CA2316111A1 - Aldehyde modified cellulose pulp for the preparation of high strength paper products - Google Patents

Aldehyde modified cellulose pulp for the preparation of high strength paper products Download PDF

Info

Publication number
CA2316111A1
CA2316111A1 CA002316111A CA2316111A CA2316111A1 CA 2316111 A1 CA2316111 A1 CA 2316111A1 CA 002316111 A CA002316111 A CA 002316111A CA 2316111 A CA2316111 A CA 2316111A CA 2316111 A1 CA2316111 A1 CA 2316111A1
Authority
CA
Canada
Prior art keywords
cellulose
pulp
paper
aldehyde
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002316111A
Other languages
French (fr)
Inventor
Danielle E. Harkins
A. Levent Cimecioglu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Starch and Chemical Investment Holding Corp
Original Assignee
National Starch and Chemical Investment Holding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/375,939 external-priority patent/US6228126B1/en
Application filed by National Starch and Chemical Investment Holding Corp filed Critical National Starch and Chemical Investment Holding Corp
Publication of CA2316111A1 publication Critical patent/CA2316111A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/18Oxidised starch
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/005Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/18Reinforcing agents
    • D21H21/20Wet strength agents

Abstract

Paper comprising aldehyde modified cellulose pulp having selected aldehyde content. Another embodiment involves a method of preparing celullose aldehydes using selective oxidation with a limited amount of oxidant and a nitroxyl radical mediator and defined reaction conditions to provide oxidized cellulose material with effective aldehyde content making it particularly suitable for use in making paper with desirable wet strength, temporary wet strength and dry strength properties, including compressive strength and resistance.

Description

ALDEHYDE MODIFIED CELLULOSE PULP FOR THE PREPARATION OF HIGH
STRENGTH PAPER PRODUCTS
BACKGROUND OF THE INVENTION
This invention relates to paper comprising aldehyde modified cellulose pulp or fiber and further to the method of preparing aldehyde modified cellulose and cellulose pulp or fiber using selected oxidation conditions to generate aldehyde functionality. More particularly, this invention involves paper made from cellulose pulp having a defined amount of aldehyde content. A method for preparing the selected aldehyde modified cellulose and cellulose pulp involves using a nitroxyl radical mediated oxidation with a limited amount of oxidant and defined reaction conditions. This aldehyde modified pulp is used in the production of tissue/towel and other paper products which exhibit unexpected high wet strength, temporary wet strength and dry strength properties, including compression strength and resistance, and high wet strength/dry strength ratios without the use of other additives.
The term "paper" as used herein, includes sheet-like masses and molded products made from pulp or fibrous cellulosic material which may be derived from natural sources. Paper may also be made from synthetic cellulosic fibers and regenerated cellulose as well as recycled waste paper. In addition, paper made from combinations of cellulosic and synthetic materials are applicable herein.
Paperboard is included within the broad term "paper".
Papermaking, as it is conventionally known, is a process of introducing an aqueous slurry of pulp or wood cellulosic fibers (which have been beaten or refined to achieve a level of fiber hydration and to which a variety of functional additives can be added) onto a screen or similar device in such a manner that water is removed, thereby forming a sheet of the consolidated fibers, which upon pressing and drying can be processed into dry roll or sheet form. Typically in papermaking, the feed or inlet to a papermaking machine is an aqueous slurry or water suspension of pulp fibers which is provided from what is called the "wet end" system. In the wet end, the pulp along with other additives are mixed in an aqueous slurry and subject to mechanical and other operations such as beating and refining. Various additives are commonly added to help provide different properties in the paper product.
The preparation of aldehyde containing starches and the use of such aldehyde derivatives in the paper industry as wet and dry strength additives is well known. Both oxidative and non-oxidative methods are known for introducing aldehyde groups into starch. Use of these products in papermaking to provide wet and dry strength properties involves the addition of this separate starch additive component.
The use of nitroxyl radicals and nitrosonium salts in organic chemistry as an oxidative route to produce aldehydes and carboxylic acids from primary and secondary alcohols is disclosed in an article entitled "Organic Nitrosonium Salts As Oxidants in Organic Chemistry" by J. M. Bobbitt and C. L. Flores, in I~eterocycles, Vol. 27, No. 2, 1988, pp. 509-533. Recently, application of this chemistry was extended to the selective oxidation of primary alcohols in various carbohydrates to carboxylic acids in an article entitled "Selective Oxidation of Primary Alcohols Mediated by Nitroxyl Radical in Aqueous Solution. Kinetics and Mechanism" by A. E. J. de Nooy and A. C. Bessemer, in Tetrahedron, Vol. 51, No. 29, 1995, pp. 8023-8032. Patent publication WO 95/07303 dated March 16, 1995 further discloses the use of this technology where carbohydrates having a primary hydroxyl group are oxidized under aqueous conditions to form products having a high content of greater than 90% carboxyl groups. This art involving the oxidation of primary alcohols generally describes the preparation of polyglucuronic acids with high carboxylic acid content. Similarly, the process of oxidation has been used to prepare various polysaccharides with high carboxyl content as described in "Oxidation of Primary Alcohol Groups of Naturally Occurring Polysaccharides with 2,2,6,6-Tetramethyl-1-piperidine Oxoammonium Ion" by P. S. Chang and J. F. Robyt in J. Carbohydrate Chemist~r ~, 15(7), 1996, pp. 819-830. It should be noted that in some applications high carboxylic acid content is undesirable.
Recent patent publications WO 99/23240 and 99/23117, both dated May 14, 1999, respectively disclose methods of oxidizing starch and cellulose using an oxoammonium ion producing reagent in the presence of an enzyme oxidizing agent.
Despite the various methods described above, there still is the need for cellulose pulp which is suitable for use in paper applications to provide the desired high degree of wet strength, temporary wet strength and dry strength properties, and improved compression strength and resistance, and does not involve the use of separate additive components.
SUMMARY OF THE INVENTION
This invention is directed to paper having wet strength, temporary wet strength and dry strength properties, including improved compression strength and resistance, and comprising aldehyde modified cellulose pulp wherein the pulp has from 1 to 20 mmoles of aldehyde per 100 g of cellulose.
Another embodiment of this invention involves the selective preparation of cellulose aldehyde and cellulose pulp aldehyde under defined oxidation conditions using a nitroxyl radical mediated aqueous oxidation procedure to provide derivatives with effective aldehyde content particularly useful in papermaking. More particularly, this invention involves the oxidation of cellulose or cellulose pulp in an aqueous solution with an oxidant having an equivalent oxidizing power of up to 5.0 g of active chlorine per 100 g of cellulose and an effective mediating amount of nitroxyl radical, the reaction being carried out at a pH of about 8.0 to 10.5, and a temperature of from about 5 to 50°C, the resulting product having an aldehyde content of about 1 to 20 mmole/100 g of pulp.
This invention further involves aldehyde modified cellulose or cellulose pulp having defined aldehyde content.
Still another embodiment involves the method of preparing paper having wet strength, temporary wet strength and dry strength properties, including compression strength and resistance, comprising using the cellulose aldehyde pulp prepared by the selective oxidation procedure as described above, as the paper or pulp stock or a component thereof.
DETAILED DESCRIPTION OF THE INVENTION
The cellulose or cellulose pulp aldehyde derivatives of this invention have effective aldehyde functionality or content of from about 1 to 20 and preferably from about 5 to 20 mmoles/100 g of cellulose material, i.e., cellulose or cellulose pulp.
The cellulose aldehyde derivatives of this invention can be prepared by a method which involves the selective oxidation of cellulose and cellulose pulp or fiber using a limited amount of oxidant mediated with a nitroxyl radical under defined conditions to provide derivatives with effective aldehyde content making them particularly suitable for use in providing paper with desired wet strength, temporary wet strength and dry strength properties, including compression strength and resistance .
The nitroxyl radical mediator used herein is a di-tertiary alkyl nitroxyl radical having one of the following formulas:
A
R~ R3 (I) R2 ~ R4 O
or R~ R4 R2 N~RS (II) Rs O Rs where A represents a chain of preferably two or three atoms, in particular carbon atoms or a combination of one or two carbon atoms with an oxygen or nitrogen atom, and the R groups represent the same or different alkyl groups. Chain A
may be substituted by one or more groups such as alkyl, alkoxy, aryl, aryloxy, amino, amido or oxo groups, or by a divalent group or multivalent group which is bound to one or more other groups having formula I. Particularly useful nitroxyl radicals are di-tertiary alkyl nitroxyl radicals having the formula:
i O
where Y is either H, OH or NH-C(O)-CH3 and each of the R groups represent the same or different alkyl groups of 1 to 18 carbon atom and more particularly methyl groups. Nitroxyl radicals of this type include those where a) the R
groups are all methyl (or alkyl of 1 carbon atom) and Y is H, i.e., 2,2,6,6-tetramethyl-1-piperdinyloxy (TEMPO); b) R groups are methyl and X is OH and identified as 4-hydroxy TEMPO; and c) R groups are methyl and Y is NH-C(O)-CH3 and identified as 4-acetamido-TEMPO. The preferred nitroxyl radical is TEMPO or 4-acetamido-TEMPO. The nitroxyl radical is used in an effective amount to mediate the oxidation and more particularly from about 0.001 to 20% by weight, preferably from about 0.01 to 0.1 % by weight, based on the weight of cellulose, cellulose pulp or fiber. The nitroxyl radical can be added to the reaction mixture or generated in situ from the corresponding hydroxylamine or oxoammonium ion.
The oxidant used in this invention can be any material capable of converting nitroxyl radicals to their corresponding oxoammonium salt.
Particularly useful oxidants are the alkali or alkaline-earth metal hypohalite salts such as sodium hypochlorite, lithium hypochlorite, potassium hypochlorite or calcium hypochlorite. An alkali or alkaline earth-metal hypobromite salt may also be used and it may be added in the form of the hypobromite salt itself, such as sodium hypobromite, or it may be formed in situ from the addition of a suitable oxidant such as sodium hypochlorite and an alkali or alkaline-earth metal bromide salt such as sodium bromide. The bromide ion is generally in the form of sodium bromide. Additional oxidants that can be used in this method include hydrogen peroxide in combination with a transition metal catalyst such as methyltrioxorhenium (VII); hydrogen peroxide in combination with an enzyme;
oxygen in combination with a transition metal catalyst; oxygen in combination with an enzyme; peroxyacids such as peracetic acid and 3-chloroperoxybenzoic acid;
alkali or alkaline-earth metal salts of persulfates such as potassium persulfate and sodium persulfate; alkali or alkaline-earth metal salts of peroxymonosulfates such as potassium peroxymonosulfate; chloramines such as 1,3,5-trichloro-1,3,5-triazine-2,4,6(1 H,3H,5H)trione, 1,3-dichloro-1,3,5-triazine-2,4,6(1 H,3H,5H)triione sodium salt, 1,3-dichloro-5,5-dimethylhydrantoin, 1-bromo-3-chloro-5,5-dimethylhydrantoin, and 1-chloro-2,5-pyrrolidinedione; and alkali or alkaline-earth metal salts of ferricyanide. This list of oxidants is only illustrative and is not intended to be exhaustive. The oxidants can be used alone or in combination with an alkali or alkaline-earth metal bromide salt. The preferred oxidant is sodium hypochlorite or sodium hypobromite formed from the addition of sodium hypochlorite and sodium bromide.
The important factor in the use of the oxidant is that it must be used in a limited amount that has the equivalent oxidizing power of up to 5.0 g of active chlorine per 100 g of cellulose or cellulose pulp. More particularly, the amount of oxidant used will have an equivalent oxidizing power of from about 0.05 to 5.0 g of active chlorine and preferably from about 0.5 to 2.5 g of active chlorine per 100 g of cellulose or cellulose pulp. When sodium hypochlorite is used, it is used in a limited amount of up to about 10 percent by weight based on the weight of cellulose or cellulose pulp, more particularly from about 0.1 to 10% and preferably from about 1 to 5% by weight based on the weight of cellulose or cellulose pulp.
Bromide in the form of sodium bromide will generally be used in an amount of from about 0.1 to 5% by weight and preferably from about 0.25 to 2% by weight based on the weight of cellulose or cellulose pulp. By limiting the amount of oxidant under defined aqueous conditions, the cellulose aldehyde derivatives are selectively prepared at effective high aldehyde levels. Such high aldehyde cellulose products are particularly useful in preparing paper with wet strength, temporary wet strength and dry strength properties, including compression strength and resistance.
The cellulose material used as the starting material may be any cellulose, cellulosic fiber or pulp material. This includes hardwood or softwood cellulosic fibers such as bleached and unbleached sulfate (Kraft), bleached and unbleached sulfite, bleached and unbleached soda, neutral sulfite, semi-chemical, groundwood, chemi-groundwood, and any combination of these fibers. In addition, synthetic cellulosic fibers of the viscose rayon or regenerated cellulose type can also be used, as well as recycled waste papers from various sources.
The consistency in water of the cellulose or pulp that is used will be from about 0.1 to 15% by weight solids in water and preferably from about 1 to 5% by weight.
When used in papermaking other additives such as desired inert fillers or retention aids may be added to the cellulose pulp. Such materials include clay, titanium dioxide, talc, calcium carbonate, calcium sulfate and diatomaceous earth.
Rosin or synthetic internal size may also be present, if desired. Other additives commonly used in paper may also be used in combination with the oxidized pulp of this invention.
The oxidation reaction of the cellulosic material is carried out in an aqueous solution. The pH of the reaction is maintained at about 8.0 to 10.5, preferably about 9 to 10, the temperature is maintained at from about 5 to 50°C, preferably from about 20 to 30°C. The extent of the reaction is controlled by the amount of oxidant used or the reaction time. Generally the reaction time will be from about 5 to 60 minutes, and more particularly from about 20 to 30 minutes.
By using the reagent and component amounts as defined previously and the noted reaction conditions, controlled amounts of aldehyde functionality, particularly C-6 aldehyde, can be obtained that are suitable and effective in providing desired wet strength, temporary wet strength, and dry strength properties, including compression strength and resistance, and wet strength/dry strength ratios desired in the final prepared paper product. The cellulose aldehyde derivatives prepared in accordance with this invention will have effective aldehyde functionality of from about 1 to 20 and preferably from about 5 to 20 mmole/100 g of cellulosic material i.e., cellulose or cellulose pulp.
Carboxylic acid functionality will also be generated or formed during the oxidation process.
Amounts of carboxyl content generated will generally be from about 1 to 40 mmole/100 g of cellulose or cellulose pulp, particularly from about 1 to 20 and more particularly from about 1 to 10 mmole/100 g cellulose or cellulose pulp.
It should be noted that this amount of carboxylic acid functionality is in addition to what may already be present in the cellulose or cellulose pulp naturally or by virtue of the type of processed pulp used, such as bleached sulfate, bleached sulfite, etc.. The effective level of aldehyde is an important aspect of this invention and one way this can be defined is by the ratio of aldehyde to generated carboxylic acid functionalities. Such levels can be defined by aldehyde to generated carboxylic acid ratios of greater than or equal to 0.5 (based on mmole/100 g of cellulose or cellulose pulp of each functionality) and preferably greater than or equal to 1Ø While recognizing that the amount of additional carboxylic functionality (i.e., other than generated) will vary and may be fairly low, there nevertheless will be some present and this will affect the level of total carboxylic acid functionality. Considering this and based on total carboxylic acid, the ratio of aldehyde to carboxylic acid functionality will be from about 0.2 or more. The significance of this aldehyde content is particularly manifested in the resulting properties found in paper prepared from the oxidized cellulose material.
High wet strength, temporary wet strength and dry strength properties, including compression strength and resistance, are found. Products having high wet strength/dry strength ratios of greater than 20% have been obtained in paper using these selectively modified cellulose aldehyde derivatives indicating improved properties such as softness.
Compression strength and resistance are components of the dry strength of paper, and are particularly significant in paperboard quality. Compression strength relates to the edgewise compression strength of paper and is commonly measured by the Swedish Forest Products Laboratory (STFI) short-span test.
Compression resistance is a measure of the elastic and inelastic buckling or edge crush resistance of the paper and is commonly measured by the Ring Crush test.
The Ring Crush and STFI tests are described in detail in the Handbook of Physical & Mechanical Testing of Pulp & Paperboard which is incorporated herein by reference. The modified papers of the present invention demonstrate improved compression properties as expressed by their STFI and Ring Crush tests of greater than about one percent, and preferably greater than about five percent, over papers made from a corresponding unmodified pulp.
Further, the moisture absorption by papers which is caused by high humidity conditions is known to significantly reduce the compression strength of papers. The papers of the present invention demonstrate improved compression strength and resistance even in environments of relatively high temperature and humidity. This increase in compression strength is greater than about 1 %, preferably greater than about 5% over the compression strength of papers made from a corresponding unmodified pulp.
It is noted that use of the modified aldehyde cellulose derivatives of this invention in papermaking may involve the use of such derivatives as the whole or entire pulp or paper stock or it may be used as a component of the paper stock (i.e., in amounts of 20, 40, 60% by weight etc.).
The following examples will more fully illustrate the embodiments of this invention. In the examples, all parts and percentages are by weight and all temperatures in degrees Celsius unless otherwise noted. Also, when referring to the pulp by weight, it is the weight of the pulp per se, i.e., it includes equilibrium moisture content.

Modification of Northern Softwood Kraft~NSK ulp:
To a 1600 g stirred suspension of NSK pulp at 3% consistency (48 g pulp) was added 4.8 mg 4-acetamido-TEMPO and 0.24 g sodium bromide [0.01 and 0.5% on weight of pulp (owp) respectively]. The pH of the mixture was adjusted to 9.5 with 0.49 N sodium hydroxide. Sodium hypochlorite (10.11 g;

9.5% solution; 2% owp), whose pH was also adjusted to 9.5 using concentrated HCI, was then added all at once and the mixture was stirred at 25°C
for 30 minutes. The pH of the suspension was maintained throughout using a Brinkmann pH STAT 718 Titrino at 9.5 with 0.49 N NaOH (7.9 mL). At the end of the treatment period, the reaction was terminated by adding ascorbic acid to the mixture until its pH was lowered to 4.0 to 4.5 range (ca. 1 g).
The pulp was filtered and washed extensively with water whose pH was adjusted to 4.5 to 5.5. It was then either re-slurried in water for subsequent use in handsheet making or dried in air at room temperature for future use.

The procedure described in Example 1 was repeated with the exception that it was carried out based on 248 g pulp and the 4-acetamido-TEMPO was omitted from the treatment. This control treatment consumed 1.22 mL of 0.98 N
NaOH during maintenance of pH of the mixture at 9.5 during the 30 minute treatment.

Modification of hardwoot) DUID:
To a 1600 g stirred suspension of hardwood pulp at 3% consistency (48 g pulp) was added 4.8 mg 4-acetamido-TEMPO and 0.24 g sodium bromide. The pH of the mixture was adjusted to 9.5 with 0.49 N sodium hydroxide. Sodium hypochlorite (10.11 g; 9.5% solution; 2% owp), whose pH was also adjusted to 9.5 using concentrated HCI, was then added all at once and the mixture was stirred at 25°C for 30 minutes. The pH of the suspension was maintained throughout using a Brinkmann pH STAT 718 Titrino at 9.5 with 0.49 NaOH, consuming 4.8 mL. At the end of the treatment period, the reaction was terminated by adding ascorbic acid to the mixture until its pH was lowered to 4.0 to 4.5 range (ca. 1 g). The pulp was filtered and washed extensively with water whose pH was adjusted to 4.5 to 5.5. It was then either re-slurried in water for subsequent use in handsheet-making or air-dried at room temperature for future use.

The procedure described in Example 3 was repeated with the exception that it was carried out based on 248 g pulp and the 4-acetamido-TEMPO was omitted from the treatment. This control treatment consumed 1.96 mL of 0.98 N
NaOH during maintenance of pH of the mixture at 9.5 during the 30 minute treatment time.

Determination of aldehyde content on modified ~,dlos:
Aldehyde content of modified pulps were determined using hydroxylamine hydrochloride titration via oxime derivatization to the following reaction and the procedure.
RCHO + NHZOH.HCI RCHNOH + HCI
An oxidized pulp suspension in water 1200 g at 3% consistency was pH
adjusted to 4 with aqueous HCI. To this mixture was added dropwise a large excess of an aqueous solution of 2 M hydroxylamine hydrochloride solution (ca.
15 mL), whose pH was also adjusted to 4 with HCI. During the reaction, the pH
of the mixture was maintained at 4 via titration with a 0.49 N NaOH solution using a Brinkmann pH STAT 718 Titrino. The titration was continued until no further reduction in pH of the mixture could be detected (ca. 1 h). Aldehyde levels are then calculated based on the total consumption of NaOH using the following equation:
mmole/100 g -CHO = mL of NaOH titrant X N of NaOH X 100 pulp weight in g Table 1 lists the -CHO content of pulp samples prepared in Examples 1 to 4 Carboxxl_ic acid content of modified ~~s:
The level of carboxylic acid formed during these treatments was calculated from the amount of NaOH titrant consumed to maintain the pH of the reactions. This provides a direct measure of the additional carboxylic acid generated on the pulp and was calculated using the following equation:
mmole/100 g -COOH = mL of NaOH titrant X N of NaOH X 100 pulp weight in g Table 1 lists the -COOH content of modified pulp samples prepared in Examples 1 to 4.

Aldehyde and carboxylic acid moieties generated in pulp treatments described in Examples 1 to 4.
Pulp PreparedAldehyde ContentCarboxylic Acid Generated in (mmole/100 (mmole/100 g) EXAMPLE # g) 1 8.7 8.1 2 <0.5 0.5 3 10.1 4.9 4 <0.5 0.8 Following their modification by the oxidative process described in the prior examples, modified pulp samples (600 to 650 CSF) were formed into 18 Ib/3300 sq.ft handsheets from 0.3% consistency and at pH 5 to 6 on an M/K
Sheet Former. Test strips (1" wide) were cut from handsheets and tested for initial wet strength and dry tensile strength at the breaking point according to the TAPPI Standard Test Method T 456. Table 2 lists the tensile strength performance data from handsheets of surface modified pulp samples prepared in Examples 1 to 4.

Wet and dry tensile strength performance of handsheets prepared from pulps modified as described in Examples 1 to 4 Wet Dry Wet/Dry Ratio Pulp Used Tensile Tensile (Wet st.
StrengthStrength/ Dry st.
(g/in) (g/in) X 100) Untreated NSK 19 2028 1 Example 1 614 2504 25 Example 2 38 2018 2 Untreated Hardwood19 1243 2 Example 3 278 1399 20 Example 4 16 949 2 Modification of 70/30 blend of softwood / hardwood ~~:
To an 800 g stirred pulp suspension of 1.3% consistency in water comprising of a 70/30 (w/w) mixture of softwood/hardwood (10.4 g total pulp) was added 10.4 mg 4-acetamido-TEMPO and 0.31 g sodium bromide (0.1 % and 3%
on weight of pulp respectively). The pH of the mixture was adjusted to 9.5 with 0.98 N sodium hydroxide. Sodium hypochlorite (9.81 g of 10.6% solution; 10%
owp as hypochlorite), whose pH was also adjusted to 9.5 using concentrated HCI, was then added all at once and the mixture was stirred at 25°C for 10 minutes.
The pH of the suspension was maintained throughout using a Brinkmann pH
STAT 718 Titrino at 9.5 with 0.98 N NaOH (0.57 mL). At the end of the treatment period, the reaction was terminated by by adding ascorbic acid to the mixture until its pH was lowered to 4.0 to 4.5 range (ca. 2 g).
The pulp was recovered as described in Example 1. Handsheets made from this pulp exhibited 301 g/in and 1355 g/in wet and dry tensile strengths respectively.

Softwood pulp was modified under the conditions described in Example 7. The pulp was filtered-off and washed extensively with water whose pH was adjusted to 4.5 to 5.5. It was then re-slurried in water at neutral pH.
Portions of this pulp suspension were then mixed with unoxidized hardwood pulp suspensions in order to determine the effect of increasing modified softwood fraction in untreated hardwood. Handsheets were made from these pulp mixtures and tested as described in Example 6. Table 3 lists the tensile strength results of handsheets made from these pulp compositions.

The effect of blending oxidized softwood pulp with an unmodified hardwood pulp on the wet and dry tensile strength of handsheets prepared from such pulp compositions.
Pulp CompositionWet TensileDry TensileWet/Dry Modified SoftwoodStrength Strength Ratio / (g/in) (g/in) (%) Unmodified Hardwood (w/w) The process described in Example 1 was repeated under similar conditions on NSK pulp in order to determine the effect of process variables on aldehyde generation and paper strength properties. Therefore, 4.8 mg 4-acetamido-TEMPO and 0.24 g sodium bromide were added to stirred pulp suspensions in water of 1600 g slurry at 3% consistency (48 g pulp). pH of the mixtures were adjusted to required level with 0.49 N NaOH. Sodium hypochlorite (7.68 g as 12.5% solution at desired pH) was then added all at once and the mixtures were stirred for a prescribed period at a given temperature. The pH
of the mixtures were maintained throughout using a Brinkmann STAT 718 Titrino with 0.49 N NaOH. At the end of the treatment period, the reactions were terminated by adding ascorbic acid to the mixture until its pH was lowered to 4.0 to 4.5 range (ca. 1 g).

The pulps were filtered and washed extensively with pH adjusted water (4.5 to 5.5). They were then re-slurried in water and tested for aldehyde content and handsheet wet tensile strength and dry strength performance as described in Examples 5 and 6 respectively. Table 4 lists the testing results.

The effect of process variables during NSK treatment on the properties of the modified pulp and handsheets.
Oxidation Pulp Paper Conditions Properties Properties pH T Time-CHO -COOH -CHO/ Wet Dry Wet/Dry (C) (min.)ContentGener--COOH TensileTensileRatio (mmole/ated Ratio StrengthStrength(%) 100 (mmole/ (g/in)(g/in) g) 100g) Untreated pulp 18 2142 1 NSK

9.5 25 30 8.7 8.1 1.1 614 2504 25 11.025 30 1.5 4.0 0.4 240 2237 11 8.0 25 30 5.9 4.2 1.4 479 2258 21 9.5 50 30 4.3 11.5 0.4 246 2230 11 9.5 25 60 7.3 9.8 0.8 578 2430 24 The process described in Example 1 was repeated under similar conditions on NSK pulp in order to determine the effect of process variables of pulp consistency, 4-acetamido-TEMPO, sodium bromide and sodium hypochlorite concentrations on the wet and dry strength and wet/dry ratio of the handsheets prepared from modified pulps. Therefore, appropriate quantities of 4-acetamido-TEMPO and sodium bromide were added to stirred pulp suspensions in water of either 800 g at 1.3% consistency or 1600 g slurry at 3% consistency (10.4 g or g pulp respectively), pH of the mixtures were adjusted to 9.5 with 0.49 N
sodium hydroxide. Required amounts of sodium hypochlorite (as 10 to 13% solutions at pH 9.5) were then added all at once and the mixtures were stirred at 25°C for 30 minutes. The pH of the mixtures were maintained throughout using a Brinkmann pH STAT 718 Titino at 9.5 with 0.49 N NaOH. At the end of the treatment period, the reactions were terminated by adding ascorbic acid to the mixture until its pH
was lowered to 4.0 to 4.5 range (ca. 1 g).
The pulps were filtered and washed extensively with pH adjusted water (4.5 to 5.5). They were then re-slurried in water and formed into handsheets and tested as described in Example 6.
Table 5 lists the handsheet testing results obtained from NKS pulp treated with different reagent concentrations The effect of reagent concentrations during NSK oxidation on strength properties of handsheets made from resulting pulp Oxidation Paper ies Conditions propert NSK 4- SodiumSodium Wet Dry Wet/Dry Consistencyacetamido-bromideHypochloriteTensileTensileRatio (%) TEMPO (wt%)'(wt%)' StrengthStrength(%) (wt%)" (g/in)(g/in) Untreated NSK 18 2142 1 Pulp 1.3 0.1 3.0 10.0 552 2282 24 1.3 0.02 2.0 2.5 550 2253 24 1.3 0.02 1.0 2.5 395 2230 18 1.3 0.02 0 2.5 197 2108 9 3.0 0.02 2.0 2.5 743 2518 30 3.0 0.01 0.5 2.0 625 2456 25 3.0 J 0.005 0.5 1.5 528 2383 22 F An reagent quantities given are based on weight of pulp.

Three sets of handsheets prepared in Example 10 were also tested for their temporary wet strength characteristics in the following manner.
Following the testing of the initial wet strengths, involving a soaking time of approximately 5 seconds in neutral pH water, strips from the corresponding handsheets were tested for their residual wet tensile strength after a soaking time of 30 minutes under similar conditions. This allows the determination percent of "decay" in wet strength, expressed as the percent loss of the average initial wet strength.
Results from these samples are given in Table 6.

The wet tensile strength of handsheets made from oxidized NSK pulps after prolonged soaking (initial wet strengths are from Example 10 and Table 5).
Initial Wet Wet Tensile Wet Strength Tensile Strength Strength After Decay (g/in) 30 min. Soaking(%) Time (g/in) The process described in Example 1 was repeated under similar conditions on NSK pulp in order to determine the effect of oxidation pH on the wet and dry strength and wet/dry ratio of the handsheets. Therefore, 1600 g stirred mixtures of 3% consistency NSK pulp in water (48 g pulp) containing 4.8 mg 4-acetamido-TEMPO and 0.24 g sodium bromide were treated with 7.56 g sodium hypochlorite (as 12.7% solution). Mixtures were then stirred at 25°C
for 30 minutes at different pH's which was maintained throughout using a Brinkmann pH
STAT 718 Titrino at using 0.49 N NaOH. At the end of the treatment period, the reactions were terminated by adding ascorbic acid to the mixture until its pH
was lowered to 4.0 to 4.5 range (ca. 1 g).
The pulps were filtered and washed extensively with pH adjusted water (4.5 to 5.5). They were then re-slurried in water and made into handsheets and tested as described in Example 6. The wet and dry tensile strength of the handsheets made from NSK pulps modified at different pH's are given in Table 7.

The effect of pH during treatment of NSK pulp on the strength properties of handsheets made from resultant pulps Paper Properties Oxidation Wet TensileDry TensileWet/Dry pH Strength Strength Ratio (g/in) (g/in) (%) 7.5 363 2101 17 8.0 401 1955 21 8.5 541 2223 24 9.0 607 2277 27 9.5 595 2376 25 10.0 565 2429 23 10.5 470 2460 19 19.0 j 258 2161 12 The process described in Example 11 was repeated under similar conditions on NSK pulp in order to determine the effect of oxidation time and temperature on the wet and dry strength and wet/dry ratio of the handsheets.
Therefore, 1600 g stirred mixtures of 3% consistency NSK pulp in water (48 g pulp) containing 4.8 mg 4-acetamido-TEMPO and 0.24 g sodium bromide were treated with 7.56 g sodium hypochlorite (as 12.7% solution). Mixtures were then stirred at 25°C for 30 minutes at different 4.8 mg 4-acetamido-TEMPO
and 0.24 g sodium bromide were treated with 7.56 g sodium hypochlorite (as 12.7% at pH
9.5) for different periods of time at different temperatures. The pH was maintained at 9.5 throughout using a Brinkmann pH STAT 718 Titrino at using 0.49 N NaOH. At the end of the treatment period, the reactions were terminated by adding ascorbic acid to the mixture until its pH was lowered to 4.0 to 4.5 range (ca. 1 g). The pulps were filtered and washed extensively with pH
adjusted water (4.5 to 5.5). They were then re-slurried in water and made into handsheets and tested as described in Example 6.
The effect on wet and dry tensile strength of handsheets made from NSK
pulps modified at different treatment time and temperatures are listed in Table 8.

The effect on the strength properties of handsheets made from NSK
pulps modified at different treatment time and temperatures Oxidation Paper Properties Conditions TemperatureTime Wet TensileDry TensileWet/Dry (C) (min) Strength Strength Ratio (gain) (9~in) (%) Untreated 31 2170 1 NSK Pulp This example illustrates the improved compression strength and resistance of handsheets prepared from modified pulp compared to the compression strength of handsheets prepared from unmodified pulp.

Bleached softwood kraft (BSWK) pulp, refined to 400-500 CSF
(according to TAPPI T 200) was modified as described in Example 1. When determined according to the procedures of Example 5, the modified BSWK pulp had an aldehyde content of 7.8 mmole/100 g pulp. Handsheets were then formed, pressed and dried from both the modified and unmodified BSWK pulps under conditions similar to those described in Example 6 at a 33 Ib/1000 ft2 basis weight (according to TAPPI T 205).
Recycled old corrugated cardboard (OCC) pulp refined to 500 CSF
(TAPPI T 200) was also modified by adding 4-acetamido-TEMPO (12 mg) and sodium bromide (0.72 g) to a suspension (1600 g) of 510 CSF OCC pulp (24 g) at 1.5% consistency and a pH of 9.5. Sodium hypochlorite (22 g, 10.9%
solution) adjusted to a pH of 9.5 was added in one portion to the mixture which was stirred at 25 °C for 30 minutes. The pH of the suspension was maintained throughout using a Brinkmann pH STAT 718 Titrino at 9.5 with 0.49 N NaOH (13 mL). The reaction was quenched to a pH of between 4.0 and 4.5 with ascorbic acid (3 g).
The modified OCC pulp was determined to have an aldehyde content of 8.3 mmole/100 g by the method of Example 5. Handsheets were then formed, pressed and dried from both the modified and unmodified pulps under the conditions similar to those described in Example 6 at a basis weight of 26 Ib/1000 ftz (according to TAPPI T 205).
A mixture of 70% unbleached softwood kraft (UBSWK) and 30% OCC
pulps was refined to 500 CSF and modified as described above for the OCC pulp, and the pulp system adjusted to a pH of 5. The modified OCC + UBSWK pulp mixture was determined to have an aldehyde content of 7.8 mmole/100 g by the method of Example 5. Alum at 0.5% by weight of pulp was added to the pulp.

Handsheets were then formed, pressed and dried from both the modified and unmodified pulps under conditions similar to those described in Example 6 at a basis weight of 33 Ib11000 ft2 (according to TAPPI T 205).
Table 9 illustrates the compression performance of the handsheets prepared from modified pulps compared to those prepared from unmodified pulps. Ring Crush and STFI was tested according to TAPPI standard procedures T 822 and T 826, respectively. See Tappi Test Methods, 1996-1997 (Tappi Press, Technology Park, Atlanta, GA 1996).

Effect on compression strength properties of handsheets prepared from various modified and unmodified pulps under standard environmental conditions of 25°C and 50% relative humidity.
Ring STFI
Crush Pulp modificationKNIm improveKN/m improve -ment -ment NO 2.81 5.16 BSWK 19.6% 9.5%

YES 3.36 5.65 NO 2.36 4.67 OCC 6.8% 4.3%

YES 2.52 4.87 NO 2.57 2.64 UBSK + OCC 3.9% 12.5%

YES 2.67 2.97 As demonstrated by their improved STFI and Ring Crush values, handsheets prepared from bleached (BWSK) pulp, unbleached (OCC) pulp and mixtures thereof which had been modified, unexpectedly showed significant improvement in both compression resistance and compression strength compared to handsheets prepared from the corresponding unmodified pulps.

This example illustrates the improvement of the compression strength of the modified papers of the present invention under conditions of high humidity.
Handsheets were prepared from both modified and unmodified 70:30 UBSWK:OCC pulp mixture. The handsheets were conditioned and tested in a high humidity environment at 32 °C and 90% relative humidity. The results are presented in Table 10.

The compression strength and resistance performance of handsheets prepared from modified and unmodified UBSWK and OCC pulp mixture under high humidity conditions of 32 °C and 90 % relative humidity.
Ring Crush STFI

Pulp modificationKNIm % KNIm improve improve -ment -ment NO 1.33 1.35 UBSK + OCC 6% 3.7%

YES 1.41 1.40 The results indicate that there is a significant improvement in the compression strength of handsheets prepared from the modified pulp mixtures of the present invention compared to handsheets prepared from the unmodified pulp mixture even under conditions of high humidity.

Claims (43)

1. Paper having wet strength, temporary wet strength and dry strength properties comprising aldehyde modified cellulose pulp wherein the cellulose pulp has from about 1 to 20 mmoles of aldehyde per 100 g of cellulose.
2. The paper of Claim 1 wherein the cellulose pulp has from about 5 to 20 mmoles of aldehyde per 100 g of cellulose.
3. The paper of Claims 1-2 which has a wet strength to dry strength ratio of at least 20%.
4. The paper of Claims 1-3 wherein the paper has an improved compression strength and resistance of greater than about 1% over that of a paper prepared from a corresponding unmodified cellulose pulp.
5. The paper of Claims 1- 4 wherein the paper has an improved compression strength and resistance of greater than about 5%.
6. The paper of Claims 1-4 wherein the improved compression strength and resistance is measured under conditions of high humidity.
7. The paper of Claims 1-5 wherein the cellulose pulp has a ratio of aldehyde to carboxylic acid functionality of about 0.2 or more.
8. In the method of making paper having wet strength, temporary wet strength and dry strength properties, the improvement comprising using the aldehyde modified cellulosic material of Claim 1-7 as a pulp stock or a component of the pulp stock.
9. The method of Claim 8 wherein the prepared paper has a wet strength/dry strength ratio of at least 20% or more.
10. The method of Claims 8-9 wherein the prepared paper has an improvement in compression strength and resistance of greater than about 1%
over paper prepared from a corresponding unmodified cellulose pulp under standard environment conditions.
11. The method of Claims 8-10 wherein the prepared paper has an improvement in compression strength and resistance of greater than about 5%.
12. The method of Claims 8-11 wherein the compression strength and resistance is measured under conditions of high humidity.
13. The method of Claim 8-12 wherein the oxidant has an equivalent oxidizing power of from about 0.05 to 5.0 g of active chlorine per 100 g of cellulose.
14. The method of Claims 8-13 wherein the oxidant is sodium hypochlorite or sodium hypobromite.
15. The method of Claim 8-14 wherein the nitroxyl radical has the formula:

where Y is H, OH or NH-C(O)-CH3.
16. The method of Claim 8-15 wherein the prepared paper has a wet strength/dry strength ratio of at least 20%.
17. The method of Claim 8-16 wherein the aldehyde content of the cellulose is from about 5 to 20 mmole/100 g of cellulose.
18. The method of Claim 8-17 wherein the oxidant is sodium hypobromite formed in situ by the addition of sodium hypochlorite and sodium bromide.
19. The method of Claim 8-18 wherein the cellulose material has a ratio of aldehyde to generated carboxylic acid functionality of greater than or equal to 0.5 based on mmole/ 100 g of cellulose.
20. The method of Claim 8-19 wherein from about 0.1 to 10% by weight of sodium hypochlorite based on the weight of cellulose and from about 0.1 to 5% by weight of sodium bromide based on the weight of cellulose are used.
21. The method of Claim 8-20 wherein the prepared paper has a wet strength/dry strength ratio of at least 20%.
22. Paper produced by the method of Claim 21.
23. A method for preparing aldehyde modified cellulose or cellulose pulp having an aldehyde content of about 1 to 20 mmole/100 g of cellulose comprising oxidizing cellulose or cellulose pulp in an aqueous solution with an oxidant having an equivalent oxidizing power of up to 5.0 g of active chlorine per 100 g of cellulose and an effective mediating amount of nitroxyl radical, the reaction being carried out at a pH of about 8.0 to 10.5 and a temperature of from about 5 to 50°C.
24. The method of Claim 23 wherein the oxidant has an equivalent oxidizing power of from about 0.05 to 5.0 g of active chlorine per 100 g of cellulose.
25. The method of Claims 23 or 24 wherein the aldehyde modified cellulose or cellulose pulp has a ratio of aldehyde to generated carboxylic acid functionality of greater than or equal to 0.5 based on mmole/100 g of cellulose or cellulose pulp.
26. The method of Claims 23, 24 or 25 wherein the pH is from about 9 to 10 and the temperature is from about 20 to 30°C.
27. The method of any of Claims 23 to 26 wherein the nitroxyl radical catalyst has the formula:

where Y is H, OH or
28. The method of any of Claims 23 to 27 wherein the oxidant is sodium hypochlorite or sodium hypobromite.
29. The method of any of Claims 23 to 28 wherein the oxidant has an equivalent oxidizing power of from about 0.5 to 2.5 g of active chlorine per 100 g of cellulose.
30. The method of any of Claims 23 to 29 wherein the aldehyde modified cellulose or cellulose pulp has a ratio of aldehyde to generated carboxylic acid functionality of greater than or equal to 1.0 based on mmole/100 g of cellulose or cellulose pulp.
31. The method of any of Claims 23 to 30 wherein the from about 0.001 to 20% by weight of nitroxyl radical based on the weight of cellulose is used.
32. The method of any of Claims 23 to 31 wherein the pH is from about 9 to 10 and the temperature is from about 20 to 30°C.
33. The method of any of Claims 23 to 32 wherein the oxidant is sodium hypobromite formed in situ by the addition of sodium hypochlorite and sodium bromide.
34. The method of any of Claims 23 to 33 wherein from about 0.1 to 10% by weight of sodium hypochlorite based on the weight of cellulose and from about 0.1 to 5% by weight of sodium bromide based on the weight of cellulose are used.
35. The aldehyde modified cellulose produced by the method of any of Claims 23 to 34.
36. Aldehyde modified cellulose or cellulose pulp which has from about 1 to 20 mmoles of aldehyde per 100 g of cellulose or cellulose pulp.
37. The aldehyde modified cellulose or cellulose pulp of Claim 36 which has from about 5 to 20 mmoles of aldehyde per 100 g of cellulose or cellulose pulp.
38. The aldehyde modified cellulose or cellulose pulp of any of Claims 36 to 37 wherein the cellulose or cellulose pulp has a ratio of aldehyde to carboxylic acid functionality ratio is about 0.2 or more.
39. In the method of making paper having wet strength, temporary wet strength and dry strength properties, the improvement comprising using the aldehyde modified cellulosic material prepared by the method of any of Claims to 34 as the pulp stock or a component of the pulp stock.
40. The method of Claim 39 wherein the prepared paper has a wet strength/dry strength ratio of at least 20% or more.
41. The method of Claims 39 or 40 wherein the aldehyde content of the cellulose is from about 5 to 20 mmoel/100 g of cellulose.
42. The method of any of Claims 39 to 41 wherein from about 0.1 to 10% by weight of sodium hypochlorite based on the weight of cellulose and from about 0.1 to 5% by weight of sodium bromide based on the weight of cellulose are used.
43. Paper produced by the method of Claims 39 to 42.
CA002316111A 1999-08-17 2000-08-17 Aldehyde modified cellulose pulp for the preparation of high strength paper products Abandoned CA2316111A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/375,939 1999-08-17
US09/375,939 US6228126B1 (en) 1999-08-17 1999-08-17 Paper prepared from aldehyde modified cellulose pulp and the method of making the pulp
US09/638,319 US6695950B1 (en) 1999-08-17 2000-08-14 Aldehyde modified cellulose pulp for the preparation of high strength paper products
US09/638,319 2000-08-14

Publications (1)

Publication Number Publication Date
CA2316111A1 true CA2316111A1 (en) 2001-02-17

Family

ID=27007244

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002316111A Abandoned CA2316111A1 (en) 1999-08-17 2000-08-17 Aldehyde modified cellulose pulp for the preparation of high strength paper products

Country Status (7)

Country Link
US (1) US6695950B1 (en)
JP (1) JP2001115389A (en)
CN (1) CN1298986A (en)
CA (1) CA2316111A1 (en)
IL (1) IL137888A0 (en)
MX (1) MXPA00007980A (en)
NZ (1) NZ506387A (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI111745B (en) * 2001-12-19 2003-09-15 Kemira Chemicals Oy Improved board manufacturing process
US6789744B2 (en) * 2002-01-29 2004-09-14 Valeo Electrical Systems, Inc. Fluid heater with a variable mass flow path
US20050028955A1 (en) * 2003-08-05 2005-02-10 Weyerhaeuser Company Tissue product containing carboxylated cellulosic fibers
US8262850B2 (en) * 2003-09-23 2012-09-11 International Paper Company Chemical activation and refining of southern pine kraft fibers
US7125469B2 (en) * 2003-10-16 2006-10-24 The Procter & Gamble Company Temporary wet strength resins
WO2005054297A2 (en) * 2003-11-28 2005-06-16 Eastman Chemical Company Cellulose interpolymers and method of oxidation
US7259218B2 (en) * 2005-02-17 2007-08-21 The Procter + Gamble Company Processes for making temporary wet strength additives
ATE555249T1 (en) 2005-05-02 2012-05-15 Int Paper Co LIGNOCELLULOSIC MATERIALS AND PRODUCTS MADE THEREOF
JP4981735B2 (en) * 2008-03-31 2012-07-25 日本製紙株式会社 Method for producing cellulose nanofiber
WO2010020551A1 (en) * 2008-08-18 2010-02-25 Basf Se Method for increasing the dry strength of paper, paperboard and cardboard
JP5426209B2 (en) * 2009-03-30 2014-02-26 日本製紙株式会社 Method for removing organic oxidation catalyst remaining in oxidized pulp
US9511167B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9512237B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Method for inhibiting the growth of microbes with a modified cellulose fiber
US9512563B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Surface treated modified cellulose from chemical kraft fiber and methods of making and using same
KR101728910B1 (en) 2009-05-28 2017-04-20 게페 첼루로제 게엠베하 Modified cellulose from chemical kraft fiber and methods of making and using the same
JP2011184475A (en) * 2010-03-04 2011-09-22 Toppan Printing Co Ltd Manufacturing method for oxidized cellulose, manufacturing method for oxidized cellulose dispersion liquid, and oxidized cellulose dispersion liquid
CA2795834A1 (en) * 2010-05-05 2011-11-10 Basf Se Fibrous composition for paper and card production
US9133583B2 (en) 2011-04-05 2015-09-15 P.H. Glatfelter Company Process for making a stiffened paper
US8496784B2 (en) * 2011-04-05 2013-07-30 P.H. Glatfelter Company Process for making a stiffened paper
KR101918470B1 (en) 2011-05-23 2018-11-14 게페 첼루로제 게엠베하 Softwood kraft fiber having improved whiteness and brightness and methods of making and using the same
JP2013067904A (en) * 2011-09-22 2013-04-18 Nippon Paper Industries Co Ltd Method for washing and dehydrating oxidized pulp
BR112014017164A8 (en) 2012-01-12 2017-07-04 Gp Cellulose Gmbh method for producing oxidized kraft pulp and softwood kraft fibers
PL2839071T3 (en) 2012-04-18 2019-05-31 Gp Cellulose Gmbh The use of surfactant to treat pulp and improve the incorporation of kraft pulp into fiber for the production of viscose and other secondary fiber products
PL2954115T3 (en) 2013-02-08 2022-05-02 Gp Cellulose Gmbh Softwood kraft fiber having an improved a-cellulose content and its use in the production of chemical cellulose products
AU2014229520B2 (en) 2013-03-14 2017-09-21 Gp Cellulose Gmbh A method of making highly functional, low viscosity kraft fiber using an acidic bleaching sequence and a fiber made by the process
RU2661836C2 (en) 2013-03-15 2018-07-19 ДжиПи СЕЛЛЬЮЛОУС ГМБХ Low viscosity kraft fibre having higher carboxyl content and methods of making and using same
CA3040734A1 (en) 2016-11-16 2018-05-24 Gp Cellulose Gmbh Modified cellulose from chemical fiber and methods of making and using the same
US11332886B2 (en) 2017-03-21 2022-05-17 International Paper Company Odor control pulp composition
CN108179648B (en) * 2017-11-23 2020-07-31 湖北工业大学 Preparation method for improving wet strength of paper
CN108221462B (en) * 2018-01-03 2020-09-22 华南理工大学 Method for enhancing performance of waste paper pulp base paper by adopting hydroformylation hemicellulose

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124503A (en) * 1964-03-10 Formaldehyde pulping
US3133856A (en) * 1960-04-11 1964-05-19 Dow Chemical Co Process for modifying polysaccharides and products thereof
DE1256528B (en) 1963-12-27 1967-12-14 Basf Ag Process for the production of paper and cardboard increased rigidity
US3440135A (en) 1965-12-13 1969-04-22 Kimberly Clark Co Process for crosslinking cellulosic fibers during gas suspension of fibers
US3455778A (en) 1965-12-13 1969-07-15 Kimberly Clark Co Creped tissue formed from stiff crosslinked fibers and refined papermaking fibers
US3434918A (en) 1965-12-13 1969-03-25 Kimberly Clark Co Process of forming absorbent paper from a mixture of cellulosic fibers and partially crosslinked cellulosic fibers and paper thereof
DE2113216C3 (en) 1971-03-18 1982-04-08 Feldmühle AG, 4000 Düsseldorf Lightweight, high stiffness paper for use in duplicating machines and processes for making same
DE2332294C3 (en) 1973-06-25 1980-01-31 Feldmuehle Ag, 4000 Duesseldorf Lightweight, high-stiffness, high-volume paper
US4731162A (en) 1984-08-17 1988-03-15 National Starch And Chemical Corporation Polysaccharide derivatives containing aldehyde groups for use as paper additives
US4780339A (en) 1986-07-30 1988-10-25 National Starch And Chemical Corporation Sized glass fibers and method for production thereof
US4966652A (en) 1987-02-25 1990-10-30 American Cyanamid Company Increasing the stiffness of paper
EP0440472B1 (en) 1990-02-01 1995-08-16 James River Corporation Of Virginia High bulking resilient fibers through cross linking of wood pulp fibers with polycarboxylic acids
JPH04237586A (en) 1991-01-14 1992-08-26 Nippon Steel Corp Laser beam machine
US5334756A (en) 1991-03-26 1994-08-02 Sandoz Ltd. Carboxylate of certain polyoxyalkylene amines
NL194919C (en) 1993-09-07 2003-07-04 Tno Process for oxidizing carbohydrates.
US5906894A (en) 1994-03-25 1999-05-25 Weyerhaeuser Company Multi-ply cellulosic products using high-bulk cellulosic fibers
NL1000495C2 (en) 1995-06-02 1996-12-03 Avebe Coop Verkoop Prod Oxidized polymeric carbohydrate ethers for use as a sequestrant, and processes for their preparation.
AU2345397A (en) * 1996-03-28 1997-10-17 Procter & Gamble Company, The Paper products having wet strength from aldehyde-functionalized cellulosic fibers and polymers
US5698688A (en) 1996-03-28 1997-12-16 The Procter & Gamble Company Aldehyde-modified cellulosic fibers for paper products having high initial wet strength
US6331619B1 (en) 1996-12-18 2001-12-18 Sca Hygiene Products Zeist B.V. Superabsorbent material and method for producing said material
JP2001510881A (en) * 1997-07-23 2001-08-07 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Controlling pulp and paper yellowing using nitroxides and other auxiliary additives.
DE19746805C1 (en) 1997-10-23 1999-04-08 Hoechst Ag New oxidized starch having high absorption power
FI974139A (en) 1997-11-04 1999-05-05 Valtion Teknillinen A method for modifying cellulose
FI105690B (en) 1997-11-04 2000-09-29 Valtion Teknillinen Process for the preparation of oxidized starch
BR9813670A (en) 1997-12-19 2000-10-10 Novo Nordisk As Process for the oxidation of a hydroxy group of c1 and/or c2 and/or c3 and/or c4 and/or c5 and/or c6 of a sugar monomer of an oligo-or a polysaccharide
WO2000050621A2 (en) 1999-02-24 2000-08-31 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Process for producing nitrosoniom ions from a nitroxyl compound, their application in the selective oxidation of primary alcohols, and novel carbohydrate aldehydes
DE19953590A1 (en) * 1999-11-08 2001-05-17 Sca Hygiene Prod Gmbh Cellulose-containing fibrous material, for tissue papers and tissue products used in personal grooming and hygiene, includes hydroxy groups oxidized at the glucose units to aldehyde and/or carboxy groups
RU2001125920A (en) 1999-02-24 2004-02-20 Ска Хайджин Продактс Зейст Б.В. (Nl) METHOD FOR SELECTIVE OXIDATION OF CELLULOSE
AU768725B2 (en) 1999-02-24 2004-01-08 Sca Hygiene Products Gmbh Oxidized cellulose-containing fibrous materials and products made therefrom
US6379494B1 (en) 1999-03-19 2002-04-30 Weyerhaeuser Company Method of making carboxylated cellulose fibers and products of the method
US6228126B1 (en) 1999-08-17 2001-05-08 National Starch And Chemical Investment Holding Corporation Paper prepared from aldehyde modified cellulose pulp and the method of making the pulp
US6368456B1 (en) 1999-08-17 2002-04-09 National Starch And Chemical Investment Holding Corporation Method of making paper from aldehyde modified cellulose pulp with selected additives
DE19953589B4 (en) * 1999-11-08 2005-05-25 Sca Hygiene Products Gmbh Polysaccharide with functional groups, process for its preparation and products made therefrom
DE19953591A1 (en) * 1999-11-08 2001-05-17 Sca Hygiene Prod Gmbh Metal-crosslinkable oxidized cellulose-containing fibrous materials and products made from them
EP1149846B1 (en) 2000-04-25 2003-09-10 SCA Hygiene Products Zeist B.V. Oxidation of polysaccharides with nitroxyls

Also Published As

Publication number Publication date
NZ506387A (en) 2001-12-21
JP2001115389A (en) 2001-04-24
IL137888A0 (en) 2001-10-31
CN1298986A (en) 2001-06-13
US6695950B1 (en) 2004-02-24
MXPA00007980A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
EP1077286B1 (en) Aldehyde modified cellulose pulp for the preparation of high strength paper products
US6695950B1 (en) Aldehyde modified cellulose pulp for the preparation of high strength paper products
EP1156065B1 (en) Use of amide or imide co-catalysts for nitroxide mediated oxidation
EP1106732B1 (en) Paper made from aldehyde modified cellulose pulp
CA2384701C (en) Method of making carboxylated cellulose fibers and products of the method
AU768725B2 (en) Oxidized cellulose-containing fibrous materials and products made therefrom
US5522967A (en) Sulfonated cellulose and method of preparation
JP2003514077A (en) Oxidized polysaccharides and products made therefrom
WO2001034903A1 (en) Metal-crosslinkable oxidized cellulose-containing fibrous materials and products made therefrom
JP2003073402A (en) Method for producing stabilized carboxylated cellulose
CA2174458A1 (en) Aldehyde cationic derivatives of galactose containing polysaccharides used as paper strength additives
CA2319998A1 (en) Paper made from aldehyde modified cellulose pulp with selected additives
CA2250175C (en) Paper products having wet strength from aldehyde-functionalized cellulosic fibers and polymers
JP2021025143A (en) Pulp sheet

Legal Events

Date Code Title Description
FZDE Discontinued