CA2315596A1 - Apparatus and method for the recovery of bitumen from tar sands - Google Patents

Apparatus and method for the recovery of bitumen from tar sands Download PDF

Info

Publication number
CA2315596A1
CA2315596A1 CA 2315596 CA2315596A CA2315596A1 CA 2315596 A1 CA2315596 A1 CA 2315596A1 CA 2315596 CA2315596 CA 2315596 CA 2315596 A CA2315596 A CA 2315596A CA 2315596 A1 CA2315596 A1 CA 2315596A1
Authority
CA
Canada
Prior art keywords
bitumen
recovery
tar sands
ore
tailings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA 2315596
Other languages
French (fr)
Inventor
William J. Lavender
Harry Kaethler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
TSC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSC Co Ltd filed Critical TSC Co Ltd
Priority to CA 2315596 priority Critical patent/CA2315596A1/en
Priority to CA 2332207 priority patent/CA2332207C/en
Priority to CA002358805A priority patent/CA2358805C/en
Publication of CA2315596A1 publication Critical patent/CA2315596A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/26Methods of surface mining; Layouts therefor
    • E21C41/31Methods of surface mining; Layouts therefor for oil-bearing deposits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/26Methods of surface mining; Layouts therefor

Description

. ",. .. CA 02315596 2000-08-04 AN ALTERNATIVE FOR THE RECOVERY OF BITUMEN FROM
THE ATHABASCA TAR SANDS
Summary:
This document presents an alternative process for the recovery of bitumen -from the Athabasca tar sands. Current technology is limited in its applicability, environmental acceptabil~,ty, cost and therefore, in its overall efficacy. A typical operation for a 100,000 barrel/day bitumen production facility costs over $1 billion to build and over $5.00 /barrel to operate while having significant environmental debits.
The following alternative offers an environmentally superior process and applicability in~ relatively small increments. It is forecast to cost about $500 million to build a 100,000 barrel/day bitumen production facility which would have an equivalent operating cost of $2.58 /barrel.
Introduction:
The Athabasca tar sands in northeastern Alberta are estimated to contain some 300 billion barrels of bitumen heavy oil. Of this total, some 80 billion barrels have been estimated to be accessible for recovery through surface mining methods.
The Suncor Energy predecessor, Crreat Canadian Oil Sands, initiated commercial operation employing the current technology of bitumen recovery from the tar sands in 1967.
Subsequently, Syncrude Canada Ltd. commenced operation in 1978. These two operations, the only ones based on tar sand mining, recover a total of approximately 400,000 barrels of bitumen per day.
In both companies the technology employed has developed little since the mid 1960s, although there have been changes in mining methodology. The original mining operations, at GCOS were based on bucketwheel excavator mining and conveyor transport and at Syncrude on dragline excavation, bucketwheel reclaim and conveyor transport. These technologies were selected at the inception of these projects, over shovel mining and truck haulage, because large shovels and trucks had not been developed by that time.
Current TechnoloQv The bitumen recovery from surface mined tar sands entails the following steps:
~ Mine dewatering and muskeg removal ~ Overburden stripping and haulage ~ Construction of tailings pond starter dikes with overburden ~ Ore mining and haulage ~ Ore preparation (size reduction and water addition to form a slurry) ~ Hydro-transport of the ore slurry to processing plants by way of pumps and pipelines ~ Bitumen flotation as an aerated froth by way of thickener type vessels and air induced flotation cells.
~ Tailings disposal by hydro-transport to tailings ponds ~ Reclaim of water from the tailings ponds and its re-circulation to processing plants ~ Reclaim and re-handling of fine solids sludge from the tailings ponds to mix with coarse tailings in the manufacture of consolidated tailings.
~ Continuing construction of tailings pond dikes ~ Removal of air, bulk water and coarse solids from the aerated bitumen froth ~ Removal of remaining water and solids from the bitumen ~ Upgrading of the bitumen to synthetic crude oil products ~ Remediation of tailings ponds and reforestation of disturbed land arears This recovery process requires transport of massive quantities of overburden and other waste material, tar sand ore and the attendant large quantities of water over very Iong distances. The bitumen comprises only about 7-12% of the ore mass, rendering the scheme largely a material handling undertaking. The support facilities, equipment, personnel and energy requirements are correspondingly massive and expensive.
Costs Based on Current Technoloav The development and installation of a tar sand facility capable of producing about 100,000 barrels per day of aerated bitumen froth is estimated to cost over $1 billion Canadian.
The attendant operating costs are estimated to run at about $5.50 Canadian per barrel of this raw bitumen froth.
Alternative Technology Over the last few years, two engineers each with over 25 years of experience in all aspects of the specification, conceptual and process design as well as detailed design, installation, startup and operation, have developed an alternative to the above technology. The two engineers, Bill Lavender and Harry Kaethler, have worked together over many years. They are convinced that this alternative technology has the potential to revolutionize the industry.
Their detailed estimates indicate a capital cost of approximately $500 million Canadian for a 100,000 barrels per day bitumen production facility. This facility would have an operating cost of approximately $2.58 Canadian per barrel of bitumen. As well, their scheme can be implemented in 25,000 barrel per day increments without significant economic penalty. This provides a way for small operators to start in the business without economic disadvantage.
This technology enjoys very substantial advantage over the current technology in the environmental and conservation areas of ~ Much higher energy efficiency and attendant much lower carbon dioxide generation.
~ Much smaller disturbed land footprint.
~ No tailings ponds with the attendant need for remediation, a significant end of project cost and a matter of public concern.
~ Concurrent land reclamation and re-vegetation.
~ No ore sterilization by tailings ponds because there are none.
~ The economic superiority allows the recovery of ore that under current technology is marginal due to its grade and/or overburden stripping ratio. This increases the value of the ore reserve.
~ Much reduced air pollution from diesel fueled vehicles.
~ Much reduced draw on fresh water resources.

The Prouosal To assess the potential of this alternative technology and develop the necessary engineering criteria for commercial implementation, it is proposed that a development program be undertaken. This program would involve testing of the key scheme elements, in full scale. All of these key elements are in commercial use in other industries and can be classed as "off the =shelf '. Scale-up risk is eliminated because it is feasible and practical to test, in full scale, the sub-elements of which the key elements are comprised. ' The testing is to take place in the field, on representative ore in order to eliminate the risks typically encountered in the implementation of projects from laboratory to commercial scale. This testing program is not a piloting program and consequently is much less costly than some of the programs that the industry has undertaken over the years.
This program of testing the key elements, together with a $1 million allowance to purchase access to a suitable lease, development engineering including a feasibility study pertaining to a specific ore body/lease, is valued at $4 million Canadian and is expected to be performed over a six month period.
It is the source of funding for this development program that is being sought.
In return for providing the funds the funding agency would acquire an equity position in the commercialization of this new technology, the share to be negotiated.

STREAM 1 2 3 4 ~ 6 7 s 9 to NO. UNITSTAR SLURRY1st 1st 5 2nd 2nd 3rd 3rd 3rd DESCRIPTION SAND WATERSTG STG 2nd STO STG S'1G STG STG
FEED UIF STG O'FLOWU'FLOWFEED O'FLOWU'FL04Y
FEED

BITUMEN t/h 240 1 151 45 60 42 18 21 15 6 ATER t/h 100 735 2124 637 2205 1544 661 2169 1568 601 SOLIDS t/h 1660 32 1861 1638 1858 222 1631 1792 215 1577 TOTAL tlh 200b 768 4136 2320 4118 1808 2310 3982 1798 218 _ BITUMEN Wt 12,0 0.1 3.7 1.9 1.5 2.3 0.8 0.5 0.8 0.3 ATER % 5.0 95.7 51.3 27.5 53.5 85.4 28.6 54,5 87.2 27.5 SOUDS wt 83.0 42 45.0 70.fj45.0 12.3 70.6 45.0 12.0 72.2 %
wt %

HEAT CAPACITYBtuIIb/F0.2950.9480,6230.44 0.6350.8760.446 0.64 0.8860.437 SPECIFIC 1.44 1.03 1.72 2.15 1.72 1.17 z.16 1.72 1.16 2.18 TOTAL VOLUMEACFM

TEMPERATUREDEC 32 195 145 145 160 160 160 t 170 170 ~ 7d MATERIAL BALANC:F
11 12 13 14 15 16 17 1a 19 20 ~21 22 FILTERFLOCCDRY tat PRODUCTFALTERFILTERPRIMARYMAKE-UPWATERHOT'WATER3rd fE~' FEED TAILINGSSTC3~ EFFLUENTVACUUMFROTHWATERRECYCLEBYPASSSTG
O'FLOW FEED
WfR

.603 2 272 1487 108 331 1 255 279 613 895 ~~~

186 Z 1855 1815 424 331 ~ 44Q 279 613 1060 0.3 0.0 0.3 5.8. 55.0 0.0 0.0 30.0 0:0 0.0 0.4 27.6 100.014,7 81.9 25.5 100.0t 58.0 100.0100.0 84,4 OQ.O

72.1 0.0 85.0 1$. 19.5 3 0.0 12.0 0..0 0.0 15.2 0.0 ~ ~ ' 43'1 0.98 0.3410.8570,9220.98 0.98 0.731tl 0.98 0 _2.180.98 2.4 1.17 1.32 0.96 0.96 1.18 1L 0.98 .
1.22 401'.8 6205 1285 1379 -4 1429 1116 2502 3475 __ 17 80 170 145 145 170 160 145 '35 100 195 COMBINEDPRODUCTVACUUMVACUUMVACUUMVACUUMPRODUCTPRODUCTHOTPROD
FROTHWATERRECEMERRECEIVERCONp'STEEXHAUgTARUM WATERWATER
RECYCLEINLETOVHD VAPOURRECYCLERECYCLE

276 193 0 0 0 . 0 193 193 D

1 0.3 0.0 0.0 0,0 0.0 0.0 0.3 0.3 0.5 772 89.2 100.0100.0100.0100.0100.0892 89.2 12.2 10.5 0.0 0.0' 0,0 0.0 0.0 10.5 10.5 0.8320.9 0.98 1 0.9 0.9 1.17 1.14 0.96 0.96 0.96 0.96 0.98 1.14 1.14 7713 6414 1306 i7 4 4 18 6414 6414 EQUIPMENT LIT
TAG f~0. . NAME TJ~G NO, NAME
3'C-01 VAC. K.O. DRUM 3K-01 VACUUM P~JMP
C-0~ notused 2D-01 SLURRY FD Tip MACHINE

CONVEYOR

2T-03 ORE.FEED

2T-04 1st 2D-04 CYCLONE Q6 OF SUNrP STAGE
CYCLONE

2T-05 2ndSTAGE

2T-06 3rdSTACE
2D-06 P~tOpUET SEF~ARATOR CYCLONE

"4E-01"MAKE UP WATER HTR CARRIER

"3E-d2 VAC OVND CONDENSER CONVEYOR

CARRIER

MIXER

2G-02 CYCLONE Q5 FD PUIU~P3T-11 VACUUM
FILTER

2G-04 BELT FILTER FEED 6T-13 ~AILINGS CONVEYOR BELT
PUMP WAGON

CALE
WAGON

2G-06 PROpUCT PUMP 6T-15 TAILINGS
STALKER

3G-07 RECYCLE WATER PUMP 10T-16 PRObUCT
HOSE
REEL

10G-8A,B,CPRODUCT PIPELINE 10T-17 WATER
PUMPS HOSE
REAL

2G-09 P~tODUCT WATER RECYCLE

2G-1.0 PRIMARY
FROTH
PUMP

Claims

CA 2315596 2000-08-04 2000-08-04 Apparatus and method for the recovery of bitumen from tar sands Abandoned CA2315596A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA 2315596 CA2315596A1 (en) 2000-08-04 2000-08-04 Apparatus and method for the recovery of bitumen from tar sands
CA 2332207 CA2332207C (en) 2000-08-04 2001-01-24 Mobile facility and process for mining oil bearing materialsand recovering an oil-enriched product therefrom
CA002358805A CA2358805C (en) 2000-08-04 2001-01-24 Process and apparatus for recovering an oil-enriched product from an oil-bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CA 2315596 CA2315596A1 (en) 2000-08-04 2000-08-04 Apparatus and method for the recovery of bitumen from tar sands

Publications (1)

Publication Number Publication Date
CA2315596A1 true CA2315596A1 (en) 2002-02-04

Family

ID=4166879

Family Applications (1)

Application Number Title Priority Date Filing Date
CA 2315596 Abandoned CA2315596A1 (en) 2000-08-04 2000-08-04 Apparatus and method for the recovery of bitumen from tar sands

Country Status (1)

Country Link
CA (1) CA2315596A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869147B2 (en) 2000-03-13 2005-03-22 Oil Sands Underground Mining, Inc. Method and system for mining hydrocarbon-containing materials
US7097255B2 (en) 2002-01-09 2006-08-29 Oil Sands Underground Mining Corp. Method and means for processing oil sands while excavating
US7128375B2 (en) 2003-06-04 2006-10-31 Oil Stands Underground Mining Corp. Method and means for recovering hydrocarbons from oil sands by underground mining
US7141162B2 (en) 2002-09-19 2006-11-28 Suncor Energy, Inc. Bituminous froth inclined plate separator and hydrocarbon cyclone treatment process
US7644769B2 (en) 2006-10-16 2010-01-12 Osum Oil Sands Corp. Method of collecting hydrocarbons using a barrier tunnel
US7651042B2 (en) 2005-11-09 2010-01-26 Suncor Energy Inc. Method and apparatus for creating a slurry
US7736501B2 (en) 2002-09-19 2010-06-15 Suncor Energy Inc. System and process for concentrating hydrocarbons in a bitumen feed
US7914670B2 (en) 2004-01-09 2011-03-29 Suncor Energy Inc. Bituminous froth inline steam injection processing
US8016216B2 (en) 2005-11-09 2011-09-13 Suncor Energy Inc. Mobile oil sands mining system
US8127865B2 (en) 2006-04-21 2012-03-06 Osum Oil Sands Corp. Method of drilling from a shaft for underground recovery of hydrocarbons
US8167960B2 (en) 2007-10-22 2012-05-01 Osum Oil Sands Corp. Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
US8168071B2 (en) 2005-11-09 2012-05-01 Suncor Energy Inc. Process and apparatus for treating a heavy hydrocarbon feedstock
US8176982B2 (en) 2008-02-06 2012-05-15 Osum Oil Sands Corp. Method of controlling a recovery and upgrading operation in a reservoir
US8209192B2 (en) 2008-05-20 2012-06-26 Osum Oil Sands Corp. Method of managing carbon reduction for hydrocarbon producers
US8287050B2 (en) 2005-07-18 2012-10-16 Osum Oil Sands Corp. Method of increasing reservoir permeability
US8313152B2 (en) 2006-11-22 2012-11-20 Osum Oil Sands Corp. Recovery of bitumen by hydraulic excavation
US8393561B2 (en) 2005-11-09 2013-03-12 Suncor Energy Inc. Method and apparatus for creating a slurry
US8968580B2 (en) 2009-12-23 2015-03-03 Suncor Energy Inc. Apparatus and method for regulating flow through a pumpbox
CN107774439A (en) * 2016-08-31 2018-03-09 北京新康华环保科技有限公司 A kind of non-ferro metals debris comprehensive processing method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6929330B2 (en) 2000-03-13 2005-08-16 Oil Sands Underground Mining, Inc. Method and system for mining hydrocarbon-containing materials
US6869147B2 (en) 2000-03-13 2005-03-22 Oil Sands Underground Mining, Inc. Method and system for mining hydrocarbon-containing materials
US7097255B2 (en) 2002-01-09 2006-08-29 Oil Sands Underground Mining Corp. Method and means for processing oil sands while excavating
US7448692B2 (en) 2002-01-09 2008-11-11 Osum Oil Sands.Corp Method and means for processing oil sands while excavating
US7461901B2 (en) 2002-01-09 2008-12-09 Osum Oil Sands Corp. Method and means for processing oil sands while excavating
US7726491B2 (en) 2002-09-19 2010-06-01 Suncor Energy Inc. Bituminous froth hydrocarbon cyclone
US7141162B2 (en) 2002-09-19 2006-11-28 Suncor Energy, Inc. Bituminous froth inclined plate separator and hydrocarbon cyclone treatment process
US7736501B2 (en) 2002-09-19 2010-06-15 Suncor Energy Inc. System and process for concentrating hydrocarbons in a bitumen feed
US7128375B2 (en) 2003-06-04 2006-10-31 Oil Stands Underground Mining Corp. Method and means for recovering hydrocarbons from oil sands by underground mining
US7192092B2 (en) 2003-06-04 2007-03-20 Oil Sands Underground Mining Corporation Method and means for recovering hydrocarbons from oil sands by underground mining
US7914670B2 (en) 2004-01-09 2011-03-29 Suncor Energy Inc. Bituminous froth inline steam injection processing
US8685210B2 (en) 2004-01-09 2014-04-01 Suncor Energy Inc. Bituminous froth inline steam injection processing
US8287050B2 (en) 2005-07-18 2012-10-16 Osum Oil Sands Corp. Method of increasing reservoir permeability
US8025341B2 (en) 2005-11-09 2011-09-27 Suncor Energy Inc. Mobile oil sands mining system
US7651042B2 (en) 2005-11-09 2010-01-26 Suncor Energy Inc. Method and apparatus for creating a slurry
US8096425B2 (en) 2005-11-09 2012-01-17 Suncor Energy Inc. System, apparatus and process for extraction of bitumen from oil sands
US9016799B2 (en) 2005-11-09 2015-04-28 Suncor Energy, Inc. Mobile oil sands mining system
US8968579B2 (en) 2005-11-09 2015-03-03 Suncor Energy Inc. System, apparatus and process for extraction of bitumen from oil sands
US8168071B2 (en) 2005-11-09 2012-05-01 Suncor Energy Inc. Process and apparatus for treating a heavy hydrocarbon feedstock
US8800784B2 (en) 2005-11-09 2014-08-12 Suncor Energy Inc. System, apparatus and process for extraction of bitumen from oil sands
US8016216B2 (en) 2005-11-09 2011-09-13 Suncor Energy Inc. Mobile oil sands mining system
US8225944B2 (en) 2005-11-09 2012-07-24 Suncor Energy Inc. System, apparatus and process for extraction of bitumen from oil sands
US8393561B2 (en) 2005-11-09 2013-03-12 Suncor Energy Inc. Method and apparatus for creating a slurry
US8480908B2 (en) 2005-11-09 2013-07-09 Suncor Energy Inc. Process, apparatus and system for treating a hydrocarbon feedstock
US8317116B2 (en) 2005-11-09 2012-11-27 Suncor Energy Inc. Method and apparatus for processing a sized ore feed
US8127865B2 (en) 2006-04-21 2012-03-06 Osum Oil Sands Corp. Method of drilling from a shaft for underground recovery of hydrocarbons
US7644769B2 (en) 2006-10-16 2010-01-12 Osum Oil Sands Corp. Method of collecting hydrocarbons using a barrier tunnel
US8313152B2 (en) 2006-11-22 2012-11-20 Osum Oil Sands Corp. Recovery of bitumen by hydraulic excavation
US8167960B2 (en) 2007-10-22 2012-05-01 Osum Oil Sands Corp. Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
US8176982B2 (en) 2008-02-06 2012-05-15 Osum Oil Sands Corp. Method of controlling a recovery and upgrading operation in a reservoir
US8209192B2 (en) 2008-05-20 2012-06-26 Osum Oil Sands Corp. Method of managing carbon reduction for hydrocarbon producers
US8968580B2 (en) 2009-12-23 2015-03-03 Suncor Energy Inc. Apparatus and method for regulating flow through a pumpbox
CN107774439A (en) * 2016-08-31 2018-03-09 北京新康华环保科技有限公司 A kind of non-ferro metals debris comprehensive processing method

Similar Documents

Publication Publication Date Title
CA2315596A1 (en) Apparatus and method for the recovery of bitumen from tar sands
CA2358805C (en) Process and apparatus for recovering an oil-enriched product from an oil-bearing material
CA2526336A1 (en) Method and apparatus for oil sands ore mining
CA2653032A1 (en) An integrated system for producing de-asphalted bitumen from oil sands
Burlakovs et al. Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: The status
Hong et al. Technologies for safe and sustainable mining of deep-seabed minerals
Vitti et al. The reprocessing and revalorization of critical minerals in mine tailings
Morrison Tailings Management Handbook: A LifeCycle Approach
Leal Filho An analysis of the environmental impacts of the exploitation of rare earth metals
Lozhnikov et al. Technological Solutions for Increasing the Efficiency of Beneficiation Processes at the Mining of Titanium-Zirconium Deposits
Cacciuttolo et al. In-Pit Disposal of Mine Tailings for a Sustainable Mine Closure: A Responsible Alternative to Develop Long-Term Green Mining Solutions
Mikula Advances in oil sands tailings handling: building the base for reclamation
Soni et al. Limestone Mining in India
Sapsford et al. An exploration of key concepts in application of in situ processes for recovery of resources from high-volume industrial and mine wastes
Muir et al. Retreatment of gold residues
Nunes et al. Mine waste: contributions to the circular economy
Ward Remediation of firing range impact berms
Valenti Oil sand kicks into high gear
Londoño et al. SDG 6 clean water and sanitation
Yamazaki Analysis of different models for improving the feasibility of deep-sea mining
Hudson Santee cooper’s coal ash impoundment closure challenge: Risk reduction through recycling
Cano Londoño et al. SDG 6 Clean Water and Sanitation: Sustainable Use of Energy and Water Resources in the Mining Sector: A Comparative Case Study of Open-Pit and Alluvial Mining Technology
Richardson A perspective of marine mining within De Beers
Van Hau et al. Digital Transformation in Mining Sector in Vietnam
Sinha et al. Emerging technology in surface mining and environmental challenges

Legal Events

Date Code Title Description
FZDE Discontinued
FZDE Discontinued

Effective date: 20021107