CA2313865C - Preform for magnesium metal matrix composites - Google Patents

Preform for magnesium metal matrix composites Download PDF

Info

Publication number
CA2313865C
CA2313865C CA002313865A CA2313865A CA2313865C CA 2313865 C CA2313865 C CA 2313865C CA 002313865 A CA002313865 A CA 002313865A CA 2313865 A CA2313865 A CA 2313865A CA 2313865 C CA2313865 C CA 2313865C
Authority
CA
Canada
Prior art keywords
preform
magnesium
process according
composite
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002313865A
Other languages
French (fr)
Other versions
CA2313865A1 (en
Inventor
Jason Sin Hin Lo
Areekattuthazhayil K. Kuriakose
Raul Santos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canada Minister of Natural Resources
Original Assignee
Canada Minister of Natural Resources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canada Minister of Natural Resources filed Critical Canada Minister of Natural Resources
Publication of CA2313865A1 publication Critical patent/CA2313865A1/en
Application granted granted Critical
Publication of CA2313865C publication Critical patent/CA2313865C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • C22C1/1021Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform the preform being ceramic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00905Uses not provided for elsewhere in C04B2111/00 as preforms
    • C04B2111/00913Uses not provided for elsewhere in C04B2111/00 as preforms as ceramic preforms for the fabrication of metal matrix comp, e.g. cermets
    • C04B2111/00922Preforms as such
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249927Fiber embedded in a metal matrix

Abstract

A process for preparing a preform for use in a metal matrix composite, particularly for a magnesium metal composite, and a metal matrix composite, typically made by squeeze casting, using the preform. In the preform the reinforcing material typically is silicon carbide, boron nitride, carbon or graphite. The binder used in the preform is magnesium fluoride, which avoids the known problems which result from the high reactivity of magnesium metal with other binders, such as silica and alumina, which results in the formation of magnesium oxide in the reinforced composite. The presence of magnesium oxide crystals in the metal matrix adversely affects the properties of the composite.

Description

,. , 1004- :i:i PREFORM FOR MAGNESIUM METAL MATRIX COMPOSITES
This invention is concerned with reinforcing preforms used in the production of metal matrix composites, and with'~the resulting reinforced metal. rsore particularly, this invention is concerned with preforms for use in making magnesium metal matrix composites.
It is well known that many metals, especially the so-called light metals, which generally includes aluminum, magnesium, and alloys of each of these mei=als, whilst having many of the advantages of a metal, such as the ability to be welded, and the particular advantage of low weight, also have the disadvantage that their strength propertie:c are :relatively low. In the past, this has limited the usefulness of these metals. One method that has been proposed to overcome this difficulty is to use the metals in the form of a composite, so that the composite more than~compensates.
for the lack of :mechanical, physical and other properties.
Typical materials used as the reinforcement in such a composite include carbon, graphite, silicon carbide, titanium diboride, boron carbide and boron nitride. Techniques for making metal matrix composites from both aluminum and magnesium are well known, and have been described for example in US 4,279,289; US
4, 715, 442; US 4, 99:i, 444 and US 5, 791, 397.
These methods broadly involve a two step technique. _In the first step, a preform is made :From the reinforcing material, which_is held together with .a binder material. The commonly used binders are ceramic materials, of which silica is perhaps the commonest.
The reinforcing material is generally invested with the binder system, and then fired both to burn off organic materials used to aid investment with the binder, and to convert the binder into silica. In the second step, the preform is invested with the molten metal to provide a composite material, typically by using the so-called squeeze casting technique, in which the molten metal is forced into the preform in a mould containing the preform under high pressure.
Although these methods are: more or less successful with aluminum, and aluminum alloys, they are less successful when used to fabricate composites in which the metal is magnesium, or a magnesium containing alloy. The difficulties arise from the fact that molten magnesic~m is a very reactive material, which has two consequences.
The first is that the use of silica as the preform binder becomes questionable, because the following reaction occurs:
2Mg + Si02 --> Si + 2Mg0. .
The silicon that is. formed will dissolve into the magnesium to form a silicon-magnesium phase which generally will not have a deleterious effect on the properties of the magnesium metal, and thus of the resulting composite. The magnesium oxide however is formed as a more or leas crystalline solid, which does not dissolve in the magnesium metal. The presence of these crystals of magnesium oxide has been shown to have a deleterious effect on the overall properties of the composite when a sufficient amount is present. It can therefore be seen that this reaction places significant restrictions on the preform binder that can be used if the creation of :magnesium oxide is to be avoided.
The second is than similar reactions will also happen with several of the other materials commonly used as either binders or reinforcement; all of the following reactions are known to occur:
2 3Mg + A1203 --> 2A1 + 3Mg0 2Mg + Ti02 --> Ti + 2Mg0 Mg3 (P04) 2 + 8Mg __> 8Mg0 + P
The aluminum and titanium alloy with the magnesium, and the phosphorus vaporizes: In the first two cases, although the aluminum and titanium have minimal, if any, effect on the properties of the :resulting composite, this cannot be said for the magnesium oxide crystals that are produced in all three cases. The presence of brittle and weak magnesium oxide crystals makes the composite prone to crack formation. It can also be seen that these reactions place significant limitations on the materials which can be used to reinforce magnesium if the creation of magnesium oxide is to be avoided.
There is therefore a need for a binder system that can be used to create preforms fo:r use in the manufacture of composites, in which the metal used is magnesium, or a magnesium alloy.
Further, such a binder system should desirably be equally useful with both particulate and fibrous reinforcing materials, and should be potentially useful with other, less reactive, metals.
This invention seek:c to provide a process for preparing a preform for a magnesium metal matrix composite which involves the use of a preform binder system which is unreactive with molten magnesium, does not cause the creation of undesirable solid materials in the magnesium composite, and which can be used with the reinforcing materials commonly used with magnesium which do not involve the formation of magnesium oxide during the casting process. In addition, this invention also seeks to provide a process for preparing a preform useful in composites in which the metal is not magnesium, such as aluminum and alunimum alloy composites.
3 Thus in a first broad embodiment this invention seeks to provide a process for preparing a preform for use in a metal matrix composite comprising:
(a) forming a slurry of the reinforcing material with magnesium fluoride in an aqueous solution of magnesium chloride (b) pouring t:he slurry into a mould (c) allowing the s:Lurry in the mould to set, to provide a shaped green preform~
(d) drying the green preform to remove water; and (e) firing the grE~en preform at a temperature of about 1,100°C to provide a finished preform, in which the binder is sintered magnesium fluoride.
In a second broad embodiment this invention seeks to provide a process for fabricating a metal matrix composite comprising:
(a) forming a slurry of the reinforcing material with magnesium fluoride in an aqueous solution of magnesium chloride;
(b) pouring the slurry into a first mould (c) allowing the slurry in the first mould to set, to provide a green pre form;
(d) drying thE: green preform to remove water;
(e) firing the green preform at a temperature of about 1,=i00°C to provide a finished preform, in which the binder is sintered magnesium fluoride;
(f) placing the preform in a second mouldy and (g) infiltrating the preform in the second mould with molten metal to provide a metal composite.
4 In a third broad embodiment, this invention seeks to provide a metal matrix composite, including a reinforcement preform bonded with sintered magnesium fluoride.
Preferably, the mei=al is a light metal. More preferably, the metal is aluminum, magnesium, or an alloy thereof. Most preferably, the metal is magnesium,, or an alloy thereof.
Preferably, a porous mould is used in step (b).
Preferably, the reinforcement used in the preform is chosen from at least one member of the: group consisting of carbon, graphite, boron carbide, silicon cai:bide, titanium diboride, boron nitride, and mixtures thereof.
Preferably, a particulate reinforcement is used in step (a).
Alternatively, a fiber, tow or whisker reinforcement is used in step (a). In a further alternative, a mixture of particulate and/or fibre and/or tow and/or whisker reinforcement is used in step (a), so that a hybrid composite is obtained including more than one reinforcement in more than one physical form.
Preferably, the green preform is air dried in an oven in step(d).
More preferably, th.e green pre form is air dried in an oven at about 45-°C in step (d) .
Preferably, in step (g) a squeeze casting procedure is used.
During these processes a slurry is first prepared of the reinforcing material, for example of particulate silicon carbide, mixed with magnesium fluoride in a solution of magnesium chloride. The slurry is poured into a porous mould, for example to provide a disc shaped preform, and allowed to set. During the setting process, hydrated magnesium chloride, MgCl2_6H20, is formed, which serves as a low temperature binder, to hold the green preform together. The cast disc is then air dried, typically by gentle heating in an oven at about 45°C. The use of a porous mould ensures that the preform dries evenly, and without cracking or other deformation, during the drying step. The hydrated magnesium chloride imparts sufficient green strength to the preform to enable it to be handled with reasonable care.
The dried green prf:form .is then fired at about 1, 100°C. In the firing step, the magnesium chloride decomposes, and is essentially driven off at the same time the magnesium fluoride sinters, bonding tile silicon carbide powder together to form a porous body. The resulting fired disc is also quite strong enough to be handled.
In order to make a magnesium metal composite, the shaped preform is placed in a second mould, and then infiltrated with molten magnesium, or a molten magnesium alloy. Typical alloying elements include aluminum, beryllium, calcium, copper, lithium, manganese, metals i=rom t:he rare earths group, silicon, silver, thorium, tin, zinc, zirconium, and yttrium, and combinations of metals. It is preferred that the infiltration of the preform to provide--the desired metal composite is carried out by the squeeze casting method.
It can thus be seen that t:he binder of this invention avoids the difficulties attendant on the use of a binder with which the molten magnesium can react:. Examination of magnesium composites made by this process, in which the reinforcement is silicon carbide, shows that the majority of the magnesium fluoride remains bonded to the silicon carbide. A proportion of it appears to crack away, and does not apparently have any deleterious effect on the properties of the composite.
Although the magnesium :fluoride binder used in the process of this invention is uniquely suitable for use in preforms which are later infiltrated with molten magnesium or a molten magnesium alloy since it will not react with them, it is not so limited.
It is suitable fo:r use with other metals where the reaction problem does not arise, in particular aluminum and aluminum alloys.

Claims (17)

What is claimed is:
1. A process for preparing a preform for use in a metal matrix composite comprising:

(a) forming a slurry of a reinforcing material with magnesium fluoride in an aqueous solution of magnesium chloride;

(b) pouring the slurry into a mould;

(c) allowing the slurry in the mould to set, to provide a shaped green preform;

(d) drying the green preform to remove water; and (e) firing the green preform at a temperature of about 1,100°C to provide a finished preform, in which the binder is sintered magnesium fluoride.
2. A process for fabricating a metal composite comprising:

(a) forming a slurry of a reinforcing material with magnesium fluoride in an aqueous solution of magnesium chloride;

(b) pouring the slurry into a first mould;

(c) allowing the slurry in the mould to set, to provide a green preform;

(d) drying the green preform to remove water;

(e) firing the green preform at a temperature of about 1,100°C to provide a preform, in which the binder is sintered magnesium fluoride;

(f) placing the preform in a second mould; and (g) infiltrating the preform in the mould with molten metal to provide a metal composite.
3. A magnesium or magnesium alloy composite, including a reinforcement preform bonded with sintered magnesium fluoride.
4. A process according to Claim 1 wherein the reinforcement material used in the preform is chosen from at least one member of the group consisting of carbon, graphite, silicon carbide, titanium diboride, boron carbide, boron nitride and mixtures thereof.
5. A process according to Claim 2 wherein the reinforcement material used in the preform is chosen from at least one member of the group consisting of carbon, graphite, silicon carbide, titanium diboride, boron carbide, boron nitride and mixtures thereof.
6. A composite according to Claim 3 wherein the reinforcement material used in the preform is chosen from at least one member of the group consisting of carbon, graphite, silicon carbide, titanium diboride, boron carbide, boron nitride and mixtures thereof.
7. A process according to Claim 1 wherein the reinforcement material used in step (a) is in a physical form chosen from at least one of the group consisting of particulate, fibre, tow, whisker and mixtures thereof.
8. A process according to Claim 2 wherein the reinforcement material used in step (a) is in a physical form chosen from at least one of the group consisting of particulate, fibre, tow, whisker and mixtures thereof.
9. A composite according to Claim 3 wherein the reinforcement material used in step (a) is in a physical form chosen from at least one of the croup consisting of particulate, fibre, tow, whisker and mixtures thereof.
10. A composite according to Claim 3 wherein the preform comprises a sintered magnesium fluoride bonded particulate reinforcement.
11. A process according to Claim 1 wherein a porous mould is used in step (b).
12. A process according to Claim 2 wherein a porous mould is used in step (b).
13. A process according to Claim 1 wherein the green preform is air dried in an oven in step (d).
14. A process according to Claim 2 wherein the green preform is air dried in an oven in step (d).
15. A process according to Claim 1 wherein the green preform is air dried in an oven at about 45°C in step (d).
16. A process according to Claim 2 wherein the green preform is air dried in an oven at about 45°C in step (d).
17. A process according to Claim 2 wherein a squeeze casting procedure is used in step (g).
CA002313865A 1999-07-19 2000-07-13 Preform for magnesium metal matrix composites Expired - Lifetime CA2313865C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/357,161 US6247519B1 (en) 1999-07-19 1999-07-19 Preform for magnesium metal matrix composites
US09/357,161 1999-07-19

Publications (2)

Publication Number Publication Date
CA2313865A1 CA2313865A1 (en) 2001-01-19
CA2313865C true CA2313865C (en) 2004-11-02

Family

ID=23404541

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002313865A Expired - Lifetime CA2313865C (en) 1999-07-19 2000-07-13 Preform for magnesium metal matrix composites

Country Status (6)

Country Link
US (2) US6247519B1 (en)
JP (1) JP4568410B2 (en)
KR (1) KR100556582B1 (en)
CA (1) CA2313865C (en)
DE (1) DE10034631B4 (en)
FR (1) FR2796579B1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105235B2 (en) * 2002-05-17 2006-09-12 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Isotropic zero CTE reinforced composite materials
US20030215661A1 (en) * 2002-05-17 2003-11-20 Jason Lo Isotropic zero CTE reinforced composite materials
JP4005058B2 (en) * 2003-07-23 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same, carbon fiber composite molded article and method for producing the same
US7279023B2 (en) * 2003-10-02 2007-10-09 Materials And Electrochemical Research (Mer) Corporation High thermal conductivity metal matrix composites
JP4224438B2 (en) * 2004-07-16 2009-02-12 日信工業株式会社 Method for producing carbon fiber composite metal material
DE102004039306A1 (en) * 2004-08-12 2006-02-23 Bayerische Motoren Werke Ag Process to manufacture automotive crankcase with embedded supra-eutectic lightweight metal containing silicon
US7666475B2 (en) 2004-12-14 2010-02-23 Siemens Energy, Inc. Method for forming interphase layers in ceramic matrix composites
US7455433B2 (en) * 2005-01-05 2008-11-25 The L.D. Kichler Co. Light fixture with quick support assembly
CN100347328C (en) * 2005-12-06 2007-11-07 哈尔滨工业大学 ZnO coated ceramic phase strengthening aluminium base or magnesium base composite material and preparation process thereof
DE102005060203B4 (en) * 2005-12-14 2009-11-12 Gkss-Forschungszentrum Geesthacht Gmbh Biocompatible magnesium material, process for its preparation and its use
JP5061018B2 (en) * 2008-04-09 2012-10-31 電気化学工業株式会社 Aluminum-graphite-silicon carbide composite and method for producing the same
JP5483078B2 (en) * 2009-11-30 2014-05-07 国立大学法人富山大学 Magnesium-based composite material
CA2900728C (en) 2013-02-11 2021-07-27 National Research Council Of Canada Metal matrix composite and method of forming
CN103421995B (en) * 2013-07-19 2016-01-20 西安理工大学 Silicon carbide and standard are brilliant and approximately strengthen magnesium base composite material and preparation method thereof mutually
CN104120296B (en) * 2014-08-08 2016-04-06 哈尔滨工业大学 A kind of cenosphere of high electromagnetic shielding strengthens the preparation method of AZ91 magnesium base composite material
CN107523730A (en) * 2016-06-20 2017-12-29 张家港市华舰五金工具有限公司 magnesium-based composite material and preparation method thereof
CN107760946B (en) * 2017-10-26 2019-08-02 中南大学 A kind of Biological magnesium alloy and preparation method thereof containing nano magnesia and nano silver
CN108189516B (en) * 2017-12-06 2019-10-25 西安市宏欣宁电子科技有限公司 A kind of preparation method of copper-clad plate
CN114603156A (en) * 2022-04-11 2022-06-10 合肥工业大学智能制造技术研究院 Method for preparing high-corrosion-resistance magnesium alloy by utilizing ink-jet 3D printing technology

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA852134A (en) 1970-09-22 D. Lawrence Garth Magnesium metal composites
CA890809A (en) 1972-01-18 M. Sowards Donald Metal-ceramic composite structures
US2755164A (en) * 1951-08-25 1956-07-17 Hartford Nat Bank & Trust Co Slag-forming body for use in bolt welding and method of making same
US2910371A (en) * 1953-09-29 1959-10-27 Eugene I Ryschkewitsch Stabilization of zirconia
US3285019A (en) * 1963-05-27 1966-11-15 Monsanto Co Two-phase thermoelectric body comprising a lead-tellurium matrix
US3529655A (en) 1966-10-03 1970-09-22 Dow Chemical Co Method of making composites of magnesium and silicon carbide whiskers
US3701379A (en) * 1971-07-06 1972-10-31 United Aircraft Corp Process of casting utilizing magnesium oxide cores
JPS5550447A (en) 1978-10-05 1980-04-12 Honda Motor Co Ltd Manufacture of fiber-reinforced magnesium alloy member
US4476916A (en) 1981-07-27 1984-10-16 Nusbaum Henry J Method of casting metal matrix composite in ceramic shell mold
JPS5923831A (en) 1982-07-28 1984-02-07 Tokai Carbon Co Ltd Production of composite material reinforced with sic whisker
GB8301320D0 (en) 1983-01-18 1983-02-16 Ae Plc Reinforcement of articles of cast metal
US4576919A (en) * 1984-11-02 1986-03-18 General Electric Company Zircon-cordierite composite ceramic
US4657876A (en) 1985-07-29 1987-04-14 General Electric Company Composite by infiltration
DE3681566D1 (en) * 1985-12-06 1991-10-24 Hitachi Ltd Ceramic sinter with high thermal expansion coefficient and a composite body made of the same and metal.
US4762305A (en) * 1986-07-03 1988-08-09 General Motors Corporation Ramming mix for forming a mullite-corundum lining within a foundry furnace
US4702304A (en) * 1986-11-03 1987-10-27 General Motors Corporation Foundry mold for cast-to-size zinc-base alloy
US4800065A (en) 1986-12-19 1989-01-24 Martin Marietta Corporation Process for making ceramic-ceramic composites and products thereof
US4885265A (en) * 1986-12-22 1989-12-05 General Electric Company Moldable fiber-containing ceramic mass
EP0280830A1 (en) 1987-03-02 1988-09-07 Battelle Memorial Institute Method for producing metal or alloy casting, composites reinforced with fibrous or particulate materials
NL8720112A (en) * 1987-03-05 1989-02-01 Olajipari Foevallal Tervezoe PROCESS FOR PREPARING ALUMINUM OXIDE CERAMIC MATERIALS WITH INCREASED WEAR RESISTANCE.
JPS63247323A (en) * 1987-04-01 1988-10-14 Toshiba Corp Aluminum alloy composite material and its production
JP2909546B2 (en) * 1988-04-30 1999-06-23 トヨタ自動車株式会社 Manufacturing method of metal matrix composite material
JPH024935A (en) * 1988-06-23 1990-01-09 Toyota Motor Corp Manufacture of metal matrix composite
US5347426A (en) 1988-09-13 1994-09-13 Pechiney Recherche Electronic device including a passive electronic component
JPH0297628A (en) * 1988-09-30 1990-04-10 Toyota Motor Corp Production of metal-based composite material
CA2000770C (en) 1988-10-17 2000-06-27 John M. Corwin Method of producing reinforced composite materials
US4932099A (en) 1988-10-17 1990-06-12 Chrysler Corporation Method of producing reinforced composite materials
GB8902050D0 (en) 1989-01-31 1989-03-22 T & N Technology Ltd Reinforced materials
US5108964A (en) 1989-02-15 1992-04-28 Technical Ceramics Laboratories, Inc. Shaped bodies containing short inorganic fibers or whiskers and methods of forming such bodies
JPH0331434A (en) * 1989-06-28 1991-02-12 Toyota Motor Corp Production of clad material containing metal matrix composite
JP2863285B2 (en) * 1990-09-03 1999-03-03 日亜化学工業株式会社 Alumina container and method for producing the same
CA2040499A1 (en) 1991-04-15 1992-10-16 Ralph D. Maier Vls silicon carbide whisker reinforced metal matrix composite by the squeeze casting process
US5360662A (en) 1992-03-12 1994-11-01 Hughes Aircraft Company Fabrication of reliable ceramic preforms for metal matrix composite production
US5296311A (en) 1992-03-17 1994-03-22 The Carborundum Company Silicon carbide reinforced reaction bonded silicon carbide composite
CA2073625C (en) 1992-07-10 1998-02-03 Adam Jan Gesing Process and apparatus for melting metals while reducing losses due to oxidation
CA2145161A1 (en) 1992-09-17 1994-03-31 Marcus A. Ritland Method for making a ceramic metal composite
JP2559325B2 (en) * 1993-02-24 1996-12-04 株式会社ニッカトー Heat resistant ceramic material
US5511603A (en) 1993-03-26 1996-04-30 Chesapeake Composites Corporation Machinable metal-matrix composite and liquid metal infiltration process for making same
US5322109A (en) 1993-05-10 1994-06-21 Massachusetts Institute Of Technology, A Massachusetts Corp. Method for pressure infiltration casting using a vent tube
JPH0733526A (en) * 1993-07-20 1995-02-03 Hitachi Ltd Fluoride ceramic having high strength
US5464583A (en) 1993-07-29 1995-11-07 Lockheed Idaho Technologies Company Method for manufacturing whisker preforms and composites
US5571758A (en) 1993-08-19 1996-11-05 General Electric Company Nitrogen-reacted silicon carbide material
US5839329A (en) 1994-03-16 1998-11-24 Baker Hughes Incorporated Method for infiltrating preformed components and component assemblies
US5765624A (en) 1994-04-07 1998-06-16 Oshkosh Truck Corporation Process for casting a light-weight iron-based material
JPH0925168A (en) * 1995-07-11 1997-01-28 Ngk Insulators Ltd High strength silicon nitride sintered compact
US5791397A (en) 1995-09-22 1998-08-11 Suzuki Motor Corporation Processes for producing Mg-based composite materials
US5711362A (en) 1995-11-29 1998-01-27 Electric Power Research Institute Method of producing metal matrix composites containing fly ash
FR2760984B1 (en) 1997-03-24 1999-06-25 Aerospatiale PROCESS FOR MANUFACTURING A COMPOSITE PART WITH MAGNESIUM MATRIX, BY PRESSURE FOUNDRY

Also Published As

Publication number Publication date
DE10034631B4 (en) 2009-07-02
JP2001073049A (en) 2001-03-21
KR20010049712A (en) 2001-06-15
US20010015271A1 (en) 2001-08-23
FR2796579A1 (en) 2001-01-26
JP4568410B2 (en) 2010-10-27
FR2796579B1 (en) 2004-11-19
US6506502B2 (en) 2003-01-14
CA2313865A1 (en) 2001-01-19
DE10034631A1 (en) 2001-02-22
KR100556582B1 (en) 2006-03-06
US6247519B1 (en) 2001-06-19

Similar Documents

Publication Publication Date Title
CA2313865C (en) Preform for magnesium metal matrix composites
JP3247363B2 (en) Method for producing metal matrix composite
EP0322336B1 (en) Process for preparing selfsupporting bodies and products made thereby
US4948766A (en) Rigid mullite=whisker felt and method of preparation
CN100528801C (en) Method for suppressing reaction of molten metals with refractory materials
KR20000071110A (en) Method for producing ceramic-metal composite bodies, ceramic-metal composite bodies and their use
JP4429505B2 (en) Method for producing low volume fraction metal-based preform
JP2642675B2 (en) Method for manufacturing self-supporting body
CN101973777A (en) Metallic toughened silicon carbide-based composite ceramic and preparation method thereof
US5667742A (en) Methods for making preforms for composite formation processes
EP0380973B1 (en) Reinforced materials
US5641817A (en) Methods for fabricating shapes by use of organometallic, ceramic precursor binders
EP0410601B1 (en) Composite ceramic material
JP3094148B2 (en) Manufacturing method of lightweight refractory
CN115477545B (en) Continuous carbon fiber reinforced high-entropy ceramic composite material and preparation method thereof
US6844281B2 (en) Reinforcement preform for metal matrix composites
GB1602027A (en) Method for removing cores
JPS61291460A (en) Manufacture of fiber reinforced silicon carbide ceramic
CN1212915A (en) Pressureless penetration casting method for aluminium-base composite material
JPH0881722A (en) Production of mg-base partially reinforced composite member
JPH01147031A (en) Production of metal matrix composite product
JPH11172348A (en) Metal-ceramics composite and its production
US5318279A (en) Receptacle for molten metals, material for this receptacle and method of producing the material
CA2317149C (en) Low volume fraction metal matrix preforms
JP2000204454A (en) Preform for metal matrix composite material and its production

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20200713