CA2308628A1 - Conformally coated implantable medical device with high definition window - Google Patents

Conformally coated implantable medical device with high definition window Download PDF

Info

Publication number
CA2308628A1
CA2308628A1 CA002308628A CA2308628A CA2308628A1 CA 2308628 A1 CA2308628 A1 CA 2308628A1 CA 002308628 A CA002308628 A CA 002308628A CA 2308628 A CA2308628 A CA 2308628A CA 2308628 A1 CA2308628 A1 CA 2308628A1
Authority
CA
Canada
Prior art keywords
window
coating
parylene
excimer laser
implantable medical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002308628A
Other languages
French (fr)
Inventor
Richard M. Graves
Martin C. Herber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermedics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2308628A1 publication Critical patent/CA2308628A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37512Pacemakers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam

Abstract

An implantable medical device (1) is disclosed having an electrically insulative coating material (7) on a portion of the titanium housing (2). A high definition window (8, 18) is prepared in the coating by pulsed excimer laser radiation ablating an organic coating, such as parylene or a similar polymer, to micromachine a conductive window having sharply defined boundaries or edges.

Description

z WO 99124082 PCT/US98/23651 Conformallv Coated ImplantabIe Medi .ai nPvice with High Definition Window The present invention generally relates to implantable medical devices, particularly cardiac electrical stimulus generators. More particularly, the invention relates to methods of making hot can stimulation electrodes having a conforming electrically insulative biocompatible coating on the housing. The invention relates still more particularly to methods of selectively removing polymeric coating material from such devices to expose a conductive area of the housing.
Background Art Biocompatible coatings for implantable medical devices are widely employed to avoid adverse body responses to the implanted foreign object. In many modern implantable heart stimulus generators, a biocompatible coating that adheres to and conforms closely about the generator housing (hereinafter "a conformal coating") also serves as an electrically insulative layer covering the generator housing.
In the infancy of implantable cardiac pacemaker therapy, the typical pulse generator case or housing was composed of uncoated metal such as stainless steel, titanium or alloys thereof, and was therefore completely electrically conductive. While this permitted the generator case, or housing, to serve as one of the stimulus electrodes, it also allowed an antenna effect between the generator case and the endocardial electrode tip to occur. When flexation of the pectoral muscle occurred, voltages of similar amplitude and frequency to the intrinsic cardiac signals were produced and conducted through the generator case. Spurious undesirable and potentially dangerous influences on the pacemaker functions resulted, the effects including improper inhibition, and in the dual chamber pacemakers, improper triggering and initialization of reentry tachycardias. In addition to the antenna effects on the pacemaker, each time the pacer emitted an electrical pulse to stimulate the myocardial tissue it also stimulated the patient's pectoral muscle, producing an annoying twitch.
The next generation of pulse generators avoided the muscle-produced improper triggering of the unit by coating the entire electrically conductive case with an electrically insulating material, except for a small uncoated window that allowed the exposed housing surface to serve as the anodal electrode contact. A coating material commonly used for this purpose on pulse generators is typically a thermoplastic polymer film known commercially as parylene, which is both biocompatible and an excellent electrical insulator. In a typical parylene coated unit, the posterior side of the case, meaning all parts facing the (inside) pectoral muscle, all side walls, and part of the anterior (frontal) side of the case are coated with parylene, leaving only a small part of the anterior side of the case to form a forward-facing anodal window that faces the (outside) fatty tissue.
This orientation of a "face window" type pulse generator unit greatly reduces muscle-induced interference and has been clinically proven and implemented in many thousands of implantable pacemakers and defibrillators.
Recently, Sulzer Intermedics Inc. provided in U.S. Pat. No. 5,480,416 a cardiac stimulator having its anterior (front) and posterior (back) sides of the case coated with an electrically insulative material such as parylene, but having the edge connecting those two sides at least partially uncoated.
Thus, the edge or narrow side of the case functions as the electrically conductive anodal contact surface. This conductive "edge band window" configuration allows for universal implantation orientation of the unit, permitting the pulse generator to be implanted in either the "normal" position conventionally dictated by the placement of the outlets for the connector and lead, or just as conveniently, in the reverse orientation on the opposite side of the body. In this way, the generator case can be turned for left exit or right exit of the electrode lead, and can be implanted in the left or the right side of the patient's chest, at the option of the physician. This edge band window approach also avoids the muscle-induced interference and inappropriate muscle stimulation problems encountered with prior "hot" or "active can" electrodes.
Sulzer Intermedics, Inc. has also developed an implantable defibrillator with the conformal coating partially removed to expose conductive windows (U.S. Pat. No.
5,529,579, issued to Alt et al.).
The window in a conventional parylene coated face window pulse generator is typically formed by an oxygen plasma etch process. The plasma etching process usually employs an aluminum fixture or stencil to define the shape and location of the parylene window on the face of the can. In this process, oxygen is ionized by an RF power supply generated electric field. The ionized oxygen gas cloud, or plasma, reacts with the organic parylene in the window region and forms carbon dioxide gas and water vapor. These gases are subsequently removed by a vacuum. The etch rate is controlled by the RF power and the heat generated at that power.
High frequency radio frequency power creates a more reactive plasma than does low frequency power.
Higher temperature creates a more reactive plasma, as well. The inherent limitations of the battery inside the pulse generator require that the temperature of the entire unit remain below 60°C during the etching process, however. This consideration severely limits the rate at which cans can be passed through the window-etching process. Also, it is necessary to maintain electrostatic shielding to prevent undesirable plasma reactions with the vacuum chamber internal surfaces.
Alternatively, the window can be formed simultaneously with the application of the parylene coating, using a masking technique. For the purposes of a human clinical study, for example, Sulzer Intermedics Inc.'s Edge Band units were manufactured by masking the anodal edge region with weld shield tape, parylene coating the entire unit, then removing the tape. This procedure is time consuming, however, and not feasible for large scale production.
_3_ U.S. Pat. No. 5,562,715, issued to Czura et al., describes a silicone rubber or parylene coated pacemaker having detachable tabs that are removed at the time of implantation to expose an electrode. One problem with pacemakers employing pull off tabs is that the resulting window in the coating material has jagged or rough edges that leave the remaining coating vulnerable to tearing, peeling or flaking off into the patient's body. A rough-edged parylene coating is especially prone to peeling, tearing or flaking while the unit is being manipulated during surgical implantation and thus allows dislodgment of flecks of the coating into the patient's body.
Parylene C is an organic polymer based on p-xylylene, CI
CH2 ~ ~ CH2 n having a molecular weight of about 500,000 Daltons. It is used as a thin film coating for such diverse applications as microelectronics, digital display systems, medical devices, dry film lubricants and reflectors for optical devices.b Some of the methods that have been used or examined for removing parylene from various surfaces include heating, mechanical/air abrasion, plasma etching, and excimer laser ablation.'~°
For cardiac stimulus generators, however, methods that require heating are not suitable because the melt temperature of most polymers is far greater than the maximum 60°C exposure limit imposed by pacemaker battery manufacturers. Mechanical or air abrasion can create static discharges and make edge and face definition virtually impossible. Plasma etching is too slow, requiring over 10 hours to remove the coating layer from the face of a single pulse generator unit.
Because the rate of plasma etching is dependent on temperature, achieving faster results would require exposing the unit to temperatures much higher than the internal components can tolerate.
Nevertheless, plasma etching remains the prevailing standard method in the pacemaker industry.
Parylene, and other similar biocompatible coatings, also fmd widespread application in coating medical devices other than implantable electrical pulse generators. Some of these devices are sensors, probes, transducers, stimulators and prostheses.' In many of these devices it may be desirable to provide a window or uncoated portion similar to the pacemaker window described above.
Recently, coatings for medical articles that incorporate functionally active biomolecules capable of eliciting a particular desired effect in the body have been described. For example, U.S. Pat. No.
5,607,475, assigned to Medtronic, Inc., discusses attaching such biofunctional molecules as anticoagulants, thrombolytic agents, cell attachment proteins and anti-inflammatories to coated surfaces of medical devices by way of a covalent bond. It is anticipated that portions of these coatings will likewise need to be removed in some instances.
Hence what is needed is a more efficient way to manufacture high quality implantable medical devices having biocompatible or biofunctional coatings. In particular, a precision method for selectively removing such coatings from certain areas of the device or article is desired.
Disclosure of the Invention The present invention provides a rapid and highly effective process for forming a window in a polymeric coating on an implantable medical device such as a cardiac pacemaker or defibrillator.
The present process uses an excimer laser to ablate the adherent thin film coating from the underlying UV-resistant surface of the device. The method is particularly applicable to removal of conformal electrically insulative organic polymer film materials, such as parylene, from the metal surface of a "hot can" cardiac electrical stimulus generator. The method of the present invention includes subjecting the coated device to an excimer laser beam for a sufficient time to remove a desired thickness of the coat, or to entirely expose the underlying metal surface inside a window of predetermined size and shape. Preferably the metal surface is UV-resistant, or at least has low susceptibility to erosion by excimer laser. The method also provides for defining a precise configuration of the film to be removed by placing a UV-resistant mask or stencil between the device and the laser beam, in order to make a shaped or patterned window in the coating. A stimulus generator housing prepared by the new method has more sharply defined window edges and a more highly polished exposed metal surface than is typically obtained using conventional plasma etching techniques, and coincidentally provides a mare esthetically pleasing appearance than conventional hot cans.
The present invention also provides an improved implantable medical device having a biocompatible organic polymer coating with a window exposing an underlying surface, the improvement including making the opening or window in the coating according to the new method.
The edges of the window of the improved device have sharply defined edges that resist peeling or flaking of the coating material from the device. Preferably, the implantable medical~device is a "hot can" cardiac stimulation generator and the window serves as an anodal electrode, but it may also be a prosthesis or other implantable medical article having a biocompatible organic coating over a UV-resistant surface and a window or regions of varying thickness in the coating.
In some embodiments the biocompatible organic coating is polymeric and comprises a biofunctional molecule.
One embodiment of the invention provides an improved method of making an implantable medical device, or a part of a medical device, that has a window, or ablated area, in an insulative conformal coating that overlies a surface that is substantially resistant to excimer laser erosion. The improved method includes subjecting the device or part to an excimer laser beam for a sufficient time to expose an area of the underlying surface. This new method is especially suitable for use on WO 99/24082 PCTlUS98/23651 _5_ _ cardiac pacemakers and defibrillators, particularly those having titanium cases.
Another embodiment of the invention provides a method of removing conformal insulative material from an implantable medical device or part that includes exposing the device or part to an excimer laser beam for a sufficient time to expose an underlying surface that is resistant to erosion by said laser beam. In certain embodiments, the excimer laser susceptible conformal material is electrically insulative, and may contain an organic dielectric in the form of a polymer such as parylene. In some embodiments of the method, a UV resistant mask is interposed between the laser beam and the device or part.
Another embodiment of the invention provides a method of removing an organic coating material from a surface of a medical device or a precursor or component part thereof ("part").
Preferably the surface is resistant to erosion by excimer laser radiation.
This embodiment includes providing a source of ultraviolet excimer laser radiation capable of directing a laser beam onto an object at a predetermined point in space; loading the part into a fixture specific to the profile of the part; initiating a computerized controller program; initiating a vacuum hold-down for the part;
raising the part pneumatically to a predetermined height fixed by a mechanical stop; initiating a computerized motion program; independently moving X, Y, and rotary axes of said fixture to present an area on the part to a fixed point in space; adjusting the excimer laser source, rep rate, demagnification, number of pulses and etch time, and varying the speed of motion control and distance from the beam to the part, such that a desired level of ablation of the organic coating is achieved; and firing the excimer laser for a sufficient time to permit the irradiated area on the part to receive the desired amount of UV radiation. In certain alternative embodiments, this method is modified to include interposing a UV-resistant mask between the laser radiation source and the part, or moving the part along its X, Y and/or rotary axes while firing the excimer laser.
Still another embodiment of the invention provides an improved implantable medical device, such as a cardiac electrical stimulus generator, or a precursor or component part thereof. In this embodiment, the stimulus generator is of the type having a window in a biocompatible conformal coating, with the window exposing an underlying surface, which may serve as an electrode.
Prepared in accordance with the above-described method, the improved stimulus generator has a more highly defined window than that of conventional stimulus generators. This high-definition window may be a "face window" or an "edge band window."
Brief De~crintion of the DraWIIIQS
For a detailed description of a preferred embodiment of the invention, reference will now be made to the accompanying drawings wherein:
Figures lA, iB and 1C are schematic illustrations of the front, edge and back, respectively, of certain embodiments of the pulse generator case of the present invention, which in gross a WO 99/24082 PCTIUS98/23651 appearance is similar to prior art cardiac electrical pulse generator cases prepared using conventional coating methodology; and Figures 2A and 2B are schematic illustrations of alternative embodiments of the edge of a pulse generator case consistent with the present invention.
Best Mode for Carrying Out the Invention Figures 1 A-C show the front, side and back of a preferred embodiment of the cardiac stimulus generator 1 of the present invention, which in gross appearance is like a conventional coated hot can stimulus generator. Alternatively, the window may be on the reverse side of the unit (not shown).
The housing has a typical coating configuration on the generator case 2. The stimulus generator 1 may be a pacing device of any known type, single or dual chamber, and the case 2 houses the electronics and batteries (not shown) for the generator. In alternative embodiments the stimulus generator may be a "hot can" defibrillator or other device, similar to that described in U.S. Pat. No.
5,529,579 (issued to Alt et al.). The case 2, which in certain embodiments of the invention is oval or slightly pear-shaped, is composed of biocompatible electrically conductive material, such as titanium, and is hermetically sealed against intrusion of body fluids and tissue when implanted into the patient. Atop the case is a header 3, which encapsulates connector receptacles 4 for receiving the connectors 5 of an electrical lead 6. A thin electrically insulative coating or film 7, such as parylene, is indicated in the figures by crosshatching. A window 8 in coating 7 exposes the conductive underlying metal surface 9.
Figure 2A shows an alternative version of a hot can with a conductive edge band or strip 21 on the narrow side or edge 11 of case 2, and Figure 2B shows an alternative embodiment having an additional parylene bar 19 interrupting window 18 at desired intervals. The boundaries 20 of window 18 define the exposed metal surface that makes up edge band 21. The exposed metal surface 21 functions as an electrode and its placement on the edge 11 of the case 2 allows stimulus generator 1 to be implanted in either a left or right orientation.
The basic or gross configuration of certain aspects or embodiments of the pulse generator unit of the present invention are essentially as depicted in Figures lA-C and as described in U.S. Pat. No.
5,480,416 (Garcia, et al.), the disclosure of which is incorporated herein by reference to the extent that it provides materials and methods not specifically stated herein. The devices constructed according to the present invention differ from those of the prior art, however, in that because of the way in which window 8, 18 in coating 7 is made, the internal components of the unit are less likely to fail as a result of processing conditions. The window edge 10, 20 and the physical appearance and conductive qualities of the exposed metal surface 9, 21 are better than that of prior art devices.
Improvements provided by the present invention are described in more detail below. The coating-removal methods of the present invention are suitable for use with a variety of pulse generator designs and implantable medical devices other than electrical stimulus generators, with only minor modifications. Some of the coated devices for which this excimer laser removal process could be readily adapted include blood pressure sensors, prosthetic components, bone pins, dental implants, probes, ultrasonic transducers, catheters, stents and the Iike.B As mentioned above, today's pacemaker companies rely principally on plasma etching for exposing a non-insulated anodal surface area, such as that shown in Figure lA. Plasma etching is extremely slow, resulting in production disadvantages. The method of the present invention utilizes pulsed, intense ultraviolet excimer laser radiation to ablate portions of the insulative coating material to precision machine a conductive window 8, 18 having sharply defined boundaries or edges 10,20. The present technique produces results, including faster processing times, that are far superior to those previously known.
Excimer lasers have been used for various other applications where removal of surface material is desired, including medical procedures such keratotomy, drilling and profiling medical devices such as stents and catheters, and for etching of silicon wafers for the electronic industry 2~3.s. pacesetter lnc. has been issued U.S. Pat. No. 5,587,200 for use of an excimer laser to irradiate an atmosphere of titanium, nitrogen, and hydrogen for depositing porous titanium nitride on the surface of an implantable electrode. The present method employing an excimer laser is unique in that it allows the selective removal of conformal insulating material from the surface of implantable pulse generators, or removal of biopolymers or biofunctional molecular coatings from medical devices.
The following examples are offered by way of illustration.
age Window Ablation According to a first embodiment, a conductive edge window is formed on a parylene-coated titanium pacemaker using XeCI excimer ablation. The can, which is typically about bmm to 8mm thick, is first coated with a suitable insulating material such as parylene (Union Carbide Corporation, San Diego, CA 92123). The insulating material i7 is then removed from an adjoining narrow side or edge 11 so that the resulting edge band window 18 can be used as an electrically conductive anodal contact surface 21, as shown in Fig. 2A. For parylene edge removal, or "edge skiving," the desired part, or unit, is manually loaded into a mechanical fixture specific to the profile of the part.
The part may be a complete stimulator unit such as a cardiac pacemaker unit, including a header and a uniformly coated pacemaker housing containing the electronics and power source. A part may also be a defibrillator unit, another medical device or a component thereof. A
computerized controller initiates a vacuum hold-down for the part, then raises the pacer pneumatically to a height fixed by a mechanical stop such that the beam is a prescribed distance away from a reference point on the part, such as the epoxy header on a pacemaker. A computerized motion program moves the part along x, y, and rotary axes so as to present the edge 11 of the can 2 to a fixed point in space, with the perimeter moving at a near-constant linear speed. The controller simultaneously fires a XeCI

_g_ laser so that each portion of the can edge sees the same total dose of laser light. The laser beam is shaped to correspond to the required strip width of the can, using predetermined projection imaging techniques. Suitable laser settings are: rep rate of about 200 Hz, power approximately 40 watts and 20 pulses per beam site at 5:1 demagnification. The excimer laser is preferably operated on the xenon chloride transition at 308 nm with only moderate pulse energy, such as about 250 mJlpulse for a fluence of about 0.5 JIcm2. At fluences of 15 J/cmz melting of titanium is known to accur.9 Alternatively, a krypton fluoride excimer laser at 248 nm can be used.
The laser beam produces a consistent stripping around the elliptical perimeter of the pacer, providing a uniform cosmetic effect. Once the skiving process is completed, the motion system rapidly returns the fixture to the load/unload position, whereupon the next part can be similarly processed. Under the conditions described above, a parylene coating of about O.OOOIS to 0.00049 inches initial thickness is removed from the titanium surface in about 30 seconds to form an edge band window. Following excimer laser ablation of parylene from the surface of the can, the exposed titanium is left with an almost mirror surface finish. The rapidity with which laser ablation can be performed permits use of this method for high volume manufacturing of high-definition windowed devices.
In certain alternative embodiments, the part is a defibrillator can and the procedure for preparing the conductive window is essentially the same as described above for a pacemaker case, with minor modification of the fixture to hold the larger, rectangular cans, and minor changes in the focus and the programming of the motion control system to take into account the different contours of the can and the desired window configuration. With only minor alteration of the pacemaker procedure, an adequate strip width and quality is achieved for defibrillator cans.
The excimer laser produces a consistent and well-defined window in the polymer coating around the edge perimeter of the generator case, giving the unit a uniformly smooth, esthetically pleasing appearance. One particular benefit of the excimer laser method is that the parylene coating can be maintained along a radius of curvature of the unit's surface without the splitting or formation of jagged edges that typically occurs with masking and tear-away tabs. As can be seen in Figures lA-C and 2A, B, the coating material should be well adhered to the contours of edge 12, wrap around the comers on the narrow side 11 of the unit and curve along the boundaries of window 8, 18. With conventional techniques, both the masking material and the pull off tabs associated with the coating, by contrast, will tend to loosen and rip the coating material in these regions. It is very difficult to make a fracture that will rest tightly enough on a radius so as to prevent the plasma from penetrating. Still another advantage of the present method is that since the excimer laser treatment does not cause appreciable heating of the substrate surface, the chance of damage to the internal components of the unit due to temperature elevation during processing is negligible. In addition, _9_ even if the processing apparatus were to jam, such that the substrate was exposed to the laser beam for an extended period, there would be no damage to the internal components as the preferred laser wave length causes no appreciable heating of the titanium. Another advantage is that, with a cycle time of about 25-30 seconds per unit, the present excimer laser technique lends itself to high volume automated processing applications. If less than total removal of the coating is desired on a particular device or article, the depth of etching of the coating material can be readily managed by controlling the number of pulses, fluence and the motion control system. Other biocompatible organic polymers, such as rubber, are also suitable for use as the electrically insulative coating material.
Polymers that are transparent to UV radiation, but are otherwise suitable as coating material, can be doped with a biocompatible UV absorbing compound to increase susceptibility of the polymer to excimer laser ablation. Electrically conductive housing materials other than titanium, such as stainless steel, platinum or titanium alloys can likewise be substituted, provided that the material resists high energy ultraviolet laser radiation, or is much less susceptible to excimer laser than the coating layer being removed.
For stimulus generators coated with parylene, the electrically insulating material is ablated by the laser with virtually no heating of the underlying structures, as the energy is absorbed in the first 0.1 to 0.5 microns of material. Parylene is transparent to conventional visible laser frequencies, however, it is opaque to UV radiation. The ablated material is removed layer by layer on a pulse-by-pulse basis. Because of the submicron depth of penetration of each pulse, very fine control of the depth of cutting is obtained. Also, the majority of the energy in the laser pulse is used in bond breaking and in ejecting ablated material from the substrate. Consequently, very little energy remains in the substrate and thermal diffusion to surrounding areas is negligible.
Coating ablation by excimer laser processing provides the advantage of removing material with extremely high precision and excellent edge definition. There is no significant charring or burning of surrounding material and any heat-affected zone is minimal. Use of the excimer laser method described herein permits selective removal of material from an underlying substrate that leaves the substrate virtually unaffected. The excimer laser technique also permits definition of patterns by mask imaging rather than by translation of a focused spot, for certain applications.
Fact Window blation According to an alternative embodiment, a conductive face window is formed in a parylene coated titanium pacemaker case by XeCI excimer ablation by modification of the method described above for edge window ablation. For removal of parylene from the can face ("face skiving") rather than the edge, the part is manually loaded into a fixture specific to the profile of the part, as described above. The fixture includes a contact mask that defines the area where parylene is to be removed. The contact mask is itself made of metal or another excimer laser resistant material, and may be attached to the fixture as a flip-up lid with a contact mask attached.
Preferably, the maximum contact force for the can against the mask is about 10 pounds. Optics form the beam into a thin line long enough to cross the shortest dimension of the mask opening. A
computer program again initiates vacuum hold-down, raises the pneumatic cylinder, and positions the unit under the beam, and fires the excimer laser, using multiple pulses, to achieve uniform removal of the coating.
The unit is translated under the beam at a uniform rate using essentially the same conditions and demagnification described for the edge band removal, because the parylene coating thickness is uniform. Using multiple pulses to achieve uniform removal of the coating, about two passes of the unit under the beam are sufficient. The cycle time for face ablation of parylene is about 50 seconds per unit. The defenition of the resulting window is more obvious and is esthetically more pleasing due to its shiny appearance than is obtainable using plasma etching techniques.
According to a third embodiment of the present invention, an alternative biomolecular film is ablated from a medical device. Recently, coatings have been developed for body-contacting medical devices that incorporate functionally active biomolecules capable of eliciting a particular desired effect in the body. U.S. Pat. No. 5,607,475 discusses biofunctional molecules such as anticoagulants, thrombolytic agents, cell attachment proteins and anti-inflammatories as being suitable for covalently linking to coated surfaces of medical articles. As manufacturers begin to apply coatings of parylene or specific biofunctional materials to the surfaces of various medical devices, selective removal of some of the material will often be necessary.
Using essentially the same methods as described above for edge and face window ablation, with only minor modifications to take into account the shape of the part and the excimer laser susceptibility of the particular biomaterial, excimer laser radiation is applied to a coated article to selectively remove the desired amount of the coating. This excimer laser method will also be of great value in manufacturing new medically related articles, such as those coated with the new biofunctional materials.
References 1. Znotins, Thomas A. , Darcy Poulin and John Reid, "Excimer Lasers: An Emerging Technology in Materials Processing," Laser FocuslElectro-Optics, May 1987, pp. 54-70.
2. Srinivasan, R., "UV Laser Ablation of Polymers and Biological Tissues,"
Lambda Highlights, No. 1, published by Lambda Physik, Oct. 1986, 2 pgs.
3. Schaeffer, Ronald, "Laser Micromachining of Medical Devices," Medical Plastics and Biomaterials, MayIJune 1996, pp. 32-38.
4. "Excimer Laser Removal," in "Repair and Recoating of Parylene Coated Printed Circuit Boards," Aug. 1994, published by Specialty Coating Systems, Indianapolis, IN, p. 10.
5. Schaeffer, Ronald D., "Laser-Manufactured Features in Medical Catheters and Angioplasty Devices," Medical Device & Diagnostic Industry, Nov. 1996, pp. 61-64.

-I I-b. "Parylene Conformal Coatings," brochure NTC 7906 of Nova Tran Corporation, Clear Lake, WI 54005, 6 pages.
7. "Xylylene Polymers," Specialty Coating Systems, Inc., Indianapolis, IN
46241, (August 1994), pgs. 1020, 1021, 1023-1025.
8. "Literature Review: Biological Safety of Parylene C," Medical Plastics and Biomaterials (MarchIApril 1996), pgs. 30-35.
9. Tosco, S., A. Di Bartolomeo and P. Di Lazzaro, "Surface Ablation by Excimer Laser Irradiation of Ti and Ti6A14V Alloy," Appl. Phys. A63, 385-389 (1996).

Claims (10)

What is claimed is:
1. An implantable medical device (1) having a window (8, 18) in a biocompatible conformal coating (7), said window exposing an underlying surface (9, 21), characterized by a high definition window (8, 18) prepared by removing conformal insulative material from said implantable medical device, or part thereof, comprising subjecting the device or part to an excimer laser beam for a sufficient time to expose an underlying surface of said device or part, said surface being resistant to erosion by said laser beam.
2. The device of claim 1 wherein said medical device is a cardiac electrical stimulus generator or a precursor or component part thereof.
3. The device of claim 1 wherein said coating comprises a biomolecular polymer.
4. The device of claim 3 wherein said coating comprises a biofunctional molecule.
5. The device of claim 1 wherein said conformal coating is electrically insulative.
6. The device of claim 5 wherein said electrically insulative coating is an organic dielectric.
7. The device of claim 6 wherein said organic dielectric is polymeric.
8. The device of claim 7 wherein said polymeric coating is parylene.
9. The device of any of the foregoing claims wherein said window comprises a face window (8).
10. The device of any of the foregoing claims wherein said window comprises an edge band window (18).
CA002308628A 1997-11-07 1998-11-06 Conformally coated implantable medical device with high definition window Abandoned CA2308628A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/966,134 1997-11-07
US08/966,134 US5925069A (en) 1997-11-07 1997-11-07 Method for preparing a high definition window in a conformally coated medical device
PCT/US1998/023651 WO1999024082A2 (en) 1997-11-07 1998-11-06 Conformally coated implantable medical device

Publications (1)

Publication Number Publication Date
CA2308628A1 true CA2308628A1 (en) 1999-05-20

Family

ID=25510958

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002308628A Abandoned CA2308628A1 (en) 1997-11-07 1998-11-06 Conformally coated implantable medical device with high definition window

Country Status (5)

Country Link
US (2) US5925069A (en)
EP (1) EP1056488A2 (en)
JP (1) JP2001522652A (en)
CA (1) CA2308628A1 (en)
WO (1) WO1999024082A2 (en)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925069A (en) * 1997-11-07 1999-07-20 Sulzer Intermedics Inc. Method for preparing a high definition window in a conformally coated medical device
US6134478A (en) 1998-06-05 2000-10-17 Intermedics Inc. Method for making cardiac leads with zone insulated electrodes
US6240320B1 (en) 1998-06-05 2001-05-29 Intermedics Inc. Cardiac lead with zone insulated electrodes
US6463334B1 (en) 1998-11-02 2002-10-08 Cardiac Pacemakers, Inc. Extendable and retractable lead
US6501990B1 (en) 1999-12-23 2002-12-31 Cardiac Pacemakers, Inc. Extendable and retractable lead having a snap-fit terminal connector
AU4173000A (en) * 1999-03-19 2000-10-09 Regents Of The University Of Michigan, The Mineralization and cellular patterning on biomaterial surfaces
US6767928B1 (en) 1999-03-19 2004-07-27 The Regents Of The University Of Michigan Mineralization and biological modification of biomaterial surfaces
US6298269B1 (en) 1999-04-19 2001-10-02 Cardiac Pacemakers, Inc. Cardiac rhythm management system with ultrasound for autocapture or other applications
US6558315B1 (en) * 2000-03-15 2003-05-06 Ams Research Corporation Parylene-coated components for inflatable penile prosthesis
US7011622B2 (en) * 2000-03-15 2006-03-14 Ams Research Corporation Parylene coated components for artificial sphincters
US6496712B1 (en) * 2000-05-01 2002-12-17 Biosense Webster, Inc. Method and apparatus for electrophysiology catheter with enhanced sensing
US6671561B1 (en) 2000-05-01 2003-12-30 Biosense Webster, Inc. Catheter with electrode having hydrogel layer
US6475214B1 (en) 2000-05-01 2002-11-05 Biosense Webster, Inc. Catheter with enhanced ablation electrode
US6937907B2 (en) * 2000-09-18 2005-08-30 Cameron Health, Inc. Subcutaneous electrode for transthoracic conduction with low-profile installation appendage and method of doing same
US6834204B2 (en) 2001-11-05 2004-12-21 Cameron Health, Inc. Method and apparatus for inducing defibrillation in a patient using a T-shock waveform
US6754528B2 (en) 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
US6778860B2 (en) 2001-11-05 2004-08-17 Cameron Health, Inc. Switched capacitor defibrillation circuit
US6988003B2 (en) * 2000-09-18 2006-01-17 Cameron Health, Inc. Implantable cardioverter-defibrillator having two spaced apart shocking electrodes on housing
US7194302B2 (en) 2000-09-18 2007-03-20 Cameron Health, Inc. Subcutaneous cardiac stimulator with small contact surface electrodes
US6721597B1 (en) * 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US7069080B2 (en) * 2000-09-18 2006-06-27 Cameron Health, Inc. Active housing and subcutaneous electrode cardioversion/defibrillating system
US7751885B2 (en) * 2000-09-18 2010-07-06 Cameron Health, Inc. Bradycardia pacing in a subcutaneous device
US20020035378A1 (en) * 2000-09-18 2002-03-21 Cameron Health, Inc. Subcutaneous electrode for transthoracic conduction with highly maneuverable insertion tool
US7043299B2 (en) * 2000-09-18 2006-05-09 Cameron Health, Inc. Subcutaneous implantable cardioverter-defibrillator employing a telescoping lead
US7194309B2 (en) * 2000-09-18 2007-03-20 Cameron Health, Inc. Packaging technology for non-transvenous cardioverter/defibrillator devices
US7090682B2 (en) 2000-09-18 2006-08-15 Cameron Health, Inc. Method and apparatus for extraction of a subcutaneous electrode
US7149575B2 (en) * 2000-09-18 2006-12-12 Cameron Health, Inc. Subcutaneous cardiac stimulator device having an anteriorly positioned electrode
US6927721B2 (en) * 2001-11-05 2005-08-09 Cameron Health, Inc. Low power A/D converter
US20020035377A1 (en) * 2000-09-18 2002-03-21 Cameron Health, Inc. Subcutaneous electrode for transthoracic conduction with insertion tool
US6788974B2 (en) * 2000-09-18 2004-09-07 Cameron Health, Inc. Radian curve shaped implantable cardioverter-defibrillator canister
US20020035379A1 (en) 2000-09-18 2002-03-21 Bardy Gust H. Subcutaneous electrode for transthoracic conduction with improved installation characteristics
US6950705B2 (en) * 2000-09-18 2005-09-27 Cameron Health, Inc. Canister designs for implantable cardioverter-defibrillators
US7039465B2 (en) * 2000-09-18 2006-05-02 Cameron Health, Inc. Ceramics and/or other material insulated shell for active and non-active S-ICD can
US7120495B2 (en) 2000-09-18 2006-10-10 Cameron Health, Inc. Flexible subcutaneous implantable cardioverter-defibrillator
US20020035381A1 (en) 2000-09-18 2002-03-21 Cameron Health, Inc. Subcutaneous electrode with improved contact shape for transthoracic conduction
US7065407B2 (en) 2000-09-18 2006-06-20 Cameron Health, Inc. Duckbill-shaped implantable cardioverter-defibrillator canister and method of use
US6856835B2 (en) * 2000-09-18 2005-02-15 Cameron Health, Inc. Biphasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US6866044B2 (en) 2000-09-18 2005-03-15 Cameron Health, Inc. Method of insertion and implantation of implantable cardioverter-defibrillator canisters
US20020095184A1 (en) * 2000-09-18 2002-07-18 Bardy Gust H. Monophasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US6952610B2 (en) * 2000-09-18 2005-10-04 Cameron Health, Inc. Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter- defibrillator
US20020107544A1 (en) * 2000-09-18 2002-08-08 Cameron Health, Inc. Current waveform for anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7076296B2 (en) * 2000-09-18 2006-07-11 Cameron Health, Inc. Method of supplying energy to subcutaneous cardioverter-defibrillator and pacer
US7146212B2 (en) * 2000-09-18 2006-12-05 Cameron Health, Inc. Anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US6492615B1 (en) * 2000-10-12 2002-12-10 Scimed Life Systems, Inc. Laser polishing of medical devices
WO2002096389A1 (en) * 2001-05-30 2002-12-05 Microchips, Inc. Conformal coated microchip reservoir devices
WO2002099457A1 (en) * 2001-05-31 2002-12-12 Massachusetts Inst Technology Microchip devices with improved reservoir opening
JP2005505429A (en) * 2001-06-28 2005-02-24 マイクロチップス・インコーポレーテッド Method for hermetically sealing a microchip reservoir device
DE10136642A1 (en) * 2001-07-20 2003-02-06 Biotronik Mess & Therapieg Disposable medical device
US6764709B2 (en) * 2001-11-08 2004-07-20 Scimed Life Systems, Inc. Method for making and measuring a coating on the surface of a medical device using an ultraviolet laser
US7392085B2 (en) * 2001-11-21 2008-06-24 Cameron Health, Inc. Multiple electrode vectors for implantable cardiac treatment devices
US7248921B2 (en) 2003-06-02 2007-07-24 Cameron Health, Inc. Method and devices for performing cardiac waveform appraisal
US7330757B2 (en) * 2001-11-21 2008-02-12 Cameron Health, Inc. Method for discriminating between ventricular and supraventricular arrhythmias
WO2003076933A1 (en) * 2002-03-11 2003-09-18 Toudai Tlo, Ltd. Brush-like structured surface of poly(ethylene oxide) having elevated density
US7228175B2 (en) 2002-05-15 2007-06-05 Cardiac Pacemakers, Inc. Cardiac rhythm management systems and methods using acoustic contractility indicator
US6991601B2 (en) * 2002-12-02 2006-01-31 Ams Research Corporation Implantable pump
US20040199082A1 (en) * 2003-04-03 2004-10-07 Ostroff Alan H. Selctable notch filter circuits
US6808490B1 (en) * 2003-04-25 2004-10-26 Ams Research Corporation Penile prosthesis with improved tubing junction
CN1717298A (en) * 2003-05-30 2006-01-04 阿尔温德伯翰·拉夫吉伯翰·帕特尔 A novel laser bruting machine
US20050087520A1 (en) * 2003-10-28 2005-04-28 Lixiao Wang Method and apparatus for selective ablation of coatings from medical devices
US7174212B1 (en) * 2003-12-10 2007-02-06 Pacesetter, Inc. Implantable medical device having a casing providing high-speed telemetry
KR100601953B1 (en) * 2004-05-03 2006-07-14 삼성전자주식회사 Capacitor of memory device and fabrication method thereof
US7537590B2 (en) * 2004-07-30 2009-05-26 Microchips, Inc. Multi-reservoir device for transdermal drug delivery and sensing
WO2006017510A2 (en) * 2004-08-02 2006-02-16 J.P. Sercel Associates, Inc. System and method for laser machining
US7067765B2 (en) * 2004-08-23 2006-06-27 Medtronic, Inc. Methods for forming electrically active surfaces for medical electrical leads
WO2006026768A1 (en) * 2004-09-01 2006-03-09 Microchips, Inc. Multi-cap reservoir devices for controlled release or exposure of reservoir contents
US20060089681A1 (en) * 2004-10-21 2006-04-27 Cameron Health, Inc. Implantable medical device
US7413846B2 (en) * 2004-11-15 2008-08-19 Microchips, Inc. Fabrication methods and structures for micro-reservoir devices
US7376458B2 (en) 2004-11-29 2008-05-20 Cameron Health, Inc. Method for defining signal templates in implantable cardiac devices
US7477935B2 (en) * 2004-11-29 2009-01-13 Cameron Health, Inc. Method and apparatus for beat alignment and comparison
US7655014B2 (en) * 2004-12-06 2010-02-02 Cameron Health, Inc. Apparatus and method for subcutaneous electrode insertion
US8160697B2 (en) 2005-01-25 2012-04-17 Cameron Health, Inc. Method for adapting charge initiation for an implantable cardioverter-defibrillator
US8229563B2 (en) * 2005-01-25 2012-07-24 Cameron Health, Inc. Devices for adapting charge initiation for an implantable cardioverter-defibrillator
US9095722B2 (en) * 2005-02-01 2015-08-04 Second Sight Medical Products, Inc. Micro-miniature implantable coated device
US7555338B2 (en) * 2005-04-26 2009-06-30 Cameron Health, Inc. Methods and implantable devices for inducing fibrillation by alternating constant current
US8116867B2 (en) 2005-08-04 2012-02-14 Cameron Health, Inc. Methods and devices for tachyarrhythmia sensing and high-pass filter bypass
EP2030210A4 (en) * 2006-04-12 2010-04-14 Proteus Biomedical Inc Void-free implantable hermetically sealed structures
US7783340B2 (en) 2007-01-16 2010-08-24 Cameron Health, Inc. Systems and methods for sensing vector selection in an implantable medical device using a polynomial approach
US8788023B2 (en) 2006-05-26 2014-07-22 Cameron Health, Inc. Systems and methods for sensing vector selection in an implantable medical device
US8200341B2 (en) 2007-02-07 2012-06-12 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US20080015644A1 (en) * 2006-07-14 2008-01-17 Cameron Health, Inc. End of life battery testing in an implantable medical device
US8718793B2 (en) 2006-08-01 2014-05-06 Cameron Health, Inc. Electrode insertion tools, lead assemblies, kits and methods for placement of cardiac device electrodes
US7877139B2 (en) 2006-09-22 2011-01-25 Cameron Health, Inc. Method and device for implantable cardiac stimulus device lead impedance measurement
US8014851B2 (en) * 2006-09-26 2011-09-06 Cameron Health, Inc. Signal analysis in implantable cardiac treatment devices
US20080183235A1 (en) * 2007-01-31 2008-07-31 Stancer Christopher C Insulative shroud for plate-type electrodes adapted for chronic implantation
US8250745B1 (en) 2008-01-24 2012-08-28 Advanced Bionics, Llc Process for manufacturing a microcircuit cochlear electrode array
EP2147697A1 (en) * 2008-07-21 2010-01-27 Centre National De La Recherche Scientifique-CNRS Process and device for applying electric fields into conductive material
EP2156860A1 (en) * 2008-08-20 2010-02-24 Centre National De La Recherche Scientifique-CNRS Method for producing insulated electrodes for applying electric fields into conductive material
WO2011011736A2 (en) 2009-07-23 2011-01-27 Proteus Biomedical, Inc. Solid-state thin film capacitor
US8258431B2 (en) * 2009-09-17 2012-09-04 Cardiac Pacemakers, Inc. Cardiac lead coil stripping
EP2338536B1 (en) * 2009-12-21 2015-08-05 Biotronik VI Patent AG Biocorrodible implants having a functionalized coating
US8332052B1 (en) 2010-03-18 2012-12-11 Advanced Bionics Microcircuit cochlear electrode array and method of manufacture
US8412352B2 (en) 2011-01-28 2013-04-02 Medtronic, Inc. Communication dipole for implantable medical device
WO2012103433A1 (en) 2011-01-28 2012-08-02 Medtronic, Inc. Communication dipole for implantable medical device
AU2012275571B2 (en) * 2011-06-27 2015-02-26 Cardiac Pacemakers, Inc. Implantable device header and method
US9351648B2 (en) 2012-08-24 2016-05-31 Medtronic, Inc. Implantable medical device electrode assembly
US10449568B2 (en) 2013-01-08 2019-10-22 Hzo, Inc. Masking substrates for application of protective coatings
US9894776B2 (en) 2013-01-08 2018-02-13 Hzo, Inc. System for refurbishing or remanufacturing an electronic device
CN104994965A (en) * 2013-01-08 2015-10-21 Hzo股份有限公司 Masking substrates for application of protective coatings
EP2967404B1 (en) 2013-03-11 2019-05-22 Cameron Health, Inc. Device implementing dual criteria for arrhythmia detection
US9579065B2 (en) 2013-03-12 2017-02-28 Cameron Health Inc. Cardiac signal vector selection with monophasic and biphasic shape consideration
EP3242719B1 (en) * 2015-01-08 2020-09-02 Heraeus Deutschland GmbH & Co. KG Implantable medical device housing having polymer coating
US10180247B1 (en) 2017-07-03 2019-01-15 Valeo North America, Inc. Device and method for placement of light source on a heat sink
US10760764B2 (en) 2018-06-29 2020-09-01 Valeo North America, Inc. Partial metallization of molded part using ablation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4671848A (en) * 1984-12-17 1987-06-09 General Laser, Inc. Method for laser-induced removal of a surface coating
US5236551A (en) * 1990-05-10 1993-08-17 Microelectronics And Computer Technology Corporation Rework of polymeric dielectric electrical interconnect by laser photoablation
US5201903A (en) * 1991-10-22 1993-04-13 Pi (Medical) Corporation Method of making a miniature multi-conductor electrical cable
US5332879A (en) * 1992-12-02 1994-07-26 The Aerospace Corporation Method for removing trace metal contaminants from organic dielectrics
US5624449A (en) * 1993-11-03 1997-04-29 Target Therapeutics Electrolytically severable joint for endovascular embolic devices
US5529579A (en) * 1994-05-12 1996-06-25 Intermedics, Inc. Implantable automatic difibrillator with low threshold
US5580699A (en) * 1994-08-16 1996-12-03 Ventritex, Inc. Method for manufacturing implantable cardiac defibrillation electrodes using a laser beam material removal process
US5480416A (en) * 1994-09-22 1996-01-02 Intermedics, Inc. Cardiac pacemaker with universal coating
US5604976A (en) * 1994-10-18 1997-02-25 Pi Medical Corporation Method of making percutaneous connector for multi-conductor electrical cables
DE4440386A1 (en) * 1994-11-11 1996-05-15 Pacesetter Ab Electrodes for medical applications
US5562715A (en) * 1994-12-01 1996-10-08 Czura; John J. Cardiac pulse generator
US5607475A (en) * 1995-08-22 1997-03-04 Medtronic, Inc. Biocompatible medical article and method
US5935465A (en) * 1996-11-05 1999-08-10 Intermedics Inc. Method of making implantable lead including laser wire stripping
US5925069A (en) * 1997-11-07 1999-07-20 Sulzer Intermedics Inc. Method for preparing a high definition window in a conformally coated medical device

Also Published As

Publication number Publication date
JP2001522652A (en) 2001-11-20
WO1999024082A2 (en) 1999-05-20
US6355401B1 (en) 2002-03-12
WO1999024082A3 (en) 1999-07-15
US5925069A (en) 1999-07-20
EP1056488A2 (en) 2000-12-06

Similar Documents

Publication Publication Date Title
US5925069A (en) Method for preparing a high definition window in a conformally coated medical device
Schuettler et al. Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil
US5630839A (en) Multi-electrode cochlear implant and method of manufacturing the same
US5111832A (en) Processes for the control of tachyarrhythmias by in vivo laser ablation of human heart tissue
EP1551496B1 (en) A method for coating a surface with a drug
US4649937A (en) Etched grooved electrode for pacing lead and method for making same
US8782884B2 (en) Manufacturing an electrode assembly having contoured electrode contact surfaces
US5755716A (en) Method for using an electrosurgical electrode for treating glaucoma
EP0111060B1 (en) Ablative photodecomposition of organic biological material
US7040892B2 (en) Laser instrument for endodontic treatment
WO2001002055A1 (en) Method and apparatus for focussing ultrasonic energy
JP6494270B2 (en) Biological electrode
EP1066087A1 (en) Laser welded brachytherapy source and method of making the same
US20100125319A1 (en) Cell-repelling polymeric electrode having a structured surface
JP2013074956A (en) Stimulus electrode for biological tissue and method of producing the stimulus electrode
EP0460204B1 (en) Surface treatment for silicone tubing to improve slip properties
US4640283A (en) Method of curing athlete's foot by laser beam irradiation
US8461042B2 (en) Electrode contact contaminate removal
Littmann et al. Neodymium: YAG contact laser photocoagulation of the in vivo canine epicardium: dosimetry, effects of various lasing modes, and histology
US8543220B2 (en) Medical device having a glass coating and method therefor
WO1996022864A1 (en) Laser-machineable articles
WO2001047596A9 (en) Apparatus and method for in-situ radiation treatment
US11495369B2 (en) Laser structured, coated electrical conductor and method for producing same
Kim et al. Implantable Neural Electrodes Fabrication Based on Perfluoroalkoxyalkane Film
Zappia et al. Evaluation of a silicon‐substrate modiolar eighth nerve implant in a guinea pig

Legal Events

Date Code Title Description
EEER Examination request
FZDE Dead