CA2273474C - Electronic circuit device and method of fabricating the same - Google Patents

Electronic circuit device and method of fabricating the same Download PDF

Info

Publication number
CA2273474C
CA2273474C CA002273474A CA2273474A CA2273474C CA 2273474 C CA2273474 C CA 2273474C CA 002273474 A CA002273474 A CA 002273474A CA 2273474 A CA2273474 A CA 2273474A CA 2273474 C CA2273474 C CA 2273474C
Authority
CA
Canada
Prior art keywords
case
metal substrate
circuit device
electronic circuit
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002273474A
Other languages
French (fr)
Other versions
CA2273474A1 (en
Inventor
Mikio Okamoto
Katsumi Ebara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Honda Motor Co Ltd
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Shindengen Electric Manufacturing Co Ltd filed Critical Honda Motor Co Ltd
Publication of CA2273474A1 publication Critical patent/CA2273474A1/en
Application granted granted Critical
Publication of CA2273474C publication Critical patent/CA2273474C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20854Heat transfer by conduction from internal heat source to heat radiating structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0026Casings, cabinets or drawers for electric apparatus provided with connectors and printed circuit boards [PCB], e.g. automotive electronic control units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

An electronic circuit device having an improved heat dissipating effect, a small size and a high reliability is provided with a metal substrate having a first surface and a second surface and a case. Electronic parts are mounted on only the first surface and the case is united with a radiating fin in one body. The metal substrate is installed in the case such that the metal substrate serves as a cap of the case and the first surface of the metal substrate faces to the case. A resin is provided to fill up a space between the metal substrate and the case, whereby heat generated from the electronic parts is dissipated to the exterior from both the radiating fin and the second surface of the metal substrate.

Description

ELECTRONIC CIRCUIT DEVICE AND METHOD OF FABRICATING
THE SAME

BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates to an electronic circuit device for which a high heat radiating or dissipating ability is required and a method of fabricating such an electronic circuit device, and more particularly to the structure of a package of an electronic circuit device and a method for fabrication of the same.

Description of Related Art Prior art will be described referring to FIGS. 4 and 5.

FIG. 4 shows the setting structure of a rectifier for vehicle disclosed by Japanese Utility Model Publication No. 6-9577 published on March 9, 1994. A
frame member 16 and a substrate 12 are fixed through screws 20 onto a surface of a pedestal or the like (not shown) on which the rectifier is to be installed.
Thereby, a structure having an excellent productivity and a satisfactory heat dissipating efficiency is provided.
In this structure, no radiating fin is used. There instead, heat dissipation is mainly made from a surface of the rectifier to be installed on the pedestal or the like (or a surface of the substrate 12 having no parts mounted thereon).
On the other hand, the conventional electronic circuit device using a radiating fin is shown in Fig. 5.
In the figure, reference numeral 21 denotes a metal substrate, numeral 22 denotes a case, numeral 23 denotes a mold resin, numeral 24 denotes a portion of the case 22 abutting against the substrate 21, numeral 25 denotes a connector, numeral 27 denotes an installation surface of the electronic circuit device, numeral 28 denotes an end face of the case 22, and numeral 29 denotes a radiating fin. In such conventional electronic circuit device with radiating fin, a surface of the metal substrate having no parts mounted thereon is brought into contact with the bottom of the case, thereby improving the heat dissipation from the radiating fin.

However, in the setting structure of the rectifier for vehicle shown in Fig. 4, heat dissipation is mainly made from the surface of the substrate 12 having no parts mounted thereon, that is, the heat dissipation from a surface of the substrate having parts mounted thereon is not taken into consideration.

In the electronic circuit device shown in Fig.
5, the dissipation of heat thermally conducted from the surface of the metal substrate 21 having no parts mounted thereon and radiated from the radiating fin 29 is satisfactory but the heat dissipation from the installation surface of the electronic circuit device (or a surface of the metal substrate 21 having parts mounted thereon) is not particularly taken into consideration.

SUMMARY OF THE INVENTION

An object of the present invention made in light of the above-mentioned problems is to provide an electronic circuit device which has a heat dissipating ability superior to that of the conventional device.
To attain the above object, an electronic circuit device according to the present invention comprises a metal substrate having a first surface and a second surface, electronic parts mounted on only the first surface of the metal substrate, a case, united with a radiating fin in one body, for housing the metal substrate therein such that the metal substrate serves as a cap of the case and the first surface of the metal substrate faces to the case, and a resin disposed in a space between the metal substrate and the case, whereby heat generated from the electronic parts is dissipated to the exterior from both the radiating fin and the second surface of the metal substrate.

A method of fabricating an electronic circuit device according to the present invention comprises the step of mounting electronic parts on a metal substrate having a first surface and a second surface, the electronic parts being mounted on only the first surface of the metal substrate, the electronic parts including a plurality of electrodes for connecting the electronic circuit device to an external circuit, the step of installing the metal substrate in a case united with a radiating fin in one body such that the metal substrate serves as a cap of the case and the first surface of the metal substrate faces to the case, the case being provided with an opening for drawing out the plurality of electrodes to the exterior, the step of injecting a resin into a space between the metal substrate and the case from the opening of the case, and the step of inserting a member into the opening of the case which protects the plurality of electrodes.

With the construction of the present invention in which the metal substrate is installed in the case such that the metal substrate serves as a cap of the case and the surface of the metal substrate having the parts mounted thereon faces to the case or a surface of the metal substrate having no parts is directed outwards and the space between the metal substrate and the case is filled with the resin, a large amount of heat can be dissipated from both the radiating fin of the case and a surface of the electronic circuit device to be installed on a pedestal or the like, that is, a surface of the metal substrate having no parts, thereby improving the heat dissipation of the metal substrate.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a cross section of an electronic circuit device according to an embodiment of the present invention;
Fig. 2 is a bottom view of each of a case and a metal substrate used in the electronic circuit device according to the embodiment of the present invention;

Fig. 3 is a bottom view and a side view of the electronic circuit device according to the embodiment of the present invention;

Fig. 4 is an assembly diagram of one conven-tional electronic circuit device; and Fig. 5 is a cross section of another conven-tional electronic circuit device.

DETAILED DESCRIPTION OF THE EMBODIMENTS

Fig. 1 is a cross section of an electronic circuit device according to an embodiment of the present invention. More particularly, the shown electronic circuit device is applied to a rectifier circuit used in a motor vehicle or auto-bicycle. The rectifier circuit receives an AC voltage from a generator and supplies a DC current to a battery through a bridge formed by rectifying diodes. The amount of heat generated from the rectifier circuit is very large. Therefore, heat dissipation with a high efficiency is required.

In Fig. 1, reference numeral 31 denotes a metal substrate, numeral 32 denotes a case, numeral 33 denotes a mold resin, numeral 34 denotes a portion of the case 32 abutting against the substrate 31, numeral denotes a connector, numeral 36 denotes parts mounted on a surface of the substrate 31, numeral 37 denotes a surface of the electronic circuit device to be installed on a pedestal or the like, numeral 38 denotes an end face of the case 32, numeral 39 denotes a radiating fin united with the case 32 in one body, and numeral 40 denotes electrodes.

The metal substrate 31 includes a base made of a metal material such as copper, aluminum or the like and a conductive pattern of copper or the like formed on an insulating film of an epoxy resin or the like formed over the base. The surface mounted parts 36 includes electronic parts such as rectifying diodes, thyristors or the like generating a large amount of heat, chip parts such as transistors, resistors, condensers and so forth forming a control circuit, jumpers, and so forth.

The electrodes 40 are used for electrically connecting the electronic circuit device to an external circuit. The electrode has a height which is at least two times as high as the surface mounted parts 36. The connector 35 protects the electrodes 40 and also serves as a guide for connecting the electrodes 40 to the external circuit.

The bottom of the case 32 includes a shallow portion (a first area) in which the low surface mounted parts 36 are contained and a deep portion (a second area) in which the high electrodes 40 are contained.
The shallow portion of the case 32 is formed in proximity to the metal substrate 31 with a first interval kept therebetween so that satisfactory thermal conduction is attained. The deep portion of the case 32 is formed apart from the metal substrate 31 with a second interval kept therebetween. The depth ratio of the deep portion to the shallow portion (that is, the ratio of the second interval to the first interval) is at least 2. A space between the metal substrate 31 and the case 32 is filled with the mold resin 33 for improving the thermal conduction.

A peripheral portion of the case 32 (excepting a portion to which the connector 35 is attached) is provided with a guide for positionally fixing the metal substrate 31, thereby preventing the positional deviation of the metal substrate 31 and providing satisfactory thermal conduction between the metal substrate 31 and the case 32. Also, the metal substrate 31 is fixed to the substrate abutting portion 34 of the case 32 so that a part of the metal substrate 31 protrudes from the case 32, thereby providing satis-factory thermal conduction between the metal substrate 31 and a surface on which the electronic circuit device is to be installed.

Fig. 2 shows a bottom view of each of the case 32 and the metal substrate 31 used in the electronic circuit device according to the present embodiment. The bottom 42 of the case 32 is divided into a shallow area (the first area) and a deep area (the second area) which have a difference in level therebetween. As mentioned above, a peripheral portion (a third area) of the case 32 (excepting a portion to which the connector is attached) is provided with a guide 41 for fixing the metal substrate 31. Each of the case 32 and the metal substrate 31 is provided with two mounting holes 43 and 44 or 45 and 46 for fixing the case 32 or the metal substrate 31, and the case 32 and the metal substrate 31 are brought into close contact with each other at a portion of the case bottom 42 surrounding the hole (or a third area). With this structure, not only thermal conduction but also mechanical strength are improved.
Fig. 3 shows a bottom view and a side view of the electronic circuit device of the present embodiment after the completion thereof. As mentioned above, a part of the metal substrate 31 protrudes from the case 32, thereby providing satisfactory thermal conduction between the metal substrate 31 and a surface to which the electronic circuit device is to be attached.

A process for fabrication of the electronic circuit device according to the present embodiment will now be described. First, electronic parts such as parts 36, electrodes 40 and so forth are jointed onto a conductor pattern of a metal substrate 31 by solder.
Next, the metal substrate 31 is fixed to a substrate abutting portion 34 of a case 32 so that a surface of the metal substrate 31 having the electronic parts mounted thereon faces to the case 32. Thereafter, a mold resin 33 is injected into a space between the metal substrate 31 and the case 32 from an opening for attachment of a connector 35. The connector 35 is attached before the mold resin 33 is cured. Since the fixing of the connector 35 is effected by the mold resin 33, the device is completed if the curing of the mold resin 33 is completed.

According to the present invention, since heat dissipation is made from both the radiating fin of the case and the surface of the metal substrate having no parts, it is possible to provide an electronic circuit device which has a heat dissipating efficiency improved as compared with that of the conventional electronic circuit device and has a size reduced as a whole.
Further, it is possible to fix the substrate satis-factorily. As a result, thermal conduction between the substrate and the case can be improved. The present invention is remarkably effective when it is particu-larly applied to an electronic circuit device such as a rectifier circuit device for a motor vehicle or motorcycle, that is, in the case where a surface on which the electronic circuit device is to be installed is made of a metal so that heat dissipation from that surface can be expected. Thereby, it is possible to provide a small-size and high-reliability electronic circuit device. Accordingly, the present invention has a large value in industrial use.

Claims (9)

1. An electronic circuit device comprising:
a metal substrate having a first surface and a second surface;
electronic parts mounted on only the first surface of said metal substrate;
a case including a radiating fin which is of a one-piece structure therewith, said case having said metal substrate housed therein, wherein said metal substrate serves as a cap of said case, and the first surface of said metal substrate faces an interior region of said case; and a resin disposed in a space between said metal substrate and said interior region of said case, wherein both said radiating fin and the second surface of said metal substrate dissipate heat generated from said electronic parts to an exterior of said case, and wherein said case defines a first area at which said case is distanced from said metal substrate with a first interval therebetween providing a least amount of space needed for enclosing said electronic parts, and a second area at which said case is distanced from said metal substrate with a second interval therebetween, said first interval being smaller than said second interval.
2. An electronic circuit device according to claim 1, wherein said case further defines a third area at which said case is brought into close contact with said metal substrate.
3. An electronic circuit device according to claim 2, wherein said first interval is not larger than one half of said second interval.
4. An electronic circuit device according to claim 3, wherein said metal substrate has a conductive pattern formed on an insulating film formed over a metal plate, and said electronic parts includes flat package parts mounted on said conductive pattern and in the first area of said case and a plurality of electrodes, mounted on said conductive pattern and in the second area of said case, for electrically connecting said electronic circuit device to an external circuit.
5. An electronic circuit device according to claim 2, wherein said case and said metal substrate have mounting holes for use of fixing said case and said metal substrate to each other, said holes being provided in the third area of said case.
6. An electronic circuit device according to claim 1, wherein said second surface of said metal substrate protrudes from said case.
7. An electronic circuit device according to claim 1, wherein said case has a guide for positionally fixing said metal substrate to prevent the positional deviation of said metal substrate, said guide bringing said case into close contact with said metal substrate along an outer periphery of said metal substrate.
8. A method of fabricating an electronic circuit device, the method comprising the steps of:
mounting electronic parts on a metal substrate having a first surface and a second surface, said electronic parts being mounted on only the first surface of said metal substrate, said electronic parts including a plurality of electrodes for connecting said electronic circuit device to an external circuit;
installing said metal substrate in a case including a radiating fin which is of a one-piece structure therewith, wherein said metal substrate serves as a cap of said case and the first surface of said metal substrate faces an interior region of said case, said case being provided with an opening for drawing out said plurality of electrodes to an exterior;
injecting laterally a resin into said interior region between said metal substrate and said case from said opening of said case; and inserting a member into said opening of said case to protect said plurality of electrodes.
9. An electronic circuit device according to claim 1, wherein said radiating fin is located at said first area of said case.
CA002273474A 1998-06-12 1999-06-01 Electronic circuit device and method of fabricating the same Expired - Lifetime CA2273474C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16498798A JP4121185B2 (en) 1998-06-12 1998-06-12 Electronic circuit equipment
JP10-164987 1998-06-12

Publications (2)

Publication Number Publication Date
CA2273474A1 CA2273474A1 (en) 1999-12-12
CA2273474C true CA2273474C (en) 2008-09-09

Family

ID=15803692

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002273474A Expired - Lifetime CA2273474C (en) 1998-06-12 1999-06-01 Electronic circuit device and method of fabricating the same

Country Status (6)

Country Link
US (1) US6282092B1 (en)
JP (1) JP4121185B2 (en)
CA (1) CA2273474C (en)
DE (1) DE19926756B4 (en)
IT (1) IT1308721B1 (en)
MY (1) MY120076A (en)

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121185B2 (en) * 1998-06-12 2008-07-23 新電元工業株式会社 Electronic circuit equipment
DE10009171B4 (en) * 2000-02-26 2005-08-11 Robert Bosch Gmbh Power converter and its manufacturing process
US6508595B1 (en) * 2000-05-11 2003-01-21 International Business Machines Corporation Assembly of opto-electronic module with improved heat sink
JP3496633B2 (en) * 2000-10-05 2004-02-16 日本電気株式会社 Heat sink and power supply unit using the same
JP2002202441A (en) * 2000-11-02 2002-07-19 Nippon Telegr & Teleph Corp <Ntt> Optical active connector plug for lan and connector port
JP2002262593A (en) * 2001-02-27 2002-09-13 Yamaha Motor Co Ltd Motor control device
US6839236B2 (en) * 2001-12-14 2005-01-04 Denso Corporation Voltage control device for vehicular alternator
JP3958589B2 (en) * 2002-01-23 2007-08-15 株式会社オートネットワーク技術研究所 Electrical junction box
DE10214448A1 (en) * 2002-03-30 2003-10-16 Hella Kg Hueck & Co Isolating switch for motor vehicle batteries has power semiconductor components on an electrically conductive carrier element linked to an insulated connection element.
JP3910497B2 (en) * 2002-07-03 2007-04-25 株式会社オートネットワーク技術研究所 Power circuit waterproofing method and power module having power circuit
US7057896B2 (en) * 2002-08-21 2006-06-06 Matsushita Electric Industrial Co., Ltd. Power module and production method thereof
US6891725B2 (en) * 2002-09-23 2005-05-10 Siemens Energy & Automation, Inc. System and method for improved motor controller
US6870746B2 (en) * 2002-11-06 2005-03-22 Agilent Technologies, Inc. Electronic module
JP4155048B2 (en) 2003-02-14 2008-09-24 住友電装株式会社 Power module and manufacturing method thereof
CN1802883A (en) * 2003-07-03 2006-07-12 株式会社日立制作所 Assembly apparatus and its manufacturing method
JP4161860B2 (en) * 2003-09-12 2008-10-08 国産電機株式会社 Molded electronic control unit and manufacturing method thereof
JP2005117887A (en) * 2003-09-19 2005-04-28 Auto Network Gijutsu Kenkyusho:Kk Mounting structure of on-vehicle circuit unit, and on-vehicle circuit unit
JP4078553B2 (en) * 2003-10-21 2008-04-23 新神戸電機株式会社 Lithium battery module for vehicles
JP2005234464A (en) * 2004-02-23 2005-09-02 Tdk Corp Optical transceiver and optical module used therefor
JP2006032490A (en) * 2004-07-13 2006-02-02 Hitachi Ltd Engine controlling circuit device
JP4466256B2 (en) * 2004-07-29 2010-05-26 アイシン・エィ・ダブリュ株式会社 Electronic control unit for automatic transmission
US7885076B2 (en) * 2004-09-07 2011-02-08 Flextronics Ap, Llc Apparatus for and method of cooling molded electronic circuits
JP2006093404A (en) * 2004-09-24 2006-04-06 Sumitomo Wiring Syst Ltd Electrical connection box
DE102005026233B4 (en) * 2005-06-07 2008-08-07 Tyco Electronics Ec Kft Electric power module
US7989981B2 (en) * 2006-02-02 2011-08-02 Flextronics Ap, Llc Power adaptor and storage unit for portable devices
WO2007095346A2 (en) * 2006-02-14 2007-08-23 Flextronics Ap, Llc Two terminals quasi resonant tank circuit
WO2008039526A2 (en) * 2006-09-25 2008-04-03 Flextronics Ap, Llc Bi-directional regulator
JP4694514B2 (en) * 2007-02-08 2011-06-08 トヨタ自動車株式会社 Semiconductor device cooling structure
JP5247045B2 (en) * 2007-02-22 2013-07-24 サンデン株式会社 Manufacturing method of inverter-integrated electric compressor
US7830676B2 (en) * 2007-03-29 2010-11-09 Flextronics Ap, Llc Primary only constant voltage/constant current (CVCC) control in quasi resonant convertor
US7760519B2 (en) * 2007-03-29 2010-07-20 Flextronics Ap, Llc Primary only control quasi resonant convertor
US8191241B2 (en) * 2007-03-29 2012-06-05 Flextronics Ap, Llc Method of producing a multi-turn coil from folded flexible circuitry
US7755914B2 (en) * 2007-03-29 2010-07-13 Flextronics Ap, Llc Pulse frequency to voltage conversion
JP4385058B2 (en) * 2007-05-07 2009-12-16 三菱電機株式会社 Electronic control unit
US7978489B1 (en) 2007-08-03 2011-07-12 Flextronics Ap, Llc Integrated power converters
CN104377019A (en) * 2007-09-25 2015-02-25 弗莱克斯电子有限责任公司 Thermally enhanced magnetic transformer
JP4408444B2 (en) * 2007-09-28 2010-02-03 株式会社日立製作所 Electronic control device using LC module structure
US8279646B1 (en) 2007-12-14 2012-10-02 Flextronics Ap, Llc Coordinated power sequencing to limit inrush currents and ensure optimum filtering
JP4638923B2 (en) * 2008-03-31 2011-02-23 日立オートモティブシステムズ株式会社 Control device
US8693213B2 (en) * 2008-05-21 2014-04-08 Flextronics Ap, Llc Resonant power factor correction converter
US8102678B2 (en) * 2008-05-21 2012-01-24 Flextronics Ap, Llc High power factor isolated buck-type power factor correction converter
US8928449B2 (en) * 2008-05-28 2015-01-06 Flextronics Ap, Llc AC/DC planar transformer
US8411451B2 (en) * 2008-07-30 2013-04-02 Panasonic Corporation Power line communication apparatus
US8081019B2 (en) * 2008-11-21 2011-12-20 Flextronics Ap, Llc Variable PFC and grid-tied bus voltage control
US8040117B2 (en) * 2009-05-15 2011-10-18 Flextronics Ap, Llc Closed loop negative feedback system with low frequency modulated gain
JP5374271B2 (en) * 2009-07-31 2013-12-25 株式会社ケーヒン Electronic control unit
JP2011100718A (en) * 2009-10-05 2011-05-19 Yazaki Corp Connector
US8289741B2 (en) * 2010-01-14 2012-10-16 Flextronics Ap, Llc Line switcher for power converters
US8586873B2 (en) * 2010-02-23 2013-11-19 Flextronics Ap, Llc Test point design for a high speed bus
DE102011012673A1 (en) * 2010-03-17 2011-09-22 Hitachi Automotive Systems, Ltd. Electronic control device for vehicles
JP5501816B2 (en) * 2010-03-19 2014-05-28 日立オートモティブシステムズ株式会社 Electronic control unit for automobile
JP5392213B2 (en) * 2010-03-23 2014-01-22 株式会社デンソー Electronic control device and its cooling device
US8338721B2 (en) 2010-04-01 2012-12-25 Phoenix International Corporation Cover with improved vibrational characteristics for an electronic device
US8964413B2 (en) 2010-04-22 2015-02-24 Flextronics Ap, Llc Two stage resonant converter enabling soft-switching in an isolated stage
US8488340B2 (en) 2010-08-27 2013-07-16 Flextronics Ap, Llc Power converter with boost-buck-buck configuration utilizing an intermediate power regulating circuit
JP5281121B2 (en) * 2011-06-14 2013-09-04 三菱電機株式会社 Substrate storage housing for in-vehicle electronic devices
US9182177B2 (en) 2011-07-12 2015-11-10 Flextronics Ap, Llc Heat transfer system with integrated evaporator and condenser
US9117991B1 (en) 2012-02-10 2015-08-25 Flextronics Ap, Llc Use of flexible circuits incorporating a heat spreading layer and the rigidizing specific areas within such a construction by creating stiffening structures within said circuits by either folding, bending, forming or combinations thereof
US9232630B1 (en) 2012-05-18 2016-01-05 Flextronics Ap, Llc Method of making an inlay PCB with embedded coin
US9366394B2 (en) 2012-06-27 2016-06-14 Flextronics Ap, Llc Automotive LED headlight cooling system
WO2014054145A1 (en) * 2012-10-03 2014-04-10 新電元工業株式会社 Electronic device
US9092712B2 (en) 2012-11-02 2015-07-28 Flextronics Ap, Llc Embedded high frequency RFID
US9862561B2 (en) 2012-12-03 2018-01-09 Flextronics Ap, Llc Driving board folding machine and method of using a driving board folding machine to fold a flexible circuit
DE102014102917B4 (en) 2013-03-05 2024-01-18 Flextronics Ap, Llc Component with draw-off sections, semiconductor assembly with pressure relief structure and method for preventing pressure build-up in a semiconductor packaging
KR101449271B1 (en) * 2013-04-19 2014-10-08 현대오트론 주식회사 Electronic control apparatus for vehicle using overmolding and manufacturing method thereof
US9521754B1 (en) 2013-08-19 2016-12-13 Multek Technologies Limited Embedded components in a substrate
US9801277B1 (en) 2013-08-27 2017-10-24 Flextronics Ap, Llc Bellows interconnect
US9053405B1 (en) 2013-08-27 2015-06-09 Flextronics Ap, Llc Printed RFID circuit
US9565748B2 (en) 2013-10-28 2017-02-07 Flextronics Ap, Llc Nano-copper solder for filling thermal vias
US9338915B1 (en) 2013-12-09 2016-05-10 Flextronics Ap, Llc Method of attaching electronic module on fabrics by stitching plated through holes
US9723713B1 (en) 2014-05-16 2017-08-01 Multek Technologies, Ltd. Flexible printed circuit board hinge
US9549463B1 (en) 2014-05-16 2017-01-17 Multek Technologies, Ltd. Rigid to flexible PC transition
US9661738B1 (en) 2014-09-03 2017-05-23 Flextronics Ap, Llc Embedded coins for HDI or SEQ laminations
US10123603B1 (en) 2015-03-27 2018-11-13 Multek Technologies Limited Diffuse fiber optic lighting for luggage
US10154583B1 (en) 2015-03-27 2018-12-11 Flex Ltd Mechanical strain reduction on flexible and rigid-flexible circuits
US20180220539A1 (en) * 2015-09-29 2018-08-02 Hitachi Automotive Systems, Ltd. Electronic Control Device
US10321560B2 (en) 2015-11-12 2019-06-11 Multek Technologies Limited Dummy core plus plating resist restrict resin process and structure
US10064292B2 (en) 2016-03-21 2018-08-28 Multek Technologies Limited Recessed cavity in printed circuit board protected by LPI
US10712398B1 (en) 2016-06-21 2020-07-14 Multek Technologies Limited Measuring complex PCB-based interconnects in a production environment
TWM541686U (en) * 2016-12-27 2017-05-11 Micro-Star Int'l Co Ltd Electronic device
DE102017204939A1 (en) * 2017-03-23 2018-09-27 Te Connectivity Germany Gmbh An electrical connector and electrical connection assembly comprising an electrical connector
DE102018107094B4 (en) * 2018-03-26 2021-04-15 Infineon Technologies Austria Ag Multi-package top cooling and process for its manufacture
JP2021044431A (en) * 2019-09-12 2021-03-18 オムロン株式会社 Electronic apparatus, non-contacting switch and photoelectric sensor
KR102290438B1 (en) * 2020-02-06 2021-08-13 주식회사 경신 Junction having heat-exchange unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213426A1 (en) * 1985-08-30 1987-03-11 Siemens Aktiengesellschaft Casing with a lower and an upper cap for an electrical circuit element
JPH069577Y2 (en) * 1988-01-25 1994-03-09 本田技研工業株式会社 Vehicle rectifier mounting structure
US4899256A (en) * 1988-06-01 1990-02-06 Chrysler Motors Corporation Power module
JPH02281797A (en) * 1989-04-24 1990-11-19 Matsushita Electric Ind Co Ltd Electronic circuit device and its manufacture
HU206024B (en) 1990-01-31 1992-08-28 Intermed Kft Herbicidal compositions comprising substituted sulfonylurea derivatives and optionally antidote, as well as process for producing the active ingredients
GB2249869B (en) * 1990-09-17 1994-10-12 Fuji Electric Co Ltd Semiconductor device
US5297001A (en) * 1992-10-08 1994-03-22 Sundstrand Corporation High power semiconductor assembly
JP3168901B2 (en) * 1996-02-22 2001-05-21 株式会社日立製作所 Power semiconductor module
JP4121185B2 (en) * 1998-06-12 2008-07-23 新電元工業株式会社 Electronic circuit equipment

Also Published As

Publication number Publication date
JPH11354956A (en) 1999-12-24
DE19926756B4 (en) 2009-06-10
US6282092B1 (en) 2001-08-28
ITTO990501A1 (en) 2000-12-11
DE19926756A1 (en) 1999-12-16
CA2273474A1 (en) 1999-12-12
IT1308721B1 (en) 2002-01-10
JP4121185B2 (en) 2008-07-23
MY120076A (en) 2005-08-30

Similar Documents

Publication Publication Date Title
CA2273474C (en) Electronic circuit device and method of fabricating the same
KR100709278B1 (en) Power semiconductor device
EP1646271B1 (en) Control device and method of manufacturing thereof
US5920119A (en) Power semiconductor module employing metal based molded case and screw fastening type terminals for high reliability
US6313598B1 (en) Power semiconductor module and motor drive system
JP2002217343A (en) Electronic device
US6337796B2 (en) Semiconductor device mount structure having heat dissipating member for dissipating heat generated from semiconductor device
JP6044473B2 (en) Electronic device and method for manufacturing the same
JP2008118067A (en) Power module and motor-integrated controlling device
JP2003124662A (en) On-vehicle electronic device
US4503452A (en) Plastic encapsulated semiconductor device and method for manufacturing the same
EP2057679B1 (en) Semiconductor device having improved heat dissipation capabilities
US11195775B2 (en) Semiconductor module, semiconductor device, and manufacturing method of semiconductor module
JP2007073782A (en) High power semiconductor apparatus
JP4046623B2 (en) Power semiconductor module and fixing method thereof
EP2057665B1 (en) Semiconductor device and method for manufacturing a semiconductor device having improved heat dissipation capabilities
JPH10261847A (en) Radiating substrate for mounting electronic component
JP6934992B1 (en) Power converter
JP4103411B2 (en) Power converter
JP2795063B2 (en) Hybrid integrated circuit device
JPH09246433A (en) Radiation structure of module
JP2612455B2 (en) Substrate for mounting semiconductor elements
JP3457296B2 (en) Electronic equipment housing
JPH0623254U (en) PCB fixing structure
JP2004364406A (en) Power conversion apparatus

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20190603