis Deutschland Gmbh Spindle and bearing combination and drug delivery device
US8257319B2 (en) * 2009-06-01 2012-09-04 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline
US9125994B2 (en) * 2009-06-01 2015-09-08 Sanofi—Aventis Deutschland GmbH Drug delivery device with dose dial sleeve rotational stop
US9199040B2 (en) * 2009-06-01 2015-12-01 Sanofi-Aventis Deutschland Gmbh Drug delivery device last dose lock-out mechanism
US9950116B2 (en) 2009-06-01 2018-04-24 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
US8585656B2 (en) 2009-06-01 2013-11-19 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for priming a drug delivery device
AR076722A1 (en) * 2009-06-02 2011-06-29 Sanofi Aventis Deutschland SET FOR A DEVICE FOR THE DELIVERY OF PHARMACOS AND DEVICE FOR THE DELIVERY OF PHARMACOS
EP2266647A1 (en) 2009-06-25 2010-12-29 Sanofi-Aventis Deutschland GmbH Drive mechanism for drug delivery device
EP2462348B1 (en) 2009-07-14 2018-11-21 Sanofi-Aventis Deutschland GmbH Pump chamber for a peristaltic pump
CA2769030C (en) 2009-07-30 2016-05-10 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
EP2292286A1 (en) 2009-09-07 2011-03-09 Sanofi-Aventis Deutschland GmbH Drive mechanism for a medication delivery device and medication delivery device
WO2011026931A1 (en) 2009-09-07 2011-03-10 Sanofi-Aventis Deutschland Gmbh Drive mechanism for drug delivery device
DK2480268T3 (en) 2009-09-23 2016-12-12 Sanofi Aventis Deutschland Interior and indicator for pharmaceutical feed device
CN102648013B (en) 2009-09-30 2015-12-16 赛诺菲-安万特德国有限公司 Resettable drug delivery device
WO2011039233A1 (en) 2009-09-30 2011-04-07 Sanofi-Aventis Deutschland Gmbh Injection device
AU2010303987B2 (en) 2009-10-08 2012-10-18 Shl Medical Ag Medicament delivery device
AU2010303985B2 (en) * 2009-10-08 2012-09-13 Shl Group Ab Metered liquid droplet inhaler
GB0918145D0 (en) 2009-10-16 2009-12-02 Owen Mumford Ltd Injector apparatus
US9233213B2 (en) 2009-10-16 2016-01-12 Janssen Biotech, Inc. Palm activated drug delivery device
DK2488237T3 (en) 2009-10-16 2018-08-27 Janssen Biotech Inc TABLE ACTIVATED PHARMACEUTICAL DELIVERY
EP2496290B1 (en) 2009-11-03 2017-01-04 Sanofi-Aventis Deutschland GmbH Assembly for a drug delivery device and drug delivery device
ES2749395T3 (en) 2009-11-20 2020-03-20 Becton Dickinson Co Injection device without the need for a gear
EP2335755A1 (en) 2009-12-17 2011-06-22 Sanofi-Aventis Deutschland GmbH Device and method for delivery of two or more drug agents
JP6085479B2 (en) 2010-01-22 2017-02-22 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and system for identifying information about a drug reservoir
EP3421028A3 (en) 2010-01-22 2019-04-10 Sanofi-Aventis Deutschland GmbH Coded collapsible drug reservoir
US9835279B2 (en) 2010-01-22 2017-12-05 Sanofi-Aventis Deutschland Gmbh Coded cartridge holder and fastener enabled by cartridge size
TW201138882A (en) 2010-01-25 2011-11-16 Sanofi Aventis Deutschland Drive assembly for a drug delivery device and drug delivery device
EP2536458B1 (en) * 2010-02-18 2017-10-25 Sanofi-Aventis Deutschland GmbH Clutch mechanism
RS53618B1 (en) 2010-03-01 2015-04-30 Eli Lilly And Company Automatic injection device with delay mechanism including dual functioning biasing member
CN103143082B (en) * 2010-03-31 2015-03-25 Shl集团有限责任公司 Medicament delivery device
CA2794816A1 (en) 2010-03-31 2011-10-06 Sanofi-Aventis Deutschland Gmbh Set of drug delivery devices with tactile or visual enhancements
WO2011151315A1 (en) 2010-06-02 2011-12-08 Sanofi-Aventis Deutschland Gmbh Training cartridge for a drug delivery device
ES2649399T3 (en) 2010-06-11 2018-01-11 Sanofi-Aventis Deutschland Gmbh Drive assembly, drive component and medication delivery device
EP2399635A1 (en) 2010-06-28 2011-12-28 Sanofi-Aventis Deutschland GmbH Auto-injector
RU2573039C2 (en) 2010-07-02 2016-01-20 Санофи-Авентис Дойчланд Гмбх Safety device for pre-filled syringe and injector
WO2012017035A1 (en) 2010-08-06 2012-02-09 Sanofi-Aventis Deutschland Gmbh Cartridge holder and method for assembling a cartridge unit for a drug delivery device
EP2603259B1 (en) 2010-08-13 2016-03-23 Sanofi-Aventis Deutschland GmbH Coding system for a drug delivery device and drug delivery system
US10188801B2 (en) 2010-08-13 2019-01-29 Sanofi-Aventis Deutschland Gmbh Mechanism for preventing selection of a dose
JP6104159B2 (en) 2010-08-26 2017-03-29 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and system for determining information relating to a drug reservoir
DK2618872T3 (en) 2010-09-24 2020-06-02 Cpu Innovation Aps Gear mechanism for a dose delivery device
EP2438949A1 (en) 2010-10-06 2012-04-11 Sanofi-Aventis Deutschland GmbH Drive mechanism for a drug delivery device and drug delivery device
AU2011315623B2 (en) 2010-10-13 2014-12-11 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism and method of setting a dose
CA2813528A1 (en) 2010-10-13 2012-04-19 Sanofi-Aventis Deutschland Gmbh Dose setting mechanism for a drug delivery device
WO2012055845A1 (en) * 2010-10-25 2012-05-03 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for assembling a drug delivery device
EP2635328A1 (en) 2010-11-03 2013-09-11 Sanofi-Aventis Deutschland GmbH Needle assembly for the delivery of at least two medicaments
EP2637717B1 (en) 2010-11-12 2019-07-24 Sanofi-Aventis Deutschland GmbH Drug delivery device and method for a drug delivery device
WO2012068432A1 (en) 2010-11-19 2012-05-24 Msd Consumer Care, Inc. Click pen applicator device and method of using same
EP2460552A1 (en) * 2010-12-06 2012-06-06 Sanofi-Aventis Deutschland GmbH Drug delivery device with locking arrangement for dose button
CA2821943A1 (en) 2010-12-22 2012-06-28 Sanofi-Aventis Deutschland Gmbh Dedicated cartridge
EP2489390A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Detent mechanism
EP2489384A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489385A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489387A1 (en) * 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489386A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489382A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489381A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489389A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Detent mechanism
EP2489388A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Auto-injector
EP2489380A1 (en) 2011-02-18 2012-08-22 Sanofi-Aventis Deutschland GmbH Injection device
JP6050263B2 (en) 2011-03-17 2016-12-21 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Drug delivery device with explicit closure means
US10446269B2 (en) 2011-03-24 2019-10-15 Sanofi-Aventis Deutschland Gmbh Device and method for detecting an actuation action performable with a medical device
CN106474598A (en) 2011-04-28 2017-03-08 赛诺菲-安万特德国有限公司 Configure for the valve of medical treatment device
CN103608058B (en) 2011-04-28 2017-03-15 赛诺菲-安万特德国有限公司 The connection of medical apparatus
CN103619379B (en) 2011-04-28 2016-10-19 赛诺菲-安万特德国有限公司 Z-shaped fluid passage configures
JP2014518664A (en) 2011-04-28 2014-08-07 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Dosing interface joining technology
CN103608061B (en) 2011-04-28 2016-01-20 赛诺菲-安万特德国有限公司 For the locking member of distribution interface
TWI538707B (en) 2011-05-06 2016-06-21 賽諾菲阿凡提斯德意志有限公司 Drug delivery device and cartridge holder for a drug delivery device
AR086255A1 (en) 2011-05-06 2013-11-27 Sanofi Aventis Deutschland ASSEMBLY FOR A DRUG ADMINISTRATION DEVICE AND DRUG ADMINISTRATION DEVICE
WO2012160156A2 (en) 2011-05-25 2012-11-29 Sanofi-Aventis Deutschland Gmbh Medicament delivery device and method of controlling the device
AU2012269060B2 (en) * 2011-06-17 2016-07-14 Sanofi-Aventis Deutschland Gmbh Cartridge holder assembly for drug delivery devices
DE102011107199A1 (en) * 2011-07-13 2013-01-17 Haselmeier Gmbh Injection device and method for its production
WO2013010889A1 (en) 2011-07-15 2013-01-24 Sanofi-Aventis Deutschland Gmbh A drug delivery device
US9220660B2 (en) 2011-07-15 2015-12-29 Antares Pharma, Inc. Liquid-transfer adapter beveled spike
US9440028B2 (en) 2011-07-15 2016-09-13 Sanofi-Aventis Deutschland Gmbh Drug delivery device with electro-mechanic drive mechanism
US8496619B2 (en) 2011-07-15 2013-07-30 Antares Pharma, Inc. Injection device with cammed ram assembly
WO2013034716A1 (en) 2011-09-08 2013-03-14 Sanofi-Aventis Deutschland Gmbh Method and monitoring device for monitoring operation of a drug delivery device
DK2764246T3 (en) 2011-09-21 2019-07-29 Sanofi Aventis Deutschland PERISTALTIC PUMP
US9695813B2 (en) 2011-09-21 2017-07-04 Sanofi-Aventis Deutschland Gmbh Peristaltic pump
US8657793B2 (en) 2011-09-30 2014-02-25 Becton Dickinson France, S.A.S Space saving plunger cap and rod assembly
WO2013050461A1 (en) 2011-10-06 2013-04-11 Sanofi-Aventis Deutschland Gmbh Display arrangement for a drug delivery device
EP2771050B1 (en) 2011-10-27 2020-06-24 Sanofi-Aventis Deutschland GmbH Component of a drug delivery device and method of assembly
BR112014010467A2 (en) 2011-11-02 2017-04-18 Sanofi Aventis Deutschland piston for a cartridge to be filled with a medicament, cartridge for use with a drug delivery device and method of manufacturing a piston
CN104053466B (en) 2011-11-18 2017-05-24 赛诺菲-安万特德国有限公司 Medical device and method for limiting the use of the medical device
WO2013072444A1 (en) 2011-11-18 2013-05-23 Sanofi-Aventis Deutschland Gmbh Battery disconnection circuit
CN107029319B (en) 2011-11-22 2020-12-11 赛诺菲-安万特德国有限公司 Pen type drug injection device with controller and time locking mechanism for its actuation
US10105490B2 (en) 2011-11-29 2018-10-23 Sanofi-Aventis Deutschland Gmbh Welded housing components of a drug delivery device
US9813003B2 (en) 2011-12-22 2017-11-07 Sanofi-Aventis Deutschland Gmbh Apparatus with a main control unit, a control unit and an electromechanical device and a method for operating such an apparatus
EP2797650A2 (en) 2011-12-29 2014-11-05 Novo Nordisk A/S Torsion-spring based wind-up autoinjector pen with dial-up/dial-down dosing mechanism
CN104271185B (en) 2012-01-27 2017-09-12 诺和诺德股份有限公司 Injection device with slip scale
TW201345578A (en) 2012-01-31 2013-11-16 Sanofi Aventis Deutschland Limiting life time of dispense assembly
WO2013120773A1 (en) 2012-02-13 2013-08-22 Sanofi-Aventis Deutschland Gmbh A supplementary device for a manually operable injection device
US10195351B2 (en) 2012-02-13 2019-02-05 Sanofi-Aventis Deutschland Gmbh Supplemental device for attachment to an injection device
EP2814546B1 (en) 2012-02-13 2020-06-03 Sanofi-Aventis Deutschland GmbH Pen-type injection device and electronic clip-on module therefor
CN104185489B (en) * 2012-02-21 2016-10-26 诺和诺德股份有限公司 The end of dosage indicator
PT2822618T (en) 2012-03-06 2024-03-04 Antares Pharma Inc Prefilled syringe with breakaway force feature
EP2830682B1 (en) 2012-03-28 2016-11-02 Sanofi-Aventis Deutschland GmbH Housing of a drug delivery device
RU2651907C2 (en) 2012-04-05 2018-04-24 Санофи-Авентис Дойчланд Гмбх Pen-type injector with window element
JP6339558B2 (en) 2012-04-05 2018-06-06 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Pen syringe
CA2868500C (en) 2012-04-06 2020-04-21 Antares Pharma, Inc. Needle assisted jet injection administration of testosterone compositions
WO2013153011A1 (en) 2012-04-11 2013-10-17 Sanofi-Aventis Deutschland Gmbh Cartridge holder and pen-type injector
CN104203316A (en) 2012-04-19 2014-12-10 赛诺菲-安万特德国有限公司 Assembly for a drug delivery device and drug delivery device
US9149585B2 (en) 2012-04-20 2015-10-06 Cook Medical Technologies Llc Multi-needle injection device
EP2842225B1 (en) 2012-04-25 2022-02-23 Sanofi-Aventis Deutschland GmbH Apparatus comprising electromechanical device and motion detector and method for operating apparatus
ES2684972T3 (en) 2012-05-04 2018-10-05 Sanofi-Aventis Deutschland Gmbh Drug administration device
WO2013169804A1 (en) 2012-05-07 2013-11-14 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
US9945519B2 (en) 2012-05-16 2018-04-17 Sanofi-Aventis Deutschland Gmbh Dispense interface
CN104271177A (en) 2012-05-16 2015-01-07 赛诺菲-安万特德国有限公司 Dispense interface
US9180242B2 (en) 2012-05-17 2015-11-10 Tandem Diabetes Care, Inc. Methods and devices for multiple fluid transfer
US9255830B2 (en) 2012-05-21 2016-02-09 Common Sensing Inc. Dose measurement system and method
US8817258B2 (en) 2012-05-21 2014-08-26 Common Sensing Inc. Dose measurement system and method
CN104349808A (en) 2012-05-30 2015-02-11 赛诺菲-安万特德国有限公司 Bearing for piston rod body for drug delivery device, piston rod arrangement and piston rod body
US8992469B2 (en) 2012-06-26 2015-03-31 Glucago Llc Reconstitution device
JP2015525582A (en) 2012-06-27 2015-09-07 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Linear actor placement
JP2015525627A (en) 2012-07-13 2015-09-07 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Capillary channel structure for dosing interface
DK2879740T3 (en) 2012-08-03 2017-07-03 Sanofi Aventis Deutschland PENTYPE PHARMACEUTICAL INJECTION DEVICE AND ELECTRONIC ADDITIONAL MONITORING MODULE FOR MONITORING AND REGISTRATION OF DOSAGE SETTING AND ADMINISTRATION
CN104797282B (en) 2012-08-03 2017-09-12 赛诺菲-安万特德国有限公司 Pen-type drug injection device and the additional monitoring module of electronics for monitoring and recording dosage setting and the daily record being administered
EP2882478A1 (en) 2012-08-08 2015-06-17 Sanofi-Aventis Deutschland GmbH Drug delivery device with tamper-evident closure
EP2698179A1 (en) 2012-08-14 2014-02-19 Sanofi-Aventis Deutschland GmbH Injection device
US10272204B2 (en) 2012-08-20 2019-04-30 Sanofi-Aventis Deutschland Gmbh Drug delivery device and method for electrically detecting contact between piston rod and cartridge bung
JP6298056B2 (en) 2012-08-20 2018-03-20 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Cap for drug delivery device and drug delivery device
AR092276A1 (en) 2012-08-31 2015-04-08 Sanofi Aventis Deutschland FARMACOS ADMINISTRATION DEVICE
US9345838B2 (en) 2012-08-31 2016-05-24 Sanofi-Aventis Deutschland Gmbh Drug delivery device
EP2895218B1 (en) 2012-09-11 2017-12-27 Sanofi-Aventis Deutschland GmbH Drive mechanism for a drug delivery device and drug delivery device
US9999729B2 (en) 2012-10-10 2018-06-19 Sanofi-Aventis Deutschland Gmbh Needle assembly attachable to an injection device, the needle assembly having a reservoir assembly with locking mechanism
EP2911722B1 (en) 2012-10-23 2021-06-02 Sanofi-Aventis Deutschland GmbH Counter system for use in a drug delivery device
WO2014067879A1 (en) 2012-10-29 2014-05-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device with drug container comprising a sensor and optical data transmission system
US9125995B2 (en) 2012-12-05 2015-09-08 Glucago Llc Reconstitution devices
EP2934631A1 (en) * 2012-12-21 2015-10-28 Novo Nordisk A/S State changing appliance for a drug delivery device
EP2945669B1 (en) 2013-01-15 2018-03-14 Sanofi-Aventis Deutschland GmbH Pen type drug injection device with low friction dose encoder mechanism on thread
DK2945674T3 (en) 2013-01-15 2017-06-06 Sanofi Aventis Deutschland PENTYPE PHARMACEUTICAL INJECTION DEVICE WITH DOSAGE CODE MECHANISM USING ABSOLUTE ANGLE
JP6366607B2 (en) 2013-01-15 2018-08-01 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Auxiliary devices attached to medical injection devices to generate usage reports in digital image format for use of injection devices
EP2945671B1 (en) 2013-01-15 2021-04-07 Sanofi-Aventis Deutschland GmbH Pen type drug injection device with friction reducing dose encoder mechanism
DK2945670T3 (en) 2013-01-15 2018-02-26 Sanofi Aventis Deutschland PHARMACEUTICAL INJECTION DEVICE OF THE PENY TYPE WITH DOSAGE CODE MECHANISM AND SWITCHES BETWEEN DOSAGE SETTING AND DOSAGE DISPENSING CONDITIONS
DK2948123T3 (en) 2013-01-22 2017-10-30 Sanofi Aventis Deutschland ACCESSORIES WITH A TRANSFERABLE SEAL
EP2950851B1 (en) 2013-01-29 2017-01-25 Sanofi-Aventis Deutschland GmbH Drug delivery device
WO2014118105A1 (en) 2013-01-29 2014-08-07 Sanofi-Aventis Deutschland Gmbh Drug delivery device
DK2950850T3 (en) 2013-01-29 2017-02-06 Sanofi Aventis Deutschland DEVICE FOR DETERMINING A POSITION OF A STAMP
CN110404140B (en) 2013-01-29 2022-09-30 赛诺菲-安万特德国有限公司 Electronic module and drug delivery device
US10173005B2 (en) 2013-01-29 2019-01-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device
EP2953672A1 (en) 2013-02-08 2015-12-16 Sanofi-Aventis Deutschland GmbH Drug delivery device with needle protection
EP4349383A2 (en) 2013-02-11 2024-04-10 Antares Pharma, Inc. Needle assisted jet injection device having reduced trigger force
TW201507749A (en) 2013-03-11 2015-03-01 Sanofi Aventis Deutschland Assembly for a drug delivery device
TWI644693B (en) 2013-03-11 2018-12-21 德商賽諾菲阿凡提斯德意志有限公司 Assembly for a drug delivery device
TWI653069B (en) 2013-03-11 2019-03-11 德商賽諾菲阿凡提斯德意志有限公司 "piston rod and drug delivery device comprising the piston rod"
WO2014164786A1 (en) 2013-03-11 2014-10-09 Madsen Patrick Dosage injector with pinion system
WO2014165136A1 (en) 2013-03-12 2014-10-09 Antares Pharma, Inc. Constant volume prefilled syringes and kits thereof
JP6407173B2 (en) 2013-03-13 2018-10-17 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Assemblies for drug delivery devices and drug delivery devices comprising such assemblies
EP2968778B1 (en) 2013-03-13 2020-07-22 Sanofi-Aventis Deutschland GmbH Add-on grip- and actuation-sleeve for a pen-type drug injection device
EP2968785B1 (en) 2013-03-13 2021-01-06 Sanofi-Aventis Deutschland GmbH Drug delivery device and method for eliminating a clearance of the piston rod for drug delivery devices
DK2968786T3 (en) 2013-03-13 2020-12-14 Sanofi Aventis Deutschland MEDICINE DELIVERY DEVICE WITH A FEEDBACK FUNCTION
US10376645B2 (en) 2013-03-13 2019-08-13 Sanofi-Aventis Deutschland Gmbh Drive mechanism for a drug delivery device
US9999732B2 (en) 2013-03-13 2018-06-19 Sanofi-Aventis Deutschland Gmbh Drug injection device with particular optical window elements for unambiguous legibility of dose value
JP6393284B2 (en) 2013-03-13 2018-09-19 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Assembly for drug delivery device including feedback function
AU2014241449A1 (en) 2013-03-14 2015-08-13 Eli Lilly And Company Delay mechanism suitable for compact automatic injection device
US9173998B2 (en) 2013-03-14 2015-11-03 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
HUE033629T2 (en) 2013-03-14 2017-12-28 Lilly Co Eli Trigger assembly for an automatic injection device
DK2983761T3 (en) 2013-04-10 2018-02-19 Sanofi Sa DRIVE DEVICE FOR PHARMACEUTICAL DISPENSER
JP6419158B2 (en) * 2013-04-10 2018-11-07 サノフイSanofi Drive mechanism of drug delivery device
RU2671419C2 (en) 2013-04-10 2018-10-31 Санофи Injection device
BR112015025703A2 (en) * 2013-04-10 2017-07-18 Sanofi Sa injection device
US10473511B2 (en) 2013-04-22 2019-11-12 Sanofi-Aventis Deutschland Gmbh Sensor device for attachment to a drug delivery device
EP3269412A1 (en) 2013-04-22 2018-01-17 Sanofi-Aventis Deutschland GmbH Supplemental device for attachment to an injection device
EP2994179B1 (en) 2013-05-07 2018-03-14 Sanofi-Aventis Deutschland GmbH A supplemental device for attachment to an injection device
EP3593843B1 (en) 2013-05-07 2023-09-27 Sanofi-Aventis Deutschland GmbH Supplemental device with mechanical dose switch
TR201903611T4 (en) 2013-05-16 2019-04-22 Sanofi Aventis Deutschland Assembly and drug delivery device for a drug delivery device.
CN105209092B (en) 2013-05-16 2019-01-04 赛诺菲-安万特德国有限公司 The mechanism of medicine delivery device
US10543320B2 (en) 2013-05-27 2020-01-28 Sanofi-Aventis Deutschland Gmbh Drive assembly for a drug delivery and drug delivery device
EP3003439B1 (en) 2013-05-27 2021-06-23 Sanofi-Aventis Deutschland GmbH Assembly for a drug delivery device and drug delivery device
DE102013212325A1 (en) * 2013-06-26 2014-12-31 B. Braun Melsungen Ag Adjustment device for a flow regulator
USRE46814E1 (en) 2013-07-16 2018-05-01 Sanofi-Aventis Deutschland Gmbh Medication delivery device
TW201511785A (en) 2013-07-17 2015-04-01 Sanofi Sa Display assembly and dispensing device
AU2014296217B2 (en) 2013-08-02 2018-08-30 Becton, Dickinson And Company Injection pen
CN105658266A (en) * 2013-08-22 2016-06-08 赛诺菲-安万特德国有限公司 Assembly for a drug delivery device and use of an attenuation member
KR102461754B1 (en) * 2013-08-29 2022-11-02 사노피-아벤티스 도이칠란트 게엠베하 Housing and cap for an injection device made of an outer metal part and an inner plastic part
PL3038679T3 (en) 2013-08-29 2021-11-29 Sanofi-Aventis Deutschland Gmbh Cap assembly for a drug delivery device and drug delivery device
CN105492050B (en) 2013-08-29 2019-06-21 赛诺菲-安万特德国有限公司 Lid for medicine delivery device
JP6510528B2 (en) 2013-09-03 2019-05-08 サノフイSanofi DRIVING MECHANISM AND INJECTION DEVICE HAVING DRIVING MECHANISM
US10583258B2 (en) 2013-09-03 2020-03-10 Sanofi Mechanism for a drug delivery device and drug delivery device comprising the mechanism
HUE052236T2 (en) 2013-09-23 2021-04-28 Sanofi Aventis Deutschland Assembly for a drug delivery device and drug delivery device
EP3068470B1 (en) 2013-11-15 2020-12-23 Sanofi-Aventis Deutschland GmbH Assembly for a drug delivery device and drug delivery device
SE538612C2 (en) 2013-11-20 2016-10-04 Brighter Ab (Publ) Medical device with safety device
AU2014352059A1 (en) 2013-11-22 2016-05-19 Sanofi-Aventis Deutschland Gmbh Spring assisted drug delivery device
EP3071261B1 (en) * 2013-11-22 2019-05-08 Sanofi-Aventis Deutschland GmbH Drug delivery device
JP6607855B2 (en) 2013-11-22 2019-11-20 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Assembly of drug delivery device
US9962494B2 (en) 2013-11-22 2018-05-08 Sanofi-Aventis Deutschland Gmbh Drug delivery device with end of dose feedback
DK3071264T3 (en) * 2013-11-22 2023-11-06 Sanofi Aventis Deutschland DEVICE FOR DRUG ADMINISTRATION DEVICE AND DRUG ADMINISTRATION DEVICE COMPRISING SUCH DEVICE
EP4360675A2 (en) 2013-11-22 2024-05-01 Sanofi-Aventis Deutschland GmbH Drug delivery device with dose knob clutch
US10314982B2 (en) 2013-11-22 2019-06-11 Sanofi-Aventis Deutschland Gmbh Drug delivery device with anti-counterfeit features
JP6815198B2 (en) 2013-11-22 2021-01-20 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Drug delivery device with unidirectional coupling
CN105764546B (en) * 2013-11-22 2020-07-17 赛诺菲-安万特德国有限公司 Spring assisted drug delivery device
WO2015091763A1 (en) 2013-12-20 2015-06-25 Sanofi-Aventis Deutschland Gmbh Assembly for a drug delivery device and drug delivery device
TWI709569B (en) 2014-01-17 2020-11-11 美商健臻公司 Sterile chromatography resin and use thereof in manufacturing processes
USD770038S1 (en) 2014-06-26 2016-10-25 Eli Lilly And Company Medication injection device
TW201603851A (en) 2014-07-01 2016-02-01 賽諾菲公司 Drug delivery device
CN106573105B (en) 2014-07-24 2019-10-18 泰利福医疗公司 Dose dispensing syringe
WO2016019375A1 (en) 2014-08-01 2016-02-04 Common Sensing Inc. Liquid measurement systems, apparatus, and methods optimized with temperature sensing
EP3265150A4 (en) * 2014-10-06 2018-06-13 Aktivax Auto-injector
TW201620564A (en) 2014-10-09 2016-06-16 賽諾菲公司 Drive mechanism and drug delivery device herewith
US10576212B2 (en) * 2014-12-08 2020-03-03 Sanofi Dose setting mechanism and drug delivery device herewith
US11058823B2 (en) 2014-12-08 2021-07-13 Sanofi Clicker arrangement and drug delivery device herewith
KR101976299B1 (en) 2014-12-12 2019-05-07 에스에이치엘 메디컬 아게 Dose setting mechanism and medicament delivery device comprising the dose setting mechanism
EP3058970A1 (en) 2015-02-19 2016-08-24 Sanofi-Aventis Deutschland GmbH Data collection device for attachment to an injection device
JP7059008B2 (en) 2015-03-23 2022-04-25 サノフィ-アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Interconnection of the injection device housing and housing components
CN112206381B (en) 2015-06-09 2023-10-27 赛诺菲-安万特德国有限公司 Data acquisition device for attachment to an injection device
USD851755S1 (en) * 2015-10-22 2019-06-18 Eyepoint Pharmaceuticals Us, Inc. Ocular inserter
PL227678B1 (en) 2015-12-22 2018-01-31 Copernicus Spolka Z Ograniczona Odpowiedzialnoscia Control and drive system for the device intended for injection and the device for making injections equipped with such a system
JP6543775B2 (en) 2016-03-25 2019-07-10 イーライ リリー アンド カンパニー Determination of set and delivered dose in drug delivery device
US11266788B2 (en) 2016-04-19 2022-03-08 Eli Lilly And Company Determination of a dose in a medication delivery device using two moving arrays with teeth and a sensor
USD820438S1 (en) 2016-06-13 2018-06-12 Carebay Europe Ltd. Medicament delivery device
USD820439S1 (en) 2016-06-13 2018-06-12 Carebay Europe Ltd. Medicament delivery device
AU2016100990B4 (en) * 2016-06-21 2018-07-19 Austech Innovations Pty Ltd Metered Dose Device for a Liquid
EP3260149A1 (en) 2016-06-23 2017-12-27 TecPharma Licensing AG A method for fixation of a cartridge in an injection device
EP3108914B1 (en) 2016-07-07 2019-02-27 Copernicus SP. Z O.O. Injection device for delivering a defined number of equal doses of a liquid substance
US10183120B2 (en) 2016-07-15 2019-01-22 Common Sensing Inc. Dose measurement systems and methods
JP6718554B2 (en) 2016-08-12 2020-07-08 イーライ リリー アンド カンパニー Dose determination in drug delivery devices
EP3548119B1 (en) 2016-12-01 2020-11-18 Novo Nordisk A/S Drug delivery device with clutch feature
AU2017375602B2 (en) 2016-12-15 2020-01-30 Eli Lilly And Company Medication delivery device with sensing system
EP3348298A1 (en) 2017-01-16 2018-07-18 Novo Nordisk A/S Drug delivery device with rotationally geared piston rod driver
US10688247B2 (en) * 2017-07-13 2020-06-23 Haselmeier Ag Injection device with flexible dose selection
PL232651B1 (en) 2017-07-18 2019-07-31 Copernicus Spolka Z Ograniczona Odpowiedzialnoscia Coupling with locking system for the medical injecting device
TWI783890B (en) 2017-08-24 2022-11-11 丹麥商諾佛 儂迪克股份有限公司 Glp-1 compositions and uses thereof
WO2019058382A1 (en) 2017-09-19 2019-03-28 Bharat Serums And Vaccines Ltd An automated multi-use injecting system for administration of injectable medicaments
KR20220143037A (en) 2020-02-18 2022-10-24 노보 노르디스크 에이/에스 GLP-1 compositions and uses thereof
US20230181831A1 (en) * 2020-04-28 2023-06-15 Cc Biotechnology Corporation Syringe
US20220054740A1 (en) * 2020-08-18 2022-02-24 Becton, Dickinson And Company Multiple telescoping screw-driven pump mechanism with anti-rotation of innermost screw keyed to reservoir plunger in fluid delivery device
WO2023278498A1 (en) * 2021-07-01 2023-01-05 Eli Lilly And Company Medication delivery device with dose button

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0037696B1 (en) * 1980-04-08 1984-05-23 Greater Glasgow Health Board Dispensing device
US4592745A (en) * 1984-02-29 1986-06-03 Novo Industri A/S Dispenser
EP0245312B1 (en) * 1985-11-08 1990-05-02 Disetronic Ag Injection instrument
DE3645245C2 (en) * 1986-11-14 1994-01-27 Haselmeier Wilhelm Fa Injection appliance
DE3715337C2 (en) 1986-11-14 1994-04-14 Haselmeier Wilhelm Fa Injection device
DK177187A (en) * 1987-04-07 1988-10-08 Dcp Af 1988 As DOSING UNIT FOR DOSING A NUMBER OF MEASURED QUANTITIES OF A FLUID, SUCH AS INSULIN, FROM A GLASS AMPULA
DE3715258C2 (en) * 1987-05-08 1996-10-31 Haselmeier Wilhelm Fa Injection device
DE3715340C2 (en) * 1987-05-08 1995-10-19 Haselmeier Wilhelm Fa Injection device
GB8713810D0 (en) * 1987-06-12 1987-07-15 Hypoguard Uk Ltd Measured dose dispensing device
CH675078A5 (en) * 1988-01-22 1990-08-31 Nosta Ag
US4973318A (en) * 1988-02-10 1990-11-27 D.C.P. Af 1988 A/S Disposable syringe
GB8809115D0 (en) * 1988-04-18 1988-05-18 Turner R C Syringes
US5244465A (en) * 1988-10-19 1993-09-14 Byk Gulden Lomberg Chemische Fabrik Gmbh Reusable injection device for distributing a preselected dose
GB8900763D0 (en) * 1989-01-13 1989-03-08 Kabi Vitrum Peptide Hormones A Multi-dose syringe
US5226895A (en) * 1989-06-05 1993-07-13 Eli Lilly And Company Multiple dose injection pen
US5085641A (en) * 1989-07-17 1992-02-04 Survival Technology, Inc. Conveniently carried frequent use auto-injector with improved cap structure
DK17890A (en) * 1990-01-22 1991-07-23 Novo Nordisk As METHOD AND APPARATUS FOR MIXTURE AND INJECTION OF A MEDICINE
GB9007113D0 (en) * 1990-03-29 1990-05-30 Sams Bernard Dispensing device
US5226896A (en) * 1990-04-04 1993-07-13 Eli Lilly And Company Dose indicating injection pen
US5000289A (en) * 1990-05-21 1991-03-19 Sanchez Iii Jose Extendable step ladder
DE69203472T2 (en) * 1991-02-07 1996-01-04 Terumo Corp Dosing device for injector.
DE4112259A1 (en) * 1991-04-15 1992-10-22 Medico Dev Investment Co INJECTION DEVICE
ES2074771T3 (en) * 1991-07-24 1995-09-16 Medico Dev Investment Co INJECTOR.
DK175491D0 (en) * 1991-10-18 1991-10-18 Novo Nordisk As APPARATUS
US5328486A (en) * 1991-11-19 1994-07-12 American Cyanamid Company Syringe for dispensing multiple dosages
WO1993010839A1 (en) * 1991-11-29 1993-06-10 Novo Nordisk A/S A pen-shaped syringe
DK194291D0 (en) * 1991-11-29 1991-11-29 Novo Nordisk As SPRAY FOR AUTOMATIC INJECTION.
US5279585A (en) * 1992-02-04 1994-01-18 Becton, Dickinson And Company Medication delivery pen having improved dose delivery features
CH682806A5 (en) 1992-02-21 1993-11-30 Medimpex Ets Injection device.
US5391157A (en) * 1992-10-20 1995-02-21 Eli Lilly And Company End of dose indicator
GB9226423D0 (en) * 1992-12-18 1993-02-10 Sams Bernard Incrementing mechanisms
US5383865A (en) * 1993-03-15 1995-01-24 Eli Lilly And Company Medication dispensing device
ZA941881B (en) * 1993-04-02 1995-09-18 Lilly Co Eli Manifold medication injection apparatus and method
US5582598A (en) * 1994-09-19 1996-12-10 Becton Dickinson And Company Medication delivery pen with variable increment dose scale
AU696439B2 (en) * 1995-03-07 1998-09-10 Eli Lilly And Company Recyclable medication dispensing device

Also Published As

Publication number Publication date
DE69608833D1 (en) 2000-07-20
DE69629391T2 (en) 2004-06-09
EP0879610A2 (en) 1998-11-25
PT879610E (en) 2003-12-31
AU696439B2 (en) 1998-09-10
DE69629391D1 (en) 2003-09-11
EP1304129A2 (en) 2003-04-23
EP0879610B1 (en) 2003-08-06
SI0730876T1 (en) 2000-12-31
EP0730876A3 (en) 1996-12-11
CA2213682A1 (en) 1996-09-12
ES2203880T3 (en) 2004-04-16
GR3034256T3 (en) 2000-12-29
DK0730876T3 (en) 2000-07-31
JP3568959B2 (en) 2004-09-22
AU4863796A (en) 1996-09-23
SI0879610T1 (en) 2003-12-31
DK0879610T3 (en) 2003-11-24
ZA961845B (en) 1997-09-08
NZ302558A (en) 1999-11-29
ATE193833T1 (en) 2000-06-15
NO312228B1 (en) 2002-04-15
IL117319A (en) 2004-03-28
ATE246528T1 (en) 2003-08-15
CY2179B1 (en) 2002-08-23
NO974073L (en) 1997-10-28
WO1996027400A1 (en) 1996-09-12
PT730876E (en) 2000-11-30
ES2147346T3 (en) 2000-09-01
NO974073D0 (en) 1997-09-04
EP0730876A2 (en) 1996-09-11
JP3798786B2 (en) 2006-07-19
DE69608833T2 (en) 2000-11-30
US5938642A (en) 1999-08-17
JP2002503116A (en) 2002-01-29
EP0730876B1 (en) 2000-06-14
EP1304129A3 (en) 2005-11-23
JP2004073889A (en) 2004-03-11
US6221046B1 (en) 2001-04-24
EP0879610A3 (en) 1999-05-06
IL117319A0 (en) 1996-06-18
US6001089A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
CA2213682C (en) Recyclable medication dispensing device
CA2448726C (en) Medication dispensing apparatus configured for rotate to prime and pull/push to inject functionality
EP0688571B1 (en) Quick connect medication delivery pen
KR101121317B1 (en) Medication dispensing apparatus with triple screw threads for mechanical advantage
EP0862473B1 (en) Pen injector with cartridge loading mechanism
US8728043B2 (en) Drive mechanism for a drug delivery device
KR100877795B1 (en) Reservoir module with a piston rod
US20160331906A1 (en) Medication Delivery Device
EP3027249B1 (en) Injection pen
US20130053789A1 (en) Medication Delivery Device
AU2002345785A1 (en) Medication dispensing apparatus configured for rotate to prime and pull/push to inject functionality
KR20150052061A (en) Drug delivery device
KR20110014578A (en) Medication delivery device
IL170993A (en) Dose dial and drive mechanism suitable for use in drug delivery devices
KR20150140781A (en) Injection device
KR20150143609A (en) Injection device
WO2016083384A1 (en) Dose setting mechanism and drug delivery device with ratchet mechanism

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20160205