CA2304631C - Catheter having a high tensile strength braid wire constraint and method of manufacture - Google Patents

Catheter having a high tensile strength braid wire constraint and method of manufacture Download PDF

Info

Publication number
CA2304631C
CA2304631C CA002304631A CA2304631A CA2304631C CA 2304631 C CA2304631 C CA 2304631C CA 002304631 A CA002304631 A CA 002304631A CA 2304631 A CA2304631 A CA 2304631A CA 2304631 C CA2304631 C CA 2304631C
Authority
CA
Canada
Prior art keywords
braid
catheter
wire
tubular
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002304631A
Other languages
French (fr)
Other versions
CA2304631A1 (en
Inventor
Todd A Berg
Jason A. Galdonik
Henry Pepin
Brian Scovil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Boston Scientific Ltd Barbados
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Ltd Barbados filed Critical Boston Scientific Ltd Barbados
Publication of CA2304631A1 publication Critical patent/CA2304631A1/en
Application granted granted Critical
Publication of CA2304631C publication Critical patent/CA2304631C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0012Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0015Making lateral openings in a catheter tube, e.g. holes, slits, ports, piercings of guidewire ports; Methods for processing the holes, e.g. smoothing the edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/10Tube connectors; Tube couplings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2935Discontinuous or tubular or cellular core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]

Abstract

A tubing assembly for manufacture for a catheter of the type having an inner tubular member defining a lumen, an outer tubular member surrounding said inner member, and a support member mounted between t he tubular members to provide rigidity to the flexible catheter. The support member comprises a high tensile strength wire braid, a nd in the preferred embodiment comprises a stainless steel wire braid which has been tempered or hardened. This higher tensile strength affords significantly greater kink resistance to the flexible catheter. One wire braid has a tensile strength in the range of 300 to 425 kpsi and a braid density of approximately 40 pic. The high tensile strength wire braid has the disadvantage of tending to flare out at its free ends. Therefore, means are provided for preventing the flaring of the wire braid during manufacture of the tubing assembly. One means includes adhesive applied over the free ends. Another means includes a restraining sleeve applied over the free ends.

Description

CATHFTIrR FIAVjj,Y,~~ A HIf,~H TELV~f'ILE S'TgF,IV~C'~fJ-j BRAID W1RF
CONST_R~1NT 4LV~ MET$OD OF MANIjFACTURE
Cross References to Co-Pending Annlications This application is related to U.S. Patent No. 5,951,495, filed on February 13, 1997;
U.S. Patent No. 5,603,705, filed on August 15,1995; and U.S. Patent No.
5,674,208 filed on June 8, 1995.
Technjcal Field The present invention generally relates to the field of medical devices, and more particularly, to the field of catheters such as guide catheters used for the placement of medicines and medical devices within the body. Specifically, the invention is directed to a catheter tube, particularly useful in an intravascular guide catheter, incorporating a high tensile strength braid wire constraint.
2 0 Background of the Tnvention The use of intravascular catheters for treatment of the body is well known in the field of medicine. The need for a choice of catheter sizes and types has grown rapidly as the techniques for their use have been greatly improved and the types of medical uses have expanded quickly. One such catheter is a guide catheter which includes a tubular member having a lumen therethrough. Guide catheters are commonly used in diagnostic and treatment techniques related to vascular disease such as angioplasty. A
guide catheter is inserted into the femoral artery and routed to a location near a treatment or diagnostic site through the aorta over the aortic arch to the ostium of a target vessel. The guide catheter provides a conduit so that fluid or another medical device can be delivered easily to the proximate location of treatment via the lumen of the guide catheter.
Prior art catheters often comprise a tubular member including a pair of congruent tubes, the inner one defining the lumen. A hub is connected at the proximal end of the tubes which in addition to providing access to the lumen for fluids and the like, is often used to provide torques and other necessary pressures to the tubes during their placement within the body. A tip of a selected design is placed at the distal end of the tubes.
Flexibility is an essential part of the catheter so that it may be successfully torqued, pushed and pulled on its way through the vascular passage to the desired site in the body.
For control of the catheter and to prevent its kinking from excessive flexing a certain amount of rigidity is also required. The prior art catheters often meet this need for rigidity by adding a support member between the two tubes. This support member may comprise a braid of metal wire wrapped around the inner tube, and often imbedded within the outer tube.
2 0 As specific examples of the type of prior art catheters described above, note U.
S. Patent No. 3,485,234, issued December 23, 1969, to R. C. Stevens, for Tubular Products and Method of Making Same; and European Patent Application, Publication No. 0 277 366/A1; Priority June 1, 1987, by Bruce H. Ward, for Guiding Catheter and _2_ Method for Making it. Each of these references teaches, in general, the prior art type of catheter discussed above.
One problem that has arisen is that as it becomes desirable to increase the diameter of the catheter lumen, it also becomes desirable to decrease the thickness of the walls of the tubes that form the catheter. However, it has been found that in thinner-walled catheters it is more di.~'f cult to prevent the kinking of the catheter.
This negative effect on flexibility is addressed in commonly assigned U.S.
Patent No.
5,674,208, issued on October 7, 1997.
'The disadvantage of the prior art was overcome by to providing a high tensile, stainless steel braid as the support structure.
However, it has been found that the use of the high tensile metal braid may cause an additional problem for practitioners of the catheter art. It has been seen that the high tensile wire has a tendency to flare or spring out in an area proximate the ends of the braid both before and during the heating process used in joining the catheter to a tip or other apparatus. In a similar way, this flaring and springing of the support braid wire is found in prior art catheters even when using the lower tensile type of wire. This flaring will interfere in the proper joinder of the catheter to, for example, a tip and is clearly undesirable and unacceptable in an intravenous catheter.
It is recognized that guide catheters preferably have a low friction inner lumen for 2 0 improved passage of other catheter devices, such as an angioplasty catheter, through such lumen. Catheters incorporating a lumen lined with polytetrafluoroethylene (PTFE) to insure low friction are generally known. The soft atraumatic tip of prior art catheters, however, does not incorporate a polytetrafluoroethylene liner. Due to the softness of the WO 99/15219 PCT/US9$/17249 tip material and the absence of the PTFE liner, the tip area can add significant friction opposition to advancing devices through the inner lumen of the catheter.
Further, it is recognized that extending the braid wire into the atraumatic tip is not desirable, as this would significantly stiffen the tip area and counter its function of providing an atraumatic positioning of the distal end of the guide catheter. Thus, it is the clinical function of the tip that requires such tip to be very soft and free of wire braid. Terminating the braid prior to the soft tip increases the prevalence of problems associated with the flaring or springing out of the wire braid proximate its free ends near the distal tip.
Accordingly, the need exists for a catheter tube construction incorporating a lubricous liner and overlying wire braid structure, wherein the free ends of the wire braid proximate the location of attachment of a soft atraumatic tip are prevented from flaring out during manufacture of the catheter tube. Further, a need exists for an atraumatic tip design which incorporates a lubricous liner to reduce the friction caused by the soft tip material when passing devices through the lumen of the tip. The present invention addresses these needs, as well as other problems associated with existing guide catheter tube and tip designs. The present invention also offers further advantages over the prior art and solves other problems associated therewith.
Summary of the Invention The present invention overcomes the above-identified disadvantages by providing 2 0 an improved catheter tube incorporating a lubricous liner in combination with a wire braid overlying the lubricous liner, wherein the free ends of the wire braid are effectively restrained to overcome the inherent spring property of the material and prevent protrusion of the free ends proximal to the soft tip when assembled.
The present invention further provides a catheter tube incorporating a lubricous liner, preferably polytetrafluoroethylene, which extends at least through a portion of the inner lumen of the atraumatic tip to reduce friction therethrough. In a preferred embodiment, the liner extends through essentially the entire length of the inner lumen of the soft atraumatic tip.
The present invention further includes improved methods for joinder of the catheter to any selected apparatus, such as joinder of the tip to the catheter tube.
Two overall embodiments and methods of manufacturing these embodiments are disclosed herein. In a first embodiment, a lap-type joint is formed at the distal end of a section of catheter shaft subsequent to manufacture of a tubular member having an inner tube, an outer congruent tube and a wire braid therebetween. A means for restraining the free ends of the wire braid in the iap joint area is provided with subsequent addition of the atraumatic tip, a portion of which overlies the restrained free ends of the wire braid.
In a second embodiment, a braided shaft region and a non-braided tip region are formed over a continuous liner or inner tube, preferably a polytetrafluoroethylene liner or inner tube. This is achieved by sleeving a preformed segment of wire braid over a preformed inner tubular member or a liner. A molding sleeve is then tracked over the braid and inner tubular member which pulls the braid down tightly to the inner tubular member, including the flaring ends of the wire braid. With the molding sleeve in place, 2 0 adhesive material is applied via capillary action to the region having the molding sleeve restraining the ends of the wire braid, which when cured hold the ends in place upon removal of the molding sleeve. This design further allows the inner tubular member to extend braid-free through a tip attached proximate the end of the wire braid.
In the preferred embodiment at least one end of the catheter, normally the distal end, is ground down by an abrasion tool to provide a length of reduced diameter suitable, in particular, for lap-joint type connection to a tip or other apparatus. A
restraining material, preferably a thin-walled heat shrink polyester, is also provided to be placed over at least a portion of the reduced diameter length to prevent flaring of the metal braid during the joinder process.
In this embodiment, the restraining material can be in the form of a sleeve having a tubular shape with an inner diameter adapted to allow placement of the sleeve over at least a portion of the reduced diameter length at the end of the catheter; and a length at most equal to the length of the reduced diameter portion of the catheter.
As described, the apparatus and method of this embodiment provides the advantage of allowing use of the high tensile metal braid by restraining flaring of the metal during heat bonding to a tip or other device, thus improving kink performance in the thin-walled catheters which use the high tensile wire. The embodiment provides the same restraining advantage for catheters which may not use the high tensile wire, but which have the same flaring problem. This embodiment also provides the advantage of providing a more durable bond of the catheter to the tip or other apparatus by the increased surface area of the lap type bonding. Finally, the apparatus of this embodiment offers an additional advantage in the form of a stiffness transition in that the ground or 2 0 abraded step portion of the bond balances the hardness of the main catheter to the softness of a tip, a balance which is known to provide clinical value.
In the second embodiment of the present invention, a catheter shaft construction is provided that incorporates adhesive means for preventing the free ends of a braid member from flaring outward during assembly. Further, this embodiment also provides a continuous inner tubular member or liner that is preferably lubricous, such as polytetrafluoroethylene, which extends through the tip portion of the catheter tubular member, yet has a portion which is free of the braid member. With the inner liner extending through the catheter shaft and tip, the braid or braid wire ends uniformly just proximal to the beginning of the distal soft tip, which results in the above-identified flaring of the braid wire. Thus, a preferred method has been developed to restrain the flaring braid wires during assembly of the catheter shaft which provides for a continuous liner for both the shaft and tip regions and a braid-free tip section. The method does not require braid removal and does not add wall thickness to restrain the flared ends.
With this second preferred embodiment, a first step in the method of manufacture is to form a braided shaft region and a non-braided tip region over a continuous liner.
This is preferably achieved by 5leeving the braid or wire braid over a section of liner which is placed over a core or mandrel. The distal end of the braid terminates proximal to the distal end of the liner to separate the shaft and tip regions.
A molding sleeve is then tracked over the braid and liner. The molding sleeve is preferably a tubular member having a lumen therethrough which, when tracked over the braid, pulls the braid wire down tightly to conform to the outer longitudinal surface of the liner. At the end of the wire braid, the advancing molding sleeve forces the free braid 2 o ends to conform back into the original braid pattern and into the lumen of the molding sleeve. Once the distal ends of the braid member have been conformed by the molding sleeve, adhesive means is injected into the cavity between the molding sleeve and the liner over a portion of the braid proximate its distal end. Preferably a high temperature (350-400°F), soft (25D-SOD) restraining seal in liquid form is injected into the cavity.
Capillary action is recognized as facilitating this process by sucking the liquid seal restraining material from outside the molding sleeve to inside.
The liquid seal is then cured through the molding sleeve. A preferred adhesive means is an ultraviolet light (LJV) curable adhesive which is used in conjunction with a clear molding sleeve that allows UV light to pass through the clear molding sleeve walls which cures the adhesive. Although other adhesives and curing methods and appropriate adhesives are recognized as within the scope of the invention, including such methods as heat, catalyst and moisture.
l0 Upon removing the molding sleeve, the resulting intermediate assembly or tubular assembly includes a micro-thin band molded from the adhesive means or liquid seal that circumferentially encapsulates the distal free wire ends. The restraining band preferably adheres to the liner and encapsulates the wire braid. The band is very thin, uniform in thickness, and concentric, due to the forming of the liquid seal within the molding sleeve. The wire braid ends are uniformly and distinctly ended while the inner tubular member or liner continues distally to provide a braid-free region for tip attachment.
An outer tubular member overlies the intermediate tube assembly over at least a portion of the assembly having the braid thereon. A tip member overlies the portion of 2 0 the liner which extends distally beyond the braid. The distal end of the tip member can extend beyond the distal end of the liner, but in preferred embodiments, the tip member is co-extensive with the liner to provide an atraumatic tip having a continuous liner therethrough.
_g_ These and other various advantages and features of novelty which characterize the present invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages and the objects obtained by its use, reference should be made to the drawings which form a further part hereof and to the accompanying descriptive matter, in which there are illustrated and described preferred embodiments of the present invention.
The present invention overcomes the disadvantages found in the prior art by providing an improved metallic support member that has a greater tensile strength and a greater Modulus of Elasticity than non-metallic support materials and therefore can offer an increase in the rigidity required to prevent kinking without sacrificing the needed flexibility. The increased tensile strength of the present invention is primarily achieved through the tempering or hardening of the metal used fox the support member.
In the prior art, the support member, such as a stainless steel braid, was annealed, thus resulting in a comparatively low tensile strength.
In the preferred embodiment of this invention the support member comprises a braid made of tempered stainless steel wires. A fully hardened metal wire is preferred, such as #304 stainless steel which will yield a tensile strength in the range of 300 to 475 kiiopounds per square inch (kpsi) and which has a Modulus of elasticity ranging from 28,000,000 psi fully hardened to 26,000,000 not fully hardened. Other types of stainless 2 0 steel can be used, including those having lower tensile strength. It has been found that tensile strengths as low as 200 kpsi offer advantageous kink performance.
Also, in the preferred embodiment of this invention, the preferred diameter of the braiding wire has been found to be 0.002 inches. However, it should also be noted that other diameters can be successfully utilized, such as in the range of 0.00075 to 0.0035 inches, dependent on the dimensions of the catheter thin wall.
In the preferred embodiment of this invention it has further been found that the preferred braid construction is 16 strands of tubular braid, with a braid density of 40 crosses per inch (pic). Other combinations of braid strands and pic densities have also been found to be useful.
In the drawings, in which like reference numerals indicate corresponding parts or elements of preferred embodiments of the present invention throughout the several views:
Fig. 1 is a plan view showing a portion of a catheter;
Fig. 2 is another plan view of a portion of the catheter of Fig. 1 with a length of the catheter ground down to a lesser diameter, and showing a sleeve;
Fig. 3 is a plan view of Fig. 2 showing the sleeve after mounting on the ground-down length of the catheter;
Fig. 4 is a plan view of a liner or inner tubular member having a braid member inserted thereover illustrating the flared free ends of the braid;
Fig. 5 is a partial cross-sectional view of the assembly of Fig. 4 having a molding sleeve inserted thereover to conform the wire braid;
Fig. 6 is a partial cross-sectional view illustrating addition of adhesive means to 2 0 the distal portion of the assembly between the liner and molding sleeve;
Fig. 7 is a plan view illustrating the restrained braid ends upon curing of the adhesive means and removal of the molding sleeve;
Fig. 8 depicts a partial cross-section of a distal portion of a catheter shaft of the -lo-embodiment of Fig. 7 with an outer tubular member overlying the braid assembly and a tip portion overlying the liner distal of the braid assembly; and Fig. 9 is a bar graph depicting catheter kink resistance at various tensile strengths of the support braid of the catheter of this invention.
Detailed Descri tn ior~f Preferred Embodiments As required, detailed embodiments of the present invention are disclosed herein.
However, it should be understood that the disclosed embodiments are merely exemplary of the present invention which may be embodied in various systems. Thus, the discussion with respect to Figs. 1-3 are directed to a first embodiment of the present invention, while the discussion with respect to Figs. 4-8 are directed to a second embodiment. It is, however, recognized that elements of each embodiment may be incorporated in a catheter tube construction in combinations as would be well understood by one skilled in the art. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to variously practice the present invention.
Fig. 1 shows a guide catheter 10, which rnay be a thin-walled catheter.
Catheter 10 comprises an outer tubular member 12 which surrounds and is coaxial with an inner tubular member 13 shown in dashed phantom lines. A support member 1 S is shown in dotted phantom lines. Member 15 is a braid of metal wire, which may be high tensile 2 0 wire, that also surrounds and is coaxial with member 13.
Fig. 2 is a drawing of a portion of catheter 10. Member 12 is shown having an end portion ground or abraded away. As shown in Fig. 2, member 12 has been completely ground down to metal braid 15. However, it should be recognized that this invention will also operate fully if only a portion of member 12 is abraded away. Fig. 2 also shows a restraining device 14. Device 14 is shown in a first preferred embodiment to be a tubular sleeve. Sleeve 14 is, preferably, a thin-walled heat shrink polyester having a length sized to cover at least a portion of the abraded length of member 12, and an inner diameter sized to allow it to fit over the reduced diameter of the end portion of catheter caused by the abrasion of member 12. In this preferred embodiment, sleeve 14 has a thickness of approximately 0.0005 inches, thus allowing it to be completely imbedded between the reduced diameter portion of catheter 10 and the tip or other device used to complete the lap joint with catheter 10.
10 Fig. 3 is a plan view of the apparatus of Fig. 2 showing the restraining device 14 mounted on the reduced diameter portion of catheter 10. Due to the proper sizing of device or sleeve 14, it has been slid onto and covers at least a portion of the reduced diameter region of catheter 10. Sleeve 14 is seen to fit over enough of the end portion of braid 15 so that, when sleeve 14 is heated, it will shrink to and retain the metal wire strands of braid 15.
It should be recognized that though restraining device 14 is shown and described as a tubular member in this embodiment, other forms could be used as well. For example, device 14 could be a simple strip of heat shrink polyester adapted to be wrapped around the reduced diameter portion of catheter 10. The important feature is 2 0 that after it has been heated to encapsulate the end of the wire braid, device 14 restrains the wire from surfacing through any joinder by flaring or springing out.
For the process of forming the apparatus of this invention, an abrasive forming tool is used to remove the material of member 12 from its outside surface for 360 degrees from one end of catheter 10. This forms a straight step from the end which allows the abraded or ground portion of catheter 10 to act as the male portion of a lap joint to coact with a female portion of a soft tip or other device it is desired to connect to the apparatus of this invention. The step is preferably a reduction in wall thickness of approximately 0.002 to 0.006 inches, thus allowing for the use of the 0.0005 inch restraining device 14.
The length of the abraded portion of catheter 10 is preferably about 0.125 inches, thus allowing for a significant bonding surface area when used in a lap joint. As used herein, the terms "ground" and "abraded" have the same meaning.
Now referring to Figs. 4-8, a series of illustrations are provided to depict and 1 o describe another preferred embodiment of the catheter tubular assembly of the present invention and a method of manufacturing such tubular assembly. The method of manufacture of the final tubular assembly depicted in Fig. 7 and the catheter assembly depicted in Fig. 8 is first described for a better understanding of the final apparatus.
Referring now to Fig. 4, a tubular member 50 is first provided for manufacture of a tubular assembly 70 of the present invention. The tubular member 50 preferably has a lumen 62 therethrough. However, during manufacture of the tubular assembly, a mandrel or core is inserted in the lumen 62 to prevent collapse of the tubular member 50.
The mandrel can include a stainless steel wire or a polymeric rod.
The tubular member SO is preferably manufactured from a lubricous polymeric 2 o material. A preferred material of construction is polytetrafluoroethylene (PTFE). In the preferred method of manufacture, the tubular member 50 is cut to a discrete length slightly in excess of the length of a desired finished product. A braided wire tubular member 56 overlies a portion of the outside longitudinal surface 51 over a portion of the length of the tubular member 50. The braid S6 is preferably manufactured from metallic wire. A preferred material of construction is stainless steel, more preferably a high tensile stainless steel wire. In a preferred method of manufacture, the braid S6 is preformed into a braided wire tubular member S6 of required length which is sleeved over the tubular member S0.
As depicted in Fig. 4, the braid S6 has a distal end shown generally at S7.
The distal end S7 flares outward due to the inherent spring property of the stainless steel material which is utilized in a preferred embodiment. The distal free ends S8 pose problems in assembly of catheter tubing as described previously.
Also depicted in Fig. 4 is a tip member 60 which has been preloaded onto the tubular member SO by sliding the tip member over the distal end S4 of the tubular member S0. The final assembly of the tip member 60 to the catheter shaft will be described later in conjunction with Figs. 7 and 8.
Now refernng to Fig. S, the assembly of Fig. 4 is depicted having a molding sleeve 64 disposed thereover. The molding sleeve has a distal end 66 and a proximal end 67 (not shown). As depicted in Fig. S, the molding sleeve 64 includes a tubular portion having a lumen therethrough. The molding sleeve 64 is tracked over the tubular member SO and braid S6 so that the braid S6, including the free ends S8, are caused to conform to the outside longitudinal surface S 1 of the tubular member S0. Fig. S depicts a preferred 2 o embodiment, wherein the distal end 66 of the molding sleeve 64 terminates proximate the distal end S7 of the braid S6.
With the molding sleeve 64 positioned as depicted in Fig. S, now refernng to Fig.
6, adhesive means 68 is applied to the tubular member SO proximate the restrained free WO 99/15219 PCT/US9$/17249 ends 58 under the molding sleeve 64 to prevent flaring of the free ends 58 upon removal of the molding sleeve 64. In preferred embodiments, the adhesive means 58 is simply applied by depositing a bead of adhesive through a syringe or other applicator 69 around the circumference of the tubular member 50 at the distal end 66 of the molding sleeve 64.
Capillary action assists in drawing the adhesive means 58 under the distal end 66 of the molding sleeve 64 between the tubular member S0, longitudinal surface 51 and molding sleeve 64.
In preferred embodiments, the adhesive means 58 is an ultraviolet light curable adhesive. These adhesives can include: polyurethanes, epoxies, acrylics and mixtures l0 thereof. However, it is recognized that other adhesives which are heat curable, catalyst curable or moisture curable can be utilized. These other adhesives can include:
cyanoacrylates, epoxies, hot melt adhesives, acrylics, silicones and mixtures thereof.
Upon application of the adhesive means 68, the adhesive means 68 is cured while the molding sleeve 64 remains in place. In a preferred embodiment, wherein the adhesive means 68 is ultraviolet light curable, the molding sleeve 64 must allow passage of ultraviolet light through the walls thereof. Therefore, the molding sleeve is preferably clear. The clear molding sleeve 64 also allows visualization of the braid 56 as it is conformed to the tubular member 50.
Now referring to Fig. 7, the finished tubular assembly 70 or intermediate 2 o assembly 70 for use in manufacturing a catheter is illustrated. As shown, upon curing of the adhesive means 68, the molding sleeve 64 is removed and the adhesive means restrains the free ends 58 of the braid 56.
As depicted in Fig. 7, the thickness of the adhesive means 68 is grossly exaggerated so that it is visible. In preferred embodiments, the adhesive means 68 provides a uniform, micro-thin seal which is molded circumferentially around the distal braid ends 58. The thickness of the adhesive means 68 does not interfere with subsequent processing of the tubular assembly 70.
Thus, the tubular assembly 70 of the present invention includes a tubular member 50 having a proximal end, a distal end and an outer longitudinal surface S 1.
The braid member 56 overlies the tubular member SO and conforms to the outer longitudinal surface 51. The braid 56 has a distal end 57 which includes a plurality of free ends or terminal ends 58. A sufficient quantify of adhesive means 68 restrains the plurality of terminal 1 o ends 58 of the braid member 56 to maintain conformance of the plurality of terminal ends 58 to the longitudinal surface 51 of the tubular member 50.
The tubular assembly of Fig. 7 is preferably incorporated into a catheter assembly 80 as depicted in Fig. 8. As depicted in Fig. 8, an outer tubular member 72 overlies the braid member 56 and has a distal end 82 terminating proximate the distal end 66 of the braid member 56. The outer tubular member 72, however, terminates proximal of the distal end 54 of the inner tubular member 50.
The tip member 60, previously disclosed, includes at least a portion of the tip member 60 overlying the inner tubular member SO outer longitudinal surface 51 distal of the distal end 66 of the braid member 56. As depicted in Fig. 8, the proximal end 74 2 0 of the tip member 60 is in contact with the distal end 82 of the outer tubular member 72.
As depicted in a preferred embodiment, the inner tubular member 50 distal of the braid member 56 is co-extensive with the tip member and forms a braidless tip portion of the catheter assembly 80 having a continuous inner tubular member therethrough.

s ~ ~.».~,."~~ . . . .._.._.~..,z.,m_ . _ ._ . _. .. ....

r.
It is recognized that the outer tubular member 72 may be added in any way known in the art. This can include extruding a material over the tubular assembly 70.
In a preferred method of manufacture, a plurality of tubular segments are slidably received over the tubular assembly 70 along with the tip member 60. The tubular members, including the tip member 60, are abutted to each other and a heat shrink polymer sleeve is placed over the entire assembly. The assembly is then heated or baked to fuse the assembly with subsequent removal of the polymer sleeve.
This preferred method of manufacture is disclosed in detail in commonly assigned U.S.
Patent No. 5,911,71 S, issued on June 15, 1999.
l0 One major reason kinking increases with thin-walled catheters is that the rigidity provided by the prior art metallic support members becomes insufficient as the catheter walls become thinner. Such prior art support members are often constructed of a braid made from annealed stainless steel wire. It is well known that the annealing process will yield a comparatively low tensile strength, for example, about 140 kpsi.
Catheter failure due to kinking is caused by compressive forces that collapse the catheter wall into its lumen. The support member, or braiding wire, is used to resist the compressive force. As the catheter is put through the placement process to reach the 2 0 desired placement within the body it is torqued and maneuvered such that it is forced into tighter loops and bends. As these loops and bends become tighter and tighter, the compressive forces increase until the yield strength of the support member is exceeded.
When the external stress (compressive forces) exceeds the ultimate tensile strength (stress) of the braiding wire material, failure or kinking of the catheter wall occurs.
From the above definition of the failure mechanism for kinking, it becomes apparent that an increase in the tensile strength of the wire will allow higher compressive forces to be applied to the catheter wall without failure. Thus the higher tolerance for stress before failure correlates directly to thinner catheter walls and tighter bends than possible with annealed or lower tensile strength wire.
The apparatus of this invention overcomes the above kinking problem by using a tempered or hardened metal for support member 15. In the preferred embodiment member 15 is a braid using no. 304 stainless steel wire which has been hardened to have l0 a high tensile strength in the range of 300 to 475 kpsi. Study has shown that tensile strengths down to 200 kpsi also offer advantageous kink resistance over the annealed braid.
The following chart illustrates the typical lumen sizes obtainable for various catheter french sizes, based on the tensile strength of the support braid wire:
FRENCH SIZE ANNEALED BRAID-LD. HIGH TENSILE BRAID-LD.
6F 0.060 inches 0.064 inches 7F 0.072 inches 0.076 inches 8F 0.080 inches 0.084 inches 9F 0.092 inches 0.096 inches 2 0 From the above chart the advantage of the tempered or high tensile strength braid can be clearly seen. In all french sizes shown, the high tensile braid allows a larger lumen (thinner wall) than does the prior art or annealed braid.
Reference is made to Fig. 9 where the bar graph also clearly depicts the advantage of the present invention with regard to kink performance. Here it can clearly be seen that the preferred embodiment of the present invention (325 kpsi braid wire) offers far greater kink performance or displacement-to-failure than does the prior art annealed version (140 kpsi braid wire). It can also be seen that an even lower tempered tensile strength of 250 kpsi braid wire still offers significantly improved kink performance over the annealed braid wire.
Finally, it has also been found that certain braid construction features are preferred for this invention. The preferred diameter of the braid wire is 0.002 inches, though diameters in the range of 0.00075 to 0.0035 are also acceptable dependent on the 1 o catheter wall dimensions. One embodiment has a braiding density of at least 10 pic. The preferred braiding density is 40 pic, though other pic densities have also been found to be advantageous.
Having thus described the preferred embodiments of the present invention, those of skill in the art will readily appreciate the other useful embodiments within the scope of the attached claims.

Claims (12)

WHAT IS CLAIMED IS:
1. A tubular assembly for use in catheter construction comprising:
a. a tubular member having a proximal end, a distal region, and an outer surface;
b. a braid member overlying said tubular member conforming to said outer surface, said braid member including a plurality of terminal ends in the distal region of said tubular member, said braid member formed of tempered metallic wire with a tensile strength of at least 200 kpsi; and c. a sufficient quantity of an adhesive means for restraining said plurality of terminal ends of said braid member to maintain conformance to said outer surface.
2. The tubular assembly of claim 1 wherein said wire comprises stainless steel.
3. The tubular assembly of claim 1 wherein said wire has a tensile strength in the range of 300 to 475 kpsi.
4. The tubular assembly of claim 1 wherein said wire has a braid density of approximately 40 pic.
5. The tubular assembly of claim 1 wherein said wire has a braid density of at least 10 pic.
6. The tubular assembly of claim 1 wherein said wire has a diameter in the range of 0.00075 inches to 0.0035 inches.
7. A tubular assembly for use in catheter construction comprising:
a. a tubular member having a proximal end, a distal end and an outer surface;
b. a braid member overlying said tubular member conforming to said outer surface, said braid member including a plurality of terminal ends proximate the distal end of said tubular member, said braid member comprising a tempered metal with tensile strength of at least 200 kpsi; and c. a sufficient quantity of adhesive means restraining said plurality of terminal ends of said braid member to maintain conformance to said outer surface, said adhesive means adhering to said outer surface of said tubular member.
8. The tubular assembly of claim 7 wherein said metal comprises tempered stainless steel.
9. The tubular assembly of claim 7 wherein said metal has a tensile strength in the range of 300 to 475 kpsi.
10. The tubular assembly of claim 7 wherein said adhesive means is an ultraviolet light curable adhesive.
11. The tubular assembly of claim 10, wherein said ultraviolet light curable adhesive is selected from the group consisting of: polyurethanes, epoxies, acrylics and mixtures thereof.
12. The tubular assembly of claim 7 wherein the adhesive means is an adhesive selected from the group consisting of cyanoacrylates, epoxies, hot melt adhesives, acrylics, silicones and mixtures thereof.
CA002304631A 1997-09-25 1998-08-20 Catheter having a high tensile strength braid wire constraint and method of manufacture Expired - Fee Related CA2304631C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/936,983 US5954651A (en) 1993-08-18 1997-09-25 Catheter having a high tensile strength braid wire constraint
US936,983 1997-09-25
PCT/US1998/017249 WO1999015219A1 (en) 1997-09-25 1998-08-20 Catheter having a high tensile strength braid wire constraint and method of manufacture

Publications (2)

Publication Number Publication Date
CA2304631A1 CA2304631A1 (en) 1999-04-01
CA2304631C true CA2304631C (en) 2007-04-03

Family

ID=25469310

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002304631A Expired - Fee Related CA2304631C (en) 1997-09-25 1998-08-20 Catheter having a high tensile strength braid wire constraint and method of manufacture

Country Status (5)

Country Link
US (4) US5954651A (en)
EP (1) EP1015062A1 (en)
JP (1) JP4653305B2 (en)
CA (1) CA2304631C (en)
WO (1) WO1999015219A1 (en)

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954651A (en) 1993-08-18 1999-09-21 Scimed Life Systems, Inc. Catheter having a high tensile strength braid wire constraint
US6240231B1 (en) * 1997-12-22 2001-05-29 Micrus Corporation Variable stiffness fiber optic shaft
US6702972B1 (en) 1998-06-09 2004-03-09 Diametrics Medical Limited Method of making a kink-resistant catheter
US6942654B1 (en) * 2000-01-19 2005-09-13 Scimed Life Systems, Inc. Intravascular catheter with axial member
US7758624B2 (en) * 2000-11-13 2010-07-20 C. R. Bard, Inc. Implant delivery device
WO2001056630A1 (en) * 2000-02-02 2001-08-09 Biolink Corporation Apparatus for the dialysis of blood, method for fabricating the same, and method for the dialysis of blood
US6648874B2 (en) 2000-02-28 2003-11-18 Scimed Life Systems, Inc. Guide catheter with lubricious inner liner
US6582536B2 (en) 2000-04-24 2003-06-24 Biotran Corporation Inc. Process for producing steerable sheath catheters
US6979312B2 (en) * 2001-04-12 2005-12-27 Biotran Corporation, Inc. Steerable sheath catheters
US8075606B2 (en) * 2001-07-06 2011-12-13 Angiomed Gmbh & Co. Medizintechnik Kg Delivery system having a rapid pusher assembly for self-expanding stent, and stent exchange configuration
US7846148B2 (en) * 2001-09-20 2010-12-07 Boston Scientific Scimed, Inc. Catheter having increased curve performance through heat treatment
GB0123633D0 (en) * 2001-10-02 2001-11-21 Angiomed Ag Stent delivery system
US20030114831A1 (en) * 2001-12-14 2003-06-19 Scimed Life Systems, Inc. Catheter having improved curve retention and method of manufacture
US7018346B2 (en) 2001-12-18 2006-03-28 Scimed Life Systems, Inc. Guide wire with adjustable flexibility
US6945970B2 (en) * 2001-12-27 2005-09-20 Scimed Life Systems, Inc. Catheter incorporating a curable polymer layer to control flexibility and method of manufacture
US6540548B1 (en) * 2002-03-13 2003-04-01 Hon Hai Precision Ind. Co., Ltd. Method and apparatus for separating metallic braid from core wire of a coaxial cable
WO2004018031A2 (en) * 2002-08-22 2004-03-04 William A. Cook Australia Pty. Ltd. Guide wire
US20040045645A1 (en) * 2002-09-10 2004-03-11 Scimed Life Systems, Inc. Shaped reinforcing member for medical device and method for making the same
DE10252630A1 (en) * 2002-11-11 2004-05-19 Preh-Werke Gmbh & Co. Kg Backlit display
JP4013194B2 (en) * 2002-12-02 2007-11-28 株式会社町田製作所 Flexible tube such as endoscope and manufacturing method thereof
US6945956B2 (en) * 2002-12-23 2005-09-20 Medtronic, Inc. Steerable catheter
GB0327306D0 (en) * 2003-11-24 2003-12-24 Angiomed Gmbh & Co Catheter device
CA2513082C (en) * 2003-01-15 2010-11-02 Angiomed Gmbh & Co. Medizintechnik Kg Trans-luminal surgical device
US6929626B2 (en) * 2003-01-15 2005-08-16 Scimed Life Systems, Inc. Intraluminally placeable textile catheter, drain and stent
US8377035B2 (en) * 2003-01-17 2013-02-19 Boston Scientific Scimed, Inc. Unbalanced reinforcement members for medical device
US20040181208A1 (en) * 2003-03-14 2004-09-16 Poole Matthew S. Catheter reinforced with high yield strength wire
EP1620159B1 (en) 2003-04-14 2009-08-05 Cook Incorporated Large diameter delivery catheter/sheath
ATE378085T1 (en) 2003-04-28 2007-11-15 Cook Inc FLEXIBLE INTRODUCER WITH DIFFERENT DUROMETER
GB0310715D0 (en) 2003-05-09 2003-06-11 Angiomed Ag Strain management in stent delivery system
US7815975B2 (en) 2003-06-25 2010-10-19 Volcano Corporation Catheter having polymer stiffener rings and method of making the same
US7597830B2 (en) * 2003-07-09 2009-10-06 Boston Scientific Scimed, Inc. Method of forming catheter distal tip
US7615043B2 (en) * 2003-08-20 2009-11-10 Boston Scientific Scimed, Inc. Medical device incorporating a polymer blend
US7824392B2 (en) 2003-08-20 2010-11-02 Boston Scientific Scimed, Inc. Catheter with thin-walled braid
US7763063B2 (en) 2003-09-03 2010-07-27 Bolton Medical, Inc. Self-aligning stent graft delivery system, kit, and method
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US8292943B2 (en) 2003-09-03 2012-10-23 Bolton Medical, Inc. Stent graft with longitudinal support member
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US9198786B2 (en) 2003-09-03 2015-12-01 Bolton Medical, Inc. Lumen repair device with capture structure
US8500792B2 (en) 2003-09-03 2013-08-06 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US20080264102A1 (en) 2004-02-23 2008-10-30 Bolton Medical, Inc. Sheath Capture Device for Stent Graft Delivery System and Method for Operating Same
US20070198078A1 (en) 2003-09-03 2007-08-23 Bolton Medical, Inc. Delivery system and method for self-centering a Proximal end of a stent graft
US7955313B2 (en) * 2003-12-17 2011-06-07 Boston Scientific Scimed, Inc. Composite catheter braid
US20050149176A1 (en) * 2003-12-29 2005-07-07 Scimed Life Systems, Inc. Selectively light curable support members for medical devices
WO2005065761A2 (en) * 2003-12-31 2005-07-21 C. R. Bard, Inc. Reinforced multi-lumen catheter
US8252014B2 (en) 2004-03-03 2012-08-28 Innovational Holdings Llc. Rapid exchange balloon catheter with braided shaft
JP2005312952A (en) * 2004-03-31 2005-11-10 Nippon Zeon Co Ltd Catheter tube and catheter
EP1768724A4 (en) * 2004-06-07 2010-08-25 Bard Inc C R Subcutaneous infusion devices
US7828790B2 (en) 2004-12-03 2010-11-09 Boston Scientific Scimed, Inc. Selectively flexible catheter and method of use
JP2006181139A (en) * 2004-12-28 2006-07-13 Nachi Fujikoshi Corp Guide wire and catheter
US8652193B2 (en) 2005-05-09 2014-02-18 Angiomed Gmbh & Co. Medizintechnik Kg Implant delivery device
US20060270977A1 (en) * 2005-05-26 2006-11-30 Conor Medsystems, Inc. Rapid exchange balloon catheter with reinforced shaft
US20080114439A1 (en) * 2005-06-28 2008-05-15 Venkatesh Ramaiah Non-occluding dilation device
WO2007002933A2 (en) * 2005-06-28 2007-01-04 Stout Medical Group, Inc. Micro-thin film structures for cardiovascular indications
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US7914841B2 (en) * 2006-02-09 2011-03-29 Cook Medical Technologies Llc Inline application of coatings
US7901396B2 (en) * 2006-04-27 2011-03-08 Medtronic, Inc. Transvenous medical device delivery system
US20080091169A1 (en) 2006-05-16 2008-04-17 Wayne Heideman Steerable catheter using flat pull wires and having torque transfer layer made of braided flat wires
US20080125752A1 (en) * 2006-08-09 2008-05-29 Boston Scientific Scimed, Inc. Catheter assembly having a modified reinforcement layer
US20080114335A1 (en) * 2006-08-23 2008-05-15 William Flickinger Medical Device Guide
US8419658B2 (en) * 2006-09-06 2013-04-16 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
US8556914B2 (en) 2006-12-15 2013-10-15 Boston Scientific Scimed, Inc. Medical device including structure for crossing an occlusion in a vessel
US8088097B2 (en) 2007-11-21 2012-01-03 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
JP2010517693A (en) 2007-02-06 2010-05-27 グルメトリクス, インコーポレイテッド Optical system and method for ratiometric measurement of blood glucose concentration
WO2008141241A1 (en) 2007-05-10 2008-11-20 Glumetrics, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
US9808595B2 (en) 2007-08-07 2017-11-07 Boston Scientific Scimed, Inc Microfabricated catheter with improved bonding structure
US7841994B2 (en) 2007-11-02 2010-11-30 Boston Scientific Scimed, Inc. Medical device for crossing an occlusion in a vessel
US8366603B2 (en) * 2007-12-21 2013-02-05 Boston Scientific Scimed, Inc. Endoscope including a multifunction conductor
WO2009129186A2 (en) 2008-04-17 2009-10-22 Glumetrics, Inc. Sensor for percutaneous intravascular deployment without an indwelling cannula
US9750625B2 (en) 2008-06-11 2017-09-05 C.R. Bard, Inc. Catheter delivery device
GB0810749D0 (en) 2008-06-11 2008-07-16 Angiomed Ag Catherter delivery device
CN107961098A (en) 2008-06-30 2018-04-27 波顿医疗公司 System and method for abdominal aneurvsm
US8206373B2 (en) * 2008-07-01 2012-06-26 Boston Scientific Scimed, Inc. Medical device including braid with coated portion
EP3284447B1 (en) 2009-03-13 2020-05-20 Bolton Medical Inc. System for deploying an endoluminal prosthesis at a surgical site
US8784467B2 (en) * 2009-05-15 2014-07-22 Lemaitre Vascular, Inc. Non-occlusive dilation devices
US9259550B2 (en) 2009-07-13 2016-02-16 Cook Medical Technologies Llc Swaged braided catheter and method of fabrication
JP2013506503A (en) 2009-09-30 2013-02-28 グルメトリクス, インコーポレイテッド Sensor with antithrombogenic coating
US8467843B2 (en) 2009-11-04 2013-06-18 Glumetrics, Inc. Optical sensor configuration for ratiometric correction of blood glucose measurement
US8641677B2 (en) 2010-01-21 2014-02-04 James T. Rawls Low-profile intravenous catheter device
JP2012061062A (en) * 2010-09-14 2012-03-29 Kaneka Corp Catheter for delivering self-expanding prosthesis
US9717553B2 (en) * 2010-12-29 2017-08-01 Biosence Webster (Israel) Ltd. Braid with integrated signal conductors
US9486605B2 (en) 2011-07-15 2016-11-08 Cook Medical Technologies Llc Introducer sheath with braided filament securement mechanism
CA2843587C (en) 2011-08-01 2020-03-24 Alcyone Lifesciences, Inc. Microfluidic drug delivery devices
CN103997981B (en) * 2011-10-14 2017-07-07 放射医疗系统公司 Small flexible liquid core conduit and application method for carrying out laser ablation in body lumen
WO2013154749A1 (en) 2012-04-12 2013-10-17 Bolton Medical, Inc. Vascular prosthetic delivery device and method of use
EP2934627B1 (en) 2012-12-18 2021-04-07 Alcyone Lifesciences, Inc. Devices and methods for reducing or preventing backflow in a delivery system
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
CA2915505C (en) 2013-06-17 2021-08-03 Alcyone Lifesciences, Inc. Methods and devices for protecting catheter tips and stereotactic fixtures for microcatheters
ES2738298T3 (en) 2013-07-31 2020-01-21 Alcyone Lifesciences Inc Systems and methods of drug delivery, treatment and monitoring
US9962527B2 (en) 2013-10-16 2018-05-08 Ra Medical Systems, Inc. Methods and devices for treatment of stenosis of arteriovenous fistula shunts
US10080865B2 (en) 2014-01-14 2018-09-25 Cook Medical Technologies Llc Multi-lumen catheters for small body vessel applications
JP6349797B2 (en) * 2014-03-11 2018-07-04 日本ゼオン株式会社 Tip deflection movable catheter and tip deflection movable catheter manufacturing method
US10118022B2 (en) * 2014-06-05 2018-11-06 St. Jude Medical, Cardiology Division, Inc. Deflectable catheter shaft section
US9782561B2 (en) 2014-10-09 2017-10-10 Vacular Solutions, Inc. Catheter tip
US9636477B2 (en) 2014-10-09 2017-05-02 Vascular Solutions, Inc. Catheter
US10806396B2 (en) 2015-01-26 2020-10-20 Alcyone Lifesciences, Inc. Drug delivery methods with tracer
JP6526998B2 (en) * 2015-03-27 2019-06-05 テルモ株式会社 CATHETER, AND METHOD FOR MANUFACTURING CATHETER
JP6356088B2 (en) * 2015-03-31 2018-07-11 日本ライフライン株式会社 catheter
CN107666935B (en) * 2015-05-29 2021-01-05 柯惠有限合伙公司 Catheter with tapered outer diameter
US10357631B2 (en) * 2015-05-29 2019-07-23 Covidien Lp Catheter with tapering outer diameter
US10555772B2 (en) 2015-11-23 2020-02-11 Ra Medical Systems, Inc. Laser ablation catheters having expanded distal tip windows for efficient tissue ablation
CN108472019A (en) 2016-01-04 2018-08-31 亚克安娜生命科学有限公司 Method and apparatus for treating apoplexy
JP2019516441A (en) * 2016-04-18 2019-06-20 キューエックスメディカル リミテッド ライアビリティ カンパニー Catheter for advancing through angiostenosis and related methods
DK3551271T3 (en) 2016-12-08 2023-10-02 Abiomed Inc OVERMOLDING TECHNIQUE FOR DESIGNING PEEL-AWAY INTRODUCING
US10238834B2 (en) 2017-08-25 2019-03-26 Teleflex Innovations S.À.R.L. Catheter
SG11202003104SA (en) 2017-11-06 2020-05-28 Abiomed Inc Peel away hemostasis valve
JP2019166289A (en) 2018-03-22 2019-10-03 ラ メディカル システムズ, インコーポレイテッド Liquid filled ablation catheter with overjacket
CN112533661A (en) 2018-05-16 2021-03-19 阿比奥梅德公司 Stripping sheath assembly
US11504151B2 (en) * 2021-02-18 2022-11-22 Boston Scientific Scimed, Inc. Thrombectomy apparatuses
WO2024062587A1 (en) * 2022-09-22 2024-03-28 Swcc株式会社 Catheter tube

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416531A (en) 1964-01-02 1968-12-17 Edwards Miles Lowell Catheter
US3485234A (en) * 1966-04-13 1969-12-23 Cordis Corp Tubular products and method of making same
US3612058A (en) * 1968-04-17 1971-10-12 Electro Catheter Corp Catheter stylets
US4210478A (en) * 1973-05-08 1980-07-01 International Paper Company Method of making a catheter
US4588399A (en) * 1980-05-14 1986-05-13 Shiley Incorporated Cannula with radiopaque tip
US4419095A (en) * 1980-05-14 1983-12-06 Shiley, Inc. Cannula with radiopaque tip
US4516972A (en) * 1982-01-28 1985-05-14 Advanced Cardiovascular Systems, Inc. Guiding catheter and method of manufacture
US4516970A (en) * 1982-09-13 1985-05-14 Kaufman Jack W Medical device
US4531943A (en) * 1983-08-08 1985-07-30 Angiomedics Corporation Catheter with soft deformable tip
US4764324A (en) * 1983-12-12 1988-08-16 Warren Burnham Method of making a catheter
JPS60126170A (en) * 1983-12-14 1985-07-05 テルモ株式会社 Catheter and its production
US4636346A (en) * 1984-03-08 1987-01-13 Cordis Corporation Preparing guiding catheter
US4705511A (en) * 1985-05-13 1987-11-10 Bipore, Inc. Introducer sheath assembly
EP0277366A1 (en) * 1987-01-06 1988-08-10 Advanced Cardiovascular Systems, Inc. Guiding catheter assembly and method for making it
US4817613A (en) * 1987-07-13 1989-04-04 Devices For Vascular Intervention, Inc. Guiding catheter
US4863442A (en) * 1987-08-14 1989-09-05 C. R. Bard, Inc. Soft tip catheter
JPH01121065A (en) 1987-11-05 1989-05-12 Terumo Corp Medical tube and its preparation
US5078702A (en) * 1988-03-25 1992-01-07 Baxter International Inc. Soft tip catheters
US4898591A (en) * 1988-08-09 1990-02-06 Mallinckrodt, Inc. Nylon-PEBA copolymer catheter
US4981478A (en) 1988-09-06 1991-01-01 Advanced Cardiovascular Systems Composite vascular catheter
US5017259A (en) * 1988-10-13 1991-05-21 Terumo Kabushiki Kaisha Preparation of catheter including bonding and then thermoforming
US4985022A (en) * 1988-11-23 1991-01-15 Med Institute, Inc. Catheter having durable and flexible segments
EP0382974A1 (en) * 1989-01-23 1990-08-22 C.R. Bard, Inc. Braided guide wire and method for the use thereof
US5217440A (en) * 1989-10-06 1993-06-08 C. R. Bard, Inc. Multilaminate coiled film catheter construction
US5057092A (en) * 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US5061257A (en) * 1990-04-30 1991-10-29 Cordis Corporation Apertured, reinforced catheter
JPH0628116B2 (en) 1990-06-05 1994-04-13 富士通テン株式会社 Emergency power supply for tape deck
US5433200A (en) 1990-07-09 1995-07-18 Lake Region Manufacturing, Inc. Low profile, coated, steerable guide wire
US5279596A (en) * 1990-07-27 1994-01-18 Cordis Corporation Intravascular catheter with kink resistant tip
JPH0447402U (en) * 1990-08-24 1992-04-22
US5190520A (en) * 1990-10-10 1993-03-02 Strato Medical Corporation Reinforced multiple lumen catheter
US5160559A (en) * 1990-10-31 1992-11-03 Scimed Life Systems, Inc. Method for forming a guide catheter tip bond
US5254107A (en) * 1991-03-06 1993-10-19 Cordis Corporation Catheter having extended braid reinforced transitional tip
US5234416A (en) * 1991-06-06 1993-08-10 Advanced Cardiovascular Systems, Inc. Intravascular catheter with a nontraumatic distal tip
US5221270A (en) * 1991-06-28 1993-06-22 Cook Incorporated Soft tip guiding catheter
US5306252A (en) * 1991-07-18 1994-04-26 Kabushiki Kaisha Kobe Seiko Sho Catheter guide wire and catheter
JPH0584303A (en) 1991-09-27 1993-04-06 Junkosha Co Ltd Catheter and manufacture thereof
US5335305A (en) 1991-12-19 1994-08-02 Optex Biomedical, Inc. Optical sensor for fluid parameters
US5212422A (en) 1991-12-30 1993-05-18 Gte Products Corporation Lamp capsule support base
AU3666993A (en) * 1992-02-13 1993-09-03 Navarre Biomedical, Ltd. Kink resistant tubing apparatus
US5221372A (en) * 1992-02-13 1993-06-22 Northwestern University Fracture-tough, high hardness stainless steel and method of making same
US5769796A (en) 1993-05-11 1998-06-23 Target Therapeutics, Inc. Super-elastic composite guidewire
US5954651A (en) * 1993-08-18 1999-09-21 Scimed Life Systems, Inc. Catheter having a high tensile strength braid wire constraint
DE4428914C2 (en) * 1993-08-18 2000-09-28 Scimed Life Systems Inc Thin-walled multi-layer catheter
US5951495A (en) 1993-12-22 1999-09-14 Scimed Life Systems, Inc. Catheter having an adhesive braid wire constraint and method of manufacture
JP3273676B2 (en) 1993-10-22 2002-04-08 オリンパス光学工業株式会社 Double curved endoscope
CA2135143C (en) 1993-12-22 2006-01-03 Todd A. Berg Catheter joint with restraining device
US5911715A (en) 1994-02-14 1999-06-15 Scimed Life Systems, Inc. Guide catheter having selected flexural modulus segments
WO1996020750A1 (en) * 1995-01-04 1996-07-11 Medtronic, Inc. Improved method of soft tip forming
US5662622A (en) * 1995-04-04 1997-09-02 Cordis Corporation Intravascular catheter
US6245053B1 (en) * 1998-11-09 2001-06-12 Medtronic, Inc. Soft tip guiding catheter and method of fabrication

Also Published As

Publication number Publication date
US20030083623A1 (en) 2003-05-01
EP1015062A1 (en) 2000-07-05
US6212422B1 (en) 2001-04-03
US7297302B2 (en) 2007-11-20
JP4653305B2 (en) 2011-03-16
US20010005552A1 (en) 2001-06-28
JP2001517500A (en) 2001-10-09
CA2304631A1 (en) 1999-04-01
US6505066B2 (en) 2003-01-07
WO1999015219A1 (en) 1999-04-01
US5954651A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
CA2304631C (en) Catheter having a high tensile strength braid wire constraint and method of manufacture
US5951495A (en) Catheter having an adhesive braid wire constraint and method of manufacture
US5603705A (en) Catheter joint with restraining device
US7306585B2 (en) Guide catheter
US6068622A (en) Single piece hub/strain relief that can be injection molded over a shaft
CA2204932C (en) Intravascular catheter
EP0144629B1 (en) Catheter and method for making
US5507766A (en) Vascular dilatation instrument and catheter
US6591472B1 (en) Multiple segment catheter and method of fabrication
EP0608853B1 (en) Vascular dilatation instrument and catheter
EP1144040B1 (en) Catheter having regions of differing braid densities and methods of manufacture therefor
US20110245775A1 (en) Tapered sheath
US20070276354A1 (en) Introducer Sheath and Method for Making
US20030135198A1 (en) Catheter device having multi-lumen reinforced shaft and method of manufacture for same
JP2008539962A (en) Medical tools
US20220087712A1 (en) Introducer with partially annealed reinforcement element and related systems and methods
US20040140585A1 (en) Methods of forming catheters with soft distal tips
CA2137116A1 (en) Catheter joint with counterbore
US20110276033A1 (en) Wire guide and method of making same
CA2378853A1 (en) Introducer device having variable flexibility and kink resistance and method of manufacture for same
US20070073310A1 (en) Method for joining medical devices

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20130820