CA2278541C - Pharmaceutical preparations and methods for their regional administration - Google Patents

Pharmaceutical preparations and methods for their regional administration Download PDF

Info

Publication number
CA2278541C
CA2278541C CA002278541A CA2278541A CA2278541C CA 2278541 C CA2278541 C CA 2278541C CA 002278541 A CA002278541 A CA 002278541A CA 2278541 A CA2278541 A CA 2278541A CA 2278541 C CA2278541 C CA 2278541C
Authority
CA
Canada
Prior art keywords
drug
formulation
treatment
effective
endometriosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002278541A
Other languages
French (fr)
Other versions
CA2278541A1 (en
Inventor
Vanaja V. Ragavan
Gerianne M. Dipiano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FEMMEPHARMA HOLDING COMPANY Inc
Original Assignee
FEMMEPHARMA HOLDING COMPANY Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27365086&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2278541(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by FEMMEPHARMA HOLDING COMPANY Inc filed Critical FEMMEPHARMA HOLDING COMPANY Inc
Publication of CA2278541A1 publication Critical patent/CA2278541A1/en
Application granted granted Critical
Publication of CA2278541C publication Critical patent/CA2278541C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0034Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/02Drugs for genital or sexual disorders; Contraceptives for disorders of the vagina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • A61P31/22Antivirals for DNA viruses for herpes viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • Y10S977/795Composed of biological material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/915Therapeutic or pharmaceutical composition

Abstract

Formulations have been developed for regional delivery of drugs, for example , into a cavity such as the pelvic region, peritoneal region, or directly on organs of interest. Regional delivery increases comfo rt and bioavailability of the drug, resulting in rapid and relatively high blood levels in the regions to be treated in the substantial absence of side effects due to the high levels required for efficacy following systemic delivery. In the preferred embodiment, these formulations consist o f drug micro or nanoparticles, which may be formed of drug alone or in combination with an excipient or polymeric carrier. The excipien t or polymer may be used to manipulate release rates and to increase adhesion to the affected region. The drug formulation can be applie d as a dried powder, a liquid suspension or dispersion, or as a topical ointment, creme, lotion, foam or suppository.

Description

2 PGT/~JS98/00916 PHARMACEUTICAL PREPARATIONS AND METHODS
FOR THEIR REGIONAL ADMINISTRATION
Field of the Invention The present invention relates to pharmaceutical preparations, and especially pharmaceutical formulations that can be introduced topically, locally, intrapelvically, intraperitoneally or directly on reproductive organs of interest in amounts effective to treat various conditions, particularly local diseases of the female reproductive system, such as pelvic, uterine, cervical and vaginal diseases which are present in this region of the body.
Background of the Invention It has long been known that treatment of female reproductive diseases by traditional methods of oral or systemic administration is associated with drug bioavailability problems and concomitant side effect complications from unwanted absorption of drugs into the systemic circulation. For example, normal digestive tract action may break down orally administered active ingredients to decrease effective drug delivery dosages, or the pharmaceutical preparation may be changed by passage through the liver or by systemic circulation or may not achieve adequate levels in the area of interest. To counteract these undesirable actions, the dosage of the active ingredient needs to be increased, oftentimes leading to undesirable side effects.
Danazol, an isoxazolo derivative of 17a ethenyltestosterone (an androgen hormone), is commonly administered to women for treatment of endometriosis, range up to 800 mg daily. At high doses, adverse side effects are seen which may include weight gain, voice change, development of k1:1. \u:\:iva~;~-:Nl )~:w:IIL~: t)u :;31-1..-JtiCA 02278541 1999-07-22 v'~-.
r n:~ ;~:~ :::;:r~~u-lv;~:n ~!

facial and che9t hair, loss of libido, acne, and central nervous system ("CNS") symptoms such as , depression, anxiety, fatigue, nausea and diarrhea, as well as the inhibition of pregnancy while undergoing treatment. See, for example, Spooner, Classification of Side Effects to Danazol Therapy, Winthrop Laboratories, Surrey, England.
It is therefore highly desirable to provide new systems and methods for the administration of pharmaceuticals which would avoid such dra~hTbacks.
Mizutani, et al., in F~.-r;l;rv and Sterility 63, 1184-1189 (1995), describes administration of danazole vaginally by means of a 100 mg suppository, and compared the results with oral administration of a 400 mg dosage. No effect on the hypothalamic-pituit«ry-ovarian axis was noted, although high concentrations were present in the ov ary, uterus and serum, witr. ir~eignif icart serum levels, following vaginal administration.
Mizutani, et al., conducted their study following a report by Igarishi, Agua-Oceania J, obstet.
~naecol. 16(1), 1-12 (1990), that administration of danazole in a silicone vaginal ring reduced endometriotic tissue in the uterus and increased the incidence of pregnancy in treated womer. to a statistically significant degree. The immediate drawback to both therapies, however, is that the formulation and delivery platform such as vaginal rings and other devices are particularly unsatisfactory for women who already suffer from the cramps and pains associated with endometriosis.
The dosages which were used were also quite high and extremely variable and may potentially have a negative and accumulative depot effect.
Ah~E~f EO S'~FF_T

hc:v.WO~,:taW -W ~L:veHl:~; u:; ::j~-1v-:3tCA 02278541 1999-07-22 ~W~- +a-:J
ri;~ -~:.i:~:~~n~1-~s~:u 5 - -2a-Igarashi's implant, and other proposed danazole formulations for local release of danazcl for treatment of endometriosis, wherein the effect is achieved by direct administration of the danazole to the tissue to be treated, are described in U.S. Patent No. 4,997,653 to Igarashi and EPR

501 056 (col. 2, lines 24-2 of the TJ.S. patent).

Many other drug delivery systems are available, but have not beer. developed for this purpose. Examples include U.S. Patent No.
3,921,636 to Zaffaroni, which describes a drug deliverv reservoir for ~ortrolled, sustained release of water soluble materials as a function of diffusion of Water into the device and dissolution of the drug to be released for systemic or lccal effect (col. 10, line 461. EPA 0 566 135 by Takeda Chemical Industries describes a preparation for systemic delivery of proteins or peptides via the mucosal regions such as the mouth or. vagina, wherein delivery is enhanced by inclusion of a cytidine nucleotide derirative. wC 96 3232 by Universidade de Santiago de Compostela describes complexes of na~zoparticules, emulsions or nanocapsules within a matrix formed by ionic complexing of a water soluble positively charged amino polysaccharide and a negatively charged phospholipid, which are useful for topical or transmucosal administration of drugs. WO 95 0707?

by Edko Trading describes an ointment or creme for intravaginal administration of antifungal drugs.

U.S. Patent No. 5,510,118 to Nanosystems describes preparation of a powder consisting solely of nanoparticles of drugs, such as danazole, which is highly soluble and therefore advantageous for .-~r J~'; 'y kC~. \'()\:I~I'~\-lllti.'ve:lllW Rio ::_31-l_'-SJ2~A 02278541 1999-07-22 ~l~'~'- +~6:) tit) '=:.i:):J~I~It~,' It t~
-2b-eystemic administration by injection.
It is therefore an object or the present invention to provide formulations which are effective in treating disorders or tre reproductive pM~NDED S'~'~~T

organs which has high patient compliance and comfort .

' It is a further object of the present invention to provide formulations and methods of ' 5 administration which provide for extremely rapid uptake of drug in the affected region, with low systemic concentrations and few concordant side effects .

It is still another object of the present invention to provide greatly enhanced bioavailability of drug in formulations administered topically or locally, intrapelvically, intraperitoneally or directly on reproductive organs of interest as compared to the drugs administered in controlled release devices.

Summary of the Invention Formulations have been developed for topical or local delivery of drugs intrapelvically, intraperitoneally or directly onto organs of interest, to produce a regional effect, with lower systemic drug levels than obtained when an effective dosage is systemically administered. In a preferred embodiment, drug is administered to a region such as the female reproductive system, provide for increased comfort, increased bioavailability, rapid and relatively high blood levels in the region to be treated without causing systemic levels of drug which might cause side effects. The preferred formulations consist of drug micro or nanoparticles, which may be formed of drug alone or in combination with an excipient or polymeric carrier. The excipient or polymer may be used to manipulate release rates and to increase ' adhesion of the drug to the affected region. The drug formulation can be applied as a dry powder, a liquid suspension or dispersion, a hydrogel i suspension or dispersion, sponges, or as a topical ointment, creme, lotion, foam or suppository.
Specific danazole formulations are described.
Rat studies demonstrate rapid uptake of danazole into the tissues affected in endometriosis, with serum drug levels that are almost undetectable.
Detailed Description of the Invention The compositions and methods for administration thereof provide for significantly diminished side effects with increased bioavailability and comfort, as compared to conventional drug administration techniques, and avoid the need for oral and parenteral administration, the use of complex and expensive biocompatible polymeric material, and insertion into the body and maintenance therein of potentially infectious foreign objects, such as intrauterine devices, vaginal rings, and suppositories.
I. Formulations.
The formulations are designed to provide maximum uptake in the affected tissues with rapid dissemination throughout the region to be treated, with little to no increase in systemic blood levels of the drug. The formulations can consist solely of drug, or drug combined with excipient or polymeric material.
A. Drugs The term "drug" can refer to any pharmaceutically active substance capable of being administered in a particulate formulation, which achieves the desired effect. Drugs can be synthetic or natural organic compounds, proteins or peptides, oligonucleotides or nucleotides, or polysaccharides or sugars. Drugs may have any of a variety of activities, which may be inhibitory or stimulatory, such as antibiotic activity, antiviral _5-activity, antifungal activity, steroidal activity, cytotoxic or anti-proliferative activity, anti-inflammatory activity, analgesic or anesthetic activity, or be useful as contrast or other diagnostic agents. A description of classes of drugs and species within each class can be found in Martindale, The Extra Pharmacopoeia, 31st Ed., The Pharmaceutical Press, London (1996) and Goodman and Gilman, The Pharmacological Basis of Therapeutics, (9th Ed., McGraw-Hill Publishing company (1996).
Examples of compounds with steroidal activity include progestins, estrogens, antiestrogens and antiprogestins.
In a preferred embodiment, the drug is danazole or gestrinone in a micro or nanoparticulate formulation. This can be achieved by milling of the drug or atomization of drug solution, for example, into a solvent extraction fluid, or other standard techniques. The danazole or gestrinone can be present as a complex with a cyclodextrin, for example, hydroxypropyl-a-cyclodextrin (HPB).
In another preferred embodiment, the drug is a polysaccharide, preferably a sulfated polysaccF~aride. Examples of suitable sulfated polysaccharides include carageenan, dextran sulfate, heparin, and fucoidin.
B. Excipients or Carriers The drug substance may be "associated" in any physical form with a particulate material, for example, adsorbed or absorbed, adhered to or dispersed or suspended in such matter, which may take the form of discrete particles or microparticles in~any medicinal preparation, and/or suspended or dissolved in a carrier such as an ointment, gel, paste, lotion, sponge, or spray.

i WO 98/32422 PG'T/US98/00916 Standard excipients include gelatin, casein, lecithin, gum acacia, cholesterol, tragacanth, stearic acid, benzalkonium chloride, calcium stearate, glyceryl monostearate, cetostearyl alcohol, cetomacrogol emulsifying wax, sorbitan esters, polyoxyethylene alkyl ethers, polyoxyethylene castor oil derivatives, poly-oxyethylene sorbitan fatty acid esters, polyethylene glycols, polyoxyethylene stearates, colloidol silicon dioxide, phosphates, sodium dodecylsulfate, carboxymethylcellulose calcium, carboxymethylcellulose sodium, methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, ' hydroxypropylmethycellulose phthalate, noncrystalline cellulose, magnesium aluminum silicate, triethanolamine, polyvinyl alcohol, polyvinylpyrrolidone, sugars and starches.
C. Polymeric Materials In a preferred embodiment, the drug is present on or within micro or nanoparticulates formed of a polymeric material. Additional materials, such as diagnostic agents, including echogenic gases, radioactive materials - which may also in themselves be therapeutic, and magnetic materials for detection by MRI or PET, can optionally be included in the particles.
Various polymers can be used to increase adhesion to mucosal surfaces, to control release as a function of the diffusion rate of drugs out of the polymeric matrix and/or rate of degradation by hydrolysis or enzymatic degradation of the polymers and/or pH alteration, and to increase surface area of the drug relative to the size of the particle.
The polymers can be natural or synthetic, and can be biodegradable or non-biodegradable. High molecular weight drugs can be delivered partially by diffusion but mainly by degradation of the polymeric system. For this reason, biodegradable polymers, bioerodible hydrogels, and protein delivery systems are particularly preferred when high molecular weight drugs are being delivered.

' 5 ~ The polymers may be natural or synthetic polymers, although synthetic polymers are preferred due to the better characterization of degradation and release profiles. The polymer is selected based on the period over which release is desired, generally in the range of at least immediate release to release over a period of twelve months, although longer periods may be desirable. In some cases linear release may be most useful, although in others a pulse release or "bulk release" may provide more effective results. The polymer may be in the form of a hydrogel (typically absorbing up to about 90o by weight of water), and can optionally be crosslinked with multivalent ions or polymers.

Representative natural polymers include proteins such as zero, modified zero, casein, gelatin, gluten, serum albumin, and collagen, polysaccharides such as cellulose, dextrans, and polyhyaluronic acid.

Representative synthetic polymers include polyphosphazenes, polyvinyl alcohols), polyamides, polycarbonates, polyacrylates, polyalkylenes, polyacrylamides, polyalkylene glycols, polyalkylene oxides, polyalkylene terephthalates, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyvinylpyrrolidone, polyglycolides, polysiloxanes, polyurethanes and copolymers thereof.

Examples of suitable polyacrylates include poly(methyl methacrylate), poly(ethyl methacrylate), poly(butyl methacrylate), poly(isobutyl methacrylate), poly(hexyl i _g_ methacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate) and- poly (octadecyl acrylate) .
Synthetically modified natural polymers include cellulose derivatives such as alkyl celluloses, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, and nitrocelluloses.
ZO Examples of suitable cellulose derivatives include methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethyl cellulose, cellulose triacetate and cellulose sulfate sodium salt.
Each of the polymers described above can be obtained from commercial sources such as Sigma Chemical Co., St. Louis, MO., Polysciences, Warrenton, PA, Aldrich Chemical Co., Milwaukee, WI, Fluka, Ronkonkoma, NY, and BioRad, Richmond, CA. or can be synthesized from monomers obtained from these suppliers using standard techniques. The polymers described above can be separately characterized as biodegradable, non-biodegradable, and bioadhesive polymers, as discussed in more detail below.
1. Biodegradable polymers Representative synthetic degradable polymers include polyhydroxy acids such as polylactides, polyglycolides and copolymers thereof, polyethylene terephthalate), poly(butic acid), poly(valeric acid), poly(lactide-co-caprolactone), polyanhydrides, polyorthoesters and blends and copolymers thereof.

Representative natural biodegradable polymers include polysaccharides such as alginate, dextran, ' cellulose, collagen, and chemical derivatives thereof (substitutions, additions of chemical ' S groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art), and proteins such as albumin, zein and copolymers and blends thereof, alone or in combination with synthetic polymers. In general, these materials degrade either by enzymatic hydrolysis or exposure to water in vivo, by surface or bulk erosion.

2. Non-Biodearadable Polymers Examples of non-biodegradable polymers include ethylene vinyl acetate, poly(meth)acrylic acid, polyamides, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylphenol, and copolymers and mixtures thereof.

3. Bioadhesive polymers Hydrophilic polymers and hydrogels tend to have bioadhesive properties. Hydrophilic polymers that contain carboxylic groups (e. g., poly[acrylic acid]) tend to exhibit the best bioadhesive properties. Polymers with the highest concentrations of carboxylic groups are preferred when bioadhesiveness on soft tissues is desired.

Various cellulose derivatives, such as sodium alginate, carboxymethylcellulose, hydroxymethylcellulose and methylcellulose also have bioadhesive properties. Some of these bioadhesive materials are water-soluble, while others are hydrogels.

Rapidly bioerodible polymers such as poly(lactide-co-glycolide), polyanhydrides, and polyorthoesters, whose carboxylic groups are exposed on the external surface as their smooth surface erodes, can also be used for bioadhesive i drug delivery systems. In addition, polymers containing labile bonds, such as polyanhydrides and polyesters, are well known for their hydrolytic reactivity. Their hydrolytic degradation rates can generally be altered by simple changes in the polymer backbone. Upon degradation, these materials also expose carboxylic groups on their external surface, and accordingly, these can also be used for bioadhesive drug delivery systems.
D. Hydrogel Matrices In another preferred embodiment, the drug is present as a dispersion of micro- or nanoparticles in a hydrogel matrix. The hydrogel matrix can be ' used to cause the particles to remain at a particular location over an extended period of time, particularly when the hydrogel is adhered to a tissue surface. The use of hydrogels to provide local delivery of drugs is described, for example, in U.S. Patent No. 5,410,016 to Hubbell et al.
The particles to be incorporated in the hydrogel matrix can be formed of drug alone, or can include the excipients and/or polymers described above. The drug can also be added as a dispersion or solution to the matrix. The drug can be released from the particles through dissolution of the particles, the hydrogel or both. Suitable hydrogels can be formed from synthetic polymers such as polyethylene glycol, polyethylene oxide, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylates, poly (ethylene terephthalate), polyvinyl acetate), and copolymers and blends thereof, as well as natural polymers such as cellulose and alginate, as described above.
Exemplary materials include SEPTRAFILMT"' (modified sodium hyaluronate/carboxymethylcellulose, Genzyme Pharmaceuticals) and INTERCEEDT"' (oxidized regenerated cellulose, Johnson & Johnson Medical, Inc.) ' II. Methods of Administration The formulations are preferably administered locally within the region to be treated, for example, vaginally for treatment of diseases of the ovaries and uterus. As used herein, "locally" can refer to topical application generally to the mucosal or endometrial surfaces of the vagina and/or uterus, or to a particular portion of the vagina or uterus. As used herein, "regionally"

refers to reproductive organs and their surrounding environs, which include uterus, fallopian tube, peritoneal space, pelvic cul-de-sac, ovaries, perineum, abdominal; the rectovaginal region and corresponding regions in men, and urinogenital tract, including bladder, urinary tract, and rectum. As used herein, "systemically" refers to the circulatory system, and regions outside the spaces described above.

Vaginally administered pharmaceutical preparations as described herein are particularly effective in treating certain diseases of female reproductive systems, such as the administration of danazol for treatment of endometriosis, and in the treatment of other disorders such as urinary incontinence. It is desirable to administer the danazol formulations locally with dosages which are less than other modes of delivery, such as oral delivery. Transdermal doses are usually found to be one-quarter of the oral dose for similar efficacy. In this instance, it is possible to lower the dose even lower (the ring delivered between about 1 and 2 mg/day). Such dosage administration will ensure negligible or relatively low serum levels of danazol to avoid undesirable' i side effects associated with oral dosing, such as hirsutism and other androgenic side effects.
The following non-limiting examples more fully demonstrate the present invention.
EXAMPLE 1: Preparation of Gel Products.
The drug substance, micronized danazol (carrying DMF-Drug Master File Certification) was manufactured by Cipla Pharmaceuticals and bought from Byron Chemical Company. UV absorption identified the drug substance as being identical to Danazol USP. Individual impurities were noted to be not more than 0.50, and total impurities not more than 1.00. Assay of dried basis was between 97% and 102% w/w on dried basis. More than 900 of the particles were less than 5 microns in diameter and the remaining particles were between 5 and 15 microns in diameter.
Micronized danazol was levigated in a commercial preparation of KY Jelly, which is made up of a polymer hydroxyethyl cellulose to 10 ml volume (based on weight using density of jelly of 2.16 g/ml) to deliver a dosage of 1 mg in 50 ~,1.
Gels were smooth in consistency, uniformly white and flowable. Particle size measurements were conducted with a Coulter H4mD particle size analyzer and were noted to be as follows:
Danazol Powder:
Average of 6 measurements 3.2~.g Individual measurement and variation 3.2~,g ~ 9~.g 1 mg gel:
Average of 5 measurements 3.O~.g Individual measurement and variation 3.4~.g ~ 1.5~.g EXAMPLE 2: Administration of Danazole microparticulate formulation to rats.
Mature female Sprague-Dawley rats were used for the experiment. 1 mg of the microparticulate danazol was delivered in a volume of 50 ~,1 to the vaginal vault and the animals sacrificed at the times noted below. The uterus and ovaries were separately homogenized and blood was drawn. All tissues and biological samples were processed.
Danazol was extracted and assayed by HPLC
methodology.
Danazol clinical assay:
Danazol was extracted from serum and tissue hexane/chloroform 80/20. For tissues, 1 ml aliquote of each homogenate was taken. The extracted danazol was reconstituted in a water/acetonitrile mobile phase and a Beckman Ultrasphere 5 micron, 4.6 mm X 15 cm reverse phase column (C-18 RP) was used for all the HPLC
analyses. A danazol recovery study was conducted using danazol drug product. The recovery was determined by comparing the extracted signal with unextracted signal. A recovery of between 75 and 84% was obtained for the extraction method.
Study Results:
Tissue and serum levels are summarized below in Table 1:
Table 1: Tissue and Serum Levels of Danazole in Rats RATE AND TIME UTERUS-ne/~ OVARIES ng/e SERUM ne/ml 2 hours 0.43 0.33 0.21 4 hours 0.57 not detected not detected 6 hours 0.77 not detected not detected The results of this study demonstrate that the formulation used resulted in a preferential absorption of danazol into the uterus.
In the above examples, danazol concentrations of 1 mg/300 g rat were administered. In work by Mizutami, danazol concentrations of 100 mg/50 kg i women were administered. These concentrations are roughly equivalent. The data demonstrate that the suppository used by Mizutami resulted in uterine concentrations of danazol which were 105 times higher than the uterine concentrations of danazol provided by the microparticles in the above examples. Such high local concentrations could result in significant changes in the local delivery of the drug and effects on the reproductive organs, for instance, changes in hormone steroid responsiveness and depot effect.
Igarashi administered a vaginal ring contained in silicone. This type of drug delivery device releases drug in a constant manner, creating a continuous flow of drug and potentially to a depot effect. Igarashi discloses two examples in which danazol was administered via the vaginal ring. In both examples, the uterine concentration of danazol was 100 times higher than the uterine concentration in the above examples.
EXAMPLE 3: Protocol for Studies in Primate Models of Endometriosis.
Microparticle formulation allows for considerable decrease in delivered dose, increased bioavailability to the organs of interest with lower tissue concentrations.
Monkey Protocol:
The monkey study will demonstrate efficacy of the microparticle formulation in an animal model of endometriosis, while also evaluating systemic levels of locally delivered danazol. The simian model of endometriosis will be used to demonstrate efficacy and safety. The rationale for using monkeys is the finding that certain monkeys will naturally develop endometriosis which resembles, in crucial ways, the human disease. In addition, monkeys are a good model for studying the human female reproductive system, both anatomically and physiologically for testing a vaginal product such as Danazol TVDT. This study will assist in identifying the dose needed to treat human ' 5 endbmetriosis and furthermore, corroborate preliminary evidence that danazol can be delivered vaginally for treatment of endometriosis with reduced systemic levels. Microparticle danazol will be formulated in the presence of poly(vinylpyrrolidone). Three doses of Danazol TVDT will be studied in monkeys with endometriosis and compared to orally delivered danazol as described below. The study will be a nine week, parallel, randomized study comparing the effects of oral danazol given at 200 mg daily and three doses of Danazol TVDT: at 10 mg/day; (one-twentieth the oral dose), 25 mg/day (one-tenth the oral dose) and 50 mg/ day, (one quarter the oral dose). The results will demonstrate local delivery of microparticle danazol results in efficacy and low systemic levels.

Claims

Claims:

1. A dosage formulation suitable for local or topical administration of an effective amount of a drug to provide relief from symptoms in a region in patients in need thereof with little to no increase in systemic blood levels of the drug, wherein the drug is in a form selected from the group consisting of a dry powder, a liquid suspension or dispersion, a hydrogel suspension or dispersion, a sponge, a topical ointment, a cream, a lotion, and a foam.

2. The formulation of claim 1 wherein the drug is regionally effective in the female reproductive organs.

3. The formulation of claim 2 wherein the patients have a disorder located in the reproductive organs.

4. The formulation of claim 1 wherein the formulation comprises drug particles.

5. The formulation of claim 3 wherein the drug is for treatment of endometriosis.

6. The formulation of claim 1 wherein the formulation adheres to mucosal tissue.

7. The formulation of claim 1 where the formulation comprises polymers that alter the rates of drug absorption in the region to be treated.

8. The formulation of claim 1 which can be administered vaginally or intraperitoneally.

9. The formulation of claim 8 wherein the drug is danazol and wherein the formulation is suitable for vaginal administration in patients in need thereof and is in a dosage effective for treatment of endometriosis.

10. The formulation of claim 1 wherein the drug is an anticancer drug, cytotherapeutic or anti-proliferative drug in a dosage effective for treatment of cancer in the region of the patient where administered.

11. The formulation of claim 1 wherein the drug is an antiviral agent effective for treatment of viral infections selected from genital herpes and genital papilloma viral infections.

12. The formulation of claim 1 wherein the drug is an antifungal agent effective for treatment of vaginal fungal infections.

13. The formulation of claim 1 wherein the drug is an antibacterial agent effective for treatment of vaginal and endometrial bacterial infections.

14. The formulation of claim 1 wherein the drug is a steroid or steroid-like product suitable for treatment of endocrine conditions.

14. The formulation of claim 14 wherein the drug is effective for treatment of menopause, infertility, contraception, dysfunctional uterine bleeding, dysmenorrhea, adenomyosis, or assisted reproductive technologies.

16. The use for treating a patient of a dosage formulation suitable for local or topical administration of an effective amount of a drug to provide relief from symptoms in a region in the patient in need thereof with little to no increase in systemic blood levels of the drug, wherein the drug is in a form selected from the group consisting of a dry powder, a liquid suspension or dispersion, a hydrogel suspension or dispersion, a sponge, a topical ointment, a cream, a lotion, and a foam.

17. The use of claim 16 wherein the drug is regionally effective in the female reproductive organs.

18. The use of claim 17 wherein the patient has a disorder located in the reproductive organs.

19. The use of claim 18 wherein the drug is for treatment of endometriosis and the patient has endometriosis.

20. The use of claim 17 wherein the formulation is suitable for vaginal or intraperitoneal administration.

21. The use of claim 16 wherein the drug is danazol and wherein the formulation is suitable for vaginal administration in patients in need thereof in a dosage effective for treatment of endometriosis.

22. The use of claim 16 wherein the drug is an anticancer drug, cytotherapeutic or anti-proliferative drug in a dosage effective for treatment of cancer in the region of the patient where administered.

23. The use of claim 16 wherein the drug is an antiviral agent effective for treatment of viral infections selected from genital herpes and genital papilloma viral infections.

24. The use of claim 16 wherein the drug is an antifungal agent effective for treatment of vaginal fungal infections.

25. The use of claim 16 wherein the drug is an antibacterial agent effective for treatment of vaginal and endometrial bacterial infections.

26. The use of claim 16 wherein the drug is a steroid or steroid-like product suitable for treatment of endocrine conditions.

27. The use of claim 26 wherein the drug is effective for treatment of menopause, infertility, contraception, dysfunctional uterine bleeding, dysmenorrhea, adenomyosis, or assisted reproductive technologies.

28. The use for treating endometriosis of a regionally effective amount of particulate danazole in a form promoting quick uptake into the blood stream and suitable for administration to the mucosal membranes of the female reproductive tract.

29. The use of claim 28 wherein the danazole is in a form selected from the group consisting of foams, tablets, and creams.

30. The use of claim 28 wherein the danazole is in a form suitable for application to the uterus.

31. A composition for treating endometriosis comprising a regionally effective amount of particulate danazole in a form promoting quick uptake into the blood stream when applied to the mucosal membranes of the female reproductive tract.

32. The composition of claim 31 wherein the danazole is in a form selected from the group consisting of foams, tablets, and creams.

33. The composition of claim 32 wherein the danazole is in a form suitable for application to the uterus.

34. The formulation of claim 1 wherein the drug is regionally effective in the urogenital tract.

35. The use of claim 17 wherein the drug is regionally effective in the urogenital tract.
CA002278541A 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration Expired - Lifetime CA2278541C (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US3672797P 1997-01-24 1997-01-24
US60/036,727 1997-01-24
US5257897P 1997-07-15 1997-07-15
US60/052,578 1997-07-16
US08/971,346 US5993856A (en) 1997-01-24 1997-11-17 Pharmaceutical preparations and methods for their administration
US08/971,346 1997-11-17
PCT/US1998/000916 WO1998032422A1 (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration

Publications (2)

Publication Number Publication Date
CA2278541A1 CA2278541A1 (en) 1998-07-30
CA2278541C true CA2278541C (en) 2006-10-24

Family

ID=27365086

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002278541A Expired - Lifetime CA2278541C (en) 1997-01-24 1998-01-23 Pharmaceutical preparations and methods for their regional administration

Country Status (11)

Country Link
US (1) US5993856A (en)
EP (2) EP0977555B1 (en)
JP (2) JP2001511773A (en)
AT (1) ATE321532T1 (en)
AU (1) AU743157B2 (en)
CA (1) CA2278541C (en)
DE (1) DE69834025T2 (en)
DK (1) DK0977555T3 (en)
ES (1) ES2260828T3 (en)
PT (1) PT977555E (en)
WO (1) WO1998032422A1 (en)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050065161A1 (en) * 1996-02-02 2005-03-24 Nitromed, Inc. Nitrosated and nitrosylated alpha-adrenergic receptor antagonist compounds, compositions and their uses
US6416778B1 (en) * 1997-01-24 2002-07-09 Femmepharma Pharmaceutical preparations and methods for their regional administration
US6630168B1 (en) 1997-02-20 2003-10-07 Biomedicines, Inc. Gel delivery vehicles for anticellular proliferative agents
US6416779B1 (en) * 1997-06-11 2002-07-09 Umd, Inc. Device and method for intravaginal or transvaginal treatment of fungal, bacterial, viral or parasitic infections
US6472425B1 (en) 1997-10-31 2002-10-29 Nitromed, Inc. Methods for treating female sexual dysfunctions
AU745302B2 (en) 1998-05-23 2002-03-21 Bieniarz, Andre Method of treatment for premature rupture of membranes in pregnancy (PROM)
IL127129A (en) * 1998-11-18 2004-06-01 Ferring Bv Method for preparation of progesterone tablets for vaginal delivery and tablets so prepared
US20070178139A1 (en) * 1998-11-18 2007-08-02 Yankov Vladimir I Vaginally administratable progesterone-containing tablets and method for preparing same
US6350464B1 (en) 1999-01-11 2002-02-26 Guilford Pharmaceuticals, Inc. Methods for treating ovarian cancer, poly (phosphoester) compositions, and biodegradable articles for same
US6537566B1 (en) 1999-03-11 2003-03-25 John Alton Copland Compositions and methods for the non-invasive treatment of uterine fibroid cells
US6537585B1 (en) 1999-03-26 2003-03-25 Guilford Pharmaceuticals, Inc. Methods and compositions for treating solid tumors
US6375970B1 (en) * 1999-07-07 2002-04-23 Andre Bieniarz Methods and materials for preterm birth prevention
US6762202B2 (en) 2000-05-09 2004-07-13 Nitromed, Inc. Infrared thermography and methods of use
US20050042194A1 (en) * 2000-05-11 2005-02-24 A.P. Pharma, Inc. Semi-solid delivery vehicle and pharmaceutical compositions
US6613355B2 (en) 2000-05-11 2003-09-02 A.P. Pharma, Inc. Semi-solid delivery vehicle and pharmaceutical compositions
EP1315777B1 (en) 2000-09-06 2007-10-31 AP Pharma, Inc. Degradable polyacetal polymers
US6590059B2 (en) 2001-05-11 2003-07-08 Ap Pharma, Inc. Bioerodible polyorthoesters from dioxolane-based diketene acetals
WO2003007915A2 (en) * 2001-07-19 2003-01-30 Guilford Pharmaceuticals, Inc. Compositions for treatment of head and neck cancers, and methods of making and using the same
AU2002354957A1 (en) * 2001-07-19 2003-03-03 Guilford Pharmaceuticals, Inc. Biocompatible polymer containing composition for treatment of prostate cancers
WO2003055469A1 (en) * 2001-12-21 2003-07-10 Celator Technologies Inc. Improved polymer-lipid delivery vehicles
US8425892B2 (en) * 2001-10-29 2013-04-23 Columbia Laboratories, Inc. Extended, controlled-release pharmaceutical compositions using charged polymers
US20030114394A1 (en) * 2001-10-29 2003-06-19 Levine Howard L. Vaginally administered anti-dysrhythmic agents for treating pelvic pain
US20080182841A1 (en) * 2001-10-29 2008-07-31 Levine Howard L Vaginally administered anti-dysrhythmic agents for treating pelvic pain
MXPA04006017A (en) * 2001-12-20 2005-06-08 Femmepharma Inc Vaginal delivery of drugs.
US20040001889A1 (en) 2002-06-25 2004-01-01 Guohua Chen Short duration depot formulations
US20050255164A1 (en) * 2002-08-15 2005-11-17 Yunging Liu Solid nano pharmaceutical formulation and preparation method thereof
US7045589B2 (en) * 2002-11-15 2006-05-16 A.P. Pharma, Inc. Bioerodible poly(ortho esters) from dioxane-based di(ketene acetals), and block copolymers containing them
US8409618B2 (en) 2002-12-20 2013-04-02 Kimberly-Clark Worldwide, Inc. Odor-reducing quinone compounds
US6780896B2 (en) 2002-12-20 2004-08-24 Kimberly-Clark Worldwide, Inc. Stabilized photoinitiators and applications thereof
US7666410B2 (en) 2002-12-20 2010-02-23 Kimberly-Clark Worldwide, Inc. Delivery system for functional compounds
US9173836B2 (en) * 2003-01-02 2015-11-03 FemmeParma Holding Company, Inc. Pharmaceutical preparations for treatments of diseases and disorders of the breast
AU2007216882B2 (en) * 2003-01-02 2010-03-11 Femmepharma Holding Company, Inc. Pharmaceutical preparations for treatment of diseases and disorders of the breast
EP1578421A4 (en) * 2003-01-02 2009-04-22 Femmepharma Holding Co Inc Pharmaceutical preparations for treatments of diseases and disorders of the breast
JP2004323454A (en) * 2003-04-25 2004-11-18 Chisso Corp Medicinal agent
JP5651279B2 (en) * 2003-09-03 2015-01-07 ミスコン トレイディング エス.エー. Methods for the treatment of endometriosis
US20060140990A1 (en) * 2003-09-19 2006-06-29 Drugtech Corporation Composition for topical treatment of mixed vaginal infections
US20050095245A1 (en) * 2003-09-19 2005-05-05 Riley Thomas C. Pharmaceutical delivery system
US20050222106A1 (en) * 2004-04-01 2005-10-06 Stefan Bracht Drospirenone-containing preparations for transdermal use
US20060040904A1 (en) * 2004-08-17 2006-02-23 Ahmed Salah U Vaginal cream compositions, kits thereof and methods of using thereof
US7993667B2 (en) 2005-03-25 2011-08-09 Kimberly-Clark Worldwide, Inc. Methods of manufacturing a medicated tampon assembly
US7919453B2 (en) 2005-03-25 2011-04-05 Kimberly-Clark Worldwide, Inc. Dosage cap assembly for an applicator
US7744556B2 (en) 2005-03-25 2010-06-29 Kimberly-Clark Worldwide, Inc. Delivery tube assembly for an applicator
US7708726B2 (en) 2005-04-28 2010-05-04 Kimberly-Clark Worldwide, Inc. Dosage form cap for an applicator
CN101170993A (en) * 2005-05-09 2008-04-30 药物技术公司 Modified-release pharmaceutical compositions
EP2462959B1 (en) * 2005-07-12 2016-06-22 Ampio Pharmaceuticals, Inc. Methods and products for treatment of diseases
CA2635575A1 (en) * 2005-12-27 2007-07-05 Duramed Pharmaceuticals, Inc. Conjugated estrogen compositions, applicators, kits, and methods of making and use thereof
BRPI0620907A2 (en) * 2006-01-05 2011-11-29 Drugtech Corp pharmaceutical composition, vaginal drug delivery system and use of pharmaceutical composition
CA2635986A1 (en) * 2006-01-05 2007-07-12 Drugtech Corporation Composition and method of use thereof
US20070265329A1 (en) * 2006-05-12 2007-11-15 Devang Shah T Methods for the prevention of acute and delayed chemotherapy-induced nausea and vomiting (CINV)
US20070264338A1 (en) * 2006-05-12 2007-11-15 Shah Devang T Base-stabilized polyorthoester formulations
US8080540B2 (en) * 2006-09-19 2011-12-20 Abbott Products Gmbh Therapeutically active triazoles and their use
US8288367B2 (en) 2006-11-30 2012-10-16 Solvay Pharmaceuticals Gmbh Substituted estratriene derivatives as 17BETA HSD inhibitors
CA2674078C (en) * 2006-12-26 2012-03-20 Femmepharma Holding Company, Inc. Topical administration of danazol
WO2008144143A1 (en) * 2007-05-14 2008-11-27 Drugtech Corporation Endometriosis treatment
WO2009073782A2 (en) * 2007-12-04 2009-06-11 Ams Research Corporation Apparatus and methods for treatment of pathologic proliferative conditions of uterine tissue
PT2359807T (en) * 2008-02-04 2017-11-07 Ferring Bv Monolithic intravaginal rings comprising progesterone and methods of making and uses thereof
WO2010068827A1 (en) * 2008-12-11 2010-06-17 A.P. Pharma, Inc. Methods for enhancing stability of polyorthoesters and their formulations
US9504274B2 (en) * 2009-01-27 2016-11-29 Frito-Lay North America, Inc. Methods of flavor encapsulation and matrix-assisted concentration of aqueous foods and products produced therefrom
MX2011013984A (en) * 2009-06-22 2012-06-01 Dmi Acquisition Corp Methods and products for treatment of diseases.
PL2326332T3 (en) * 2009-06-22 2013-05-31 Ampio Pharmaceuticals Inc Method for treatment of diseases
US20110003000A1 (en) * 2009-07-06 2011-01-06 Femmepharma Holding Company, Inc. Transvaginal Delivery of Drugs
WO2011006067A1 (en) * 2009-07-09 2011-01-13 Ams Research Corporation Apparatus and methods of treatment of pathologic proliferative conditions uterine tissue
US20110033545A1 (en) * 2009-08-06 2011-02-10 Absize, Inc. Topical pharmaceutical preparations having both a nanoparticle solution and a nanoparticle suspension and methods for the treatment of acute and chronic pain therewith
EP2550288A1 (en) * 2010-03-22 2013-01-30 Repros Therapeutics Inc. Compositions and methods for non-toxic delivery of antiprogestins
US9301920B2 (en) 2012-06-18 2016-04-05 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
WO2013078422A2 (en) 2011-11-23 2013-05-30 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US10806697B2 (en) 2012-12-21 2020-10-20 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US20130338122A1 (en) 2012-06-18 2013-12-19 Therapeuticsmd, Inc. Transdermal hormone replacement therapies
US10806740B2 (en) 2012-06-18 2020-10-20 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US20150196640A1 (en) 2012-06-18 2015-07-16 Therapeuticsmd, Inc. Progesterone formulations having a desirable pk profile
US9351979B2 (en) 2012-12-19 2016-05-31 Ampio Pharmaceuticals, Inc. Methods of treatment of diseases
US10568891B2 (en) 2012-12-21 2020-02-25 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10537581B2 (en) 2012-12-21 2020-01-21 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US11266661B2 (en) 2012-12-21 2022-03-08 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10471072B2 (en) 2012-12-21 2019-11-12 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US9180091B2 (en) 2012-12-21 2015-11-10 Therapeuticsmd, Inc. Soluble estradiol capsule for vaginal insertion
US11246875B2 (en) 2012-12-21 2022-02-15 Therapeuticsmd, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
US10206932B2 (en) 2014-05-22 2019-02-19 Therapeuticsmd, Inc. Natural combination hormone replacement formulations and therapies
US20160008310A1 (en) 2014-07-11 2016-01-14 Azanta A/S Misoprostol dispersible tablet
US10328087B2 (en) 2015-07-23 2019-06-25 Therapeuticsmd, Inc. Formulations for solubilizing hormones
US10286077B2 (en) 2016-04-01 2019-05-14 Therapeuticsmd, Inc. Steroid hormone compositions in medium chain oils
AU2017239645A1 (en) 2016-04-01 2018-10-18 Therapeuticsmd, Inc. Steroid hormone pharmaceutical composition
US20200121589A1 (en) * 2017-06-22 2020-04-23 Viramal Limited Compositions for drug delivery and methods of use thereof
WO2021146215A1 (en) 2020-01-13 2021-07-22 Durect Corporation Sustained release drug delivery systems with reduced impurities and related methods
US11633405B2 (en) 2020-02-07 2023-04-25 Therapeuticsmd, Inc. Steroid hormone pharmaceutical formulations

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3921636A (en) * 1973-01-15 1975-11-25 Alza Corp Novel drug delivery device
US4107288A (en) * 1974-09-18 1978-08-15 Pharmaceutical Society Of Victoria Injectable compositions, nanoparticles useful therein, and process of manufacturing same
US4081533A (en) * 1976-09-01 1978-03-28 Regents Of The University Of California Method of reducing mammalian fertility and drugs therefor
US4391797A (en) * 1977-01-05 1983-07-05 The Children's Hospital Medical Center Systems for the controlled release of macromolecules
US4292315A (en) * 1977-12-30 1981-09-29 Nichols Vorys Follicular phase estrogen or progestin with physiologic estrogen/progestin luteal phase replacement drug delivery system
US4291028A (en) * 1977-12-30 1981-09-22 Nichols Vorys Follicular phase estrogen or progestin with physiologic estrogen/progestin luteal phase replacement drug delivery system
US4272398A (en) * 1978-08-17 1981-06-09 The United States Of America As Represented By The Secretary Of Agriculture Microencapsulation process
US4286587A (en) * 1978-10-11 1981-09-01 Alza Corporation Vaginal drug delivery system made from polymer
JPS5555114A (en) * 1978-10-17 1980-04-22 Stolle Res & Dev Fine drug
DE3214667C2 (en) * 1982-04-21 1985-07-18 Akzo Gmbh, 5600 Wuppertal Composite body for the long-term delivery of active ingredients
US4673405A (en) * 1983-03-04 1987-06-16 Alza Corporation Osmotic system with instant drug availability
US4591496A (en) * 1984-01-16 1986-05-27 Massachusetts Institute Of Technology Process for making systems for the controlled release of macromolecules
NL8401912A (en) * 1984-06-15 1986-01-02 Tno BIODEGRADABLE POLYMER SUBSTRATES LOADED WITH ACTIVE SUBSTANCE, SUITABLE FOR THE CONTROLLED DELIVERY OF THE ACTIVE SUBSTANCE BY MEMBRANE.
US4762717A (en) * 1986-03-21 1988-08-09 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use as a contraceptive
US5057317A (en) * 1987-03-24 1991-10-15 Chugai Seiyaku Kabushiki Kaisha Slow-release pharmaceutical agent
US4861627A (en) * 1987-05-01 1989-08-29 Massachusetts Institute Of Technology Preparation of multiwall polymeric microcapsules
US4873092A (en) * 1987-05-21 1989-10-10 Murata Kikai Kabushiki Kaisha Slow-releasing preparation
JP2590358B2 (en) * 1988-03-01 1997-03-12 正雄 五十嵐 In utero or vaginal administration preparation for endometriosis treatment
US5130137A (en) * 1989-08-09 1992-07-14 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use in treating benign ovarian secretory disorders
JP2927830B2 (en) * 1989-09-01 1999-07-28 東京田辺製薬株式会社 Danazol suppository
FR2663224B1 (en) * 1990-06-14 1995-01-20 Applicationes Farmaceuticas Sa PARENTERAL GALENIC FORM.
US5091185A (en) * 1990-06-20 1992-02-25 Monsanto Company Coated veterinary implants
US5156851A (en) * 1990-06-20 1992-10-20 Monsanto Company Coated veterinary implants
US5410016A (en) 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5145684A (en) * 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
WO1992014449A1 (en) * 1991-02-20 1992-09-03 Nova Pharmaceutical Corporation Controlled release microparticulate delivery system for proteins
ES2099206T3 (en) * 1991-02-21 1997-05-16 Sankyo Co BENZENE DERIVATIVES THAT FAVOR THE PRODUCTION OF THE GROWTH FACTOR OF HUMAN NERVES.
JPH0735335B2 (en) * 1991-02-28 1995-04-19 五十嵐 正雄 Remedy for endometriosis
US5340585A (en) * 1991-04-12 1994-08-23 University Of Southern California Method and formulations for use in treating benign gynecological disorders
IT1250421B (en) * 1991-05-30 1995-04-07 Recordati Chem Pharm CONTROLLED RELEASE PHARMACEUTICAL COMPOSITION WITH BIO-ADHESIVE PROPERTIES.
US5330768A (en) * 1991-07-05 1994-07-19 Massachusetts Institute Of Technology Controlled drug delivery using polymer/pluronic blends
EP0550108B1 (en) * 1991-12-30 1998-03-18 Akzo Nobel N.V. Sustained release thyroactive composition
AU668384B2 (en) * 1992-03-12 1996-05-02 Alkermes Controlled Therapeutics, Inc. Controlled release ACTH containing microspheres
CA2094217A1 (en) * 1992-04-17 1993-10-18 Yasutaka Igari Transmucosal therapeutic composition
US5665383A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of immunostimulating agents for in vivo delivery
US5359030A (en) * 1993-05-10 1994-10-25 Protein Delivery, Inc. Conjugation-stabilized polypeptide compositions, therapeutic delivery and diagnostic formulations comprising same, and method of making and using the same
US5651976A (en) * 1993-06-17 1997-07-29 The United States Of America As Represented By The Secretary Of The Navy Controlled release of active agents using inorganic tubules
GB9318641D0 (en) * 1993-09-08 1993-10-27 Edko Trading Representation Compositions
US5417982A (en) * 1994-02-17 1995-05-23 Modi; Pankaj Controlled release of drugs or hormones in biodegradable polymer microspheres
NL9400410A (en) * 1994-03-16 1995-11-01 M D Ph D Willem Arthur Adriaan Intrauterine contraceptive.
US5718388A (en) * 1994-05-25 1998-02-17 Eastman Kodak Continuous method of grinding pharmaceutical substances
TW384224B (en) * 1994-05-25 2000-03-11 Nano Sys Llc Method of preparing submicron particles of a therapeutic or diagnostic agent
US5587143A (en) * 1994-06-28 1996-12-24 Nanosystems L.L.C. Butylene oxide-ethylene oxide block copolymer surfactants as stabilizer coatings for nanoparticle compositions
US5633011A (en) * 1994-08-04 1997-05-27 Alza Corporation Progesterone replacement therapy
US5573783A (en) * 1995-02-13 1996-11-12 Nano Systems L.L.C. Redispersible nanoparticulate film matrices with protective overcoats
US5510118A (en) * 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
ES2093562B1 (en) * 1995-05-26 1997-07-01 Univ Santiago Compostela STABILIZATION OF COLLOID SYSTEMS THROUGH FORMATION OF LIPIDO-POLISACARIDO IONIC COMPLEXES.

Also Published As

Publication number Publication date
US5993856A (en) 1999-11-30
AU5922798A (en) 1998-08-18
EP0977555B1 (en) 2006-03-29
DE69834025D1 (en) 2006-05-18
JP2001511773A (en) 2001-08-14
DE69834025T2 (en) 2006-11-09
ES2260828T3 (en) 2006-11-01
PT977555E (en) 2006-06-30
CA2278541A1 (en) 1998-07-30
AU743157B2 (en) 2002-01-17
WO1998032422A1 (en) 1998-07-30
JP2010138196A (en) 2010-06-24
DK0977555T3 (en) 2006-07-10
EP2316424A1 (en) 2011-05-04
EP0977555A1 (en) 2000-02-09
ATE321532T1 (en) 2006-04-15

Similar Documents

Publication Publication Date Title
CA2278541C (en) Pharmaceutical preparations and methods for their regional administration
US6416778B1 (en) Pharmaceutical preparations and methods for their regional administration
ES2247054T3 (en) PHARMACEUTICAL COMBINATION OF MICRONIZED DROSPIRENONE AND A STROGEN FOR HORMONAL REPLACEMENT THERAPY.
ES2337129T3 (en) MEDICINAL ADMINISTRATION SYSTEM UNDERSTANDING A TETRAHYDROXYLED STROGEN FOR USE IN HORMONAL ANTI-CONCEPTION.
US20080132580A1 (en) Dispersion For Delivering Active Agents
US20060008420A1 (en) Nasal spray formulation and method
MXPA04006017A (en) Vaginal delivery of drugs.
US20060013776A1 (en) Methods and compositions for treating benign gynecological disorders
Francois et al. A mucoadhesive, cyclodextrin-based vaginal cream formulation of itraconazole
CN102048689A (en) Bioadhesive drug delivery system
Gupta et al. Exploring novel approaches to vaginal drug delivery
JPH08508280A (en) Nasal pharmaceutical composition containing luteinizing agent
MXPA04006057A (en) ORAL PHARMACEUTICAL PRODUCTS CONTAINING 17beta-ESTRADIOL-3-LOWER ALKANOATE, METHOD OF ADMINISTERING THE SAME AND PROCESS OF PREPARATION.
JPH11512732A (en) Topical hormone therapy gel for vaginal dryness
Lee et al. Drug delivery: Vaginal route
CA3044091A1 (en) Tofacitinib and baclofen compositions and applications
US4150128A (en) Method of treating atrophic vulvar dystrophy
EP1611878A1 (en) Pharmaceutical preparations and methods for their regional administration
MXPA99006819A (en) Pharmaceutical preparations and methods for their regional administration
US20050070501A1 (en) Water dispersible film
CA2689987A1 (en) Pharmaceutical composition of a new system for vaginal release of steroids
US20230404911A1 (en) Drug delivery system for ultra-low dose estrogen combinations and methods and uses thereof
US20240115490A1 (en) Drug delivery system for ultra-low dose estrogen combinations and methods and uses thereof
US6670350B1 (en) Method of administering dienogest in high dosages to reduce the body of the breast and pharmaceutical composition for same
WO2024030116A1 (en) Drug delivery system for ultra-low dose estrogen combinations and methods and uses thereof

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20180123