CA2255457A1 - Amphoteric polymer/polyamine combinations for color removal and clarification of paper mill waste water - Google Patents

Amphoteric polymer/polyamine combinations for color removal and clarification of paper mill waste water Download PDF

Info

Publication number
CA2255457A1
CA2255457A1 CA002255457A CA2255457A CA2255457A1 CA 2255457 A1 CA2255457 A1 CA 2255457A1 CA 002255457 A CA002255457 A CA 002255457A CA 2255457 A CA2255457 A CA 2255457A CA 2255457 A1 CA2255457 A1 CA 2255457A1
Authority
CA
Canada
Prior art keywords
waste effluent
reaction product
epichlorohydrin
polyamine
dimethylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002255457A
Other languages
French (fr)
Inventor
Michael L. Braden
Richard E. Metzgar
Jitendra T. Shah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ChampionX LLC
Original Assignee
Nalco Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalco Chemical Co filed Critical Nalco Chemical Co
Publication of CA2255457A1 publication Critical patent/CA2255457A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/917Color
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/928Paper mill waste, e.g. white water, black liquor treated

Abstract

Processes for removing color from a paper mill waste effluent and for removing color from a textile plant waste effluent utilizing an amphoteric copolymer/polyamine combination are described. A preferred amphoteric copolymer is poly(dimethylaminoethylacrylate methyl chloride quaternary salt/acrylic acid) and a preferred polyamine is a polymeric reaction product of epichlorohydrin and dimethylamine.

Description

CA 022~4~7 1998-12-10 Field of the IrvPntion Processes for removing color from a paper mill waste effluent and for removing color from a textile plant waste effluent ~ltili7.ing an amphoteric copolymer/polyamine combination are described. A preferred amphoteric copolymer is poly(dimethylaminoethylacrylate methyl chloride quaternary salt/acrylic acid) and a preferred polyamine is a polymeric reaction product of epichlorohydrin and dimethylamine.
~a~ ~ound of the Irven~iQn Many industrial processes necessitate removal of color before recycling of the water. Particularly, color removal from the effluent streams of paper mills presents a problem within the pulp and paper industry. It is necessary that these waste waters be treated for color removal prior to discharge.
The United States wood pulp production capacity is approximately 60 million tons per year. Since the average cellulose content of wood is about 40%, 150 million tons of wood are needed to produce this 60 million tons of pulp. The difference between these two numbers represents the lignin and hemicellulose which must be removed or separated in the pulping process in order to free the cellulose fibers.
The pulping process. however. does not remove 100% of the lignin present in the wood, with approximatel~ 5% remaining after either Kraft or sulfite pulping (for CA 022~4~7 1998-12-10 mechanical pulping the amount is considerably higher). If a high grade paper is the desired end product, then this 5% residual lignin must be removed by bleaching the pulp.
Since over 35% of the pulp produced in the United States is bleached, there are about one million tons of lignin removed each year at the bleach plant, most of this in the caustic extraction stage. This number is significant because in the removal process (i.e., bleaching), most of this residual lignin is solubilized. This solubilized lignin is a strong absorber of visible radiation resulting from the conjugation of unsaturated and quinodal moieties fommed during the oxidation step in the bleach plant. Consequently, the bleach plant effluent is highly colored. Although there are other sources of color in paper mill waste effluent, it is readily apl)arent that where ble~c.hing is performed, its effluent can be expected to be the major contributor of waste color. Indeed, at Kraft bleach mills, the effluent from the first caustic extraction stage accounts for at least 70% of the waste color.
The goal of the pulping and bleaching operation is the removal of lignin and hemicellulose from the cellulose fiber in wood. The 95% that is removed by pulping is often bumed as fuel in the process of reco~ ering the inorganic chemicals present in the black liquor. In the bleaching operation. the 5% residual lignin is separated from the fibers by degradation and solubilization and ends up in the waste water. Chemical removal can therefor only be accomplished by reducing this solubility, which has proved ~0 to be a difficult task.

CA 022~4~7 1998-12-10 Therefore, the primary source of color in pulp is lignin. It has also been suggested that Kraft color is due to keto-enols produced from carbohydrates during the Kraft cook stage in the papermaking process. Chlorination of the pulp during the ble~ching operation results in the formation of color bodies which are leached from the pulp by caustic alkali solutions. Thus, the caustic extract effluent contains a major proportion of the color bodies and the other organic materials which have to be disposed of during the waste water treatment.
The process of color removal from the effluent stream is further complicated by the presence of lime, solid particulate matter like pulp, clay, di~ L/surface active materials and polymers used during various stages in the papenn~king process. The solid particulate matter is commonly referred to as anionic trash.
Most governmental regulations pertaining to color removal from the effluent stream of a papermaking process are directed to true color, i.e., platinum cobalt (Pt-Co color using a spectrophotometer). Nevertheless, there is increasing pressure on pulp and 1~ paper mills to lower the apparent color of the effluent water because that is the color visible to the naked eye. There are occasions when the true color of a system that has undergone treatment is low~ but the corresponding apparent color is high. This problem is commonly caused by the presence of suspended particulate matter that causes an increase in the turbidity of the system. Therefore, it is important that any new treatment CA 022~4~7 1998-12-10 for color removal should not only remove the true color of the effluent, but should also lower the appalell~ color as well.
The pressure to remove color comes primarily from state environmental agencies.
Previously, it was thought that the discharge of colored waste affected only the aesthetic value of the receiving body of water, however, biologists are becoming increasingly concerned about possible toxic effects, the effect of reduced light transmittance through the water causing reduced levels of photosynthetic activity, and of course, the resultant drop in dissolved oxygen concentration because of this drop in activity. Furthermore, although these colored, waste products are fairly refractory towards biological oxidation and since they become degraded in the aquatic environrnent, the oxidation products may be potentially harmful.
It has been shown that by-products are water soluble, and that a significant amount is produced. This puts severe demands on chemicals to be used for color removal. There are techniques already available, however, that can remove greater than 90% of the color from either total mill effluent or isolated wastestreams, such as from the caustic extraction stage of the bleach plant. These techniques include chemical (e.g., alum, ferric, lime or polyelectrolytes) biological (e.g., white rot fungus) and physical processes (e.g., ultrafiltration ion exchange and carbon absorption). However, none of these techniques enjoys widespread use due to prohibitive cost.

CA 022~4~7 1998-12-10 Chemical techniques for the removal of color include a decolorizing composition consisting of ferrous sulfate and a water-soluble cationic copolymer of epichlorohydrin and dimethylamine as disclosed in U. S. Pat. No. 5,200,089. A process for color removal from pulp and paper waste waters comprising treating these waters with a coagulant and a vinylamine polymer are disclosed in U.S. Patent No. 5,435,921. Copolymers comprising diallyldimethyl ammonium chloride and a hydrophobic monomer selected from the group consisting of quaternized dimethylaminoethylacrylates and quaternized dimethylaminoethylmethacrylates are disclosed in U. S. Pat. Nos. 5,338,816; 5~283,306;
5,292,793 and 5,314,627. Solution copolymers of acrylamide and a hydrophobic monomer selected from the group consisting of q-~tt-rni7ed dimethylaminoethylacrylates and quaternized dimethylaminoethylmethacrylates for removal of color are disclosed in U.S. Patent No. 5,292~793. Dispersion polymers formed from the precipitation polymerization of monomers including dimethylaminoethyl(meth)acrylate methyl chloride quaternary salt for color removal are disclosed in U.S. Patent No. 5,435,922.
The demands on a product used in a color removal application are quite severe, i.e., the product must be capable of reacting with the color bodies in a manner which results in their becoming insoluble and, because of the extremely large amount produced, the color removal product must work at very low weight ratios relative to the organic being removed or its use will be precluded by prohibitive costs.

CA 022~4~7 1998-12-10 Summary of the lnv~r~tion Processes for removing color from a paper mill waste effluent and for removing color from a textile plant waste effluent lltili7.ing an amphoteric copolymer/polyamine combination are described. A preferred amphoteric copolymer is poly(dimethylaminoethylacrylate methyl chloride qn~t~rn~ry salt/acrylic acid) and a preferred polyamine is a polymeric reaction product of epichlorohydrin and dimethylarnine .

Description of the Inventior.
The invention is a process for removing color from a paper mill waste effluent containing color bodies which comprises:
a) treating the waste effluent cont~ining color bodies with an effective color-removing amount of a water-soluble amphoteric copolymer/polyarnine combination;
b) coagulating the color bodies present in the waste effluent; and then c) removing the coagulated color bodies from the waste effluent.
The invention is also a process for removing color from a textile plant waste effluent containing color bodies which comprises:

. . .

CA 022~4~7 1998-12-10 a) treating the waste effluent cont~ining color bodies with an effective color-removing amount of a water-soluble amphoteric copolymer/polyamine combination;
b) coagulating the color bodies present in the waste efffluent; and then c) removing the coagulated color bodies from the waste effluent.

The papermill waste effluent may be treated with from about 1 to about 500 partsper million of the combination. Preferably, the papermill waste effluent may be treated with from about 30 to about 200 parts per million of the combination.
The textile plant waste effluent may be treated with from about 1 to about 500 parts per million of the combination. The textile plant waste effluent may be treated with from about 30 to about 200 parts per million of the combination. Most preferably, the textile plant waste effluent may be treated with from about 50 to about 120 parts per million of the combination.
The following information applies to either aspect of this invention. The polyarnine may be selected from the group consisting of a polymeric reaction product of ethylene dichloride and ammonia including the associated methyl chloride and dimethyl sulfate quaternary amine salts; a polvmeric reaction product of epichlorohydrin and dimethylamine; a polymeric reaction product of epichlorohydrin, dimethylarnine and ethylene diamine including the associated methyl chloride or methyl sulfate quaternary amine salts; a polymeric reaction product of epichlorohydrin, dimethylamine and ammonia including the associated methyl chloride or methyl sulfate quaternary amine salts; a polymeric reaction product of epichlorohydrin, dimethylamine hexamethylenediamine including the associated methyl chloride or methyl sulfate CA 022~4~7 1998-12-10 quatemary amine salts; guanidine-formaldehyde contl~n.cation polymers; cyanoguanidine-formaldehyde condensation polymers; urea-formaldehyde con-len~tion polymers and polyethyleneimines. The amphoteric copolymer may be formed from the polymerization of acrylamide and hydrophobic monomers selected from the group consisting of dimethylaminoethylacrylates having methyl quaternary salts and dimethylaminoethyl-methacrylates having methyl quaternary salts. The volume ratio of amphoteric copolymer to polyamine may range from 5:95 to 95:5. Moreover, the volume ratio of amphoteric copolymer to polyamine may range from 5:95 to SO:SO. The polyamine may be the polymeric reaction product of epichlorohydrin and dimethylamine and the amphoteric copolymer is poly(dimethylaminoethylacrylate methyl chloride quaternary salt/acrylic acid) in a SO:50 volume ratio.
In addition to the color removal ability in paperrn~king, it is expected that this polymer combination may also have utility in other manufacturing processes whichrequire color removal. such as within the textile industry.
The polvamine compounds of the invention are preferably chosen from water-soluble or water dispersible polymers which may be formed by step polymerization of materials such as epichlorohydrin-dimethvlamine, ethylenedichloride-ammonia, ethylene-dichloride-methylamine-ammonia. epichlorohydrin-dimethylamine-ethylene oxide-'O propylene oxide and aniline-formaldehvde reacted with materials such as epichlorohydrin-dimethylamine polymers. or any other step polymers which containepichlorohydrin~ dimethylamine. ethylenedichloride. ammonia, methylamine, ethylene CA 022~4~7 1998-12-10 oxide. propvleneoxide. aniline-formaldehyde con~len~ates, or any admixture of the above ingredients, so as to form a polymer which is water-soluble or water-dispersible.
The polyamine compounds of the invention preferably have an average molecular weight ranging between about 5,000 to about 250,000 daltons. Ethylenedichloride and ammonia react by a series of ammonolysis and alkylation steps to afford a polymer in which the two-carbon unit of ethylene dichloride and the nitrogen atom of ammonia alternate to form chain, branched, or crosslinked structures. Furthermore, the primary, secondary and tertiary nitrogen atoms in such structures may be quaternized by standard methods which are known to those skilled in the art. These polymers are discussed in detail in U.S. Patent No. 4,374,964, the disclosure of which is incorporated herein by reference.
It is well-known that halohydrins such as epichlorohydrin may react with an amine. with combinations of several different a,nines, or with combinations of amines and ammonia to produce polyamines cont~ining alternating nitrogen atoms and halohydrin fragments. The reactions leading to polymer formation are all nucleophilic substitutions of the amines or ammonia onto epoxides or chlorohydrins. The polymers are disclosed in detail in U.S. Patent No. 4.374~102. the disclosure of which isincorporated herein by reference. The preparation of such materials is also discussed in detail in C~n~ n Patent No. 731.21'. the disclosure of which is incorporated herein by reference.

CA 022~4~7 1998-12-10 The relative proportions of the polyfunctional amine and polyfunctional halohydrin employed in making the polymers for the purpose of the invention can be varied depending upon the particular types of amine and polyfunctional halohydrin and the reaction conditions. These polymers may also be qll~tçrni7ed using known methods.
Preferred polymers which are useful in the practice of the invention include thepolymeric reaction products of the following reactions:
1. Ethylenedichloride and ammonia, including the associated methyl chloride and dimethyl sulfate quaternary amine salts (QUATS);
2. Epichlorohydrin (EPI) and dimethylamine (DMA);
3. Epichlorohydrin, dimethylamine and ethylenedi~mine, these include the associated methyl chloride or methyl sulfate QUATS;
4. Epichlorohydrin, dimethylamine and ammonia, including the associated methyl chloride or methyl sulfate QUATS;
5. Epichlorohydrin~ dimethylamine and hexamethylene~ mine, including the I 5 associated methyl chloride or methyl sulfate QUATS.
The amphoteric copolymers according to the present invention have been shown to be efficient agents for the removal of color caused by lignins and their derivatives present m the paper mill waste water effluent. It has been discovered that the performance of acrylic acid (AA) can be significantly improved by incorporating a certain degree of hydrophobic nature. Such a modification can be accomplished by CA 022~4~7 1998-12-10 copolymerizing AA with hydrophobic monomers, such as quaternized dimethylarninoethylacrylate (DMAEA) or dimethylaminoethylmethacrylate(DMAEM).
The quaternized DMAEA is selected from the group conci~ting of:
dimethylaminoethylacrylate having methyl chloride or bromide qu~tern~ries. It ispreferable that the quaternized dimethylaminoethylacrylate be either dimethylamino-ethylacrylate methyl chloride quaternary or dimethylaminoethylacrylate methyl bromide quaternary.
Similarly, the quaternized DMAEM is selected from the group consisting of:
dimethylaminoethylmethacrylate having methyl chloride or methyl bromide quaternaries.
The synthesis of such polymers is described in U.S. Patent No. 5,552,498 and 5.554,298, the disclosures of which are hereby incorporated by reference.
The resultant amphoteric polymers are hydrophobic polyelectrolytes which are surface active due to the micellar character of the pendant long chains and the positive charge near the polymer backbone. The examples below demonstrated that these hydrophobic polyelectrolytes exhibit good color removal without overdosage.
The hydrophobic polyelectrolyte copolymer typically has an acrylic acid to hydrophobic monomer molar ratio in the range from 50:50 to 90:10.
The amphoteric polymer and the polyamine may be added to the system to be treated in several different ways. The two can be pre-mixed prior to addition to the ~0 system to be treated, added sequentially~ or added at the same time via separate feed lines.

CA 022~4~7 1998-12-10 The copolymers of this invention may be used alone, or in combination with a high molecular weight anionic, cationic or nonionic water soluble dispersible flocculant.
Such polymers include polyacrylamide, poly(DMAEA.MCQ/AcAm) and copolymers of acrylamide with acrylic acid and its water soluble alkali metal or ammonium salts. As used herein, the term acrylic acid is meant to encompass such water soluble salts. Also useful are such polymers as sulfomethylated acrylamides as exemplified in U. S. Pat.
Nos. 5,120,797 and 4,801,388, the disclosures of which are hereinafter incorporated by reference into this specification. Other commercially available anionic flocculant materials may also be Utili7t--l A preferred class of flocculants for use in this invention includes copolymers of DMAEA MCQ and acrylamide in a mole ratio of 99:1 to 1:99 and preferably 99:1 to 50:50. Most preferably? the mole ratio of acrylamide to DMAEA-MCQ will be 95:5 to 60:40.
The flocculants of this invention may be prepared in solution form, or in water-in-oil emulsion form. The preparation of such flocculants is known to those skilled in the art. The flocculants generally have molecular weights ranging from as low as 1,000,000 to 40,000,000 or higher. Preferred flocculants have a molecular weight of about 10,000,000. The upper weight of molecular weight is not critical so long as the polymer is water soluble or dispersible.

CA 022~4~7 1998-12-10 The term color bodies as utilized herein is meant to encompass aldehydes and keto-enol compounds, arnong others.
The following examples are presented to describe preferred embodiments and utilities of the invention and are not meant to limit the invention unless otherwise stated in the claims appended hereto.
F~Y~nIPIe 1 To determine the effectiveness of the treatment, the polymer(s) to be tested at the desired concentration were added to wastewater from a Southeastern paper mill and mixed at 330 rpm for I minute followed by mixing at 80 rpm for 5 minutes. The particles were then allowed to settle for 10 minutes. The supernatant was then collected for analysis of appalcllt color (AC) and true color (TC). The ~parent color was determined by measuring the absorbance of the supernatant at 465 nrn using Hach DR-2000 unit.
The true color was determined by adjusting the pH of the supernatant to 7.6, filtering it through a 0.8 micron filter and then measuring the absorbance at 465 nm. The unit of measurement for both parameters is Pt-Co. Both the measurements are used at industrial facilities to evaluate the performance of the polymers.
The results in Table I show a dramatic increase over either conventional polymeric treatment alone. For any of the treatments tested, there is a point at which overdosage occurs. Too much treatment agent increases rather than decreases color at ~0 some point. The advantage of the combination is that there is a far greater effectiveness CA 022~4~7 1998-12- lo is achieved at only 20 ppm, than is achieved at any dosage tested for either polymer dosed alone.
TABLE I
Color Values Dosage (ppm)Polymeric Polymeric Polymeric Treatment A Treatment BTreatment A + B

A = epichlorohydrinJdimethylamine conden~ion polymer 20,000 MW, available from Nalco Chemical Company of Naperville, IL
B = poly(dimethylaminoethylacrylate methyl chloride quaternary/acrylic acid) 1,000~000 MW, mole ratio of DMAEA.MCQ/AA = 70130 solution polymer available from Nalco Chemical Company of Naperville, IL
1() 1 = 1:1 mixture Changes can be made in the composition, operation and arrangement of the method of the present in~ention described herein without departing from the concept and scope of the invention as defined in the following claims:

Claims (20)

1. A process for removing color from a paper mill waste effluent containing color bodies which comprises:
a) treating the waste effluent containing color bodies with an effective color-removing amount of a water-soluble amphoteric copolymer/polyamine combination;
b) coagulating the color bodies present in the waste effluent; and then c) removing the coagulated color bodies from the waste effluent.
2. The method of claim 1 wherein the polyamine is selected from the group consisting of a polymeric reaction product of ethylene dichloride and ammonia including the associated methyl chloride and dimethyl sulfate quaternary amine salts; a polymeric reaction product of epichlorohydrin and dimethylamine; a polymeric reaction product of epichlorohydrin, dimethylamine and ethylene diamine including the associated methyl chloride or methyl sulfate quaternary amine salts; a polymeric reaction product of epichlorohydrin, dimethylamine and ammonia including the associated methyl chloride or methyl sulfate quaternary amine salts: a polymeric reaction product of epichlorohydrin, dimethylamine hexamethylenediamine including the associated methyl chloride or methyl sulfate quaternary amine salts; guanidine-formaldehyde condensation polymers;
cyanoguanidine-formaldehyde condensation polymers; urea-formaldehyde condensation polymers and polyethyleneimines.
3. The method of claim 1 wherein the amphoteric copolymer is formed from acrylic acid and a hydrophobic monomer selected from the group consisting of dimethylaminoethylacrylates having methyl quaternary salts and dimethylaminoethylmethacrylates having methyl quaternary salts.
4. The method of claim 1 wherein the volume ratio of amphoteric copolymer to polyamine ranges from 5:95 to 95:5.
5. The method of claim 1 wherein the volume ratio of amphoteric copolymer to polyamine ranges from 5:95 to 50:50.
6. The method of claim 1 wherein the polyamine is the polymeric reaction product of epichlorohydrin and dimethylamine and the amphoteric copolymer is poly (dimethylaminoethylacrylate methyl chloride quaternary salt/acrylic acid) in a 50:50 volume ratio.
7. The method of claim 1 wherein the papermill waste effluent is treated with from about 1 to about 500 parts per million of the combination.
8. The method of claim 1 wherein the papermill waste effluent is treated with from about 30 to about 200 parts per million of the combination.
9. The method of claim 1 wherein the papermill waste effluent is treated with from about 50 to about 120 parts per million of the combination.
10. The method of claim 1 further comprising the addition of a flocculant to said waste effluent.
11. A process for removing color from a textile plant waste effluent containing color bodies which comprises:
a) treating the waste effluent containing color bodies with an effective color-removing amount of a water-soluble amphoteric copolymer/polyamine combination;
b) coagulating the color bodies present in the waste effluent; and then c) removing the coagulated color bodies from the waste effluent.
12. The method of claim 11 wherein the polyamine is selected from the group consisting of a polymeric reaction product of ethylenedichloride and ammonia including the associated methyl chloride and dimethyl sulfate quaternary amine salts; a polymeric reaction product of epichlorohydrin and dimethylamine; a polymeric reaction product of epichlorohydrin, dimethylamine and ethylenediamine including the associated methyl chloride or methyl sulfate quaternary amine salts; a polymeric reaction product of epichlorohydrin, dimethylamine and ammonia including the associated methyl chloride or methyl sulfate quaternary amine salts; a polymeric reaction product of epichlorohydrin, dimethylamine hexamethylenediamine including the associated methyl chloride or methyl sulfate quaternary amine salts; guanidine-formaldehyde condensation polymers;
cyanoguanidine-formaldehyde condensation polymers; urea-formaldehyde condensation polymers and polyethyleneimines.
13. The method of claim 11 wherein the amphoteric copolymer is formed from acrylic acid and a hydrophobic monomer selected from the group consisting of dimethylaminoethylacrylates having methyl quaternary salts and dimethylaminoethylmethacrylates having methyl quaternary salts.
14. The method of claim 11 wherein the volume ratio of amphoteric copolymer to polyamine ranges from 5:95 to 95:5.
15. The method of claim 11 wherein the volume ratio of amphoteric copolymer to polyamine ranges from 5:95 to 50:50.
16. The method of claim 11 wherein the polyamine is the polymeric reaction product of epichlorohydrin and dimethylamine and the amphoteric copolymer is poly(dimethylaminoethylacrylate methyl chloride quaternary salt/acrylic acid) in a 50:50 volume ratio.
17. The method of claim 11 wherein the textile plant waste effluent is treated with from about 1 to about 500 parts per million of the combination.
18. The method of claim 11 wherein the textile plant waste effluent is treated with from about 30 to about 200 parts per million of the combination.
19. The method of claim 11 wherein the textile plant waste effluent is treated with from about 50 to about 120 parts per million of the combination.
20. The method of claim 11 further comprising the addition of a flocculant to said waste effluent.
CA002255457A 1997-12-18 1998-12-10 Amphoteric polymer/polyamine combinations for color removal and clarification of paper mill waste water Abandoned CA2255457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/993,229 1997-12-18
US08/993,229 US5961838A (en) 1997-12-18 1997-12-18 Amphoteric polymer/polyamine combinations for color removal and clarification of paper mill waste water

Publications (1)

Publication Number Publication Date
CA2255457A1 true CA2255457A1 (en) 1999-06-18

Family

ID=25539271

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002255457A Abandoned CA2255457A1 (en) 1997-12-18 1998-12-10 Amphoteric polymer/polyamine combinations for color removal and clarification of paper mill waste water

Country Status (10)

Country Link
US (1) US5961838A (en)
EP (1) EP0924167B1 (en)
JP (1) JPH11239795A (en)
AT (1) ATE248774T1 (en)
AU (1) AU9703298A (en)
CA (1) CA2255457A1 (en)
DE (1) DE69817746T2 (en)
ES (1) ES2206854T3 (en)
ID (1) ID22199A (en)
NZ (1) NZ333287A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262168B1 (en) 1998-03-11 2001-07-17 Cytec Technology Corp. Aqueous dispersions
US6491827B1 (en) * 1999-02-12 2002-12-10 Steen Research, Llc Process for reducing true color in waste liquids
GB2364048A (en) * 2000-06-27 2002-01-16 Procter & Gamble Water treatment composition
US6627086B2 (en) * 2001-03-21 2003-09-30 Polymer Ventures, Inc. Methods of producing polyarylamines and using them for detackifying paint and removing color from aqueous systems
US20020179538A1 (en) * 2001-03-23 2002-12-05 Johnson Brian S. Polyamphoteric polymers for raw water treatment
WO2003020829A1 (en) * 2001-09-04 2003-03-13 Toagosei Co., Ltd. Composition, amphoteric polymeric flocculant and use of both
AU2010224787B2 (en) * 2009-03-20 2012-09-06 Universiteit Antwerpen Surface-modified inorganic matrix and method for preparation thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA731212A (en) * 1966-03-29 Nalco Chemical Company Coagulation process and apparatus therefor
US4089780A (en) * 1975-10-21 1978-05-16 Nalco Chemical Company Color removal process
US4374964A (en) * 1979-11-29 1983-02-22 Nalco Chemical Company Method of preparing high molecular weight polyamines
US4308149A (en) * 1980-07-14 1981-12-29 Nalco Chemical Company Branched/cross-linked cationic phenol-formaldehyde polymers useful in wastewater treatment
US4374102A (en) * 1981-11-13 1983-02-15 Nalco Chemical Company Polymers for controlling soda ash crystal formation
US4655934A (en) * 1985-09-12 1987-04-07 Nalco Chemical Company Dimeric aluminum compounds and their use
US5120797A (en) * 1985-12-03 1992-06-09 Nalco Chemical Company Sulfomethylamide-containing polymers
US4801388A (en) * 1986-03-21 1989-01-31 Nalco Chemical Company Modified acrylamide polymers used as scale inhibitors
GB9116702D0 (en) * 1991-08-02 1991-09-18 Allied Colloids Ltd Dewatering of aqueous suspensions
US5200089A (en) * 1991-08-12 1993-04-06 Nalco Chemical Company Pulp and paper mill wastewater color removal
US5292793A (en) * 1992-07-14 1994-03-08 Nalco Chemical Company Hydrophobic polyelectrolytes used in color removal
US5283306A (en) * 1992-08-26 1994-02-01 Nalco Chemical Company Hydrophobic polyelectrolytes used in removing color
US5435922A (en) * 1993-06-14 1995-07-25 Nalco Chemical Company Method of removing color from waste water using an aqueous dispersion polymer
US5413719A (en) * 1994-01-18 1995-05-09 Nalco Chemical Company Fluorescent tracer in a water treatment process
US5435921A (en) * 1994-05-09 1995-07-25 Nalco Chemical Company Vinylamine polymers and coagulants for removing color from paper mill effluents
US5552498A (en) * 1994-09-23 1996-09-03 Nalco Chemical Company Preparation of amphoteric acrylic acid copolymers suitable as oil-in-water emulsion breakers
US5554298A (en) * 1995-01-20 1996-09-10 Nalco Chemical Company Steel mill flume water treatment
US5601725A (en) * 1995-10-23 1997-02-11 Nalco Chemical Company Hydrophobically modified polymers for sludge dewatering
US5611934A (en) * 1995-12-18 1997-03-18 Hoechst Celanese Corporation Process for dye removal

Also Published As

Publication number Publication date
DE69817746D1 (en) 2003-10-09
US5961838A (en) 1999-10-05
AU9703298A (en) 1999-07-08
EP0924167A3 (en) 1999-07-07
DE69817746T2 (en) 2004-10-07
JPH11239795A (en) 1999-09-07
ID22199A (en) 1999-09-16
ES2206854T3 (en) 2004-05-16
EP0924167B1 (en) 2003-09-03
EP0924167A2 (en) 1999-06-23
NZ333287A (en) 2000-01-28
ATE248774T1 (en) 2003-09-15

Similar Documents

Publication Publication Date Title
EP0629583B1 (en) Colour removal agent and its use
CA2073419C (en) A method of treating bctmp/ctmp wastewater
US5292793A (en) Hydrophobic polyelectrolytes used in color removal
KR100468554B1 (en) Hydrophilic Dispersion Polymers for the Clarification of Deinking Process Waters
US5338816A (en) Hydrophobic polyelectrolytes used in removing color
US5435921A (en) Vinylamine polymers and coagulants for removing color from paper mill effluents
EP0789673B1 (en) Methods of coagulating and decolorizing waste streams
US5961838A (en) Amphoteric polymer/polyamine combinations for color removal and clarification of paper mill waste water
CA2110365A1 (en) Quaternized polyvinylamines for deinking loop clarification
US6258279B1 (en) Hydrophilic cationic dispersion polymer for paper mill color removal
US5393436A (en) Method of water treatment using polyacrylamide-phosphonate flocculants
US5589075A (en) Use of silicon containing polyelectrolytes in wastewater treatment
US5597490A (en) DADMAC/vinyl trialkoxysilane copolymers for treatment of food processing wastes
JPH1076277A (en) Chemical composition for water treatment and water treatment method using the same
CA2023735C (en) Compositions and process for removing toxic resin acids and derivatives from effluent
US5476594A (en) Vinylamine polymers for removing color from paper mill effluents
US20220234923A1 (en) Method for removing dissolved organic compounds from wastewater
WO2000032519A1 (en) Hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide for the clarification of deinking process waters
AU764315B2 (en) Hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide for the clarification of deinking process waters
CN1222489A (en) Amphoteric polymer/polyamine combinations for color removal and clarification of paper mill waste water
MXPA00010298A (en) Use of polymer dispersions for paper mill color removal
MXPA97002741A (en) Methods of coagulation and decoloration decorrientes residua
CA2035467A1 (en) Protonated mannich polymers
MXPA01005383A (en) Hydrophilic dispersion polymers of diallyldimethyl ammonium chloride and acrylamide for the clarification of deinking process waters

Legal Events

Date Code Title Description
FZDE Discontinued