CA2228705C - Fibrin sealant applicator - Google Patents

Fibrin sealant applicator Download PDF

Info

Publication number
CA2228705C
CA2228705C CA002228705A CA2228705A CA2228705C CA 2228705 C CA2228705 C CA 2228705C CA 002228705 A CA002228705 A CA 002228705A CA 2228705 A CA2228705 A CA 2228705A CA 2228705 C CA2228705 C CA 2228705C
Authority
CA
Canada
Prior art keywords
applicator
activator
pair
conduits
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002228705A
Other languages
French (fr)
Other versions
CA2228705A1 (en
Inventor
H. Jonathan Tovey
Ernie Aranyi
Vinod C. Nagori
Stanley Marczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Surgical Corp
Original Assignee
United States Surgical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Surgical Corp filed Critical United States Surgical Corp
Publication of CA2228705A1 publication Critical patent/CA2228705A1/en
Application granted granted Critical
Publication of CA2228705C publication Critical patent/CA2228705C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00491Surgical glue applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00491Surgical glue applicators
    • A61B2017/00495Surgical glue applicators for two-component glue

Abstract

An applicator is provided for dispensing a first and a second component of a biological adhesive. The applicator includes a housing having a housing head for enclosing therein a first reservoir containing the first component, and a second reservoir containing the second component. The housing further includes an elongated body portion defining a longitudinal axis for enclosing therein a conduit assembly having a first and a second conduit in communication with the first and second reservoir, respectively. An activator assembly is provided which includes an activator and a rachet mechanism for compressing the reservoirs. within the housing for dispensing the biological component; into the conduits. An applicator tip having two separate channels in communication with the conduits may be provided on a distal end of the elongated body portion for dispensing the components on the application site. The first and second components are preferably fibrinogen and thrombin which intermix to form a fibrin sealant.

Description

FIBRIN SEALANT APPLICATOR
BACKGROUNp 1. Techaaical Field The disclosure relates generally to an applicator for applying a tissue sealant based on human or animal proteins and more particularly to an apparatus for applying an adhesive formed by combining solutions of the proteins to tissues or organs for sealing wounds, st:opping bleeding and the like.
2. Description of Related Art A fibrin sealant is a biological adhesive formed by mixing two protein components, namely, fibrinogen and thrombin. Each protein component is derived from human plasma and is subjected to virus elimination procedures. The components are typically itidividually dehydrated and stored in separate vials as sterile freeze-dried powders.
It is known that purified fibrinogen and thrombin, together with a variety of known adjuvants, can be combined in vitro to produce a polymer having great potential benefit, boith as a hemostatic agent and as a tissue adhesive. Because of the rapid polymerization upon intimate interaction of fibrinogen and thrombin, it is important to maintain these two blood proteins separate until applied at the application site. These protein solutions are generally delivered by devices such as a dual syringe apparatus.
One dual syringe apparatus for applying a fibrinogen-based tissue adhesive is disclosed in U.S. Pat. No. 4,359,049 to Redl et al. Redl et al. disclose a mechanism in which tWo standardized one-way syringes are held in a support having a common actuating means. The dispensing end of each syringe is inserted into a collection manifold where the two components are mixed. The components are then dispensed through a common needle capable of covering a limited area of the application site.
It is often desirable or necessary to cover a broad area of a wound, either to stop bleeding, - to fix tissue or to prevent infection. It is also desirable to prevent the two .,.~ f /

. ~ ~

components from mixing within the dispensing device.
Further, all known devices for dispensing solutions of fibrinogen and thrombin require thf: addition of these proteins in powdered form to the body of the syringe. This makes the proteins susceptible to contamination by impurities which may enter the syringe body. Further still, the use of the syringe body to mix the proteins with water to create the protein solutions can cause the solutions to leak out from either the dispensing end of each syringe or the proximal end of the syringe body.
Additionally, a dual syringe apparatus for the application of fibrinogen and thrombin solutions to an application site generally contains several parts, such as a syringe plunger, a " Y " manifold connector, a dispensing needle, a syringe holder, syringe needles, and conduits for transporting the solutions to the dispensing needle.
Therefore, known fibrin sealant applicators, such as disclosed in U.S. Patent to Redl et al. discussed above, and, in U.S. Patent Nos. 4,874,368 to Miller et al. and 4,979,942 to Wolf et al.
are difficult to reuse. The replenishment of the protein components typically require removing a clip which couples the syringe plunger, removing the syringe plunger, detachin.g the syringes from the "Y" connector, removing the syringes from the holder, inserting new syringes, affixing the syringes to the "Y" connector, adding fibrinogen to one syringe and thrombin to another syringe, adding sterile water to each syringe, replacing the syringe plunger, replacing the plunger clip, and mixing the solutions. In an application where time is of the essence, such a lengthy replenishing process is innpractical and cumbersome.
Furthermore, known applicators for dispensing a biological adhesive require the manual exertion of a force on the protein components so they can be dispensed from the applicator. Typically, a manual force is exerted on the components by means of the plunger in the standard one-way syringe. This type of arrangement is shown in U.S.
Patent Nos. 4,359,049 discussed above, and 4,631,055 to Redl et aI. Manually exerting, a force on a plunger located at proximal end of the applicator can make the application of the adhesive difficult. For example, the user is unable to clearly view the application site when holding the applicator perpendicularly to the application site.
Further, such an arrangement causes air to enter the syringes causing difficulty in exerting a force via the syringe plunger.

Thus, there is a need in the art for a fibrin sealant applicator wherein the adhesive covers a broad area of a wound, either to stop bleeding, to fix tissue or to prevent infection. 'Chere is also a need for a fibrin sealant applicator wherein a manual force is applied via an activator assembly having a mechanism for preventing air from entering reservoirs containing the solutions. Further, there is a need for a fibrin sealant applicator wherein the adhesive components are not susceptible to contamination and the adhesive components are not intermixed within the applicator.

In' addition, there is a need for a fibrin sealant applicator wherein the component solutions arE: easily replenished. There is also a need for a fibrin sealant applicator which is self-cleaning and reusable with different component solutions. Further, there is a need for a fibrin sealant applicator which is inexpensive to manufacture for allowing the applicator to be disposed of after use. Additionally, there is a need for a fibrin sealant applicator which avoids wasting adhesive solution and allows the application site to be clearly seen, by the user when applying the component solutions perpendicular to the application site.

~
-~-SUMMARY
An applicator is provided for dispensing a first and a second component of a biological adhesive.
In accordance with one embodiment of the present invention there is provided an applicator for dispensing a multicomponent biological adhesive, the applicator comprising: a housing; a conduit assembly extending from the housing configured for operatively enclosing at least two self-contained collapsible reservoirs each having a sealable opening therein and storing at least one component of the multicomponent biological adhesive, the conduit assembly having a pair of conduits in fluid communication with the housing; and an activator assembly provided on the housing having an activator moveable along a non-radial axis from a first position to a second position to decrease the volumetric capacity of the housing and substantially and simultaneously compress the at least two self-contained collapsible reservoirs at a proximal end and a distal end to dispense the at least one component through at least one of the pair of conduits to a distal end thereof, wherein the activator moves along an axis perpendicular to a longitudinal axis of at least one of the reservoirs.
In a preferred embodiment, the applicator includes a housing having a housing head for enclosing therein a first reservoir containing the first component, and a second reservoir containing the second component. The housing further includes an elongated body portion defining a longitudinal axis for enclosing therein a conduit assembly having a first and a second conduit in communication with the first and second reservoir, respectively. An activator assembly is provided which includes an activator and a ratchet mechanism for compressing the reservoirs within the housing to dispense the biological components into the conduits. An applicator tip having two separate channels in communication with the conduits may be provided on a distal end of the elongated body portion for dispensing the components at the application site. The first and second components are preferably fibrinogen and thrombin which intermix to form a fibrin sealant.

BRIEF DESCRIPTION OF THE DRAWINGS
Various embodiments are described herein with reference to the drawings, wherein:
FIG. I is a perspective view of a preferred embodiment of a fibrin sealant applicator;
FIG. 2 is a perspective exploded view of the embodiment of FIG. 1;
FIG. 2A is an enlarged view of a ratchet member on an activator assembly shown by FIG. 1;
FIG. 3 is a cross-sectional top view of the embodiment of FIG. 1;
FIG. 4 is a perspective view of the reservoir assembly depicted in FIG. 2;
FIG. 4A is a perspective view of the embodiment of FIG. 2 showing the placement of the reservoir assembly of FIG. 4 within the housing;
FIG. 5 is an enlarged view of an alternative embodiment of the reservoir assembly;

-4a-FIG. 5A is a perspective view of an alternative embodiment of the applicator showing the placement of the reservoir assembly of FIG. 5 therein;
FIG. 6 is an enlarged perspective view of a preferred applicator tip having phantom thannels and boresights for dispensing the components;
FIG. 7 is a cross-sectional view taken along line 7 in FIG. 3 showing the activator assembly in an inactivated state;
FIG. 7A is an enlarged view of the rachet mechanism;
FIG. 8 is a cross-sectional view showing the activator assembly in an activated state;
FIG. 8A is an enlarged view of the rachet mechanism guiding the activator;
FIC3. 9 is a cross-sectional view showing the activator assembly in a fully compresseci state;
FIGS. 10-lOB are enlarged views of an alternative collapsible reservoir;
FIGS. 11-11A are cross-sectional views of an alternative reservoir having a frangible partition for separating a protein component from a liquid;
FIGS. 12-12A are perspective views of the distal end of the applicator having bellows foi- effectuating articulation of the applicator tip;
FIGS. 13-13A are perspective views of an alternative distal end of the applicator having a, sleeve and a shape memory tube for varying the angular position of the applicator tip;
FIGS. 14-14A are perspective views of an alternative distal end of the applicator having an angular cut;
FIG. 15 is an enlarged view of an alternative distal end of the applicator having a straight and a circular conduit;
FIG. 16 is a perspective view of an alternative distal end of the applicator having an absorbable pad on each conduit;
FIG. 17 is an enlarged view of the applicator having coaxial conduits;
FIG. 18 is a perspective view of an alternative embodiment of the applicator .~
having a drum activator in an inactivated state;
FIG. 18A is a top perspective view of the embodiment of FIG. 18;
FIG. 18B is a cross-sectional view taken along line 18B in FIG. 18A;
FIG. 18C is a top prospective view of the embodiment of FIG. 18 showing the drum activator in a fully activated state;
FIG. 18D is a cross-sectional view taken along line 18D in FIG. 18C;
FIC?. 19 is a perspective view of an alternative embodiment of the applicator having a hinged-plate activator;
FIC-. 19A is a cross-sectional view taken along line 19A in FIG. 19; and FICr. 19B is a cross-sectional view of the embodiment of FIG. 19 showing the hinged-plate activator in a fully activated state.

DETAID DESCRIPTION OF PREFERRED EMBODIMENTS
Refierririg to FIG. 1, a fibrin sealant applicator according to a preferred embodiment of the present disclosure is shown. The applicator designated generally by numeral 10 includes a- housing 12 having a housing head 14 and an elongated body portion 16 defining a longitudinal axis. Housing head 14 = contains a conically-shaped distal end 18 having a bore 20 in the center thereof dimensioned to receive body portion 16. While the housing head 14 is shown as being rectangular, it is understood that other shapes that contribute to the ease of gripping and controlling the applicator 10 may be used.
The housing head 14 includes an opening 20 for receiving an activator assembly 22 having an activator 24 for effectuating the dispensing of biological components as further described below. An applicator tip 26 is provided at a distal end 28 of the body portion 16 having two boresights 30 for dispensing biological components contained within housing head 14, In the preferred embodiment, the biological components are a fibrinogen solution and a thrombin solution which intermix to form a fibrin sealant. It is to be understood, however, that other biological fluids may be substituted, depending ~~
. ; ~,.

upon the choice of mixture that is to be dispensed.
The internal components of housing 12 will now be discussed in detail with reference to FIGS.-2-5A. As shown in FIG. 2, housing 12 is formed from molded housing half sections 12a and 12b which are formed with internal partitions configured to properly align the internal components of the applicator 10 with respect to each other and to prevent movement of the components. The internal components of the applicator include a reservoir assembly 32 and a conduit assembly 34, The two assemblies are interrelated with each other and with the activator assembly 22 discussed above.
Reservoir assembly 32 includes a first 36 and second reservoir 38, and two plugs 10 40. First reservoir 36 and second reservoir 38 are preferably constructed from a flexible material and contain the first and second biological components, respectively.
A window 37 on housing half-section 12a will permit a user to view the contents within the first 36 and second reservoir 38. First 36 and second reservoir 38 include a#"irst cylindrical extension 42 having a central throughbore 44 at a distal end 46, a second cylindrical extension 48 having a central throughbore 50 at a proximal end 52. Central throughbore 50 is used for placing the biological components in the reservoirs 36 and 38.
Plug 40 is used to vacuum seal central throughbore 50 to prevent contamination of the biological components. The plug 40 includes a silicon surface 56 capable of being penetrated by a syringe.needle for adding a liquid, preferably sterile water, within reservoirs 36 and 38 to intermix with the biological components to form protein solutions. The protein solutions are dispensed on the application site, as further discussed below.
The conduit assembly 34 includes two conduits 58 each h'aving a nozzle 60 for matingly er-gaging the cylindrical extension 42 on first 36 and second reservoir 38 for connecting conduit assembly 34 to reservoir assembly 32. The conduit assembly 34 is mounted w:ithin housing 12 as illustrated by the dotted lines in FIG. 2 Two phantom channels 61 within applicator tip 26, each leading to one of the two boresights 30, are preferably press fitted to the distal end of the conduits 58 for providing fluid communicaiion between the conduit assembly 34 and the applicator tip 26.

FIG. 2A is an enlarged view of a portion of the activator assembly 22. As described in greater detail below, the activator assembly 22 controls the pressure exerted on reservoirs 36 and 38, and includes the activator 24 and a rachet member 62.
The activator 24 includes an activation area 64, a shaft 66, and a disc 68. The shaft 66 connects the activation area 64 with the disc 68. The rachet member 62 extends downwardly from disc 68 and includes teeth 70 for engaging teeth 72 on an inner extension 74 of housing 12 to form structure for controlling the position of the activator 24. The control structure is a rachet mechanism 73. The rachet member 62 is preferably formed integral with the disc 68. Activator 24 may be formed with a transparent material or with a transparent window therein to permit viewixig of the internal components of the applicator 10.

An assembled cross-sectional, top view of the applicator 10 illustrating the flow of the protein solutions is shown by FIG. 3. The protein solutions are kept separated to prevent intermixing and the creation of a fibrin sealant within the applicator 10. Upon exertion Qf pressure on activator 24, components are forced through conduit assembly 34 to applicator tip 26, FIG. 4 illustrates a preferred embodiment of the reservoir assembly 32. The first and second reservoir 38 are identical for encasing an equal volumetric amount of their respective protein solution as compared to the other reservoir. It is contemplated to provide a d:ifferent color for each reservoir 36 and 38 to easily recognize the reservoir containing fibrinogen and the reservoir containing thrombin. It is further contemplated to provide a different shape for each reservoir for the same purpose. However, the volumetric amount stored within the first reservoir 36 should be equal to the volumetric amount stored within the second reservoir 38 to maintain a pre-determined fibrinogen to thrombin solution ratio, which is typically a 1:1 ratio, A perspective view of the reservoir assembly 32 of FIG. 4 as placed within housing 12 iis illustrated by FIG. 4A. It is contemplated that the first 36 and the second reservoir 38 are manufactured from a transparent plastic for being able to view the amount of solution and to determine if the solution has been sufficiently intermixed before being dispensed on the application site, It is further contemplated to provide calibration markings on the first 36 and second reservoir 38. It is additionally contemplated that reservoir assembly 32 is permanently affixed to the conduit assembly 34. In such an embodimerit, the reservoir assembly 32 and the conduit assembly 34 can be disposed of after each iise and new reservoir and conduit assemblies can be fitted to applicator 10.
FIGS. 5 and 5A illustrate an alternative embodiment of applicator 10 and reservoir assembly 32. Reservoir assembly 76 illustrated by FIG. 5 includes a first 78 and second reservoir 80 having cylindrical extensions 82 fitted with plugs 84 for sealing the components. The applicator illustrated by FIG. 5A and designated generally by numeral 86 is identical to applicator 10 without entry holes 54; with a different partition layout on housing half-section 12b and with a different connecting method for connecting reservoirs 78 and 80 with conduit assembly 88. Specifically, conduit assembly includes nozzles 90 having a syringe needle (not shown) in a center thereof for penetrating surface 92 on plugs 84. The protein solution are dispensed to conduit assembly 94 via the syringe needles. Two mounts 96 are provided to conduit assembly 88 to create a force directed towards the proximal end of applicator 86 when reservoirs 78 and 80 are forced against the syringe needles to permit the syringe needles to penetrate surface 92 of each plug 84.
An enlarged view of the preferred embodiment of applicator tip 26 is illustrated by FIG. 6. The applicator tip 26 is preferably made from a metallic alloy capable of being sterilized and includes a cylindrical proximal end 97 and an applicator head 98.
Further, as mentioned above, applicator tip 26 includes two channels 61 for matingly engaging conduits 58. Each channel 61 extends through the applicator tip 26 to one of the two bo;resights 30 for dispensing the protein solutions to the application site. The cylindrical proximal end includes a clasping button 100 for matingly engaging a hole 102 in body portion 16. When applicator tip 26 is connected to body portion 16, a circumfereiitial surface 104 dividing the cylindrical proximal end 96 with the applicator ._.__..

...-= yõ

head 106 is made flush with a distal end surface 108 of body portion 16.
The operation of applicator 10 will now be described in detail with reference to FIGS. 7-9. FIG. 7 depicts the applicator 10 with the activator 24 in an inactivated state As illustrated by FIG. 7A, the activator 24 is maintained in the inactivated state by the rachet mechanism 73 which has teeth 70 on rachet member 62 for lockingly engaging teeth 72 on the inner extension of 74 of housing 12.
Re:Ferring now to FIGS. 8 and 8A, there is illustrated the activator assembly in an activated state. By exerting pressure to the activation area 64, the rachet mechanisrn 73 guides tbie activator 24 downwardly and the shaft 66 is forced further into the housing 12. As the shaft 66 enters the housing 12, the rachet mechanism 73 and the disc 68 coinpress reservoir 36 to dispense the protein solution via nozzle 60 into conduit assembly 34.
Wtien ceasing to exert pressure to the activation area 64, the activator 24 is prevented froin returning to the inactivated state by the rachet mechanism 73.
As a result air cannot be sucked into the reservoirs 36 and 38 causing difficulty in further compressirig reservoirs 36 and 38. Further, the position of the activator 24 with respect to housing half-section 12a provides a reference as to the amount of solution rezxiaining in the first 36 and second reservoir 38. For example, when the activator 24 is in a fully activated state, as shown by FIG. 9, there is a small amount of solution left in the first 36 and second reservoir 38. Although the preferred embodiment has been described with a particular activator assembly, it is understood that other similar assemblies may be employed, as described below with reference to FIGS. 18-19B.
Referring to FIGS. 10-108, there is illustrated an alternative embodiment of a reservoir designated generally by numeral 150. Reservoir 150, as reservoir 36, includes includes plug 40 to vacuum seal central throughbore 50 and the cylindrical extension 42 for connecting to the conduit assembly 34. However, unlike reservoir 36 which is constructecl from a flexible material, reservoir 150 is constructed from a collapsible or nonflexible: material which prevents the reservoir 150 from resuming its original, ~iJ=~

~r+.~ , ~ =

uncompressed shape as depicted by FIG. 10 after being compressed. As shown by FIGS.
10A and IOB, after the reservoir 150 is compressed, it does not resume its original, uncompressed shape.
An alternative reservoir is illustrated by FIGS. 11 and 11A and is designated generally by numeral 110. Reservoir 110 is identical to reservoir 36, but with the addition of a frangible partition 112. The partition 112 separates the dehydrated protein ;. .
114 with the mixing liquid 116. The frangible partition 112 is broken by applying pressure to the collapsible reservoir 110, as indicated by the arrows in FIG.
11A, to mix the ingredients therein to form the protein solution.
Altltough four embodiments for the reservoirs have been illustrated and described, it is to be understood that the applicator 10 could be fitted with any of a number of different reservoirs, including, without limitation, syringes, bags or tubing.
Furthermore, although the preferred embodiment for the reservoir assembly 32 has but two reservoirs, it is to be understood that additional reservoirs containing other solutions can be incorporated within applicator 10.
FTGS. 12-17 illustrate alternative embodiments for the distal end of applicator 10.
FIGS. 12 and 12A illustrate body portion 16 being provided with bellows 118 for effectuating articulation of the applicator tip 26 for altering the dispensing angle with respect to longitudinal axis of the body portion 16.
FIGS. 13 and 13A illustrate body portion 16 having shape memory metal 120 for altering the dispensing angle as sleeve 122 is moved proximally. The memory metal 120 resumes a straight configuration when sleeve 122 is pushed distally as shown by the arrow in FIG, 13A.
Witti reference to FIGS. 14 and 14A, there is illustrated another embodiment for altering the dispensing angle. In this embodiment, applicator tip 26 has been removed and the distal end of body portion 16 is provided with an angular cut 124 having approximately a 45 angle with respect to the longitudinal axis, The conduits 58 have curved distal ends to align with the 45 angular cut 124 for dispensing the protein ~

solutions at a 45 angle from the longitudinal axis.
FIGS. 15 and 16 illustrate two additional alternative embodiments for the distal end of body portion 16. These embodiments include conduits which extend beyond the distal end of body portion 16.
The embodiment of FIG. 15 includes one straight conduit 126 and one conduit 128 having a circular configuration 130. The circular configuration 130 is provided with holes 132 on a side 134 facing the center of the circular configuration 130.
One of the protein solutions exits the applicator 10 via holes 132 on conduit 128. This protein solution is intermixed with the protein solution which exits conduit 126. The embodiment of FIG. 15 is best suited for providing the fibrin sealant on small incisions or cuts which can be localized by circular configuration 130.
The embodiment of FIG. 16 includes pads 136 fitted at the distal end of conduits 138. The pads 136 are formed of a sponge-like material capable of absorbing the protein solutions. The pads 136 are used to spread the protein solutions on the application site.
This embodiment is best suited for external wounds or larger internal site configuration.
With reference to FIG. 17, there is illustrated an alternative embodiment for body portion 16. Two coaxial paths 140 and 142 are formed within body portion 16.
In this embodimezit, a portion of conduits 58 are used to transport the protein solutions from the first 36 and second reservoir 38 to the proximal end of body portion 16 where they dispense the protein solutions within coaxial paths 140 and 142. The paths 140 and 142 transport the solutions to the application site. It is contemplated that the paths 140 and 142 have an identical volumetric capacity for transporting an equal amount of each solution to the application site.
As :mentioned earlier, reference will now be made to two alternative embodiments for the activator assembly 22.
FIG. 18 illustrates ati applicator designated generally by numeral 200 having a housing 202 including a housing head 204 and an elongated body portion 206. An applicator tip 208 is provided at = a distal end 210 of body portion 206. An activator ~

assembly 211 is provided on housing head 204 having a first and a second set of lateral finger grips 212 and 214. The =first set 212 is stationary and the second set 214 is configured for movement along two horizontal slots 216 provided on each side of housing head 204.
With reference to FIGS. 18A and 18B, a cylindrical drum 218 is affixed to the second set of lateral finger grips 214. When the activator assembly 211 is in an inactivated state, as shown by FIGS. 18A and 18B, the drum 218 rests against the proximal erad of reservoirs 220 and 222, In an activated state, as shown by PIGS. 18C
and 18D, the second set of lateral finger grips 214 are brought towards the first set 212.
The forwaicd lateral movement of the second set 214 translates the drum 218 over reservoirs 220 and 222 to dispense the protein solutions via nozzles 224 to conduit assembly 226. The relative position of the second set of lateral finger grips 214 to the first set 212 provides a reference regarding the amount of solution remaining in each reservoir 220 and 222.
The! second alternative embodiment for the activator assembly 22 will now be described with reference to FIGS. 19-19B, which depict an applicator designated generally by numeral 300. Applicator 300 includes an activator assembly 302 having a pair of hinged-plates 304 connected via hinge 306 and a slide 308. Housing 310 is provided with a cut-out portion 312 for guiding the slide 308 forward to create a plying action on reservoirs 314 and 316, as shown by the arrows in FIG. 19B, to dispense the protein sohltions via nozzles 318 to conduit assembly 320. The relative position of the slide 308 along the cut-out portion 312 provides a reference regarding the amount of solution reinaiziing in each reservoir 314 and 316.
It is also contemplated that conduits which have different diameters may be provided 'for allowing 'the biological components to be dispensed in different ratios.
Further, ar.i activator assembly may be provided which uses pressurized gas to dispense the components from the reservoirs.
Therefore, it is understood that various modifications may be made to the ~ ''' = '...~

embodiments disclosed herein. For example, while specific preferred embodiments of the conduit, activator, rachet and reservoir assemblies, have been described in detail, structures that perform substantially the same function in substantially the same way to achieve substantially the same result can also be used. Also, besides applying a fibrin sealant, the fibrin sealant applicator can be used to preform human or veterinary surgical procedures including applying antiseptics, medication and other similar procedures.
Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.

~

Claims (20)

1. An applicator for dispensing a multicomponent biological adhesive, the applicator comprising:

a housing;

a conduit assembly extending from the housing configured for operatively enclosing at least two self-contained collapsible reservoirs each having a sealable opening therein and storing at least one component of the multicomponent biological adhesive, the conduit assembly having a pair of conduits in fluid communication with said housing; and an activator assembly provided on said housing having an activator moveable along a non-radial axis from a first position to a second position to decrease the volumetric capacity of said housing and substantially and simultaneously compress the at least two self-contained collapsible reservoirs at a proximal end and a distal end to dispense the at least one component through at least one of said pair of conduits to a distal end thereof, wherein the activator moves along an axis perpendicular to a longitudinal axis of at least one of the reservoirs.
2. The applicator of Claim 1, further comprising an applicator tip having a pair of channels each being in fluid communication with said distal end of one of said pair of conduits.
3. The applicator of Claim 1, wherein said activator assembly includes control structure for restricting said activator from returning to said first position after the activator is moved from said first position.
4. The applicator of Claim 3, wherein said control structure includes a ratchet mechanism.
5. The applicator of Claim 1, wherein said activator assembly includes a pair of hinged-plates mounted for engagement with said reservoirs and a compression assembly operably engageable with said hinged-plates to compress said reservoirs as said activator is moved from said first to said second position to dispense said components.
6. The applicator of Claim 1, wherein said activator assembly includes a drum and the activator is a pair of finger grips for effectuating movement of said drum as said pair of finger grips are moved from said first to said second position.
7. The applicator of any one of Claims 1 to 6, wherein each of said pair of conduits include independent distal exits, such that said first and second components intermix external to said applicator.
8. The applicator of any one of Claims I to 7, wherein said conduit assembly further comprising a first nozzle disposed about a first of said pair of conduits and a second nozzle disposed about a second of said pair of conduits.
9. The applicator of any one of Claims 1 to 8, wherein said housing defines a chamber configured to receive said at least one self-contained collapsible reservoir storing said at least one component of said multicomponent biological adhesive.
10. The applicator of Claim 1, wherein said activator compresses said at least one self-contained collapsible reservoir as said activator is moved from said first position to said second position for dispensing said at least one component through said at least one of said pair of conduits to a distal end thereof.
11. The applicator of any one of Claims I to 8, wherein said housing includes a housing head for storing said reservoirs therein and an elongated body portion extending from said housing head.
12. The applicator of any one of Claims 1 to 11, wherein each of said reservoirs includes a frangible partition therein for separating said at least one component from a liquid.
13. The applicator of Claim 12, wherein said reservoirs include a first portion containing said at least one component and a second portion containing said liquid divided by said frangible partition.
14. The applicator of Claim 11, wherein a distal end of said elongated body portion includes structure for collectively altering the angle of dispensing of said at least one component at an angle with respect to a proximal end of the elongated body portion.
15. The applicator of Claim 14, wherein said means for altering the angle of dispensing includes bellows for effectuating articulation of said distal end.
16. The applicator of Claim 14, wherein said means for altering the angle of dispensing includes a shape memory tube in alignment with said body portion and a sleeve overlaying said tube, where said tube assumes a different angular configuration with respect to a longitudinal axis of said body portion as said sleeve is moved proximally.
17. The applicator of Claim 14, wherein said means for altering the angle of dispensing includes providing an angular cut to said distal end of said body portion and curving a distal end of each of said pair of conduits to align with said angular cut .
18. The applicator of Claim 1, wherein a first of said pair of conduits includes a distal end having a circular configuration aligned with a plurality of holes on a side facing inward of said circular configuration, and a second of said pair of conduits includes a distal end substantially above the circular configuration.
19. The applicator of Claim 1, wherein a distal end of each of said pair of conduits includes a pad for absorbing and spreading said at least one component.
20. The applicator of Claim 1, wherein said pair of conduits are in coaxial arrangement.
CA002228705A 1997-01-31 1998-01-30 Fibrin sealant applicator Expired - Fee Related CA2228705C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/792,535 US6783514B2 (en) 1997-01-31 1997-01-31 Fibrin sealant applicator
US08/792,535 1997-01-31

Publications (2)

Publication Number Publication Date
CA2228705A1 CA2228705A1 (en) 1998-07-31
CA2228705C true CA2228705C (en) 2007-06-05

Family

ID=25157247

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002228705A Expired - Fee Related CA2228705C (en) 1997-01-31 1998-01-30 Fibrin sealant applicator

Country Status (4)

Country Link
US (1) US6783514B2 (en)
EP (1) EP0858775B1 (en)
CA (1) CA2228705C (en)
DE (1) DE69820916T2 (en)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062828A1 (en) 1996-04-30 2000-10-26 Medtronic, Inc. Autologous fibrin sealant and method for making the same
DE69839128T2 (en) 1997-12-19 2009-03-05 United States Surgical Corporation, Norwalk DONOR ARRANGEMENT
EP1076517A4 (en) * 1998-05-06 2003-01-15 Bristol Myers Squibb Co Directional endoscopic delivery of material
US7014644B1 (en) * 1999-07-28 2006-03-21 Cardica, Inc. Tissue bonding system and method for controlling a tissue site during anastomosis
US6802822B1 (en) 2000-03-31 2004-10-12 3M Innovative Properties Company Dispenser for an adhesive tissue sealant having a flexible link
SE0100091D0 (en) * 2001-01-12 2001-01-12 Pharmacia Ab A device and a method for dispensing at least two mutually reactive components
US20020173770A1 (en) * 2001-05-16 2002-11-21 Flory Alan R. Adhesive delivery system
SE0102288D0 (en) * 2001-06-27 2001-06-27 Pharmacia Ab Dispenser
US6692515B2 (en) * 2001-11-07 2004-02-17 Frank H. Boehm, Jr. Surgical kit for repairing leaks in fluid carrying vessels and organs and method thereof
US6863660B2 (en) 2002-03-27 2005-03-08 Hapio Biotech, Inc. Fibrin applicator pistol
US7077339B2 (en) * 2003-02-03 2006-07-18 Biomet, Inc. Spray applicator
US7909808B2 (en) * 2003-06-13 2011-03-22 Medlogic Global Limited Dual-ended applicator for dispensing two fluids
US8062270B2 (en) 2003-07-15 2011-11-22 Spinal Generations, Llc Method and device for delivering medicine to bone
US7611494B2 (en) * 2005-02-08 2009-11-03 Confluent Surgical, Inc. Spray for fluent materials
US7766900B2 (en) 2005-02-21 2010-08-03 Biomet Manufacturing Corp. Method and apparatus for application of a fluid
US20070197978A1 (en) * 2006-02-17 2007-08-23 Leon Wortham Drug Delivery Device
WO2007127834A2 (en) 2006-04-26 2007-11-08 Medtronic, Inc. Compositions and methods of preparation thereof
US8702751B2 (en) 2006-06-30 2014-04-22 Advanced Medical Solutions (Plymouth) Limited Surgical adhesive applicator
US8603138B2 (en) 2006-10-04 2013-12-10 Ethicon Endo-Surgery, Inc. Use of an adhesive to treat intraluminal bleeding
US7914511B2 (en) 2006-10-18 2011-03-29 Ethicon Endo-Surgery, Inc. Use of biosurgical adhesive as bulking agent
US7749235B2 (en) 2006-10-20 2010-07-06 Ethicon Endo-Surgery, Inc. Stomach invagination method and apparatus
US7658305B2 (en) 2006-10-25 2010-02-09 Ethicon Endo-Surgery, Inc. Adhesive applier with articulating tip
US7892250B2 (en) 2006-11-01 2011-02-22 Ethicon Endo-Surgery, Inc. Use of biosurgical adhesive on inflatable device for gastric restriction
US8876844B2 (en) 2006-11-01 2014-11-04 Ethicon Endo-Surgery, Inc. Anastomosis reinforcement using biosurgical adhesive and device
US7833216B2 (en) 2006-11-08 2010-11-16 Ethicon Endo-Surgery, Inc. Fluid plunger adhesive dispenser
US8518076B2 (en) 2007-01-08 2013-08-27 Advanced Medical Solutions (Plymouth) Limited Surgical adhesive applicator
US9622731B2 (en) * 2008-01-28 2017-04-18 Baxter International Inc. Sealant applicator with malleable section
US8182769B2 (en) 2008-04-04 2012-05-22 Biomet Biologics, Llc Clean transportation system
US8518272B2 (en) 2008-04-04 2013-08-27 Biomet Biologics, Llc Sterile blood separating system
US8408480B2 (en) * 2008-04-25 2013-04-02 Confluent Surgical, Inc. Self-cleaning spray tip
US8033483B2 (en) 2008-04-25 2011-10-11 Confluent Surgical Inc. Silicone spray tip
RU2010154050A (en) 2008-05-30 2012-07-10 Аллерган, Инк. (Us) DEVICE FOR INJECTION OF FILLERS INTENDED FOR INCREASING THE VOLUME OF SOFT TISSUES, BIOACTIVE AGENTS AND OTHER BIOSOCOMPATIBLE MATERIALS IN THE FORM OF LIQUID OR GEL
US8342765B2 (en) 2008-06-12 2013-01-01 Advanced Medical Solutions (Plymouth) Limited Liquid applicator
US8210453B2 (en) * 2008-09-12 2012-07-03 Confluent Surgical, Inc. Spray applicator
US9681860B2 (en) 2008-10-24 2017-06-20 Dennis L Steffen Halo tip spray head atomizer delivery manifold device
US10232129B2 (en) * 2008-12-02 2019-03-19 Allergan, Inc. Injection device
US20110137260A1 (en) 2009-12-07 2011-06-09 Allergan, Inc. Slotted syringe
US20110204093A1 (en) * 2010-02-21 2011-08-25 Nathan Tyler Lee Wine Dispensing Device
US8608642B2 (en) 2010-02-25 2013-12-17 Ethicon Endo-Surgery, Inc. Methods and devices for treating morbid obesity using hydrogel
EP2389969A1 (en) * 2010-05-26 2011-11-30 Omrix Biopharmaceuticals Ltd. A device for injecting a substance
CN102933243A (en) * 2010-04-05 2013-02-13 尼奥文股份有限公司 Method and apparatus for wound sealant application
CA2798767A1 (en) * 2010-05-12 2011-11-17 St. Jude Medical, Inc. Bioadhesive applicator and methods of sealing tissue punctures using same
CA2799394A1 (en) 2010-05-19 2011-11-24 Allergan, Inc. Modular injection device
US8672237B2 (en) * 2010-06-25 2014-03-18 Baxter International Inc. Device for mixing and dispensing of two-component reactive surgical sealant
US9125633B2 (en) * 2010-06-25 2015-09-08 Baxter International Inc. Device for mixing and dispensing of two-component reactive surgical sealant
US20120065600A1 (en) * 2010-09-10 2012-03-15 E. I. Du Pont De Nemours And Company. Device for dispensing microliter quantities of a material into a longitudinally extending wound site
US8603028B2 (en) 2011-11-18 2013-12-10 Allergan, Inc. Injection device having an angled tip portion
US9999410B2 (en) * 2012-03-20 2018-06-19 St. Jude Medical Puerto Rico Llc Systems and methods for sequential mixing of activator in bioadhesive delivery device
ES2432467B1 (en) * 2012-03-27 2014-06-11 B. Braun Surgical, S. A. Device for applying adhesive from a vial or blister of deformable walls and adhesive dosing kit that includes said applicator device
US10010311B2 (en) * 2012-04-11 2018-07-03 St. Jude Medical Puerto Rico Llc Sealant mixing containers for extra vascular bioadhesive delivery systems and methods
US20130331771A1 (en) * 2012-06-07 2013-12-12 Nordson Corporation Gas-assisted device and method for dispensing biomaterials
US9603644B2 (en) 2012-08-07 2017-03-28 Spinal Generations, Llc Methods and devices for delivery of medicine to bone
US10309430B2 (en) 2012-08-10 2019-06-04 Confluent Surgical, Inc. Pneumatic actuation assembly
WO2014028463A1 (en) 2012-08-14 2014-02-20 Allergan, Inc. Syringe for mixing and dispensing adipose tissue
WO2014031150A1 (en) * 2012-08-24 2014-02-27 St. Jude Medical Puerto Rico Llc Sealant storage, preparation, and delivery systems and related methods
US8757438B1 (en) * 2012-09-25 2014-06-24 Hector Garcia Multiple compartmented and condiment dispensing apparatus
PL2994062T3 (en) 2013-05-07 2020-05-18 Auxin Surgery Sa Device for chemically assisted dissection
US20140350518A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Syringe extrusion accessory
US20140350516A1 (en) 2013-05-23 2014-11-27 Allergan, Inc. Mechanical syringe accessory
US9586005B2 (en) 2013-09-30 2017-03-07 Dennis L Steffen Dual syringe delivery device and method of use
IL230151A0 (en) 2013-12-24 2014-09-30 Omrix Biopharmaceuticals Ltd One component fibrin glue comprising a polymerization inhibitor
US10653470B2 (en) * 2014-02-19 2020-05-19 Spinal Generation, LLC Compressible mixing and delivery system for medical substances
IL231792A0 (en) 2014-03-27 2014-08-31 Omrix Biopharmaceuticals Ltd Device and method for preparing and administering one-component fibrin sealant
US10952709B2 (en) 2014-04-04 2021-03-23 Hyperbranch Medical Technology, Inc. Extended tip spray applicator for two-component surgical sealant, and methods of use thereof
US10029048B2 (en) 2014-05-13 2018-07-24 Allergan, Inc. High force injection devices
US10004886B2 (en) 2014-06-27 2018-06-26 Oral Health Outreach, Llc Dual applicator
US10226585B2 (en) 2014-10-01 2019-03-12 Allergan, Inc. Devices for injection and dosing
US9615863B2 (en) 2014-10-22 2017-04-11 Spinal Generations, Llc Multichannel cannula for kyphoplasty and method of use
EP3268063A4 (en) 2015-03-10 2018-10-31 Allergan Pharmaceuticals Holdings (Ireland) Unlimited Company Multiple needle injector
EP3439716B1 (en) 2016-04-08 2023-11-01 Allergan, Inc. Aspiration and injection device
WO2018018042A1 (en) 2016-07-22 2018-01-25 Isto Technologies, Inc. Multi-component injection system and methods for tissue repair
US20180235839A1 (en) * 2017-02-17 2018-08-23 Leonidas A. Johnson Dual Container for Sterile Fabrication and Filling
USD867582S1 (en) 2017-03-24 2019-11-19 Allergan, Inc. Syringe device
EP3823555A1 (en) 2018-07-19 2021-05-26 Sanulus Medical, LLC Devices and methods for targeted delivery of a substance
US20220346876A1 (en) 2018-07-19 2022-11-03 Sanulus Medical, LLC Devices and methods for targeted delivery of a substance
EP3756705A1 (en) * 2019-06-27 2020-12-30 Adhesys Medical GmbH Applicator for a two-component tissue adhesive
US20220241521A1 (en) * 2021-02-02 2022-08-04 Freedom Corp. Device for fibrin-biopolymer-forming substance application
US20230309978A1 (en) * 2022-03-31 2023-10-05 Ethicon, Inc. Sealant applicators having mixing and spraying assemblies with malleable sections and spray tips having reduced dimensions
CN115282452B (en) * 2022-07-26 2023-06-16 刘波 Facial skin medicine applicator

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1948388A (en) 1932-07-11 1934-02-20 Liberson Frank Automatic displacement syringe
US2112160A (en) 1933-04-04 1938-03-22 Kenneth Fredericks Method of and apparatus for effecting medicinal treatment
US2576766A (en) * 1948-06-21 1951-11-27 Sokolik Edward Syringe
US3269389A (en) * 1963-03-11 1966-08-30 Bernard L Meurer Compartmental dispensing container for nose and throat preparations
US3467096A (en) 1966-04-12 1969-09-16 Ferrell S Horn Multiple hypodermic syringe arrangement
US3502078A (en) * 1967-11-15 1970-03-24 Donald E Hill Dual-tipped nasal syringe and aspirating device
US4040420A (en) 1976-04-22 1977-08-09 General Dynamics Packaging and dispensing kit
US4121739A (en) 1977-04-20 1978-10-24 Illinois Tool Works Inc. Dispenser with unitary plunger and seal construction
US4226235A (en) 1979-01-25 1980-10-07 Survival Technology, Inc. Plural injecting device
US4260077A (en) 1979-10-04 1981-04-07 Aelco Corporation Dual separable dispenser
AT366916B (en) 1980-04-02 1982-05-25 Immuno Ag DEVICE FOR APPLICATING A TISSUE ADHESIVE BASED ON HUMAN OR ANIMAL PROTEINS
EP0082251B1 (en) 1981-12-22 1987-08-05 Contraves Ag Syringe for two fluids
DE3316922A1 (en) * 1983-05-09 1984-11-15 Henkel KGaA, 4000 Düsseldorf DEVICE FOR DELIVERING SUBSTANCES TO BE MIXED IN A PRESENT RATIO
AT379311B (en) 1984-03-29 1985-12-27 Immuno Ag DEVICE FOR APPLICATING A TISSUE ADHESIVE
US4692157A (en) * 1985-01-28 1987-09-08 Ergomed Squeeze-actuated syringe with position-selectable lock
DE3662650D1 (en) 1985-01-29 1989-05-11 Fuji Photo Film Co Ltd Duplex pipette
NZ215574A (en) 1985-03-26 1988-01-08 Phillips Pty Ltd N J Multiple pump liquid dispenser: variable stroke for each pump
AT382783B (en) 1985-06-20 1987-04-10 Immuno Ag DEVICE FOR APPLICATING A TISSUE ADHESIVE
GB8616945D0 (en) * 1986-07-11 1986-08-20 Advanced Adhesives Ltd Simultaneous dispensing of two substances
US4978336A (en) 1987-09-29 1990-12-18 Hemaedics, Inc. Biological syringe system
US4950245A (en) * 1988-07-08 1990-08-21 I-Flow Corporation Multiple fluid cartridge and pump
US4874368A (en) 1988-07-25 1989-10-17 Micromedics, Inc. Fibrin glue delivery system
US4902281A (en) * 1988-08-16 1990-02-20 Corus Medical Corporation Fibrinogen dispensing kit
US5226877A (en) * 1989-06-23 1993-07-13 Epstein Gordon H Method and apparatus for preparing fibrinogen adhesive from whole blood
FR2651485A1 (en) * 1989-09-05 1991-03-08 Lir France Sa Device for packaging and dispensing two pasty products or products of similar consistency
US5116315A (en) 1989-10-03 1992-05-26 Hemaedics, Inc. Biological syringe system
US4979942A (en) * 1989-10-16 1990-12-25 Johnson & Johnson Medical, Inc. Two component syringe delivery system
WO1992011881A1 (en) * 1990-12-27 1992-07-23 Block Medical, Inc. Closed system for iv site flush
US5207645A (en) * 1991-06-25 1993-05-04 Medication Delivery Devices Infusion pump, treatment fluid bag therefor, and method for the use thereof
DK166691D0 (en) 1991-09-30 1991-09-30 Unes As MULTI-COMPONENT PROJECT
US5368563A (en) 1991-12-18 1994-11-29 Micromedics, Inc. Sprayer assembly for physiologic glue
DE4217593C1 (en) * 1992-05-27 1993-10-21 Adatomed Pharma & Med Applicator to close cuts in eye tissue - has capsules for adhesive and activator delivered simultaneously by finger pressure through mixing channel to a spreader
EP0634140B2 (en) 1992-09-26 2004-08-04 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Applicator for tissue adhesive
US5290259A (en) 1993-02-18 1994-03-01 Ultradent Products, Inc. Double syringe delivery system
US5328462A (en) * 1993-09-03 1994-07-12 Ultradent Products, Inc. Methods and apparatus for mixing and dispensing multi-part compositions
US5665066A (en) * 1993-09-03 1997-09-09 Ultradent Products, Inc. Methods and apparatus for mixing and dispensing multi-part compositions
AT400675B (en) 1993-10-18 1996-02-26 Immuno Ag SYRINGE SET FOR STORAGE AND APPLICATION OF A MULTI-COMPONENT MATERIAL, SYRINGE DEVICE AND ACTUATING DEVICE THEREFOR, AND METHOD FOR PRODUCING A FILLED, STERILE SYRINGE DEVICE
US5409465A (en) 1994-02-07 1995-04-25 Boggs; Michael S. Impression syringe
JP3050304U (en) 1994-02-28 1998-07-14 ミネソタ マイニング アンド マニュファクチャリング カンパニー Dual chamber cartridge dispensing system for dental materials
AT400304B (en) * 1994-02-28 1995-12-27 Immuno Ag DEVICE FOR APPLICATING A MULTI-COMPONENT TISSUE ADHESIVE
US5474540A (en) 1994-03-25 1995-12-12 Micromedics, Inc. Fluid separation control attachment for physiologic glue applicator
JP3077135B2 (en) * 1996-01-31 2000-08-14 花王株式会社 Discharge container
KR100450142B1 (en) 1996-03-15 2004-11-16 자이단호진 가가쿠오요비겟세이료호겐쿠쇼 Tissue adhesive suitable for spray application
EP0917444A1 (en) 1996-07-12 1999-05-26 Baxter Travenol Laboratories, Inc. A fibrin delivery device and method for forming fibrin on a surface
US6113571A (en) 1996-09-10 2000-09-05 Omrix Biopharmaceuticals S.A. Applicator device for applying a multiple component fluid
DE19636622C1 (en) 1996-09-10 1998-06-10 Omrix Biopharm Sa Application device for applying a multi-component tissue adhesive and holder for such an application device
AT406452B (en) 1996-09-19 2000-05-25 Soraton Sa MANUAL TOOL
US5759171A (en) 1996-09-27 1998-06-02 Thermogenesis Corp. Sprayer for fibrin glue
EP0858776A3 (en) 1997-02-14 2000-01-12 Tricardia, L.L.C. Hemostatic agent delivery device having built-in pressure sensor
JP3832862B2 (en) 1997-03-10 2006-10-11 テクファーマ・ライセンシング・アクチェンゲゼルシャフト Liquid discharge device
DE19709896C1 (en) 1997-03-11 1998-12-24 Omrix Biopharm Sa Applicator for applying a single or multi-component fluid and method for spraying such a fluid
DE69838457T2 (en) * 1997-12-19 2008-06-19 United States Surgical Corporation, Norwalk DISTRIBUTION DEVICE COMPRISING TWO ELEMENTS

Also Published As

Publication number Publication date
US20010016709A1 (en) 2001-08-23
EP0858775A1 (en) 1998-08-19
DE69820916T2 (en) 2004-09-02
US6783514B2 (en) 2004-08-31
EP0858775B1 (en) 2004-01-07
DE69820916D1 (en) 2004-02-12
CA2228705A1 (en) 1998-07-31

Similar Documents

Publication Publication Date Title
CA2228705C (en) Fibrin sealant applicator
EP1047464B8 (en) Two component dispenser system
EP1039946B1 (en) Dispenser assembly
AU2002238143B2 (en) External mixer assembly
EP0996474B1 (en) Fibrin glue applicator system
EP1267726B1 (en) Dispenser for an adhesive tissue sealant having a flexible link distal section
AU2002238143A1 (en) External mixer assembly
US5415631A (en) Endoscopic material delivery device
US20030009194A1 (en) Tissue tract sealing device
JP2002355317A (en) Biological sealant stocking/administrating system
WO2001062333A1 (en) Adhesive applicator
EP1716877B1 (en) Two component dispenser system
CA2295249C (en) Fibrin glue applicator system
EP1917914B1 (en) External mixer assembly
US20230309977A1 (en) Systems, devices and methods for reconstituting therapeutic powders, mixing precursor solutions, and expressing sealants for controlling bleeding and sealing fluid and air leaks

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140130

MKLA Lapsed

Effective date: 20140130